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Inference for Social Network Models from

Egocentrically-Sampled Data, with

Application to Understanding Persistent

Racial Disparities in HIV Prevalence in

the US

Pavel N. Krivitsky∗† and Martina Morris∗

Abstract: Egocentric network sampling observes the network of inter-
est from the point of view of a set of sampled actors, who provide infor-
mation about themselves and anonymized information on their network
neighbors. In survey research, this is often the most practical, and some-
times the only, way to observe certain classes of networks, with the sexual
networks that underlie HIV transmission being the archetypal case. Al-
though methods exist for recovering some descriptive network features,
there is no rigorous and practical statistical foundation for estimation
and inference for network models from such data. We identify a sub-
class of exponential-family random graph models (ERGMs) amenable
to being estimated from egocentrically sampled network data, and ap-
ply pseudo-maximum-likelihood estimation to do so and to rigorously
quantify the uncertainty of the estimates. For ERGMs parametrized to
be invariant to network size, we describe a computationally tractable
approach to this problem. We use this methodology to help understand
persistent racial disparities in HIV prevalence in the US.

Keywords and phrases: social network, ERGM, random graph, egocentrically-
sampled data, pseudo maximum likelihood, pseudo likelihood.

1. Introduction

There is growing interest in the statistical modeling of network data across
a wide range of fields: from the study of political coalitions in the social
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Steel, and Robert Clark, and members of the University of Washington Network Modeling
Group, particularly Professor Steven M. Goodreau, for helpful discussions and comments
on this manuscript; and the Statnet Team for their software. Computations were performed
on a cluster partially funded by an NICHD research infrastructure grant R24HD042828,
to the Center for Studies in Demography and Ecology at the University of Washington;
and both authors were supported, in part, by NIH award R01HD068395.
†Supported, in part, by ONR award N000140811015.
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sciences, to protein-protein interaction networks in genetics and the spread
of infectious diseases in epidemiology. In some cases, it is possible to ob-
serve the complete network of interest, but in others the network must be
sampled. Estimating network models from sampled data raises some unique
issues. While progress has been made in developing the general framework
for statistical inference (Handcock and Gile, 2010), there is a need for fea-
sible methods that can be used with common network sampling designs
in different fields. In this work we present a framework for inference from
egocentrically sampled network data, which often contain very limited in-
formation about network structure: for those individuals in the sample, only
information about their immediate partners in the network is observed, and
even that information is often limited to non-identifying demographics. The
work was motivated by a specific question in the field of HIV epidemiology—
Does network structure help explain the persistent racial disparities in HIV
prevalence in the United States?—but it has the potential for wide applica-
tion given the simplicity of collecting egocentrically sampled network data
in the population sciences.

The HIV epidemic in the US is now in its third decade. While the rate
of transmission has dropped, the racial disparities in HIV prevalence have
become entrenched. An African American today is 10 times more likely than
a white American to be living with HIV/AIDS. The disparity begins early in
life (Morris et al., 2006), and persists through to old age (NCHHSTP, 2013),
and is evident among all risk groups: heterosexuals, men who have sex with
men (MSM), and injection drug users.

The disproportionate risks faced by heterosexual African-American women
are especially steep. In 2010, the most recent year for which statistics are
available (NCHHSTP, 2012), there were an estimated 5,300 heterosexually
acquired new infections among African-American women. By comparison,
there were 2,700 heterosexually acquired infections among African-American
men, 1,300 among white women, and 620 among white men. While per-
capita infection rates cannot be constructed for heterosexuals (because the
denominators are not known), the annual rates of heterosexually acquired
infections for the demographic subgroups are roughly 33, 19, 7 and 1 per
100,000 persons for African-American women and men and White women
and men, respectively. Similar disparities are found among other sexually
transmitted infections, both bacterial and viral (Morris et al., 2006). The
magnitude varies by pathogen and changes over time, but the disparities
have been remarkably persistent. For the older reportable STIs, like gonor-
rhea and syphilis, they stretch back to the earliest reports in the 1960s, and
reach per-capita rate ratios of 50–100. (NCDC, 1967)
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The determinants of these disparities remain elusive. Empirical studies
repeatedly find that they cannot be explained by systematic differences in
individual behavior, such as higher numbers of partners or rates of injection
drug use, or lower condom use (Hallfors et al., 2007, for example). Nor have
race-linked biological differences been identified that could explain dispar-
ities across this wide range of pathogens. What all of these infections do
share is an underlying transmission network. The structure of a transmis-
sion network can channel the spread of infection in the same way that a
transportation network can channel the flow of traffic, producing emergent
patterns that reflect the connectivity of the system, rather than the behavior
of any particular element.

A growing body of work is therefore focused on the role that network
structure may play in explaining these disparities. Descriptive analyses and
simulation studies (Laumann et al., 1992, 1994; Morris, 1993; Morris and
Kretzschmar, 1997) have focused attention on two structural features: ho-
mophily and concurrency. Homophily is the strong propensity for within-
group partner selection. It is a common pattern for many social attributes,
though not all. (For example, most sexual partnerships are cross-sex rather
than same-sex.) When present, homophily leads to clustered, segregated
networks. Concurrency is non-monogamy—having partners that overlap in
time. While there is a very strong norm of monogamy in sexual partnerships,
deviations from the norm occur. When present, concurrency increases net-
work connectivity by allowing for the emergence of stable network connected
components larger than dyads (pairs of individuals).

The hypothesis is that these two network properties together can pro-
duce the sustained HIV/STI prevalence differentials we observe: differences
in concurrency between groups are the mechanism that generates the preva-
lence disparity, while homophily is the mechanism that sustains it. To test
this hypothesis, we need to assess the strength and significance of observed
concurrency differentials and homophily by race, and to evaluate whether
the observed network mechanisms predict differentials in network exposure
by race and sex that are consistent with the differentials in observed HIV
prevalence.

Generative models for social networks, like exponential-family random
graph models (ERGMs), let us test for these effects, and we can simulate
from them to predict network exposure; but these models must first be fit to
available data that can support broad population-level inference. Our main
statistical challenge is, therefore, to fit generative network models (ERGMs
in particular) to egocentrically sampled data, and to obtain rigorous mea-
sures of uncertainty of these fits; and to do so in a computationally feasible
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manner, for when the population of interest is very large or its size is un-
known. We elaborate on these models and these data in turn.

1.1. Exponential-family random graph models

Exponential-family random graph models (ERGMs) are a popular and, im-
portantly for us, parsimonious, class of generative models for graphs in gen-
eral and for social networks in particular. (Frank and Strauss, 1986; Wasser-
man and Pattison, 1996; Hunter and Handcock, 2006) An ERGM expresses
the probability of an observed graph y as an exponential family:

Prg(Y = y;x,θ) ≡ exp{θ>g(y,x)}/κg(θ,x), y ∈ Y. (1.1)

It is specified by the sample space Y of possible networks (configurations
of relationships) and a sufficient statistic vector g(y,x), which is a function
of the whole network y and possible covariates x, and whose elements are
selected to represent features of the network that are of substantive interest
or believed relevant to the generative process of the network (e.g., count
of monogamous actors to represent monogamy and count of ties within an
exogenously defined group to represent homophily); and it is parametrized
by its vector of natural parameters θ. The normalizing constant κg(θ,x) ≡∑
y′∈Y exp{θ>g(y′,x)} is usually intractable when the choice of g(y,x)

induces dependence among the relationship states.
Analogously to Prg(·;x,θ), we define Eg(·;x,θ) and varg(·;x,θ), as, re-

spectively, the expectation and the variance under this ERGM process; and
let µg(θ,x) ≡ Eg{g(Y ,x);x,θ}, the smooth and invertible (Brown, 1986,
Thm. 3.6, for example) mapping from the natural to the mean-value param-
eters of this model. Call its inverse θg(µ,x) ≡ (θ s.t. µg(θ;x) = µ).

Estimating θ facilitates inference about the social forces that shape the
network as well as principled simulation of complete networks whose features
are similar, on average, to those of the network observed. In the case of
sampled network data in particular, it would allow recovering possible full
networks from which the sample may have been drawn. Therefore, θ is our
target of inference.

1.2. Egocentrically sampled data

Network data are distinguished by having two units of analysis: the actors
and the links between the actors. This gives rise to a range of sampling
designs that can be classified into two groups: link tracing designs (e.g.,
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snowball and respondent driven sampling) and egocentric designs. Much
of the recent literature has focused on developing model- or design-based
inference for link tracing designs. (Thompson and Frank, 2000; Salganik
and Heckathorn, 2004; Volz and Heckathorn, 2008; Snijders, 2010; Handcock
and Gile, 2010; Tomas and Gile, 2011; Illenberger and Fltter, 2012; Pattison
et al., 2013) This work focuses on the egocentric designs that are more
commonly used in the social sciences, but are less well developed statistically.

Egocentric network sampling comprises a range of designs developed specif-
ically for the collection of network data in social science survey research. The
design is (ideally) based on a probability sample of respondents (“egos”)
who, via interview, are asked to nominate a list of persons (“alters”) with
whom they have a specific type of relationship (“tie”), and then asked to
provide information on the characteristics of the alters and/or the ties. The
alters are typically not directly observed. Depending on the study design,
alters may or may not be uniquely identifiable, and respondents may or may
not be asked to provide information on one or more ties among alters (the
“alter” matrices). Alters could, in theory, also be present in the data as an
ego or as an alter of a different ego; the likelihood of this depends on the
sampling fraction.

In this work, we focus on the minimal egocentric network study design,
in which alters cannot be uniquely identified and alter matrices are not
collected. (See Smith (2012) and Gjoka, Smith, and Butts (2014a) for con-
siderations of when they are.) The minimal design is more common, and the
data are more widely available, for three reasons.

The first is confidentiality, a key consideration with respect to alter iden-
tification. If the relationship of interest is sensitive, requiring full identifica-
tion of the alters is likely to reduce respondent disclosure, and knowledge
of alter–alter ties by the respondent may be unreliable. In addition, Institu-
tional Review Boards often forbid the collection of identifiable data about
the alters, as the alters have not given informed consent for their personal
information to be collected. The minimal egocentric design allows for rep-
resentative data to be collected in such contexts, with less intrusion and
full consent. In public health research on HIV and other STIs, for example,
egocentric study designs make it possible to conduct empirical research on
how individual sexual behavior influences the population structure of in-
fection transmission networks. There is a growing international archive of
public data from such studies, with comparable surveys now available from
over 50 different countries as far back as the early 1990s (MEASURE DHS,
2000–2014; Tanfer, 1991; Laumann et al., 1992; Udry, 2003; NSFG, 2002,
2006–2011, for example).
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The second is time, a key consideration with respect to alter matrix col-
lection. The number of potential ties grows with the number of actors in
the network nominated, quickly making data collection burdensome for the
respondent, and difficult to justify in large scale surveys that must serve
multiple needs. As a result, even the less sensitive forms of social network
data tend to be collected using the minimal egocentric design. Perhaps the
best known example is the friendship network data collected annually by
the General Social Survey since 1985 (Burt, 1984), which was used in the
landmark study of the decline in American friendship and social support
networks Bowling Alone (Putnam, 2000).

The third is compatibility with established methods for survey sampling
with population-based inference. While in theory the “seed nodes” for a link-
traced sample could be chosen at random from the population of interest,
the real strength of these designs is the ability to sample from hidden or
inaccessible populations, where no sampling frame is available, and this is the
application context in which they are most often used. Egocentric designs, by
contrast, sample egos using standard sampling methods, and the sampling
of links is implemented through the survey instrument. As a result, these
methods are easily integrated into population-based surveys, and, as we
show below, inherit many of the inferential benefits.

Despite the widespread availability of egocentrically sampled network
data, statistical methods for analyzing them are still relatively undeveloped.
Early work focused on limited descriptive methods for analyzing “mixing
matrices”, cross-tabulations of ego-alter dyads by actor attributes (Mars-
den, 1981; Morris, 1991), or bivariate associations between ego attributes
and alter summary statistics (Marsden, 1987; Admiraal, 2009). More recent
work has focused on the key topic of recovering whole network attributes
from egocentric data (Gjoka, Smith, and Butts, 2014b, for example).

Handcock and Gile (2010) established a general framework for model-
based inference for networks based on sampled data that allows for egocen-
trically sampled data as a special case: when only dyads incident on those
in the sample are observed, and Koskinen, Robins, and Pattison (2010) de-
veloped a similar approach in a Bayesian framework. Unfortunately, the
likelihood approach is infeasible for our problem for three reasons. Firstly,
the approach requires fitting an ERGM to a network of the size equal to
that of the population from which the egos were sampled, which is, often,
on the order of millions, and possibly unknown. Secondly, Handcock and
Gile’s development was for a case where each of the alters nominated could
be uniquely identified: that one could identify when one ego nominates an-
other ego and when two egos nominate the same alter. For most existing



P. Krivitsky and M. Morris/Network Model Inference from Egocentric Data 7

egocentrically sampled data (including all of the studies cited above), al-
ters nominated by distinct egos cannot be matched. Although a likelihood
can be derived for this case as well, it requires integration over the space
of networks that produce exactly the observed dataset—a more complex
constraint. Thirdly, if the data come from a complex (even just weighted)
design, ignorability of the sampling process might not hold, requiring nested
integration over the sampling process as well.

Krivitsky, Handcock, and Morris (2011) described how the sufficient statis-
tic needed to fit certain ERGMs may be derived from egocentrically sam-
pled data and used to simulate networks consistent with egocentric obser-
vations. This approach has been used in applied contexts (Morris et al.,
2009; Goodreau et al., 2010; Smith, 2012). What remains lacking, however,
is a general, rigorous framework for ERGM inference for such data, and we
turn to the pseudo-MLE (PMLE)1 (Binder, 1983; Pfeffermann, 1993, for
example) approach to develop one.

Outline

The rest of the article proceeds as follows. In Section 2, we describe the
notation and the sampling framework for the egocentrically sampled net-
work data, and in Section 3, we specify an ERGM subfamily amenable to
being fit to such data. The pseudo-MLE for θ and its asymptotic properties
are derived in Section 4, along with how its uncertainty may be quantified.
An overview of implementation issues and of a validating simulation study
are given in Sections 5 and 6, respectively, with the details left to the Ap-
pendices. Finally, in Section 7, we apply our developments to the question
of the impact of network structure on persistent racial disparities in HIV
prevalence in the US.

2. Notation and sampling

Let N be the population being studied: a very large, but finite, set of actors
whose relations are of interest, and let xi be a vector of attributes (e.g., age,
sex, race) of an actor i ∈ N , with xN (or just x, when there is no ambiguity)
being the attributes of actors in N . Let Y(N) ≡ {{i, j} : (i, j) ∈ N×N ∧ i 6=
j} (distinct unordered pairs of actors) be the set of dyads (potential ties)

1This is not to be confused with the maximum pseudolikelihood estimation (MPLE)
of Strauss and Ikeda (1990), the technique for approximating the MLE for an intractable
likelihood for fully observed networks. We do not make direct use of it in this work.
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in an undirected network of these actors. Then, let Y(N,x) ⊆ 2Y(N) (set of
subsets of potential ties) be the set of networks (sets of ties) of interest. Y(·, ·)
may incorporate exogenous constraints, which we discuss in Section 3.2. For
a network y ∈ Y(N,x), let yi,j ≡ yj,i be an indicator function of whether a
tie between i and j is present in y and yi = {j ∈ N : yi,j = 1}, the set of i’s
network neighbors.

Throughout, y will refer to what we will call the population network : a
fixed but unknown network of relationships of interest.

2.1. Egocentric data

Now, let ei be the “egocentric” view of network y from the point of view of
actor i (“ego”). It comprises eei ≡ xi: i’s own attributes, and eai ≡ (xj)j∈yi :
an unordered list (technically, a multiset) of attribute vectors of i’s im-
mediate neighbors (“alters”), but not their identities (indices in N). For
convenience, we refer to the kth attribute/covariate observed on ego i and
its alters as eei,k ≡ xi,k and eai,k ≡ (xj,k)j∈yi .

Then, [ei]i∈N (eN for short) represents the egocentric census, the infor-
mation retained by the minimal egocentric sampling design discussed in
Section 1.2. The information about y contained in an egocentric sample of
actors S ⊆ N can then be represented as eS ≡ [ei]i∈S .

2.2. Sampling design considerations

In the following developments, we will assume that egocentric observations
are sampled using a conventional sampling design, with N as the sampling
frame, though as we discuss in Section 5, this is not critical in practice.
The proposed methods can be applied to more complex—stratified, for
example—designs, but here, we focus on simple probability designs, and
designs that can be approximated with simple probability designs. Specifi-
cally, let inclusion probabilities πi ≡ Pr(i ∈ S), for i ∈ N , and assume that
a weight wi ∝ π−1i is observed for each ego i ∈ S, but only up to proportion:∑

i∈N wi is not known. In our application, in particular, wS incorporate
both stratification for oversampling and post-stratification to account for
missing reports, making inclusion probabilities πi difficult to obtain.

Analogously to the ERGM process, we will use ES(·) and varS(·) to refer
to the expectation and the variance under the sampling process.
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Table 1
Examples of egocentric statistics for undirected networks. xi,k may be a dummy variable

indicating i’s membership in a particular exogenously defined group. hk(ei) that sum over
ties are halved because each tie is observed egocentrically twice: once at each end.

Statistic gk(y,x) hk(ei)

General sum over ties
∑

(i,j)∈y fk(xi,xj)
1
2

∑
z∈eai

fk (ee
i ,z)

Number of ties in the network |y| ≡
∑

(i,j)∈y 1 1
2
|ea

i |
weighted by actor covariate xi,k

∑
(i,j)∈y(xi,k + xj,k) 1

2

(
ee
i,k|ea

i |+
∑

z∈ea
i,k

z
)

weighted by difference in xi,k

∑
(i,j)∈y|xi,k − xj,k| 1

2

∑
z∈ea

i,k
|ee

i,k − z|
within groups identified by xi,k

∑
(i,j)∈y 1xi,k=xj,k

1
2

∑
z∈ea

i,k
1ee

i,k
=z

General sum over actors
∑

i∈N fk {xi, (xj)j∈yi
} fk (ee

i , e
a
i )

Number of actors with d neighbors
∑

i∈N 1|yi|=d 1|eai |=d

weighted by actor covariate xi,k

∑
i∈N xi,k1|yi|=d xi,k1|eai |=d

3. Egocentric ERGMs

Even if the whole population is observed (i.e., S = N , a census), not every
ERGM can be fit to such data, and we turn to the notion of sufficiency
to identify those that can be. Define an ERGM of the form (1.1) to be
egocentric if both its sufficient statistic and its sample space constraints (if
any) can be recovered from an egocentric census. We discuss them in turn.

3.1. Egocentric statistics

We call a network statistic gk(·, ·) egocentric if it can be expressed as

gk(y,x) ≡
∑

i∈N hk(ei), (3.1)

for some function hk(·) of egocentric information associated with a sin-
gle actor. The space of egocentric statistics includes dyadic-independent
(Hunter et al., 2008b) statistics that can be expressed in the general form of
gk(y,x) =

∑
(i,j)∈y fk(xi,xj) for some symmetric function fk(·, ·) of two ac-

tors’ attributes; and some dyadic-dependent statistics that can be expressed
as gk(y,x) =

∑
i∈N fk{xi, (xj)j∈yi} for some function fk(·, · · · ) of the at-

tributes of an actor and their network neighbors. Table 1 gives their represen-
tations in terms of of hk(·), along with some examples. Egocentric statistics
induce at most Markov graph dependence (Frank and Strauss, 1986) and
are local by the definition of Krivitsky et al. (2011).

Statistics that are not egocentric include statistics for triadic closure,
degree assortativity (e.g., whether high-degree actors tend to link with other
high-degree actors), and 4-cycles. Other statistics that are not egocentric
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include the average number of neighbors of an actor—gk(y,x) = 2|y|/|N |—
because the corresponding hk(ei) = 2 × 1

2 |e
a
i |/|N | depends on the network

size, which is information not contained in ei. (That is, an individual cannot
see exactly how big the network of interest is.) The latter are thus not local
by the definition of Krivitsky et al. (2011). (This does not mean that the
mean degree itself cannot be estimated from egocentric data, only that our
inferential results may not apply.)

3.2. Egocentric sample space constraints

We call the sample space Y(·, ·) of an ERGM egocentric if it can be expressed
as

Y(N,x) ≡
{
y ∈ 2Y(N) :

∏
i∈N H(ei) 6= 0

}
,

for some indicator functionH(·) that depends only on egocentric information
associated with a single actor. For example, H(ei) = 1|ea

i |≤d would constrain
y ∈ Y(N,x) so that no actor has more than d ties; and, given a binary actor
attribute xi,k (e.g., sex), H(ei) =

∏
z∈ea

i,k
1ee

i,k 6=z would force all of the ties

to be between groups defined by xi,k, modeling a bipartite network (if, say,
the focus were on heterosexual partnerships).

For the remainder of this paper, we will fix H(ei) = 1 so that Y(N,x) =
2Y(N): our data include same-sex ties, and statistics g(·, ·) with free param-
eters can be used to model the above-described features more flexibly. Also,
hard constraints are less well understood, and techniques such as network
size adjustment needed for the computational approach described in Sec-
tion 5 have not been developed for even the simpler ones.

4. Inference

Our inferential goal is to fit ERGMs to unobserved networks based on ego-
centric samples from them: to recover the parameters that would have been
estimated had an ERGM been fit to fully observed y. Because y and x are
fixed, we will drop them from g(y,x) (i.e., g) and others from now on, unless
it is to emphasize the dependence.

Most treatments of ERGM estimation treat θ as a parameter of a su-
perpopulation process of which y is a single realization; and the maximum
likelihood estimator (MLE) θ̂ is obtained by solving the score equation

sc(θ̂) ≡ g(y)− µg(θ̂) = 0, (4.1)
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which has a unique solution θ̂ = θg{g(y)}. When the likelihood contains
an intractable normalizing constant κg(·) (which also makes µg(·) and θg(·)
intractable), Monte-Carlo Maximum Likelihood Estimation (MCMLE) tech-
niques of Geyer and Thompson (1992), as applied to ERGMs by Hunter and
Handcock (2006), can be used. The variance of θ̂ is then typically estimated
by the inverse of the simulated negative Hessian of the log-likelihood.

In contrast, we treat θ as a finite population parameter, defined implic-
itly for the unobserved population network y as the solution to (4.1). The
inverse-negative-Hessian is not the correct variance for this estimation prob-
lem: whereas it reflects, loosely, the uncertainty in estimates due to the
stochasticity of the generative process for the network, we treat the network
as a fixed, unknown, finite population, so it is not a source of uncertainty in
the first place. Rather, uncertainty comes from having to estimate g from an
egocentric sample eS . Indeed, if S = N , (3.1) gives g exactly so varS(θ̂) = 0.
(We do address the superpopulation case in the Discussion.)

4.1. Pseudo maximum likelihood estimation

Following Binder (1983), substituting (3.1) into (4.1) gives a score equation
of the form of Binder’s eq. 2.6. Binder’s Assumptions (a) (open parameter
space), (c) (smoothness), and (d) (continuity of variance) are guaranteed by
finite exponential family proprieties of ERGMs.

Assumption (b) calls for an asymptotically normal estimator of the pop-
ulation total g and a consistent estimator of its variance. For our design, we
use the inverse-probability weighted estimator (Hájek estimator) scaled to
the population size. (Hájek, 1971) With y, x, and therefore g being fixed,

and letting w· ≡
∑|S|

i=1wi,

ḡ(eS) ≡
∑

i∈S wih(ei)/w· (4.2)

is a design-consistent—if slightly biased—estimator of ḡ ≡ g/|N |, the pop-
ulation mean contribution of each actor to the sufficient statistic. (Fuller,
2011, p. 61) Scaling it to the population size, g̃(eS) ≡ |N |ḡ(eS) is then
a design-consistent estimator for the population network statistic g. Pro-
vided the joint distribution of (wi, wih(ei)) under the sampling process in
Section 2.2 is not degenerate and the fourth moments of wi and h(ei) are
finite, Fuller (2011, Thm. 1.3.8, pp. 58–61) gives

|S|
1
2 (g̃(eS)− g) = |N ||S|

1
2 (ḡ(eS)− ḡ)

d→ MVNp(0, |N |2ΣH),
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where

ΣH ≡ µ−2w

(
ḡḡ>Σw,w − ḡΣw,wh −Σwh,wḡ

> +Σwh,wh

)
, (4.3)

with µw ≡ ES(wi), the expected sampling weight, and[
Σw,w Σw,wh

Σwh,w Σwh,wh

]
≡ Σ[w,wh] ≡ varS

([
wi

wih(ei)

])
.

Then, the PMLE θ̃ = θg{g̃(eS)} solving s̃c(θ̃) = g̃(eS)− µg(θ̃) = 0 is a
consistent, asymptotically normal estimator of θ (Binder, 1983):

|S|
1
2 (θ̃ − θ)

d→ MVNp

(
0, {∇θµg(θ)}−1|N |2ΣH[{∇θµg(θ)}−1]>

)
. (4.4)

Notably, θg{g̃(eS)} is defined for every g̃(eS) in the convex hull of g(Y;x)
(the set of sufficient statistics attainable in the model’s sample space), so θ̃
is defined even when, say, g̃(eS) estimates a fractional number for a network
statistic that is a count (like |y|), and MCMLE can be used in this situation
without modification. (Hummel, Hunter, and Handcock, 2012)

4.2. Estimating the variance of the PMLE

We briefly turn to the question of how each component of the expression
for the asymptotic variance in (4.4) can be estimated in practice. Σ[w,wh]

can be estimated directly with the sample variance–covariance matrix of ob-
served wi and wih(ei); ḡ with ḡ(eS); µw with w̄ ≡ w·/|S|; and substituting
these into (4.3) gives Σ̃H, an estimator for ΣH. ∇θµg(θ) can be approxi-

mated by ∇θµg(θ̃), which can be estimated as a byproduct of the likelihood
maximization using MCMLE (e.g., Hunter and Handcock, 2006, eq. 3.5).
In particular, for a minimal exponential family, ∇θµg(θ) = −∇θ sc(θ) =

Eg{sc(θ) sc(θ)>;θ} = varg{g(Y );θ}, so ∇θµg(θ) can be approximated by

the sample variance–covariance matrix of g(Y ) simulated at θ̃. That is,

varS(θ̃) ≈ [ṽarg{g(Y ); θ̃}]−1(|N |2Σ̃H/|S|)[ṽarg{g(Y ); θ̃}]−1, (4.5)

an estimator of the form of Binder (1983, eq. 3.4).

5. Implementation

Section 4 leads to the following procedure:
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1. Estimate the sufficient statistic of the ERGM with g̃(eS).
2. Obtain θ̃, using MCMLE to solve s̃c(θ̃) = 0.
3. As a byproduct of Step 2, obtain ṽarg{g(Y ); θ̃}.
4. Estimate varS(θ̃) as described in Section 4.2.
For the simulation study and the analysis that follow, we use, mainly, the

R (R Core Team, 2013) package ergm (Hunter et al., 2008b; Handcock et al.,
2014) for fitting and simulating from ERGMs. The extensions to fit ERGMs
to egocentrically sampled data have been implemented in a new R package,
ergm.ego, under development for public release. We also use the R package
sna (Butts, 2008) to calculate network connected component sizes.

Some additional implementation challenges arise as well.

Reconstructing xN from sampled data Formally, our procedure de-
pends on x being observed completely (i.e., a census), or, at least, its dis-
tribution being known to a very high degree of accuracy. Step 2’s MCMLE,
in particular, requires sampling over the space of possible population net-
works, conditional on all actor attributes, and its implementation requires
constructing a network having actor attributes xN , which is unobserved.
While this may seem like a major obstacle, in practice it is not: for i ∈ S,
xi are observed directly, and for the remainder, only a distribution of x is
needed: actors having the same xi are interchangeable.

Therefore, in the analyses performed here, we use the design-based esti-
mator of the finite-population distribution of xN : we replicate each xi for
i ∈ S as close to |N |wi/w· times as possible. This has consequences, which
we illustrate in the simulation study in Section 6 and Appendix B.

Scalable estimation The procedure also calls for fitting an ERGM to a
network of size |N |, often a computationally infeasible task. For example,
the “population” of the NHSLS study we consider below is all individuals
aged 18 through 59 and living in the US at the time of the study (1992)—
hundreds of millions. We work around this using the network-size-invariant
parametrization of Krivitsky et al. (2011): by adding an offset term, some
ERGMs can be adjusted so that fitting them to networks having similar
structure and composition but different sizes produces the same parameter
estimates. We thus construct a “scaled-down” pseudopopulation of interest,
N ′, and fit the adjusted model to it, thus approximating the θ̃ that would
have been obtained by fitting to the full N . This approach requires that
the model be amenable to such an adjustment, and this can be tested by
simulation. Further details are given in Appendix A.

Thus, using the network-size-invariant parametrization, and estimating
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(θ̃ − θ)/ s.d.(θ̃)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

-0.2 0.0 0.2

Unweighted

-0.2 0.0 0.2

Weighted

|N ′|
1000
5000
10000

(Simulated−Nominal)/(1−Nominal)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

-1.5 -1.0 -0.5 0.0 0.5

Unweighted

-1.5 -1.0 -0.5 0.0 0.5

Weighted

|N ′|
1000
5000
10000

Fig 1: Simulated bias in the point estimates, relative to simulated standard
deviation (top); and 95% confidence interval coverage, relative to the miss
probability of 5% (bottom) for |S| = 1,000. Dashed lines are level 0.05
critical values: 95% of the results should fall between them, if the estimator
is unbiased / has nominal coverage.

xN from xS , the procedure does not require any information not in eS .

6. A simulation study

To evaluate the properties of our estimators we performed a simulation
study, constructing a large population network with known ERGM parame-
ters and simulating egocentric samples from it, using two sampling designs:
unweighted and weighted. The sampling weights have a range similar to the
NHSLS, oversample some groups of actors (A and C), and are correlated
with a continuous covariate used in the model (xi,2). For each sample, we
calculated point estimates and standard errors in order to assess their accu-
racy and the coverage of Wald confidence intervals. Details and full results
are given in Appendix B.

Selected bias and coverage results for sample size |S| = 1,000 are shown
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in Figure 1. The unweighted sampling estimates display some bias, though it
does not appear to have a systematic pattern as a function of |N ′| or model
term. None of the estimated biases are greater than 10% of the standard
deviation of θ̃ under repeated sampling; that is, bias accounts for less than
1% of the mean squared error (MSE) of the estimator.

The weighted sampling estimators are, as one would expect, highly biased
for smaller |N ′|. For the largest |N ′|, the bias tends to approach that of the
unweighted, and the most biased parameter’s (Difference in x·,2) bias is less
than 20% of its standard deviation (≈ 4% of MSE). A possible reason why
it is the most biased is that egos with small xi,2 are by design severely
undersampled, which means that there will exist many samples where the
full range of x·,2 is not represented. This is likely to be less problematic
in real-world applications like the analysis in Section 7, where continuous
covariates (like age) have an explicit range of interest.

Overall, we found the standard errors for both weightings to be conser-
vative, overestimating the simulated standard deviation by between 1% and
20% (in a few cases). The resulting confidence interval coverage is consis-
tent with these observations: for almost all terms, the intervals are somewhat
conservative for both sampling designs (given sufficient |N ′|).

We replicated the study for |S| = 2,000, and found that the biases de-
crease (both absolutely, and relative to their standard deviation, which is,
itself, smaller), and the standard errors became more accurate as well. The
coverage remains somewhat conservative. (See Appendix B.2.)

7. Understanding persistent racial disparities in HIV prevalence
in the US

We now return to our motivating questions: 1) How strong is the race ho-
mophily in the the population? 2) Are there differences in the propensity
towards monogamy and concurrency for the races and the sexes? And, 3)
What impact do these network features have on overall network connectivity
and differentials in network exposure by race and sex?

7.1. Data

The National Health and Social Life Survey (NHSLS) of 1992 (Laumann
et al., 1992, 1994) was undertaken at the start of the AIDS epidemic in
the US. The objectives of the study included obtaining the data on sexual
behavior necessary to predict the long term trajectory of HIV and AIDS
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prevalence, and to understand the disparities in HIV prevalence by race
that had already begun to emerge. The survey collected, among other in-
formation, a representative egocentric sample of sexual partnerships of a
stratified sample of residents of the US aged 18–59 (inclusive). A rich set
of individual attributes, including respondent’s age, sex, race/ethnicity were
recorded, and respondents were asked for similar information about all their
sexual partners from the past one year.

For this analysis, we focus on modeling the cross-sectional network of on-
going sexual partnerships of the residents of the US aged 18–59 (inclusive) in
1992, the age range for which this study was designed. Some reported part-
ners were outside this age range, and a small number of respondents had
turned 60 by the time they were interviewed. We exclude these partnerships
and persons from the analysis. We also restrict analysis to cases with com-
plete data on necessary attributes (i.e., race, sex and age). More appropriate
handling of missing actor data in egocentrically sampled networks is sub-
ject for future research; for this analysis, we exclude egos who have missing
attributes of interest for themselves or any of their alters. These exclusions
lead to dropping 75 egos and 215 alters, leaving 3,357 egos and 2,555 alters
in the sample for analysis. (We had expected egos with more partners to be
excluded more often as a result, but we observed no such differential.)

The NHSLS study used a stratified multistage cluster sample, with over-
sampling of Black households. The public dataset includes weights that ac-
count for both stratification and attribute-based non-response, so we ap-
proximate the design by an independent weighted sample.

7.2. Methods and models

We divide the respondents into three racial/ethnic categories: White, Black,
and Other. While the primary contrast of interest here is between Whites
and Blacks, a significant fraction of egos reported other identifications for
themselves and their alters. These cannot be dropped in a network analysis,
as they can serve as connecting elements that influence the measures of
interest.

Homophily is operationalized as an edge covariate, and is defined as con-
cordance in actor attributes in a partnership, as reported by ego. We focus
on homophily by sex and race in this analysis, allowing for differential ho-
mophily by race. Concurrency is operationalized at the actor level, and is
defined as actor degree greater than 1. For modeling purposes, we fit a
monogamy term to capture these effects, defined as actor degree equal to 1,
again allowing for group-specific propensities for monogamy. This produces
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more stable estimates, especially for smaller groups with very low rates of
reported concurrency.

We fit a sequence of nested models to test the network hypothesis for
the racial disparities in HIV (and other STIs). Model 1 serves as a base-
line, fitting the observed mean degree for each sex by race, as well as the
prevalence of heterosexual mixing. It has terms for the main effects for each
sex and each race, and a homophily term for sex. Since this is a largely
heterosexual population, we expect the sex homophily term will be strongly
negative, but same-sex partnerships are not precluded. This model assumes
partners are selected at random with respect to race, and there is no propen-
sity for monogamy in sexual partnerships. Model 2 tests homophily by race
by adding a term for each race to capture the prevalence of within-group
mixing. We expect these terms to be large and positive. Model 3 tests het-
erogeneities in the propensity for monogamy by adding a term for each sex
by race to capture the prevalence of persons with exactly one partner. We
expect these terms to be positive, given the strong norm of monogamy in
sexual partnerships, but we also expect there to be significant differences
by race and sex. Since the group-specific mean degrees have been fit by the
baseline terms, lower coefficient values on the monogamy terms will imply
higher prevalence of concurrent partners.

We evaluate the goodness of fit for each model by comparing the observed
degree distribution to 100 realizations of complete networks from the spec-
ified model. (Hunter, Goodreau, and Handcock, 2008a) In principle, this
approach allows us to evaluate the goodness of fit to any egocentric statis-
tics. We choose the degree distribution because it is a primary determinant
of network connectivity. A model that does not fit the degree distribution
well is very unlikely to produce the unobserved network connectivity that
we wish to infer.

We also use the simulated networks to evaluate the network hypothe-
sis, comparing the overall network connectivity and group-specific network
exposure differentials predicted by each model. The overall network connec-
tivity is measured as the component size distribution. The propensity for
monogamy in Model 3 is expected to increase the number of components of
size 2 (mutual monogamy) and decrease the number and size of the larger
components. We measure network exposure at the actor level, using the
probability of membership in components of size 3 or greater. This repre-
sents the risk of indirect exposure: an actor may have only one partner, so
have little direct exposure, but by virtue of the network she may still be
exposed to her partner’s other partner(s) and beyond. Under the network
hypothesis, only Model 3 is expected to produce differentials in network risk
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Table 2
Coefficients and standard errors for the three models. Coefficients reported are in the

presence of an edge count offset of − log(44859) = −10.71.

Model 1 2 3
Main + Mix. + Monog.

Actor activity by sex
Female 0.02 (0.10) −0.99 (0.19)

??? −1.88 (0.31)
???

Male 0.46 (0.10)
??? −0.55 (0.20)

?? −1.18 (0.25)
???

Same-sex partnership −4.49 (0.21)
??? −4.50 (0.20)

??? −4.52 (0.21)
???

Actor activity by race
White 0 (baseline)
Black −0.09 (0.07) −0.58 (0.29)

? −0.30 (0.38)
Other −0.03 (0.07) 0.83 (0.33)

?
0.93 (0.42)

?

Race homophily by race
Black 5.13 (0.35)

???
5.15 (0.38)

???

Other 2.06 (0.35)
???

2.04 (0.35)
???

White 2.25 (0.34)
???

2.32 (0.36)
???

Monogamy by sex and race
Black Female 1.80 (0.47)

???

Other Female 2.51 (0.67)
???

White Female 2.25 (0.31)
???

Black Male 0.99 (0.24)
???

Other Male 1.40 (0.31)
???

White Male 2.16 (0.25)
???

Significance levels: 0.05 ≥ ?
> 0.01 ≥ ??

> 0.001 ≥ ???

exposure that are consistent with the observed disparities in HIV prevalence.
The population network would have had |N | ≈ 147 million persons (Pop-

ulation Estimates Program, 2001), necessitating the scaled-down approach
mentioned in Section 5. Based on reasoning detailed in Appendix C.1, we
select, conservatively, |N ′| ≈ 45,000 ≈ 13.4 × |S|, or 44,859 after rounding
the scaled sampling weights. This network size is also used in the simulation
results we report. Notably, this may be overly conservative in practice: we
obtained very similar results in a pilot analysis using |N ′| ≈ 15,000.

Verification of the assumption that our models are amenable to network-
size-invariant parametrization is given in Appendix C.3.

7.3. Results

We report the model fits in Table 2. Model 1 results are consistent with
expectations. There is a significant and strong propensity for heterosexual
ties, and a slightly higher mean degree for men than women. There are no
significant differences in mean degree by race. In Model 2, the results are
consistent with the network hypothesis: all of the race homophily terms are
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large and significant. In Model 3, the results are again consistent with the
hypothesis. There is a strong propensity for monogamy in all groups, but the
propensity is relatively lower among Black men and women. The difference
between Whites and Blacks is significant for men (contrast diff. = 1.17,
s.e. = 0.32, P -value < 0.001), but not for women (diff. = 0.45, s.e. = 0.51,
P -value > 0.3). Women have higher rates of monogamy than men in all
groups, especially among Blacks, but these differences are not statistically
significant.

The goodness of fit for each model is shown in Figure 2a. The first two
models do a very poor job fitting the observed degree distribution: both
underestimate the fraction of persons with only one partner and overestimate
both the fraction with no partner, and more than one partner. The data
clearly indicate a strong propensity for monogamy, and Model 3 captures this
well. Because there are race and sex-specific monogamy terms in Model 3,
it provides a good fit for all groups.

The overall network connectivity predicted by each model can be seen in
Figure 2b. The plot shows the distribution of component sizes produced by
each model. The first two models are, again, similar: both predict that about
three-quarters of the components are size 1 (isolated actors), and the ties
distributed to the remaining actors produce components with sizes that can
reach 100 or more. By contrast, Model 3 predicts that the modal component
is size 2 (mutual monogamy), that only about 20% of the actors are isolates,
and the maximum component size attained in the 100 simulated realizations
has fallen to only 6. Monogamy thus has the expected effect: it dramatically
reduces the connectivity in the overall network.

The differential network risk exposure by race and sex predicted by each
model can be seen in Figure 2c. This plot shows the group-specific distribu-
tions of the probability of belonging to a component of size 3 or more for
each model. In Model 1, overall network exposure probabilities are about
40%. There are some small race-specific differences, with lower probabilities
of exposure predicted for Blacks than Whites. Since lower probabilities of
exposure imply lower transmission risks, this pattern is the opposite of what
would be expected given the HIV/STI prevalence disparities. The pattern is
similar for Model 2, though the predicted differences by race for women have
increased slightly, but are still in the wrong direction. Adding the differential
monogamy terms in Model 3, however, reverses the predicted network expo-
sure risk differentials for both sexes, producing a pattern that is consistent
with the observed racial disparities in HIV/STI prevalence, and consistent
with the network hypothesis.

Note that within each racial group, women are more likely to be in com-
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Fig 2: Simulation results based on 100 realizations from each of the fitted
models: (a) goodnesses of fit plot, comparing simulated degree frequencies
(dot plot) to that observed in the data; (b) simulated network component
size distributions, averaged over each simulation; and (c) simulated distri-
bution of the proportions of individuals of each race and sex who are in
components of size 3 or greater. (Because of the large |N ′| used in the sim-
ulation, there is little variability percent-wise between realizations in (a).)
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ponents of size 3 or more than men. This is because 3 is by far the most
common component size predicted among those not mutually monogamous
(≈ 80%, as seen in Figure 2b), and coupled with the higher rates of con-
currency among men than women this means that these components typi-
cally comprise 1 man and 2 women. This a good example of the somewhat
counterintuitive logic of network exposure in infectious diseases: your ex-
posure is not just a function of your own behavior, but also a function of
your partner’s. In countries with generalized heterosexual HIV epidemics,
such as those in sub-Saharan Africa, concurrency is similarly gendered, and
women’s HIV prevalence is typically much higher then men’s (40% higher
across this particular region (UNAIDS, 2014)). Our results suggest that the
underlying transmission network structure may contribute to this disparity.

Model 3 is clearly the best fit, and it predicts network exposure risks
that are consistent with the observed disparities in HIV prevalence by race
and sex. It is, of course, not intended to be a complete specification of the
network structure, as it excludes many factors that are known to influence
sexual behavior and partner selection. For our purposes, the question is
whether the results from Model 3 are robust to the inclusion of additional
factors. That would depend on whether the factors are correlated to race
and sex, or interact with them in relevant ways. A good example to consider
is age, as it influences both activity levels and partner selection patterns.
We examined a model with several age-related terms. The results, given in
Appendix C.2, are that age effects are generally significant, but that the key
results reported for Model 3 are robust.

8. Discussion

Theat stochastic dependence in networks can be complex, that informa-
tion present in an egocentric sample is limited, and that such use of the
data is often secondary, all make rigorous inference difficult. Using pseudo-
maximum-likelihood estimation and exploiting exponential family propri-
eties, we have proposed a technique to conduct statistically valid ERGM
inference nonetheless. This makes it possible to both estimate the parame-
ters of a generative model for the observed structural properties of a network
from a sample, and conduct principled simulation from a superpopulation of
networks having properties similar to those observed; and by making use of
a network-size-invariant parametrization of ERGMs, this can be done even
when the target population is very large or even unknown. The result is a
general statistical framework for leveraging whole network information from
an efficient minimal sampling design.
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At the same time, we made a number of approximations and assumptions,
and our methodology has a number of limitations.

x is sampled Per Section 5, we had constructed xN ′ by extrapolating
from the sample, but we did not take this into account in our inference. Our
simulation study suggests that the inference is still valid (conservative, in
fact), but this issue can be addressed more rigorously. Recall that we only re-
quire the joint distribution of xN\S , not their individual values. Fortunately,
the distribution for demographic attributes such as sex, age, ethnicity, and
geographic location is often known to a very high degree of precision—from
a national census, for example; and it could be used to construct an xN ′

with virtually no sampling variation. In fact, the weights in the NHSLS
data in Section 7 had been calculated through post-stratification to reflect
the population, so, in our analysis, this had already been done for us.

Alternatively, uncertainty from x being sampled may be incorporated
into the inferential procedure: in particular, Fellows and Handcock (2012)
propose an exponential-family model for jointly modeling actor attributes
and ties. Provided the sufficient statistic associated with actor attributes
could be recovered from egocentric data, our results should be applicable.

Stratified and cluster sampling We approximated the sampling design
of the NHSLS study with that of Section 2.2: a simple probability sample. A
more accurate estimate of varS(θ̃) could be obtained by substituting an esti-
mate for varS{ḡ(eS)} into (4.5) that better reflects the design than Σ̃H/|S|
does. And, for small N , finite-population correction can be used.

Bias Our simulation study in Section 6 and Appendix B shows our estima-
tors to be slightly biased. There are four likely sources of bias: i) sampling
variation of x; ii) biasedness of the Hájek estimator (4.2) for ḡ; iii) nonlin-
earity of the mapping θg(·) and Jensen’s Inequality (analogous to that in
logistic regression (Firth, 1993)); and iv) scaled-down approximation, par-
ticularly for weighted samples. Notably, biases (i)–(iii) decrease in sample
size |S|, while bias (iv) decreases in |N ′|.

We had attempted to reduce (ii) using jackknife to little noticeable im-
provement in the simulation studies, suggesting that it is not a major source
in this case. Judging by the small difference between the biases from the
higher values of |N ′| considered (found in Appendix B.2), (iv) likely be-
comes negligible reasonably quickly: the estimates converge to a nonzero
bias. We believe this remaining bias to be primarily due to (i) and (iii).

Unfortunately, while a technique like nonparametric bootstrap jointly re-
sampling xi and ei can be used for bias reduction and uncertainty estimation
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alike, this is likely to be computationally prohibitive: whereas every resam-
ple of bootstrap or jackknife for (ii) requires merely recalculating a weighted
average, culminating in a single ERGM fit using debiased ḡ(eS), for (i) and
(iii), every resample requires refitting an ERGM to a large network. At the
same time, it may be possible to reduce (iii) using the penalized likelihood
approach of Firth (1993). All this is subject for ongoing work.

Measurement error In our application, we had assumed that the re-
sponses were accurate: that, for example, the male respondents did not
overreport their partnerships and female respondents did not underreport.
But, it is worth noting that there is almost perfect correspondence between
the weighted total number of ongoing heterosexual partnerships reported
by women and that reported by men (1366 and 1388, respectively), which
suggests some internal validity to the reports.

Directed networks Our development was aimed at undirected relations
on unipartite networks, but the general inferential technique should be appli-
cable to directed relations, provided each ego’s in-ties, as well as out-ties, are
observed, and to bipartite networks. Krivitsky and Kolaczyk (2015) network
size adjustment of ERGMs for mutuality could be used for the scaled-down
inference for the former, and a similar approach could be developed for the
latter.

Higher-order terms We had defined ei to contain no information about
alters’ connections. Though less common, data of this type are sometimes
available in an egocentric design, through solicitation of alter–alter ties.
Other variations and extensions to egocentric studies include studies that
collect egocentric-like data but allow some individuals appearing twice in the
data to be matched; couple studies (where the two individuals with a link
are recruited together and are each asked about their alters); and a one-wave
snowball sample. In each case, ei would contain some additional information,
and the set of statistics expressible in the form of (3.1) would expand accord-
ingly, with much of the inferential argument applying directly. The scaled-
down inference would then require a network-size-invariant parametrization
for higher-order (e.g., triadic) effects, which might not exist, but if the pop-
ulation network is not overly large, it might not be necessary at all.

Inference for a superpopulation Lastly, in our framework, the popu-
lation network y is fixed and unknown and θg {g(y)} is a finite population
property to be estimated. In some applications, it may be more meaningful to
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view Y as being drawn from a superpopulation (e.g., ERGM) parametrized
by θ, and then observed egocentrically. Although deriving rigorous asymp-
totics of this generative process may not be feasible, the variance of the esti-
mator is straightforward: whatever the generative process for Y , g̃{eS(Y )}
remains an asymptotically unbiased estimator of g(Y ) for any given Y ,
under repeated egocentric sampling from Y . Then, Law of Total Variance
gives

varS◦g [g̃{eS(Y )};θ] = Eg (varS [g̃{eS(Y )}|Y ];θ) + varg (ES [g̃{eS(Y )}|Y ];θ)

≈ Eg (varS [g̃{eS(Y )}|Y ];θ) + varg {g(Y );θ} ,

which, for an ERGM superpopulation and S ⊥ Y , reduces to

varS◦g(θ̃) ≈ Ṽ −1(|N |2Σ̃H/|S|+ Ṽ )Ṽ
−1

≈ Ṽ −1(|N |2Σ̃H/|S|)Ṽ
−1

+ Ṽ
−1
,

for Ṽ = ṽarg{g(Y ); θ̃}, and if Eg (varS [g̃{eS(y)}|Y ];θ) is approximated by
|N |2Σ̃H/|S|. However, while the variance of the parameter estimates may
be estimated thus, the normality of g(Y ) under the superpopulation is not
guaranteed. If the superpopulation process is an ERGM, it can be tested as
a side-product of the estimation.
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Appendix A: Computationally efficient approximation using
network size adjustment

Here, we give details for the computational approximation mentioned Sec-
tion 5 and derive its properties.

Krivitsky, Handcock, and Morris (2011) suggested an approach for a
network-size-invariant parametrization for some ERGMs for undirected graphs,
where a network of size |N | is modeled with an offset term, i.e.,

Prg(Y = y;xN ,θ) ≡ exp{− log(|N |)|y|+ θ>g(y,xN )}
κg(θ,xN )

, y ∈ 2Y(N). (A.1)

This adjustment works, particularly, for network processes that fulfill certain
heuristics: locality, in that as the network size changes, an individual actor’s
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egocentric view of the network does not, on average, change; and stable
degree distribution and per-capita mixing, in that the distribution of the
number of ties an actor has (and the distribution of attributes of those to
whom the actor has ties) remain stable as network size changes, provided the
composition is preserved. For network processes and ERGM terms fulfilling
this, networks having similar structure and composition but different sizes
produced the same parameter estimates after the network size adjustment.
They demonstrated this rigorously for dyadic-independent ERGM terms and
by simulation for degree distribution terms. (Hunter et al., 2008b)

This finding suggests a straightforward computational shortcut: instead
of constructing the full population network over actors N , one can construct
a “scaled-down” version N ′ ⊆ N having the same composition (distribution
of x) and large enough for the estimates to have asymptoted. Fitting (A.1)
with N replaced by N ′ and g̃(eS) replaced by g̃(eS)× |N ′|/|N | would then

yield θ̃
N ′ ≈ θ̃N .

A.1. Requirements for the adjustment

By design, the network composition is fixed, with only size changing, so for
the adjustment to work in our case, the ERGM must be local (which, in this
case, holds by construction as described in Section 3.1) and degree distri-
bution and per-capita mixing must be stable. In the context of egocentric
ERGMs, this can be operationalized as the distribution of individual mea-
surements h(ei) being unaffected by the network size. This is a property
of the model, not of the data, and from the perspective of the model, this
requires that,

lim
|N ′|→∞

|N ′|−1µN ′
g (θ) = λg(θ), (A.2)

with λg(θ) being the asymptotic per-capita expected value of h, if the dis-
tribution of xN ′ does not change. (Intuitively, consider a sequence of actor
attribute sets xN ′1

,xN ′2
, . . . such that xN ′i

is xN ′1
replicated i times.)

Verifying the property (A.2) requires deriving a closed form for µg(·)—at
least asymptotically. Krivitsky et al. (2011, Sec. 4.3) showed this property for
some dyadic-independent ERGM terms, but for dyadic-dependent ERGMs,
it may not be possible to do so. In practice, this property only needs to
hold in the neighborhood of the estimate θ̃, so it can be can be checked by
simulating from the fitted (A.3) at a variety of network sizes with the same
distributions of xN ′ , to confirm that |N ′|−1µN ′

g (θ) does not vary substan-
tially in |N ′| for |N ′| large enough.
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A.2. Point estimation

A model fit to network of size |N ′| approximating the coefficients of a model
fit to network of size |N | has the form

Prg(Y = y;xN ′ ,θ) ≡ exp{− log(|N ′|/|N |)|y|+ θ>g(y,xN ′)}
κg(θ,xN ′)

, y ∈ 2Y(N
′),

(A.3)
for g(y,xN ′) estimated by g̃N

′
(eS) ≡ g̃(eS) × |N ′|/|N |. Intuitively, the

smaller a fraction of |N | that |N ′| is, the more positive the offset coeffi-
cient on |y| is, forcing θ to adjust to produce the more sparse network that
N would induce. (More concretely, if, for some k, gk(y) = |y|, its PMLE
coefficient would be shifted by log(|N ′|/|N |)). It is still a regular exponential
family, so the PMLE can be found by solving

s̃cN
′
(θ̃

N ′
) = g̃N

′
(eS)− µN ′

g (θ̃
N ′

) = 0,

where µN ′
g (θ) is the expected value of g(Y ,xN ′) under (A.3).

A.3. Evaluation of uncertainty

In a network process fulfilling the heuristics of Krivitsky et al. (2011), the
distribution of individual measurements h(ei) should not be affected by the
network size: the view of each individual in the network should not, for a
sufficiently large network, be affected by how large the network is. Therefore,
Σ[w,wh] in (4.4) does not depend on |N |, and, if (A.2) holds, the per-capita
network statistics of interest should converge.

Then, provided λg(θ) itself is differentiable,

lim
|N ′|→∞

|N ′|−1∇θµg(θ) = ∇θ lim
|N ′|→∞

|N ′|−1µg(θ) = ∇θλg(θ).

Then, |N |−1∇θµg{θg(µ)} in (4.4) can be approximated by |N ′|−1∇θµN ′
g (θ̃),

estimated as in (4.5). This means that the asymptotic variance from (4.4)
with N ′ in place of N ,

lim
|N ′|→∞

varS(θ̃
N ′

) = lim
|N ′|→∞

{∇θµN ′
g (θ)}−1|N ′|2ΣH/|S|[{∇N ′

θ µg(θ)}−1]>

= lim
|N ′|→∞

{|N ′|−1∇θµN ′
g (θ)}−1ΣH/|S|[{|N ′|−1∇θµN ′

g (θ)}−1]>

= {∇θλg(θ)}−1ΣH/|S|[{∇θλg(θ)}−1]>,

so the variance of the estimator ceases to depend on |N ′| for |N ′| sufficiently
large. This is a logical and welcome result: the variance of the estimator
depends primarily on the sample size, not the population size.
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A.4. Scaled estimation procedure

This leads to the following estimation procedure:
1. Construct a pseudopopulation N ′ that is a “scaled-down” N : i.e., the

distribution of xN ′ must be the same as xN .
2. Estimate the scaled sufficient statistic of the ERGM with g̃(eS) ×
|N ′|/|N |.

3. Obtain θ̃, using MCMLE to solve s̃cN
′
(θ̃) = 0.

4. As a byproduct of Step 3, obtain ṽarg{g(Y ,xN ′); θ̃}.
5. Estimate Σ̃wh/w· as described in Section 4.2.

6. Estimate varS(θ̃) with (4.5), using N ′ in place of N and xN ′ in place
of x.

7. Simulate from the model fit for a variety of |N ′| to test property (A.2).

Appendix B: Simulation study details and results

In this appendix, we give more details on the simulation study and the
results.

B.1. Study design

B.1.1. Simulated population network

The population network y of size |N | = 100,000 was constructed to have
the following distribution of actor attributes:
xi,1 categorical attribute with the following composition: “A” (25%), “B”

(50%), and “C” (25%); and
xi,2 quantitative attribute, generated from N(0, 1) distribution.

Simulated annealing was used to find a configuration of ties such that the
network statistics of interest—listed in Table 3—were as close as possible
to their target values, and the difference between the generated network’s
statistics and the target values are shown in the same table. This network
serves as the population network y in this study. (In each case, the difference
is negligible, compared to the magnitude of the statistic.) An ERGM was
fit to the resulting network, producing θ.

B.1.2. Sampling design

We considered two sample sizes, both taken without replacement: |S| =
1,000, for a sampling fraction of 1%, and |S| = 2,000, for a sampling fraction
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Table 3
Population network features

Feature g(y) Target Deviation1 θ

Total ties |y| 3
4
|N | = 75k −1.00 −10.394

Isolate count
∑

i∈N 1yi=∅
1
5
|N | = 20k −1.00 1.180

Degree 1 count
∑

i∈N 1|yi|=1
1
2
|N | = 50k −1.00 1.555

Ties on B actors
∑

(i,j)∈y(1xi,l=B + 1xj,l=B) 1|N | = 100k 0.00 0.246

Ties on C actors
∑

(i,j)∈y(1xi,l=C + 1xj,l=C) 1
4
|N | = 25k 0.00 0.000

Within-group ties
∑

(i,j)∈y 1xi,l=xj,l
1
2
|N | = 50k 0.00 1.004

Difference in x·,2
∑

(i,j)∈y|xi,2 − xj,2| 1
2
|N | = 50k +0.06 −0.916

1 — Here, “Deviation” refers to the difference between the statistic of the network
generated and the target value.

of 2%; and we considered two sampling designs: a simple random sample and
a design with sampling weights that mimic sources of sampling weights that
arise in applications, including oversampling of smaller subpopulations and
a response rate that varied with the continuous covariate.

For each of the four combinations of sample size and weighting scheme,
we drew 2,000 egocentric samples. For each of these 8,000 samples, we
used the scaled estimation procedure described in Section A.4 with |N ′| ≈
1 × |S| ≈ 1,000 and 2,000, 5 × |S| ≈ 5,000 and 10,000, and 10 × |S| ≈
10,000 and 20,000 to estimate θ and evaluate uncertainty.

B.1.3. Sampling weights

We considered two sources of unequal sampling probabilities:
• Small subpopulations can be oversampled to facilitate separate infer-

ence about them. In our simulation, we reproduce this scenario by
oversampling A and C actors by a factor of 2.
• Sampling weights are also used to control for nonresponse. We emulate

this by setting the response rate of actor i to be proportional to exi,2 ,
though for the sake of simplicity, we assume that actors are drawn
from the population until the target sample size is reached.

This leads to the following sampling probabilities

πi ∝ exp{1xi,1∈{A,C} log(2) + xi,2}, i ∈ N

and wi ∝ 1/πi.
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B.2. Results

We summarize the biases in the point estimate for Figure 3a and compare the
standard deviation of the sampling distributions of the parameter estimates
to the standard errors produced by the procedure in Figure 3b. Deviations
from nominal coverage are visualized in Figure 4. Numerical summaries can
be found in Appendix B.3.

In the following section, we focus on the raw observations and patterns,
and we discuss likely reasons and sources of bias in Section 8 in the main
paper.

The unweighted sampling estimates display some bias, though it does not
appear to have a systematic pattern as a function of |N ′| or in the model
term. For |S| = 1,000, none of the estimated biases are greater than 10% of
the standard deviation under repeated sampling, which is to say that bias
accounts for less than 1% of the mean squared error (MSE) of the estimator.
For |S| = 2,000 they are even smaller relative to their standard deviation
(which is, itself, about

√
2 times smaller).

The weighted sampling estimators are, as one would expect, highly biased
for smaller |N ′|.For the largest |N ′|, the bias of the most biased parameter
estimate (Difference in x·,2) is less than 20% of the standard deviation under
repeated sampling (i.e., about 4% of the total MSE), even for |S| = 1,000.
A possible reason why this particular estimate is the most biased is that
egos with small xi,2 are (by design) severely undersampled, which means
that there will exist many samples where the full range of x·,2 is not rep-
resented. This is likely to be less problematic in real-world applications like
the analysis in Section 7, where continuous covariates (like age) have an
explicit range of interest. As expected, estimators under |S| = 2,000 exhibit
uniformly smaller bias, even as a fraction of the smaller standard deviation.

Overall, the standard errors under unweighted sampling appear to be con-
servative, overestimating the simulated standard deviation under repeated
sampling by between 1% and 20% in some cases, and there is evidence of
them becoming more accurate as the sample size increases.

This positive bias in standard errors may be a consequence of estimating
the distribution of xN from xS : somewhat counterintuitively, it may reduce
the actual variance of θ̃ in the presence of homophily, because those samples
that happen to contain, say, an excess of members of Group B will also
contain an excess of ties incident on members of Group B, which is consistent
with ERGM behavior for changing composition (Krivitsky et al., 2011).

The resulting Wald confidence interval coverage, summarized in Figure 4,
is consistent with the above observations: in almost all terms, the inter-
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(θ̃ − θ)/ s.d.(θ̃)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

|S| = 1000

Weighted

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

-0.2 0.0 0.2

Unweighted

|S| = 2000

-0.2 0.0 0.2

Weighted

|S| = 2000

|N ′|
1000
2000
5000
10000
20000

(a) Bias in point estimates

s.e.(θ̃)/ s.d.(θ̃)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

|S| = 1000

Weighted

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

1.0 1.1 1.2

Unweighted

|S| = 2000

1.0 1.1 1.2

Weighted

|S| = 2000

|N ′|
1000
2000
5000
10000
20000

(b) Bias in standard errors

Fig 3: Simulated bias in the point estimates and standard errors: the point es-
timates, normalized by s.d.(θ̃). Dashed lines are positioned at ±1.96/

√
2000,

so about 95% of the simulated biases should fall into these intervals if their
true mean is 0. Some of the biases are truncated to preserve detail.
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vals are somewhat conservative for both unweighted and weighted sampling
(given sufficient |N ′|), likely a consequence of the variance being overesti-
mated. The coverage does appear to improve with the sample size.

We also find that for |S| = 1,000, while most parameter estimates’ sam-
pling distributions were statistically indistinguishable from normal (based
on 2,000 simulated realizations each), the parameters corresponding to to-
tal number of ties and number of ties incident on actors in Group B show
slight deviations from normality in both unweighted and weighted simula-
tions. (Shapiro–Wilk P -val. < 0.01 for each.) The former term’s parameter
estimates exhibit negative skewness while the latter term’s exhibit posi-
tive skewness. This may be because their corresponding statistics are fairly
strongly negatively correlated with each other (because, with B being the
largest group, and there being positive within-group homophily, 82% of the
ties in y involve an actor in Group B). This strong correlation may be
slowing down the rate at which their joint distribution asymptotes, further
exacerbated by actors in Group B being undersampled. For |S| = 2,000,
none are significantly non-normal.

These results are encouraging, in that even with a fairly moderate sample
size, and in the presence of fairly heavy weighting, the confidence intervals
are reasonable, provided |N ′| is sufficiently large. In particular, additional
error due to the distribution of xN being inferred from the sample does not
appear to invalidate them.

B.3. Simulation study summary tables

The following tables give numerical summaries of the simulation studies.

θ̃−θ is the bias of the point estimates and s.d.(θ̃) is their simulated standard
deviation, both obtained based on 2,000 replications of egocentric sampling

and estimation; and s.e.(θ̃) is the mean of the standard errors calculated
from (4.5) for each replication. Coverages for 90%, 95%, and 99% Wald
confidence intervals are also given.

B.3.1. |S| = 1,000, |N ′| = 1,000

Summaries:
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(Simulated−Nominal)/(1−Nominal)

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

90%

|S| = 1000

Weighted

90%

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

95%

|S| = 1000

Weighted

95%

|S| = 1000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

Unweighted

90%

|S| = 2000

Weighted

90%

|S| = 2000

Difference in x·,2
Within-group ties
Ties on C actors
Ties on B actors

Degree 1 count
Isolate count

Total ties

-1.5 -1.0 -0.5 0.0 0.5

Unweighted

95%

|S| = 2000

-1.5 -1.0 -0.5 0.0 0.5

Weighted

95%

|S| = 2000

|N ′|
1000
2000
5000
10000
20000

Fig 4: Coverage simulation results: the difference between the simulated
and the nominal coverage is given, relative to the nominal probability of
a miss. (Note that this quantity cannot be greater than 1.) Dashed lines
are positioned at ±1.96

√
CL(1− CL)/2000/(1 − CL), so about 95% of the

simulated coverages should fall into these intervals if they do, on average,
equal to nominal. Some of the coverages are truncated to preserve detail.
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Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.002 0.168 0.195 −0.789 0.273 0.328
Isolate count 1.180 −0.003 0.183 0.204 −0.569 0.280 0.319
Degree 1 count 1.555 0.003 0.118 0.129 −0.258 0.156 0.170
Ties on B actors 0.246 0.004 0.077 0.085 0.398 0.117 0.140
Ties on C actors 0.000 0.000 0.082 0.096 −0.004 0.101 0.119
Within-group ties 1.004 0.004 0.063 0.066 −0.009 0.065 0.069
Difference in x·,2 −0.916 −0.004 0.051 0.051 0.052 0.060 0.059

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 93.4 96.8 99.6 10.1 22.0 63.6
Isolate count 93.6 97.1 99.6 43.1 60.0 87.2
Degree 1 count 92.2 97.0 99.4 55.3 68.0 88.6
Ties on B actors 92.2 96.1 99.1 1.7 5.7 29.8
Ties on C actors 94.8 97.7 99.7 95.0 98.3 99.8
Within-group ties 91.5 95.7 99.2 91.0 95.4 99.2
Difference in x·,2 90.0 94.5 98.9 76.5 84.7 94.3

B.3.2. |S| = 1,000, |N ′| = 5,000

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.013 0.169 0.195 −0.012 0.183 0.210
Isolate count 1.180 −0.009 0.183 0.204 −0.009 0.215 0.234
Degree 1 count 1.555 −0.001 0.118 0.129 −0.002 0.143 0.149
Ties on B actors 0.246 0.006 0.077 0.085 0.002 0.076 0.085
Ties on C actors 0.000 0.000 0.082 0.096 −0.002 0.076 0.090
Within-group ties 1.004 −0.003 0.063 0.066 −0.003 0.065 0.068
Difference in x·,2 −0.916 0.003 0.050 0.050 0.008 0.056 0.059

Coverage:
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Unweighted Weighted
90 95 99 90 95 99

Total ties 94.0 97.2 99.5 94.2 97.2 99.2
Isolate count 93.6 97.0 99.6 92.3 96.5 99.3
Degree 1 count 92.9 96.5 99.4 91.5 96.0 99.2
Ties on B actors 92.7 96.4 99.3 92.8 96.2 98.9
Ties on C actors 94.8 98.1 99.8 94.7 97.7 99.6
Within-group ties 91.3 95.8 99.2 91.0 95.9 99.4
Difference in x·,2 89.5 94.6 98.8 90.8 94.7 99.2

B.3.3. |S| = 1,000, |N ′| = 10,000

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.015 0.169 0.194 −0.017 0.183 0.210
Isolate count 1.180 −0.010 0.183 0.204 −0.011 0.215 0.235
Degree 1 count 1.555 −0.002 0.118 0.129 −0.003 0.143 0.149
Ties on B actors 0.246 0.006 0.077 0.084 0.004 0.076 0.085
Ties on C actors 0.000 0.000 0.082 0.096 0.000 0.076 0.090
Within-group ties 1.004 −0.004 0.063 0.066 −0.004 0.065 0.068
Difference in x·,2 −0.916 0.005 0.050 0.050 0.009 0.056 0.058

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 93.7 97.5 99.5 93.9 97.5 99.2
Isolate count 93.2 97.2 99.5 92.7 96.8 99.4
Degree 1 count 92.8 97.1 99.4 91.8 96.3 99.3
Ties on B actors 92.2 95.5 99.2 93.0 96.0 99.1
Ties on C actors 95.0 98.0 99.8 94.7 98.0 99.8
Within-group ties 91.7 95.3 99.2 91.2 95.8 99.2
Difference in x·,2 90.0 94.6 98.6 89.9 95.0 99.1

B.3.4. |S| = 2,000, |N ′| = 2,000

Summaries:
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Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.002 0.116 0.133 −0.773 0.188 0.223
Isolate count 1.180 −0.004 0.126 0.141 −0.555 0.190 0.218
Degree 1 count 1.555 −0.001 0.082 0.089 −0.258 0.104 0.117
Ties on B actors 0.246 0.002 0.054 0.057 0.390 0.082 0.095
Ties on C actors 0.000 0.000 0.060 0.065 −0.003 0.073 0.081
Within-group ties 1.004 0.001 0.043 0.045 −0.011 0.046 0.046
Difference in x·,2 −0.916 −0.002 0.034 0.034 0.052 0.043 0.040

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 94.0 97.5 99.6 0.2 0.8 6.6
Isolate count 92.9 97.0 99.5 11.3 22.3 52.8
Degree 1 count 92.0 96.9 99.6 26.3 39.0 66.3
Ties on B actors 92.2 96.8 99.3 0.0 0.0 0.4
Ties on C actors 93.0 96.6 99.4 93.5 97.4 99.7
Within-group ties 91.4 95.9 99.4 89.1 94.2 99.0
Difference in x·,2 89.9 95.3 99.2 61.8 73.1 87.8

B.3.5. |S| = 2,000, |N ′| = 10,000

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.007 0.116 0.133 0.000 0.126 0.143
Isolate count 1.180 −0.006 0.126 0.141 0.001 0.146 0.161
Degree 1 count 1.555 −0.003 0.082 0.089 −0.002 0.095 0.103
Ties on B actors 0.246 0.003 0.054 0.057 −0.003 0.054 0.057
Ties on C actors 0.000 0.000 0.060 0.065 −0.002 0.056 0.060
Within-group ties 1.004 −0.003 0.043 0.045 −0.001 0.046 0.046
Difference in x·,2 −0.916 0.002 0.034 0.034 0.005 0.040 0.040

Coverage:
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Unweighted Weighted
90 95 99 90 95 99

Total ties 94.7 97.8 99.6 93.6 97.2 99.4
Isolate count 93.0 97.0 99.6 92.9 97.0 99.5
Degree 1 count 92.2 96.8 99.6 92.0 96.5 99.3
Ties on B actors 92.3 96.8 99.4 91.3 95.8 99.1
Ties on C actors 92.8 96.6 99.5 92.6 96.9 99.6
Within-group ties 90.8 95.9 99.4 90.0 94.8 99.0
Difference in x·,2 89.8 94.8 99.2 89.8 95.0 99.1

B.3.6. |S| = 2,000, |N ′| = 20,000

Summaries:
Unweighted Weighted

θ θ̃ − θ s.d.(θ̃) s.e.(θ̃) θ̃ − θ s.d.(θ̃) s.e.(θ̃)
Total ties −10.394 −0.008 0.115 0.133 −0.003 0.126 0.143
Isolate count 1.180 −0.006 0.126 0.141 −0.001 0.146 0.161
Degree 1 count 1.555 −0.003 0.082 0.089 −0.002 0.095 0.103
Ties on B actors 0.246 0.003 0.054 0.058 −0.002 0.053 0.057
Ties on C actors 0.000 −0.001 0.060 0.065 0.000 0.056 0.060
Within-group ties 1.004 −0.003 0.043 0.045 −0.002 0.046 0.046
Difference in x·,2 −0.916 0.003 0.034 0.034 0.005 0.040 0.040

Coverage:
Unweighted Weighted

90 95 99 90 95 99
Total ties 94.3 97.9 99.6 94.0 97.1 99.4
Isolate count 93.0 97.2 99.7 93.4 96.7 99.4
Degree 1 count 92.3 96.9 99.6 92.0 96.6 99.3
Ties on B actors 92.3 96.9 99.2 91.5 95.9 99.1
Ties on C actors 92.8 96.8 99.4 92.5 97.1 99.6
Within-group ties 90.8 95.8 99.5 90.1 94.8 99.0
Difference in x·,2 89.7 95.0 99.1 89.5 94.6 98.9

Appendix C: Auxiliary results for the application

In this appendix, we report auxiliary results to our analysis in Section 7. In
particular, we discuss the heuristic for our choice of |N ′|, confirm that our
results remain after controlling for age, and verify assumption (A.2) as it
pertains to the models fit.
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C.1. Selecting |N ′| for the analysis

Our choice of |N ′| is driven by the data including sampling weights: inference
requires that the N ′ be as representative of N as possible, and, as we show
in the Appendix B, insufficient |N ′| can significantly bias estimation. We
cannot compare the two situations directly, but, heuristically, the weights are
somewhat more varied in the NHSLS data than in the weighted simulation
study: in the simulation study’s samples of 2,000, wmax/wmin averaged 9.1 for
|S| = 1,000 and 9.9 for |S| = 2,000, and in the NHSLS study (after excluding
respondents with missing data), this ratio is somewhat higher, 15.3 (albeit at
a greater sample size). Another metric is the amount by which the variance
of the sample mean would be inflated due to unequal weighting, relative to

an SRS, which equals to |N |−1
∑|N |

i=1w
2
i /w̄

2. This is 1.18 for the simulation
study and 1.34 for the NHSLS data. |N ′| ≈ 5|S| appear to be adequate for
the simulated data, though |N ′| ≈ 10|S| produces a noticeable improvement,
so we select, conservatively, |N ′| ≈ 45,000 ≈ 13.4×|S|. The respondent with
the smallest sampling weight represents about wi/w· = 7.28 × 10−5 of the
population, so she is represented in N ′ about three times.

C.2. Controlling for age

In this section, we report a model fit that, in addition to representing mixing
by race and monogamy, also incorporates age effects.

In this, we follow the analysis of these data by Krivitsky et al. (2011),
modeling the effects of age semiparametrically. As predictors, we consider
the age of the actor, the square root of age, the age difference and squared
difference in a potential partnership, and the difference and the squared
difference of the square roots of ages. To improve numeric conditioning of the
model, we perform an affine transformation on the ages, shifting and scaling
them into a [−1/2,+1/2] interval: x′i,age = (xi,age−18)/(60−18)−1/2. This
change merely scales the coefficient and changes the baseline coefficients
(number of ties, by sex), without changing the family of distributions being
modeled. For the square root of age effects, the corresponding transformation
is

x′i,√age =

√
xi,age − 18

60− 18
− 1

2
.

The use of the square root and linear effect, rather than linear and quadratic,
is motivated by the notion that the effect of a one-year difference will be
greater for younger actors than older: going from 20 to 21 is likely to have
a greater effect than going from 50 to 51.
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Table 4
Coefficients and significance for the Model 3 (main, mixing, and monogamy effects) and
a model that also incorporates age effects. Coefficients reported are in the presence of an

edge count offset of − log(44859) = −10.71.

Main + Mix.
+ Monog. + Age

Actor activity by sex
Female −1.88 (0.31)

??? −1.78 (0.40)
???

Male −1.18 (0.25)
??? −1.08 (0.35)

??

Same-sex partnership −4.52 (0.21)
??? −4.13 (0.21)

???

Actor activity by race
White 0 (baseline)
Black −0.30 (0.38) −0.35 (0.36)
Other 0.93 (0.42)

?
0.87 (0.43)

?

Race homophily by race
Black 5.15 (0.38)

???
5.16 (0.38)

???

Other 2.04 (0.35)
???

2.09 (0.39)
???

White 2.32 (0.36)
???

2.31 (0.39)
???

Monogamy by sex and race
Black female 1.80 (0.47)

???
1.94 (0.50)

???

Other female 2.51 (0.67)
???

2.56 (0.69)
???

White female 2.25 (0.31)
???

2.36 (0.32)
???

Black male 0.99 (0.24)
???

1.11 (0.28)
???

Other male 1.40 (0.31)
???

1.54 (0.33)
???

White male 2.16 (0.25)
???

2.30 (0.25)
???

Age effects√
age effect 3.29 (1.35)

?

age effect −2.73 (1.15)
?

Age difference effects
Difference in

√
age −8.07 (2.20)

???

Difference in age −6.03 (1.92)
??

Squared difference in
√

age 3.22 (3.73)
Squared difference in age 2.32 (2.80)

Older-male-younger-female 0.93 (0.05)
???

Significance levels: 0.05 ≥ ?
> 0.01 ≥ ??

> 0.001 ≥ ???
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Fig 5: Estimated multiplicative effects of the age of ego and age of alter
(ignoring age–sex interaction) on the odds of a tie. Note that the peak of
each ego age curve represents the overall propensity for egos of that age to
have ties.

The results for Model 3 with age, along with the estimates for Model 3
itself for comparison, are given in Table 4. The most important aspect of
this result is that the coefficients estimated for the Monogamy model have
not changed qualitatively after age effects are controlled for: our results in
Section 7 are robust to age effects. (We also performed the degree distri-
bution and component size simulations for the age model. Those were not
qualitatively different either.)

Age effects themselves can be interpreted as well. We provide a visual-
ization of the overall estimated age effect in Figure 5. Age difference effects
are particularly significant. There is also strong evidence for the tendency
of the male to be older than the female in a heterosexual partnership.

C.3. Simulation results to verify Assumption (A.2)

We test the assumption (A.2) by simulating from the most complex model fit
to obtain 10,000 realizations (with some serial dependence) of g(Y ,xN ′′)/|N ′′|
with |N ′′| ≈ 90,000 with offsets adjusted appropriately. If the assumption
is violated, we would expect them to be different, on average, from the ob-
served ḡ(eS).

We report the simulation results in Table 5. The differences between the
observed values and those simulated for |N ′| ≈ 90, 000 are statistically sig-
nificant in a few cases—as they would inevitably be, given a sufficient sim-
ulation size, but they are not practically so: the statistics with the greatest
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Table 5
Difference between the observed per-capita statistics (denoted ḡ(eS)) and the per-capita
moments of the sufficient statistics simulated from a network with |N ′′| ≈ 90,000 using

coefficients obtained with |N ′| ≈ 45,000 (denoted µN′′

g (θ̃
N′

)/|N ′′|). The differences have

been scaled by 104 for readability, and the simulation’s standard errors are adjusted for
autocorrelation. Effective Sample Sizes (ESS) are also given. R (R Core Team, 2013)

package coda (Plummer et al., 2006) was used to evaluate the latter.

Observed Simulated
{
µN′′

g (θ̃
N′

)

|N′′| −

Term ḡ(eS) ḡ(eS)
}
× 104 (ESS, s.e.) Diff.

ḡ(eS)

Actor activity by sex
Female 0.396 0.085 (1366, 0.229) 0.002%
Male 0.399 0.033 (1429, 0.228) 0.001%

Same-sex partnership 0.005 −0.056 (4336, 0.034) −0.120%
Actor activity by race (White as baseline)

Black 0.087 −0.287 ( 564, 0.306) −0.033%
Other 0.102 0.242 ( 777, 0.231) 0.024%

Race homophily by race
Black 0.040 −0.113 ( 508, 0.166) −0.028%
Other 0.038 0.136 ( 411, 0.184) 0.036%
White 0.288 0.025 (1421, 0.186) 0.001%

Monogamy by sex and race
Black Female 0.042 −0.148 ( 735, 0.136) −0.035%
Other Female 0.052 0.046 (1025, 0.107) 0.009%
White Female 0.284 0.358 (1749, 0.177)

?
0.013%

Black Male 0.031 −0.268 ( 776, 0.132)
? −0.086%

Other Male 0.041 −0.189 ( 971, 0.122) −0.046%
White Male 0.290 −0.053 (1979, 0.168) −0.002%

Age effects√
age effect 0.104 0.142 (1285, 0.120) †

age effect −0.046 0.069 (1294, 0.125) †

Age difference effects
Difference in

√
age 0.028 0.130 (1135, 0.049)

??
0.046%

Difference in age 0.034 0.113 (1114, 0.058) 0.034%
Squared difference in

√
age 0.004 0.023 (1850, 0.013) 0.055%

Squared difference in age 0.006 0.011 (1787, 0.017) 0.019%
Older-male-younger-female 0.242 0.713 ( 452, 0.504) 0.029%

Significance levels: 0.05 ≥ ?
> 0.01 ≥ ??

> 0.001 ≥ ???

† — Percent differences are not meaningful for statistics that are not counts or sums of
nonnegative quantities.
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relative difference between |N ′| ≈ 45, 000 and |N ′| ≈ 90, 000 are ones with
the smallest counts and effective numbers of observations, so one might ex-
pect them to asymptote more slowly; even among them, the greatest one
has 0.120% difference.
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