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Abstract. Using noise multiplied data to protect confidential data has
recently drawn some attention. Understanding the probability property
of the underlying confidential data based on their masked data is of
interest in confidential data analysis. This paper proposes the approach
of sample-moment-based density approximant based on noise multiplied
data and provides a new manner for approximating the density function
of the underlying confidential data without accessing the original data.
The approach of sample-moment-based density approximant is an ex-
tension of the approach of moment-based density approximant, which
is mathematically equivalent to traditional orthogonal polynomials ap-
proaches to the probability density function (Provost, 2005). This paper
shows that, regardless of a negligible probability, a moment-based den-
sity approximant can be well approximated by its sample-moment-based
approximant if the size of the sample used in the evaluation is reasonable
large. Consequently, a density function can be reasonably approximated
by its sample-moment-based density approximant.
This paper focuses on the properties and the performance of the ap-
proach of the sample-moment-based density approximant based on noise
multiplied data. Due to the restriction on the number of pages, some
technical issues on implementing the approach proposed in practice will
be discussed in another paper.

Keywords: Confidential data, Masked data, Multiplicative noise, Moment-
based density approximant.

1 Introduction

Many government institutions and statistical agencies collect survey data from
individuals and businesses. Publishing these data with certain level of protection
is necessary. Many different protection methods, including microaggregation of
sensitive data, local suppression of unique data cells, top and bottom coding
of continuous variables, rank swapping, rounding, adding noise, imputation and
multiplicative noise, have been introduced and used in practice. More informa-
tion on data protection can be found in Duncan and Lambert (1986 and 1989),
Willenborg and De Waal (2001), Oganian (2010), Shlomo (2010), and the refer-
ences therein.
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The aim of government institutions and data agencies publishing the masked
data sets is to provide end-users an opportunity to work out the statistical infor-
mation on the underlying data without breaching confidentiality. As mentioned
in Nayak et al. (2011), data perturbation may destroy unbiasedness and other
properties of estimators. Methods and formulas for analysing an original data
set may not be appropriate for analysing a masked version of it.

Describing and estimating the probability density function of a random vari-
able are the basic tenets in statistical data analysis.

Provost (2005) introduced the moment-based density approximant method
for probability density approximation. He proved and demonstrated that us-
ing the moment-based density approximant to approach the density function is
mathematically equivalent to using those orthogonal polynomials, such as the
Legendre, Laguerre, Jacobi, and Hermite polynomials.

The multiplicative noise method is one type of noise addition used to perturb
and protect confidential data. Kim and Jeong (2008) classified the multiplicative
noise scheme into two schemes, Multiplicative Noise Scheme I and Multiplicative
Noise Scheme II. The multiplicative noise scheme considered in this paper is
Multiplicative Noise Scheme I. It is briefly defined as follows. Let Y be a sensitive
random variable with observations y1, y2, · · · , yN (original data). Let C be a
positive random variable, independent of Y . When we say the original data
y1, y2, · · · , yN are masked by C, it means the masked data have the form y∗i =
yi×ci where {ci} is a sample from C. In literature, sometimes it imposes E(C) =
1. With this restriction, y∗ is an unbiased estimator of y given y. This restriction
does not apply to the method proposed in this paper. Therefore, the unbiased
estimator of y will be y∗/E(C), given y. Without further explanation, the term
“masked data” used in this paper is for “noise multiplied data”.

For noise multiplied data, developing appropriate data analysis methods and
formulas for different inference purposes is necessary (see Kim and Jeong (2008)
for domain estimation, Sinha, et al. (2011) for quantile estimation, and Lin and
Wise (2012) for linear regression parameters estimation). This paper proposes
a method to obtain the density approximant of a sensitive random variable Y
based on its masked data.

Many properties of the multiplicative noise method, including evaluation
of disclosure risk, confidential protection, moment estimation, linear regression
parameter estimation, properties of balanced noise distribution and effects on
data quality and privacy protection in context of tabular magnitude data, have
been deeply discussed and investigated in literature (Evans, 1996; Evans et al.,
1998; Hwang, 1998; Kim and Winkler, 2003; Kim and Jeong, 2008; Oganian,
2010; Krsinich and Piesse, 2002; Nayak, et al., 2011; Sinha, et al., 2011; Lin and
Wise, 2012 and Klein and Sinha, 2013). One of the important properties is the
moments of Y can be evaluated through the moments of its masked variable Y ∗

and the moments of the noise C used to mask Y .
With the well developed numerical result of the density approximant pro-

vided by Provost (2005) and the nice relationship among the moments of Y ,
masked variable Y ∗ and noise C, respectively, the density function of Y can be
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theoretically well approximated by the density approximant based on the mo-
ments given by Y ∗ and C. By noting that, only masked data {y∗i } and, in the
best scenario, noise information are available in practice, the motivation of this
paper is to investigate the properties of the moment-based density approximant
of Y if the E[(Y ∗)k] and E(Ck) in the moment-based density approximant are
replaced by their corresponding sample moments estimators. The moment-based
density approximant with moments replaced by sample moments is called the
sample-moment-based density approximant.

This paper derives the formula for the approximant of a density function
based on masked data and demonstrates that the density function of a random
variable can be well approximated by its sample-moment-based density approxi-
mant. Due to the restriction on the number of pages, this paper only shows how
the sample-moment-based density approximant fY,K|{y∗i ,ci}N

1
is built based on

masked data {y∗i } and noise sample {ci}. Then, carries out relevant simulation
studies and a real data application of the approach of the sample-moment-based
density approximant. The details of the technique treatment to implement the
approach proposed in practice and the issue of risk of disclosure related to the
approach will appear in another paper along with a built R package.

The remainder of this paper is organized as follows. From Section 2 to Sec-
tion 4, we step by step extend the approach of moment-based density approx-
imant with bounded domain to the approach of sample-moment-based density
approaximant based on noise multiplied data for a general situation. The formula
and properties of the sample-moment-based density approaximant are presented.
Simulation studies and a real life data application are given in Sections 5 and 6.

2 Moment-based density approximant: density function
with a finite domain [a, b]

Provost (2005) provided useful formulas of moment-based density approximant.
The formulas and notation are adopted in this paper.

The probability density function of a continuous random variable X, taking
values on interval [−1, 1], can be expressed as follows:

fX(x) =
∞∑

k=0

λkPk(x), (1)

where

λk =
2k + 1

2

Floor[k/2]∑

i=0

(−1)i2−k (2k − 2i)!
i!(k − i)!(k − 2i)!

µX(k − 2i)

with the (k − 2i)th moment of X

µX(k − 2i) = E(Xk−2i) =
∫ 1

−1

xk−2ifX(x)dx;
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Pk(x) =
Floor[k/2]∑

i=0

(−1)i2−k (2k − 2i)!
i!(k − i)!(k − 2i)!

xk−2i (2)

is a Legendre polynomial of degree k in x and Floor[k/2] denotes the largest
integer less than or equal to k/2.

Denote

fX,K(x) =
K∑

k=0

λkPk(x) (3)

the polynomial approximation of fX(x) with order K.
Let Y be a random variable with density function defined on a finite interval

[a, b]. Its density function and kth moment are denoted by fY (y) and

µY (k) = E(Y k) =
∫ b

a

ykfY (y)dy, k = 0, 1, · · · ,

respectively. Let

X =
2Y − (a + b)

b− a
.

The domain of the density function of X is bounded by [−1, 1] and the jth
moment of X is

µX(j) =
1

(b− a)j

j∑

k=0

(
j

k

)
2kµY (k)(−1)j−k(a + b)j−k, j = 0, 1, · · · .

After transformation, by using (3), the approximant of fY with order K is given
by

fY,K(y) =
2

b− a

K∑

k=0

λkPk(
2y − (a + b)

b− a
). (4)

Let Y be masked by a noise C and yield Y ∗. By noting that, for k = 1, 2, · · ·,

µY (k) =
E[(Y ∗)k]
E(Ck)

=
µY ∗(k)
µC(k)

and λk is a linear functions of E(Y )i, i ≤ k, the approximant of fY with order
K can be expressed in terms of the moments of Y ∗ and C as follows

fY,K(y) =
2

b− a

K∑

k=0

λkPk

(
2y − (a + b)

b− a

)
=

K∑

k=0

ak(y)
µY ∗(k)
µC(k)

, (5)

where ak(y) is a continuous function of y, k = 0, 1, · · · ,K.
Provost (2005) pointed out that “the density approximants so obtained may

be negative on certain subranges of the support of their distributions having low
density. This will likely occur if an insufficient number of moments are being
used. However, by mere inspection of the approximate density plot, we should
be able to determine whether a higher degree polynomial ought to be used.”
It means that it is possible to determine an appropriate order K such that the
plot of fY,K is close to or mimics to the plot of the density function of Y by
inspecting the plot of the density function of of Y .
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3 Sample-moment-based density approximant: density
function with a finite domain [a, b]

Assume that Y is bounded between the real numbers a and b. Let {yi}N
1 be a

sample of size N drawn from Y and {y∗i }N
1 be the masked data of {yi}N

1 , masked
by the noise C. Let {cj}N

1 be an independent sample drawn from C, which is
not the same sample used to yield {y∗i }N

1 .
In this section, the relationship between

fY,K|{y∗i ,ci}N
1

(y) =
K∑

k=0

ak(y)
(Y ∗)k

Ck
(6)

and

fY,K(y) =
K∑

k=0

ak(y)
µY ∗(k)
µC(k)

, (7)

is evaluated, where (Y ∗)k =
∑N

i=1(y
∗
i )k/N and Ck =

∑N
i=1 ck

i /N , k = 0, 1, 2, · · · ,K.
We have the following results:

1. fY,K|{y∗i ,ci}N
1

uniformly converges to fY,K almost surely.

From the Strong Law of Large Numbers (SLLN), (Y ∗)k a.s.→ E[(Y ∗)k] and
Ck a.s.→ E(Ck), as N →∞. Since ak(y) is a continuous function of y on [a, b],
for each k = 1, 2, · · ·, ak(y) is uniformly continuous on [a, b]. Thus, given K
fixed,

fY,K|{y∗i ,ci}N
1

(y) =
K∑

k=0

ak(y)
(Y ∗)k

Ck

a.s.→
K∑

k=0

ak(y)
µY ∗(k)
µC(k)

= fY,K(y),

uniformly for y ∈ [a, b] as N →∞.
Since fY,K|{y∗i ,ci}N

1
uniformly converges to fY,K , the curve of the function

fY,K|{y∗i ,ci}N
1

will be close to the curve of fY,K , so is to the curve of the
density function of fY , subject to appropriate K and sample size N .

2. fY,K|{y∗i ,ci}N
1

(y) is an approximately unbiased estimator of fY,K(y) for each
y ∈ [a, b].
Mood et al. (1963) showed that an approximate expression for the expecta-
tion of a function g(W1,W2) of random variables W1 and W2 using a Taylor’s
series expansion around their means (µW1 , µW2) is given by

E[g(W1, W2)] ≈ g(µW1 , µW2) +
1
2

∂2

∂w2
2

g(W1,W2)|µW1 ,µW2
V ar(W2)

+
1
2

∂2

∂w2
1

g(W1,W2)|µW1 ,µW2
V ar(W1)

+
∂2

∂w1∂w2
g(W1, W2)|µW1 ,µW2

cov(W1,W2). (8)
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Applying (8) to E((Y ∗)k/Ck) and noting that (Y ∗)k and Ck are indepen-
dent, we obtain

E

[
(Y ∗)k

Ck

]
≈ E[(Y ∗)k]

E(Ck)
+

E[(Y ∗)k]

(E(Ck))3
V ar(Ck)

= E(Y k) +
1
N

var(Ck)
E(Y k)

[E(Ck)]3
= E(Y k) + o(1).

Therefore, when N is sufficiently large, we will have

E

[
(Y ∗)k

Ck

]
≈ E(Y k), k = 1, 2, · · · ,K,

and fY,K|{y∗i ,ci}N
1

(y) is an approximately unbiased estimator of fY,K(y) for
each y ∈ [a, b].

4 Sample-moment-based density approximant:
non-restriction on the domain of the density function

Let {yi}0<i≤N be a sample drawn from a random variable Y . In this section,
we point out the facts that (i) the probability of Y taking values beyond the
interval (min1≤i≤N{yi}, max1≤i≤N{yi}) can be negligible if the sample size N is
reasonable large; (ii) fY,K|{y∗i ,ci}N

1
could be a good candidate for fY,K regardless

of Y bounded or not, as long as the sample size N is reasonable large.

Lemma 1. Let Y1, · · · , YN be i.i.d. random variables, defined on some proba-
bility space (Ω,F , P ), and have the probability distribution of Y . For ω ∈ Ω,
define

g
(N)
min(ω) = gmin(Y1(ω), · · · , YN (ω)) = P (Y ≤ min1≤i≤N{Yi(ω)})

and

g(N)
max(ω) = gmax(Y1(ω), · · · , YN (ω)) = P (Y ≤ max1≤i≤N{Yi(ω)}).

Then, for any real number 0 ≤ a ≤ 1,

P (g(N)
min ≤ a) = 1− (1− a)N and P (g(N)

max ≤ a) = aN .

Lemma 2. For p ∈ (0, 1) and 0 < α < 1, if N ≥ log(1− p)/ log(1− α/2), then

P (g(N)
min ≤ α/2) > p and P (g(N)

max > 1− α/2) > p.

The proofs of Lemma 1 and 2 are in the Appendix.
From Lemma 2, given α = 0.05, if we wish to have at least p = 0.975

probability to ensure g
(N)
min ≤ α/2 and 1− g

(N)
max < α/2, the sufficient condition
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for N will be N ≥ log(0.025)/ log(0.975) = 145.703; for α = 0.05 and p = 0.9975,
the sufficient condition will be N ≥ 237; for α = 0.005 and p = 0.975, the
sufficient condition will be N ≥ 1474.

No matter Y is bounded or not, once the sample {yi}i≤N was drawn from
Y , {yi}i≤N will be bounded. It is of interest that, for a pre-set real number
0 < α < 1, what size N will ensure that we have a sufficient confidence to claim
that the probability P (min1≤i≤N{yi} ≤ Y ≤ max1≤i≤N{yi}) is at least 1− α.

From Lemma 2, if N ≥ log(1− p)/ log(1− α/2),

P [(g(N)
min ≤ α/2)

⋂
(g(N)

max > 1− α/2)] ≥ 1− (1− p)− (1− p) = 1− 2p.

For ω ∈ (g(N)
min ≤ α/2)

⋂
(g(N)

max > 1− α/2), we have

P (min1≤i≤N{Yi(ω)} ≤ Y ≤ max1≤i≤N{Yi(ω)}) = 1−g
(N)
min(ω)−g(N)

max(ω) ≥ 1−α.

Therefore, we have at least 1− 2p confidence to claim that, for sample {yi}N
1 ,

P (min1≤i≤N{yi} ≤ Y ≤ max1≤i≤N{yi}) ≥ 1− α,

if N ≥ log(1− p)/ log(1− α/2).
Example 1. If we wish to have 0.95 = 1 − 2 × 0.975 confidence to claim

that more than 0.995 = 1 − 0.005 chance the values of Y will drop between
min1≤i≤N{yi} and max1≤i≤N{yi}, the sufficient condition for N is N ≥ 1474 ≥
log(1− 0.975)/log(1− 0.0025).

Now, we are at the position of extending the result in Section 3 to sample-
moment-based density approximant without the restriction on the domain of the
density function.

Assume that Y is a random variable on some probability space (Ω,F , P )
and {yi}1≤i≤N is a sample from Y . Define a random variable Ỹ from Y . Let
Ỹ (ω) = Y (ω) if mini≤i≤N{yi} ≤ Y (ω) ≤ maxi≤i≤N{yi}; = 0 otherwise, where
ω ∈ Ω. Ỹ is called a truncated random variable of Y .

Following Example 1, if N > 1474, with odds of 0.95, the difference between
the cumulative distribution functions of Y and Ỹ can be evaluated as following:
if y ≤ mini≤i≤N{yi},

|FY (y)− FỸ (y)| = FY (y) ≤ 0.0025;

if mini≤i≤N{yi} < y < maxi≤i≤N{yi},

|FY (y)− FỸ (y)| =
∣∣∣∣P ( min

i≤i≤N
{yi} < Y < y) + P (Y ≤ min

i≤i≤N
{yi})

− P (mini≤i≤N{yi} < Y < y)
P (mini≤i≤N{yi} < Y < maxi≤i≤N{yi})

∣∣∣∣

≤ P ( min
i≤i≤N

{yi} < Y < y)
1− P (mini≤i≤N{yi} < Y < maxi≤i≤N{yi})

P (mini≤i≤N{yi} < Y < maxi≤i≤N{yi}) + 0.0025
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≤ (1− 0.995) + 0.0025 = 0.0075;

if y > maxi≤i≤N{yi},

|FY (y)− FỸ (y)| = |1− P (Y > y)− 1| < 0.0025.

Thus, with odds of 0.95, maxy{|FY (y)− FỸ (y)|} < 0.0075 if N ≥ 1474.
In summary, the larger the N is, the more confidence we can ignore the

difference between FY and FỸ . Therefore, with a sufficiently large N , the prob-
ability density function fY can be well approximated by the probability density
function of fỸ , where Ỹ is bounded subject to {yi}N

1 .
By ignoring the difference between FY and FỸ , the sample {yi}N

1 can be
considered as a sample from Ỹ . Regardless of whether or not Y is bounded,
its truncated random variable Ỹ is always bounded. Following the discussion in
Section 3, given the masked data {y∗i } of {yi} and an independent sample {ci}
from C, where {yi} were masked by C, the probability density function fỸ of Ỹ
can be well approximated by fỸ ,K|{y∗i ,ci}N

1
subject to appropriate K and N .

Therefore, the normalized fỸ ,K|{y∗i ,ci}N
1

can be used to approximate
the density function of Y subject to appropriate K and N , regardless
of Y bounded or not. From now on, without further explanation, fY,K|{y∗i ,ci}N

1
means fỸ ,K|{y∗i ,ci}N

1
and “density approximant” means “sample-moment-based

density approximant”.

5 Simulation studies on density approximant based on
noise multiplied data

In this section, we use simulation examples to demonstrate the performance of
the density approximant based on noise multiplied data.

Example 2. Let Y = I(w=0)Y1 + I(w=1)Y2, where Y1 ∼ N(30, 42), Y2 ∼
N(50, 22) and w is a Bernoulli distributed random variable with P (w = 0) =
0.3. Let C = I(v=0)C1 + I(v=1)C2 be the multiplicative noise used to mask Y ,
where v has Bernoulli distribution with P (v = 0) = 0.6; C1 ∼ N(80, 52) and
C2 ∼ N(100, 32).

In this example, three issues are investigated/demonstrated. The first issue
is the determination of K, such that fY,K|{y∗i ,ci}N

1
best presents fY . For the sake

of convenience, this K is called the (optimal) upper order. The second issue is
about the fact that the upper order K is related to the sample {yi} and the
sample of noise used to yield {y∗i }. The last issue is about the impact of the
variance of noise on the density approximant. .

For the first issue, a sample {yi}100001 were simulated from Y . Then, use an
independent sample from C to mask {yi}100001 and yield {y∗i }100001 . In Figure 1,
to save space, we only report the plots of fY,K|{y∗i ,ci}N

1
for K = 5, 10, 11 and 15.

With the reference of the true density function of Y (in solid line), it shows that
the plot of the density approximant is improved as K increases up to 10 or 11,
then gradually run away from the plot of fY . We also evaluated the correlation
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between fY and fY,K|{y∗i ,ci}N
1

for each K. The correlations corresponding to
K = 5, 10, 11 and 15 are reported in Table 1. The first raw of summary statistics
in the table is given by Y . When K = 10 or 11 was used in fY,K|{y∗i ,ci}N

1
, the

correlation of between fY,K|{y∗i ,ci}N
1

and fY is higher than those when other Ks
were used.

The upper order K can be determined by inspecting the plot of fY or the
correlation between fY,K|{y∗i ,ci}N

1
and fY , given fY is available. Using correlation

to determine K is more convenient and easy to program.
Although for K = 5 and 15, the performance of fY,K|{y∗i ,ci}N

1
is not as good

as those with K = 10 and 11, interestedly, the summaries statistics given by
those fY,K|{y∗i ,ci}N

1
in this example are not different too much from the summary

statistics given by Y .
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Fig. 1. Left top is for K = 5. Right top is for K = 10. Left bottom is for K = 11 and
right bottom is for K = 15. The plot of the true density function is in solid line.

Table 1. The summary of statistics and the values of correlation.

data source Min. 1st Qu. Median Mean 3rd Qu. Max. cor.
y 16.34 33.63 48.83 43.90 50.74 57.70

(y1, K = 5) 16.34 35.36 47.99 44.00 51.46 55.67 0.989
(y1, K = 10) 17.80 34.39 48.23 43.88 50.84 57.61 0.9979
(y1, K = 11) 16.51 34.79 48.55 43.94 50.90 56.56 0.9978
(y1, K = 15) 17.07 32.99 47.42 41.72 50.41 57.70 0.966

For the second issue, two independent samples {yi}100001 and {y′i}100001 were
simulated from Y . They were independently masked by the noise C. The upper
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order Ks determined by the two sets of masked data are 10 and 14 , respectively
(corresponding cor. are 0.9975 and 0.9989, respectively). The plots of the density
approximants determined by {y∗i }100001 and {y′∗i }100001 based on their own upper
order K are given in Figure 3 (in the Appendix B). Both of them well present
fY . This study shows the upper order K is sample related.

For the third issue, a sample {yi}100001 were simulated from Y . Two multi-
plicative noises, |R1| and |R2|, are considered. R1 = I(v1=0)R1,1 + I(v1=1)R1,2

and R2 = I(v2=0)R2,1 + I(v2=1)R2,2 where v1 and v2 are independent and have
Bernoulli distribution Bernoulli(0.7) and Bernoulli(0.3), respectively; R1,1, R1,2,
R2,1 and R2,2 are independent and have normal distributions N(100, 52), N(150, 32),
N(100, 252) and N(150, 182), respectively. The standard errors given by the sam-
ples from |R1| and |R2| are 23.36032 and 32.54968, respectively. The summary
statistics and the correlations between fY and the density approximant based
on their own upper order K are reported in Table 2. The plots of density ap-
proximants based on their own upper order K are presented in Figure 4(in the
Appendix B).

Table 2. The summary of statistics, the values of correlation and the upper order K.

data source Min. 1st Qu. Median Mean 3rd Qu. Max. cor. K
y 16.34 33.63 48.83 43.90 50.74 57.70

y masked by R1 16.67 34.07 48.23 43.84 50.98 57.61 0.9974 8
y masked by R2 16.43 32.61 47.90 43.66 51.14 55.67 0.9950 7

From data protection point of view, the larger the variance of the multiplica-
tive noise is, the better protection on the original data the noise will provide. In
terms of having a better approximation of the density function of the original
data, we might guess or expect that, the larger the variance of the multiplicative
noise is, the poor the performance of the associated density approximant will
have. However, Figure 4 as well as Table 2 show that, although the ratio of the
standard errors of R2 to R1 (32.54968/23.36032 = 1.39) is much larger than
1, the difference between the performance of the density approximant given by
the data masked by R1 and R2, respectively, is not significant. It means that,
sometimes, the impact of the variance of noise on the performance of the density
approximant might not be significant. It is good in terms of data protection.

6 Real data application

In this section, an example of the density approximant based on real life data is
presented.

Example 3. A real life data set taken from the United States Energy In-
formation Authority is considered. This data set can be found in the R package
sdcMicro, and also available from the United States Energy Information Au-
thority website http://www. eia.doe.govcneaf/electricity/page/eia826.html un-
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der year 1996. The data set consists 15 variables generally concerning income
and sales data and each of them has 4092 observations.

The smoothing density function given by the data of “othrevenue” is skewed
to the right. The majority observations of “othrevenue” are less than 10000 and
outliers on the right tail are beyond 60000. There are few observations between
values 10000 and 60000. To approximate the smoothing density function of “oth-
revenue” by the approach of density approximant, the density approximant has
to take care the outliers on the right tail as well as a few observations in the inter-
val [10000, 60000]. Therefore, the density approximant will shift to the right. If
those outliers are removed from the original data set (the number of observations
(> 10000) is 96), the density approximant will be more close to the smooting
density function given by the original data.

To see the performance of the density approximant, we use two types of
noises, a mixture normal noise C ∼ 1/2N(170, 1)+1/2N(120, 1) and an identity
noise C ≡ 1, respectively, to mask the observations of “othrevenue” and yield
two sets of masked data for “othrevenue”. The set of masked data given by C ≡ 1
is the same as the original data set. We evaluate the density approximants given
by the two sets of masked data, respectively. Two scenarios of the sets of original
data “othrevenue” are considered. One is the full set of data of “othrevenue” and
the other is the subset of data with values > 10000 removed. For each scenario,
the plots of density approximant given by the two sets of noise multiplied data
are presented in Figure 2, respectively.

When C ≡ 1, the data used to evaluate the density approximant of “othrev-
enue” are the unmasked data of “othrevenue”. The plot of the density approx-
imant based on the unmasked data is used as a benchmark as it is the density
approximant of the density function of the “othrevenue” without any impacts
from additional noise perturbation.

From Figure 2, we find the plot of the density approximant given by the data
masked by the mixture normal noise is similar to the one given by C ≡ 1. The
plot related to the mixture normal noise catched as much information on the
density function of “othrevenue” as the plot related to C ≡ 1 did. Both density
approximants shifted to right a bit and showed a fatter tail comparing to the
smoothing density function of the original data. The density approximant gives
a better approximation to the smoothing density function of the true data after
the 96 outliers were removed from the original data set.

The summary statistics given by the density approximants are listed in Table
3 (in the Appendix B). Bother of them, with or without noise perturbation,
have successfully show the skewness, the main characteristic in the distribution
of the data, though the elements of the summaries are not close to those of the
summary statistics given by the data of “othrevenue”.
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Fig. 2. The density approximants given by data masked by mixture normal distribution
and C ≡ 1 are shown in the top panels and bottom panels, respectively. For each
scenario, the left panel is given by the full data and right one is for data values ≤ 10000.
The plots of the smoothing density function of “othrevenue” is in solid line.

7 Discussion

This paper extends the well developed moments-based density approximant ap-
proach to the sample-moment-based density approaximant approach based on
noised multiplied data.

The motivation of this paper is to develop a fundamental framework for
estimating the density function of a sensitive random variable without accessing
the original observations of the variable. This work has direct applications to
confidential data analysis.

The aim of this paper is to prove and demonstrate that, regardless of a
negligible probability, the sample-moment-based density approaximant is able
to well present its associated density function if the size of the sample from the
underlying variable is reasonably large.

With the density function of the underlying variable Y as a reference, we
demonstrated that an (optimal) upper order K can be determined such that
the sample-moment-based density approaximant is close to the density function
fY . However, if Y is a sensitive variable and it observations are confidential,
the information of fY will be unavailable in practice. It is of interest how the
upper order K can be determined. We have developed a statistical computation
searching technique for determining upper order K without the reference of the
true density function of the underlying confidential variable. The technique and
applications will be discussed in another paper. The method proposed in this
paper is developed based on and applies to continuous random variables. The
technique can apply to categorical data for approximating mass function and
will be presented in another paper.
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Appendix A: The proof of Lemmas 1 and 2

The proof of Lemma 1
Let Y1, · · · , YN be i.i.d random variables on (Ω,F ,P) and have the same

probability distribution as Y .
For each ω ∈ Ω, define gi(ω) = P (Y ≤ Yi(ω)). Random variables {gi} are

i.i.d. and have uniform distribution U(0, 1).
For each ω ∈ Ω,

gmax(Y1(ω), · · · , YN (ω)) = P (Y < max
1≤i≤N

{Yi(ω)})

= max
1≤i≤N

P (Y ≤ Yi(ω)) = max
1≤i≤N

gi(ω).

Therefore, gmax(Y1, Y 2, · · · , YN ) = g(N) the Nth order statistics of {gi}, and

P (gmax(Y1, · · · , YN ) ≤ a) = P (g(N) ≤ a) = aN .

Following the similar argument, we have

P (gmin(Y1, · · · , YN ) ≤ a) = P (g(1) ≤ a) = 1− (1− a)N ,

where g(1) is the 1st order statistics of {gi}.
The proof of Lemma 2
If we wish to have probability at least p to ensure P (Y ≤ min1≤i≤N{yi}) ≤

α/2 (probability at least p to ensure P (Y > max1≤i≤N{yi}) < α/2)), i.e.
P (g(N)

min ≤ α/2) ≥ p (i.e. P (g(N)
max > 1 − α/2) > p), the sufficient condition is

that the sample size N meets the following inequality

∫ α/2

0

N(1− a)N−1da = (1− (1− α/2)N ) ≥ p,

(∫ 1

1−α/2

NaN−1da = (1− (1− α/2)N ≥ p

)

i.e.
N ≥ log(1− p)/ log(1− α/2).

Appendix B: Figures
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Fig. 3. The left panel is for sample one with K = 10 and the right one is for sample
two with K = 14. The plots of fY and density approximant are in solid line and dashed
lines, respectively.
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Fig. 4. The density approximant based on the data masked by R1 is in the left panel
and the other one is in the right panel. The plots of fY and density approximant are
in solid line and dashed lines, respectively.
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Table 3. Real data study: the summary of statistics, the values of correlation and the
optimal order K.

data source Min. 1st Qu. Median Mean 3rd Qu. Max. cor. K
Full Data

y -190.0 55.0 255.5 1647.0 1365.0 67520.0
y masked by mixture normal -190 1267 2460 3789 3520 64730 0.9583 24

y masked by C ≡ 1 -190 1400 2460 3611 3520 67380 0.9810 17
Subset Data

y -190.0 53.0 239 995 1187 9853
y masked by mixture normal -190 360.3 674.8 1458.0 1874.0 9853 0.9941 48

y masked by C ≡ 1 -72.08 380 674.80 1460.0 1834.0 9853 0.9941 22
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