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Abstract The classic SIR (susceptible-infectious-recovered) model, has been
used extensively to study the dynamical evolution of an infectious disease in
a large population. The SIR-susceptible (SIRS) model is an extension of the
SIR model to allow modeling imperfect immunity (those who have recovered
might become susceptible again). SIR(S) models assume observed counts are
“mass balanced.” Here, mass balance means that total count equals the sum
of counts of the individual components of the model. However, since the ob-
served counts have errors, we propose a model that assigns the mass balance to
the hidden process of a (Bayesian) hierarchical SIRS (HSIRS) model. Another
challenge is to capture the stochastic or random nature of an epidemic process
in a SIRS. The HSIRS model accomplishes this through modeling the dynam-
ical evolution on a transformed scale. Through simulation, we compare the
HSIRS model to the classic SIRS (CSIRS) model, a model where it is assumed
that the observed counts are mass balanced and the dynamical evolution is
deterministic.
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1 Introduction

A pandemic (e.g., caused by influenza viruses such as H1N1, H5N1) is an
epidemic of an infectious disease spreading through human populations across
a large region (e.g., Potter, 2001). Recently, the risk of pandemic influenza has
been a significant public-health concern, and much attention has been paid to
achieve more precise and timely estimates and predictions of influenza activity.

Compartment epidemic models, such as the SIR (susceptible-infectious-recovered)
model, have been widely used to study the dynamical evolution of an infectious
disease in a large population. The SIR model was first proposed by Kermack
and McKendrick (1927) to explain plague and cholera epidemics, and it was
extended to the SIR-susceptible (SIRS) model to allow imperfect immunity
(Kermack and McKendrick, 1932; Kermack and McKendrick, 1933; Dushoff
et al., 2004). Assume that at any given time t, a fixed population can be split
into three compartments: S(t) denotes the number of susceptibles; I(t) de-
notes the number of infectious; and R(t) denotes the number of “recovereds”
(which includes deaths). Then in an SIRS model, the dynamical process is cap-
tured through the following set of deterministic (i.e., non-stochastic) nonlinear
ordinary differential equations (ODEs):

dS

dt
= −βSI + ϕR, (1)

dI

dt
= βSI − γI, (2)

dR

dt
= γI − ϕR, (3)

In (1)-(3), β denotes the transmission rate (also referred as the contact or
infection rate) per unit time, which can be expressed as the fraction of contacts
between susceptible individuals and infectious individuals that result in an
infection. Further, γ denotes the rate of “recovery” per unit time, which is the
rate at which infectious individuals are removed from being infectious due to
recovery (or death); then 1

γ is the average duration of the infectious period.
Finally, ϕ denotes the rate of loss of immunity of recovered individuals per unit
time, which is the rate at which recovered individuals become susceptible again
(Anderson and May, 1991; Hethcote, 2000); then 1

ϕ is the average duration of
the immunity period.

Notice that by adding equations (1)-(3), we can obtain

dS

dt
+

dI

dt
+

dR

dt
= 0. (4)

Thus, the model postulates a fixed total population, N , without entry and
exits of demographic type (i.e, there are no births or deaths from causes other
than the disease itself). Clearly, it represents a short-term phenomenon where



Bayesian Hierarchical Statistical SIRS Models 3

the total number of people in all three compartments together is constant.
Thus, (4) implies that for t in an interval of R+,

S(t) + I(t) +R(t) = N. (5)

This assumption (5) is commonly referred to as mass balance (Reluga, 2004).
As discussed above, the SIRS model in (1)-(3) assumes a fraction ϕ of members
of the recovered class can rejoin the susceptible class; the traditional SIR model
is obtained when ϕ = 0.

A discretized version of (1)-(3) can be written as a set of deterministic differ-
ence equations. That is, when time t is discrete (in units of ∆ days),

S(t+ 1) = S(t)− βS(t)I(t)∆+ ϕR(t)∆, (6)

I(t+ 1) = I(t) + βS(t)I(t)∆− γI(t)∆, (7)

R(t+ 1) = R(t) + γI(t)∆− ϕR(t)∆; (8)

and the discrete-time mass-balance constraint is,

S(t) + I(t) +R(t) = N, (9)

where here t = 1, 2, ..., T .

In past decades, the deterministic SIR model and its various extensions (e.g.,
SIRS, SIR including birth and death rates, migration, etc.), have been used
extensively for infectious-disease estimation and prediction in large and well
mixed populations (e.g., Schenzle, 1984; Anderson and May, 1991; Keeling and
Rohani, 2007). The classic SIRS (CSIRS) model given by (1)-(3) or (6)-(8) is
appealing because of its straightforward modeling strategy and its easily inter-
pretable parameters. However, there are various sources of uncertainty in the
model: First, there is uncertainty in the counts {S(t), I(t), R(t)} themselves;
that is, the counts in the compartments are observed with error. Second, the
rather simple model (1)-(3) (or (6)-(8) in the discrete-time setting) may not
capture the uncertainties in the hidden dynamical epidemic process, such as
the uncertainties caused by the presence of heterogeneous populations; and
third, the values of the parameters β, γ, and ϕ are uncertain.

A variety of stochastic models have been developed recently, through a prob-
abilistic mechanism that involves a Markov chain of SIR states (e.g., Bailey,
1975; Andersson and Britton, 2000; Allen, 2003; Xu et al., 2007). Some more
recent stochastic models involve complex networks (e.g., Halloran et al., 2002;
Zhou et al., 2006; Volz, 2008) or drug resistance (e.g., Chao et al., 2012) to
avoid the assumption of homogenous mixing. However, these stochastic models
ignore the noisy nature of data, and they apply mass balance to the observed
counts rather than the true counts. Furthermore, these models typically rely on
many carefully chosen parameters, such as transmission rates, recovery rates,
and so forth in heterogeneous populations; uncertainty in where the model’s
parameter vector is located in the parameter space is not accounted for. Our
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strategy is to deal with each source of uncertainty using a Bayesian hierarchical
statistical model, where the counts are observed with error and the dynamical
evolution embodied in (6)-(8) is stochastic.

Bayesian percolation models have proven popular for modeling spatio-temporal
dynamical processes (e.g., Catterall et al., 2012; Gibson et al., 2006) and have
been applied to epidemics (e.g., Cook et al., 2007), but they ignore the true
process hidden behind the noisy data. More recent Bayesian hierarchical mod-
els, which are widely used for mapping non-infectious diseases, aim to capture
the true spatial process (e.g., Besag et al., 1991; Carlin and Banerjee, 2002),
but their process models and parameter models are not appropriate for epi-
demics. Those that do have a dynamical spatial statistical component have
not generally been parameterized in terms of the interpretable components of
the epidemic (e.g., Mugglin et al., 2002; Wood, 2010).

Recently, partially observed nonlinear stochastic dynamical systems (also know
as partially observed Markov processes, or state-space models) have been used
extensively for infectious-disease estimation and prediction. A wide range of
inference techniques have been proposed and implemented in the R statistical
language as part of the package pomp (http://cran.at.r-project.org/web/packages/pomp/),
such as nonlinear forecasting (e.g., Kendall et al., 1999; Kendall et al., 2005),
iterated filtering (Ionides et al., 2006; King et al., 2008; He et al., 2010), and
approximate Bayesian particle filtering (e.g., Liu and West, 2001; Arulam-
palam et al., 2001; Dukić et al., 2012; Rasmussen et al., 2011). Some more
recent state-space models involve spatial components in the dynamical pro-
cess model (e.g., Patterson et al., 2008). Some of these models are not appro-
priate for modeling epidemic flows (e.g., Kendall et al., 1999; Kendall et al.,
2005; Patterson et al., 2008). Those that are extensions of classic compart-
ment epidemic models (e.g., the SIR model and the SEIR model) and that do
pay attention to the underlying true process hidden behind the noisy data,
either ignore the source of variation that captures randomness in the (hidden)
epidemic process (e.g., Rasmussen et al., 2011), or they do not preserve the
mass-balance property (e.g., Liu and West, 2001; Dukić et al., 2012), which
may introduce biased results. Recent extensions to stochastic models with a
master equation have similar problems with mass balance (e.g., Alonso et al.,
2007).

Notice that imposing the mass balance appropriately to improve accuracy of
estimating counts in all compartments is important. If one only pays attention
to estimating the infectious population (I) and ignores modeling the suscep-
tible population (S) and the recovered population (R) (for example, simply
using a value of R from the literature and letting S = N − I −R, as if it were
observed), it may result in biased estimates of important model parameters
(e.g., the recovery rate γ) and finally lead to bias in the estimation of I. Fur-
ther, bias in γ may lead to bias in the reproduction number, R0 (defined in
Section 4.1), which in turn may affect the estimate of the proportion of sus-
ceptibles that need to be vaccinated to achieve “herd immunity” (Fine et al.,
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2011). Accurate estimates to support public-health decisions are critical for
disease control and prevention.

In this article, we return to the classic SIRS (CSIRS) model (6)-(8) for moti-
vation, and we propose a discrete-time, mass-balanced (Bayesian) hierarchical
SIRS, or HSIRS, model, which is based directly on counts and imposes mass
balance appropriately on the underlying true counts, rather than on the ob-
served counts. Our model captures the randomness in the epidemic process by
assuming that the dynamical process occurs on a log-odds-ratio scale, trans-
formed from the scale where the true counts are mass-balanced. This new
dynamical approach to infectious-disease modeling also shows how infectious
diseases in heterogeneous populations could be modeled hierarchically.

In Section 2, we propose the HSIRS model for infectious-disease data. The
actual computations associated with the posterior analysis involve local lin-
earization of difference equations; see Section 3. In Section 4, we simulate
in discrete time, a dataset from the HSIRS model and from a CSIRS model
that is modified to incorporate observation error, and then we infer all un-
knowns of the models through Markov chain Monte Carlo (MCMC) analysis.
Comparisons are given to CSIRS-model-based inference. In Section 5, we ex-
tend the example to a carefully designed simulation experiment with sufficient
replication to make definitive comparisons between the HSIRS model and the
CSIRS model. Discussion and conclusions are given in Section 6. Some tech-
nical derivations are given in the Appendix.

2 Bayesian Hierarchical Statistical SIRS (HSIRS) Model

We assume that there is a true (unobserved) process underlying the observed
epidemic counts, which we incorporate into the framework of a Bayesian hi-
erarchical statistical model. This typically consists of three components: the
data model (i.e., the conditional distribution of the data given hidden pro-
cesses and parameters); the process model (i.e., the conditional distribution
of the hidden processes given parameters); and the parameter model (i.e., the
prior distribution of the parameters).

2.1 Data Model

We model the raw counts directly rather than modeling the rates derived from
the counts (e.g., Dukić et al., 2012, use Gaussian distributions to model the
rates) and assume that the data model consists of (conditionally) independent
Poisson distributions evolving at discrete time points. That is, for time points
t = 1, 2, ..., T , in units of ∆ days, the data model is

ZS(t)|PS(t) ∼ ind. Poisson(λNPS(t)), (10)
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independent from

ZI(t)|PI(t) ∼ ind. Poisson(λNPI(t)), (11)

where ZS(t) and ZI(t) are the observed number of susceptible and infectious
individuals at time t, respectively; “ind.” is shorthand for “independent”; λN
denotes the true total population count, and PS(t) and PI(t) are the underlying
true rates of susceptible and infectious individuals at time t, respectively. Since
λN is known from demography and λN = ZS(t) + ZI(t) + ZR(t), then ZR(t)
follows. Thus, the data are {(ZS(t), ZI(t)) : t = 1, 2, ..., T}.

2.2 Process Model

Recall the discrete-time CSIRS model defined by (6)-(8), which assumes that
mass balance happens on the observed population. However, the appropriate
place to model mass balance is on the true (hidden) process. That is, for
t = 1, 2, ...T , we have

λS(t) + λI(t) + λR(t) = λN , (12)

where λS(t), λI(t), and λR(t) are the underlying true (but hidden) counts of
susceptible, infectious, and recovered individuals at time t, respectively. Now
define the true (hidden) rates, PS(t), PI(t), and PR(t), via

λS(t) ≡ λNPS(t), (13)

λI(t) ≡ λNPI(t), (14)

λR(t) ≡ λNPR(t), (15)

where PR(t) denotes the underlying true rate of recovered individuals at time
t. Then by substituting (13)-(15) into (12), it is straightforward to see that
the mass balance in (12) can be rewritten as,

PS(t) + PI(t) + PR(t) = 1, (16)

and hence for t = 1, 2, ...T ,

PR(t) = 1− PS(t)− PI(t). (17)

Recall that the difference equations defined in (6)-(8) give easily interpretable
dynamics, in which individuals move from the susceptible state, to the infec-
tious state, then to the recovered state (and some individuals may become
susceptible again). We wish to model this “SIRS flow” on the hidden process
where t is discrete (in units of ∆ days). We do this by deriving a set of deter-
ministic difference equations on λS(t), λI(t), and λR(t). That is, for t = 1, 2, ...,
our process model is,

λS(t+ 1) = λS(t)− β∆λS(t)λI(t) + ϕ∆λR(t), (18)
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λI(t+ 1) = λI(t) + β∆λS(t)λI(t)− γ∆λI(t), (19)

λR(t+ 1) = λR(t) + γ∆λI(t)− ϕ∆λR(t). (20)

In (18)-(20), the SIRS flow has been preserved, and the rate parameters β, ϕ,
and γ are in units of per day (d−1).

According to the definition of λS(t), λI(t), and λR(t) in (13)-(15), equations
(18)-(20) can be rewritten in terms of the true proportions, PS(t), PI(t), and
PR(t):

PS(t+ 1) = PS(t)− βλNPS(t)PI(t)∆+ ϕPR(t)∆, (21)

PI(t+ 1) = PI(t) + βλNPS(t)PI(t)∆− γPI(t)∆, (22)

PR(t+ 1) = PR(t) + γPI(t)∆− ϕPR(t)∆. (23)

Deterministic equations, such as those in (21)-(23), are unable to capture the
uncertainties in the hidden epidemic model. Possible sources of uncertainty are
the presence of heterogeneous populations and the existence of other categories
such as exposed individuals. To handle the complexity while still preserving
the mass balance, we apply the logit transformation to the true rates, which
changes the scale of variability from [0, 1] to (−∞,∞). That is, for t = 1, 2, ...,
define

WS(t) ≡ log

(
PS(t)

PR(t)

)
, (24)

WI(t) ≡ log

(
PI(t)

PR(t)

)
, (25)

where WS(t) and WI(t) are the log odds ratios of susceptible-over-recovered
populations, and infectious-over-recovered populations, respectively, at time t.
On the odds-ratio scale (W-scale), we construct the process model in terms
of W(t) ≡ (WS(t),WI(t))

′:

W(t+ 1) = µW (t) + ξ(t+ 1), (26)

for discrete time t = 1, 2, ..., in units of ∆ days. We now discuss each of
the components of (26), in turn. The vector µW (t) ≡ (µW

S (t), µW
I (t))′ is the

dynamical process that captures the temporal dependence. In Appendix A.1,
we derive the nonlinear dynamical structure of µW (t) using (21)-(25). This
derivation retains the SIRS flow on the hidden process; that is, for discrete
time t = 1, 2, ..., in units of ∆ days,

µW
S (t) = WS(t)

+log

[
1 +

ϕ∆

exp (WS(t))
− βλNexp (WI(t))∆

1 + exp (WS(t)) + exp (WI(t))

]
+log

[
1

1 + γexp (WI(t))∆− ϕ∆

]
,

(27)
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µW
I (t) = WI(t)

+log

[
1− γ∆+

βλNexp (WS(t))∆

1 + exp (WS(t)) + exp (WI(t))

]
+log

[
1

1 + γexp (WI(t))∆− ϕ∆

]
,

(28)

where recall that β, γ, and ϕ, are the transmission rate, recovery rate, and
loss-of-immunity rate per day, respectively.

We denote the vector ξ(t) ≡ (ξS(t), ξI(t))
′, to be the small-scale variation that

captures the uncertainties in the hidden epidemic process. For t = 1, 2, ..., we
define

ξ(t) ∼ MVN(0,Σξ(t)), (29)

a multivariate normal (MVN) distribution with mean 0 and diagonal covari-
ance matrix Σξ(t) ≡ diag(σ2

ξS
(t), σ2

ξI
(t)), with nonnegative variance compo-

nents, σ2
ξS
(t) and σ2

ξI
(t). For the sake of simplicity, in this article we assume

that σ2
ξS
(t) = σ2

ξS
and σ2

ξI
(t) = σ2

ξI
, for all t = 1, 2, .... Notice that the

(negative) covariation of WS(t) and WI(t) (defined in (24) and (25)) due to
the mass-balance constraint in (16) has been structured through the covari-
ance of the nonlinear dynamical process µW (t). Therefore, it is reasonable to
assume that Σξ(t), which is the covariance of the conditional distribution,
[W(t+ 1)|µW (t)], has a diagonal structure. Also notice that we can still pre-
serve mass balance while adding the small-scale variation, ξ(t), on theW-scale,
because the mass balance is preserved when

PS(t) =
exp(WS(t))

1 + exp(WS(t)) + exp(WI(t))
,

PI(t) =
exp(WI(t))

1 + exp(WS(t)) + exp(WI(t))
,

PR(t) =
1

1 + exp(WS(t)) + exp(WI(t))
.

Finally, notice that these equations do not put a constraint on the range of the
valuesWS(t) andWI(t), so adding the error vector ξ(·) in (26) will not destroy
the balance. However, if an error vector is added directly on the P-scale, the
mass balance constraint (16) is difficult to retain.

The strategy of transforming from the hidden proportion scale (P-scale) to the
hidden log-odds-ratio scale (W-scale) and adding the small-scale variation on
the W-scale rather than on the P-scale, is key to retaining the mass-balance
constraint while allowing flexible SIRS flow to be handled. To our knowl-
edge, this is a new approach to infectious-disease modeling; other Bayesian
approaches (e.g., Dukić et al., 2012) do not preserve mass balance after build-
ing uncertainties into the process model.
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2.3 Parameter Model

To complete the model, we now specify the joint prior distribution for the
parameters, which includes the transmission rate per unit time, β; the rate
of recovery per unit time, γ; the loss-of-immunity rate per unit time, ϕ; and
variance components, {σ2

ξS
} and {σ2

ξI
}. Notice that the difference equations in

(6)-(8) impose a natural constraint on β; that is, for any time t = 1, 2, ...,

βS(t)I(t) ≤ N − (1− ϕ)R(t), (30)

because the number of individuals that become infectious at a certain time t
should be less than or equal to the total number that could be infected at that
time. Hence,

0 ≤ β ≤ N − (1− ϕ)R(t)

S(t)I(t)
. (31)

In the context of the HSIRS model, this amounts to ensuring that β is bounded
above by a hyperparameter, βmax. Furthermore, it is straightforward to see
that γ ∈ [0, 1] and ϕ ∈ [0, 1], due to their definition. Typically, information
about the recovery rate γ is easier to obtain than the other rate parameters;
we apply a logit transformation to γ,

θγ ≡ log

(
γ

1− γ

)
, (32)

and assign a Gaussian prior to θγ .

Assuming statistical independence of parameters and using [Y ] as generic no-
tation for the probability distribution of Y , we assume that the parameter
model can be written as

[β, θγ , ϕ, σ
2
ξS , σ

2
ξI ] = [β][θγ ][ϕ][σ

2
ξS ][σ

2
ξI ], (33)

where we specify the prior distributions of individual parameters as follows:

β ∼ Uniform[0, βmax],

θγ ∼ Normal(µθγ , σ
2
θγ ),

ϕ ∼ Uniform[0, 1],

σ2
ξS ∼ Inverse Gamma (aξS , bξS ),

σ2
ξI ∼ Inverse Gamma (aξI , bξI ).

Notice that the uniform distributions on β and ϕ could easily be replaced by
the very flexible Generalized Beta distributions on their supports.

In practice, the hyperparameter βmax could be data-driven using (31):

βmax ≡ min
t

(
λN − ZR(t)

ZS(t)ZI(t)

)
, (34)
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where

ZR(t) = max{1, λN − ZS(t)− ZI(t)}. (35)

The hyperparameter µθγ could be data-driven through the inverse relation-
ship between recovery rate and the mean duration of the infectious period for
individuals (e.g., Lloyd, 2001), which is about 3 days for common influenzas
(Centers for Disease Control;
http://www.cdc.h1n1flu/recommendations.htm). In our case, we use µθγ =
log(0.33/(1 − 0.33)) = −0.708, with σ2

θγ
= 0.01. The other hyperparameters,

namely, aξS , bξS , aξI , and bξI , need to be specified; for example, the choice,
aξS = aξI = 0.25 and bξS = bξI = 0.4, results in a fairly vague prior for the
variance components.

3 W-Scale Approximations for the HSIRS Model

Here, we derive a calibrated approximation to the nonlinear W-scale process
in the HSIRS model. From Appendix A.2, for t = 1, 2, ..., equation (26) in the
HSIRS model can be approximated by

W(t+ 1) = µLW (t) + ζ(t+ 1), (36)

where recall that W(t) ≡ (WS(t),WI(t))
′ is the true log-odds-ratio vector.

The vector ζ(t) ≡ (ζS(t), ζI(t))
′ in (36) is the small-scale-variation vector that

captures the uncertainties in the epidemic process as well as the higher-order
terms in the Taylor-series expansions. For t = 1, 2, ..., we assume a multivariate
Normal distribution,

ζ(t) ∼ MVN(0,Σζ(t)), (37)

where Σζ(t) ≡ diag
(
σ2
ζS
(t), σ2

ζI
(t)
)

is the covariance matrix of ζ(t), and

σ2
ζS
(t) and σ2

ζI
(t) are nonnegative variance-component parameters. Typically,

the components of Σζ(t) are larger than the respective components of Σξ(t),
because {ζ(t)} also captures the higher-order terms left after matching the
linear approximation.

In (36), the vector µLW (t) ≡ (µLW
S (t), µLW

I (t))′ is a linear dynamical pro-
cess derived through Taylor-series expansions that approximates the nonlin-
ear stochastic process µW (t) defined in (27)-(28). From Appendix A.2, for
t = 1, 2, ...,

µLW
S (t) = J0(t) + J1(t)WS(t) + J2(t)WI(t), (38)

µLW
I (t) = J3(t) + J4(t)WS(t) + J5(t)WI(t), (39)
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where

J0(t) ≡ logÂ1(t) +
1

Â1(t)
+ ϕ

[
exp(Â5(t))(1− Â5(t))

Â1(t)
+

1

Â2(t)

]
∆

− βλN

Â1(t)

(
1− 1

1− Â7(t)
+
B0(t) + Â7(t)

(1− Â7(t))2

)
∆

−logÂ2(t)−
1

Â2(t)
− γ

Â2(t)
eÂ6(t)(1− Â6(t))∆, (40)

J1(t) ≡ 1−
ϕexp

(
Â5(t)

)
∆

Â1(t)
− βλNB1(t)∆

Â1(t)(1− Â7(t))2
, (41)

J2(t) ≡ − βλNB2(t)∆

Â1(t)(1− Â7(t))2
− γeÂ6(t)∆

Â2(t)
, (42)

J3(t) ≡ logÂ3(t) +
1− γ∆

Â3(t)
+

βλN∆

Â3(t)(1− Â10(t))
− βλN (B3(t) + Â10(t))∆

Â3(t)(1− Â10(t))2

−logÂ2(t)−
1

Â2(t)
− γeÂ6(t)(1− Â6(t))∆

Â2(t)
+

ϕ∆

Â2(t)
, (43)

J4(t) ≡
−βλNB4(t)∆

Â3(t)(1− Â10(t))2
, (44)

J5(t) ≡ 1− βλNB5(t)∆

Â3(t)(1− Â10(t))2
− γeÂ6(t)∆

Â2(t)
. (45)

Also,

B0(t) ≡ eÂ4(t)(1− Â4(t))B
∗(t), (46)

B1(t) ≡
eÂ5(t)+Â4(t)(1− Â4(t))

(1− Â9(t))2
− eÂ4(t)B∗(t), (47)

B2(t) ≡ eÂ4(t)B∗(t), (48)

B3(t) ≡ eÂ4(t)(1− Â4(t)) + eÂ5(t)(1− Â5(t)), (49)

B4(t) ≡ −eÂ4(t) − eÂ5(t), (50)

B5(t) ≡ eÂ4(t), (51)

where

B∗(t) =
1

1− Â9(t)
+
eÂ5(t)(Â5(t)− 1)− Â9(t)

(1− Â9(t))2
, (52)

and {Âj(t) : j = 1, ..., 10} are discussed below.
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Notice that by combining equations (36)-(52), we are able to write W(t + 1)
given by (36) in a multivariate autoregressive form:

W(t+ 1) = C(t) +H(t)W(t) + ζ(t+ 1), (53)

where C(t) ≡ (J0(t), J3(t))
′ and the 2× 2 matrix H(t) is

H(t) ≡
(
J1(t) J2(t)
J4(t) J5(t)

)
.

The general idea behind (38)-(39) is to use Âi(t), i = 1, ..., 10, as an initial-
ization of the Taylor-series expansion of the nonlinear process µW (t) in (26).
Formulas for Âi(t) and the quantity Ai(t) that it approximates are given in
Table 1. In practice, we use empirical values obtained from data {ZS(t)} and
{ZI(t)} to obtain Âi(t) close to Ai(t), where from Table 1 {Ai(t) : i = 1, ..., 10}
are nonlinear components in the HSIRS model. From the transformation in
(24) and (25), we can obtain

λNPS(t) =
λNexp(WS(t))

1 + exp(WS(t)) + exp(WI(t))
,

λNPI(t) =
λNexp(WI(t))

1 + exp(WS(t)) + exp(WI(t))
,

λNPR(t) =
λN

1 + exp(WS(t)) + exp(WI(t))
.

Now λNPS(t), λNPI(t), and λNPR(t) are the means of {ZS(t)}, {ZI(t)}, and
{ZR(t)}, and hence the values in the column “Initializations (Â(t))” in Table
1 are reasonable choices for {Âi(t)}. If data are not available at some time
point, we obtain {Âi(t)} in Table 1 by replacing the observed data {ZS(t)}
and {ZI(t)} with the predicted counts provided by a simple model, such as
the CSIRS model. The goal is to obtain {Âi(t)} as close as possible to {Ai(t)}.

In Table 1, β0, γ0, and ϕ0 are initial values of β, γ, and ϕ, respectively, which
are used to enhance the Taylor-series expansions. We use values obtained from
the CSIRS model (e.g., Anderson and May, 1991; Wearing et al., 2005; Burr
and Chowell, 2006) for β0, γ0, and ϕ0. Further details of implementation can
be found in Section 4.3. We performed sensitivity studies and noticed that
the MCMC based on this linear approximation is not sensitive to the initial-
izations (even in forecasting), because the small-scale-variation vector in (36)
can absorb the higher-order terms in the Taylor-series expansion (e.g., Cressie
and Wikle, 2011, Section 7.3.3). Like the data model, the parameter model is
unchanged, except that subscript ξ is replaced with subscript ζ; see Section
2.3 for details.

Finally, the approximate HSIRS model, which we call the ASIRS model, con-
sists of the data model defined in (10)-(11), the linear dynamical process model
for {W(t)} defined in (36), and the parameter model defined in (33) with ξ
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replaced by ζ. Because of its computational efficiency, the ASIRS model is
used in the Markov chain Monte Carlo algorithm that produces our posterior
analysis.

4 Posterior Analysis of a Simulated Epidemic

4.1 Simulated Data

In this section, an epidemic is simulated from each of two processes meant
to mimic an H1N1 outbreak in Franklin County, Ohio. The two datasets are
from an HSIRS model (defined in Section 2) and a modified-CSIRS model (de-
fined below), which we refer to as the HSIRS dataset and the modified-CSIRS
dataset, respectively. Henceforth, the time step of the difference equations is
∆ = 1 day. Notice that for epidemics with a different developing time step,
the value of ∆ could be easily adjusted according to the infectious nature of
the underlying virus.

4.1.1 The HSIRS Dataset

For simulating the HSIRS dataset from the HSIRS model, we select γ∗ = 0.33
per day as the true value of γ, since there is an inverse relationship between γ
and mean duration of the infectious period (the inverse relation between rate
and average duration is due to the assumption that recovery is a process with
constant intensity, that is, a constant rate per unit of time, which implies a neg-
ative exponential density); this is about 3 days for common influenza (Centers
for Disease Control; http://www.cdc.h1n1flu/recommendations.htm). Further-
more, in epidemiology, the basic reproduction number, R0, is defined as the
number of secondary infections caused by a single infective, introduced into a
population made up entirely of susceptible individuals, over this individual’s
course of the infection. Therefore, R0 can be obtained by

R0 =
βλN
γ

. (54)

Typically, R0 has a value between 1 and 2 for new strains of Influenza A in
human communities (e.g., Anderson, 2006). Therefore, since λN = 1, 068, 978
in the 2000 Census in Franklin County, Ohio, and γ∗ = 0.33, if we select
β∗ = 5.1 ∗ 10−7 as the true value of β, then we obtain R0 ≈ 1.65 to mimic
a pandemic flu. Furthermore, for illustration, we simply assume ϕ∗ = 0.05,
which is a typical value of loss of immunity for pandemic strains used in the
long-term period (e.g., Bansal et al., 2010).
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We now turn to the components of variance. Recall that the signal-to-noise
ratio (SNR) can be defined as

SNR ≡ µ

σ
, (55)

where µ is the signal mean and σ is the standard deviation of the noise. We
denote SNRWS

(t) and SNRWI
(t) to be the SNR for the log odds ratios WS(t)

and WI(t), respectively, at time t. Then, for t = 1, 2, ..., T + F , we have

SNRWS
(t) ≡ µW

S (t)

σξS (t)
, (56)

SNRWI
(t) ≡ µW

I (t)

σξI (t)
, (57)

where the right-hand sides of (56) and (57) are given by (27)-(29), and the
time points T + 1, ..., T + F represent a forecast period of F days.

As a baseline at time t = 1, we assume the rates of susceptible and infectious
individuals, namely, P ∗

S(1) and P
∗
I (1) to be 0.94 and 0.01, respectively. Hence,

µW∗
S (1) = log

(
0.94

1− 0.94− 0.01

)
= 2.934, (58)

µW∗
I (1) = log

(
0.01

1− 0.94− 0.01

)
= −1.609, (59)

which results in

µW∗(1) =
(
µW∗
S (1), µW∗

I (1)
)′

= (2.934,−1.609)′,

the initial mean of the hidden log-odds-ratio vector, W(1).

For the simulated epidemic, we assume that the true values of SNR at time
t = 1 are

SNR∗
WS

(1) = SNR∗
WI

(1) = 15.

More choices of SNR are discussed in Section 5. Then from (56)-(57), we have

σ2
ξS (1) = (2.934/15)

2
= 0.038, (60)

σ2
ξI (1) = (−1.609/15)

2
= 0.012. (61)

Recall that we assume σ2
ξS
(t) = σ2

ξS
and σ2

ξI
(t) = σ2

ξI
, for t = 1, 2, ... . There-

fore, from (60)-(61) we select σ2∗
ξS

= 0.038, σ2∗
ξI

= 0.012, as the true values of

σ2
ξS

and σ2
ξI
, respectively, and we write Σ∗

ξ ≡ diag(σ2∗
ξS
, σ2∗

ξI
).

We simulate daily data for T + F = 45 days, where T = 35 and F = 10.
Specifically, for t = 1, we simulate

W(1) ∼ MVN
(
µW∗(1),Σ∗

ξ

)
; (62)

then for t = 2, ..., 45, we simulate {W(t)} using (26) and obtain {P(t)} us-
ing transformations defined by (78)-(79) in Appendix A.1. Finally, we gen-
erate observed counts of susceptible and infectious individuals, {ZS(t)} and
{ZI(t)}, from the Poisson distribution defined in (10)-(11), conditional on
{P(t)}. These counts, {ZS(t)} and {ZI(t)}, represent the HSIRS dataset.
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4.1.2 The Modified-CSIRS Dataset

Before we illustrate the procedure for generating the modified-CSIRS dataset,
we first define the modified-CSIRS model. Recall that the CSIRS model is
deterministic, which we now modify to incorporate uncertainty in the obser-
vations and in the parameters. Specifically, the modified-CSIRS model is a
hierarchical statistical model that consists of a data model defined by (10)-
(11), a deterministic process model defined by the CSIRS model in (21)-(23),
and a parameter model. That is, for t = 1, 2, ..., in units of ∆ days, the
modified-CSIRS model can be written as:

Data model:
ZS(t)|λS(t) ∼ ind. Poisson(λNPS(t)),

ZI(t)|λI(t) ∼ ind. Poisson(λNPI(t)).

Process model:

PS(t+ 1) = PS(t)− βλNPS(t)PI(t)∆+ ϕPR(t)∆,

PI(t+ 1) = PI(t) + βλNPS(t)PI(t)∆− γPI(t)∆,

PR(t+ 1) = PR(t) + γPI(t)∆− ϕPR(t)∆.

Parameter model:
[β, γ, ϕ] = [β][γ][ϕ].

In this hierarchical statistical model, recall that ZS(t) and ZI(t) are the ob-
served susceptible and infectious counts, respectively; PS(t), PI(t), and PR(t)
are the hidden true proportions; β, γ, and ϕ are transmission rate, recov-
ery rate, and loss-of-immunity rate, respectively, per day; and ∆ is the time
step. As specified at the beginning of this section, ∆ = 1. Notice that in
the modified-CSIRS model, the process model is deterministic and does not
capture any uncertainty in the hidden epidemic process.

For simulating the modified-CSIRS dataset from the modified-CSIRS model,
we likewise simulate daily data for T + F = 45 days, where T = 35 and
F = 10. For the unknown parameters, β, γ, and ϕ, we select the same values
in Section 4.1.1, and we select the same starting proportions, P ∗

S(1) = 0.94 and
P ∗
I (1) = 0.01. Then for t = 2, ..., 45, we simulate {P(t)} from the deterministic

process defined in (21)-(23); and finally we generate {ZS(t)} and {ZI(t)} using
the Poisson distribution defined in (10)-(11), conditional on {P(t)}. These
counts, {ZS(t)} and {ZI(t)}, represent the modified-CSIRS dataset.

Notice that the HSIRS dataset mimics noisy observations from an epidemic
with uncertainties in the underlying epidemic process, whereas the modified-
CSIRS dataset mimics noisy observations from a deterministic epidemic pro-
cess. Although for each dataset, we simulated data for T +F = 45 days, when
we fit models, we assume that data are only available on the first T = 35 days
and are missing in the last F = 10 days. Thus, we can assess the performance
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of these models on forecasting, by comparing their forecasts of λS(t) and λI(t)
to the true values known from simulation.

Figures 1(a)-1(d) show the daily observed susceptible counts {ZS(t)} and in-
fectious counts {ZI(t)}, for each of the two datasets, as a function of time
(for all 45 days). We use the vertical line on each plot to emphasize that we
assume data are only available for the first T = 35 days. Comparing these
plots, we can clearly see that the epidemic patterns in the modified-CSIRS
dataset (Figure 1(c)-1(d)) are much smoother than those in HSIRS dataset.
In general, the two datasets suggest similar epidemic patterns in the 45 days.
That is, both of them indicate clearly an epidemic between day 15 to day 40,
and the infectious population reaches its peak in the period between day 20
and day 30.

4.2 Fitting the HSIRS Model

As mentioned in Section 3, we derive a well calibrated Gaussian linear pro-
cess (the ASIRS model) to approximate the nonlinear W-scale process in the
HSIRS model, which improves computational efficiency in posterior analysis
and forecasting. Recall that within the 45-day study period, data are only
available on the first T = 35 days and are missing for the last F = 10 days.

Based on the ASIRS model specified in Section 3, the joint posterior distri-
bution of all “unknowns” is proportional to a product of the data model, the
process model, and the parameter model. Notice that {WS(t)} and {WI(t)}
are transformations of {PS(t)} and {PI(t)}, and hence the conditioning in the
data model can be equivalently written in terms of W(t). Therefore, combin-
ing equations (78)-(79) in Appendix A.1, the data model given by (10) and
(11) can be written as follows: For t = 1, ..., T ,

ZS(t)|W(t) ∼ ind. Poisson

(
λNexp(WS(t))

1 + exp(WI(t)) + exp(WS(t))

)
,

ZI(t)|W(t) ∼ ind. Poisson

(
λNexp(WI(t))

1 + exp(WI(t)) + exp(WS(t))

)
.

Therefore, the joint posterior distribution of all unknowns is

[β, θγ , ϕ, σ
2
ζS , σ

2
ζI , {WS(t)}, {WI(t)}|ZS(1), ..., ZS(T ), ZI(1), ..., ZI(T )]

∝
T∏

t=1

[ZS(t)|WS(t),WI(t)] ·
T∏

t=1

[ZI(t)|WS(t),WI(t)] · [WS(1),WI(1)|σ2
ζS , σ

2
ζI ]

·

(
T+F∏
t=2

[WS(t),WI(t)|β, θγ , ϕ,WS(t− 1),WI(t− 1), σ2
ζS , σ

2
ζI ]

)
· [β][θγ ][ϕ][σ2

ζS ][σ
2
ζI ],

(63)
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where at t = 1, W(1) ≡ (WS(1),WI(1))
′ has distribution,

W(1)|σ2
ζS , σ

2
ζI ∼ MVN

(
µW (1),Σζ

)
,

and recall that Σζ = diag(σ2
ζS
, σ2

ζI
). There is strong prior information on what

happens at t = 1, which allows the hyperparameter µW (1) to be specified. For
example, in Section 4.1, we specify it as,

µW (1) = µW∗(1) ≡ (2.934,−1.609)′.

(Recall from Section 4.1 that µW∗(1) is the initial mean of the log-odds-ratio
vector used for simulating the data.) The parameter model defined in Section
2.3 consists of independent prior distributions on each parameter. Regard-
ing the parameter-model specification for Σζ , we specify fairly vague priors
for σ2

ζS
and σ2

ζI
by choosing independent Inverse Gamma distributions with

hyperparameters, aζS = aζI = 0.25, bζS = bζI = 0.4. Recall from Section
2.3 that we also specify β ∼ Uniform(0, βmax), where βmax is given by (34);
θγ ∼ Normal(0.33, 0.01); ϕ ∼ Uniform[0, 1].

Even based on the ASIRS model, the posterior distribution is not available
analytically, owing to a normalizing constant that cannot be obtained in closed
form. However, we can sample from the posterior distribution using a Markov
chain Monte Carlo (MCMC) algorithm with a Gibbs sampler that incorporates
Metropolis-Hastings steps where necessary (e.g., Waller et al., 1997). These are
based on full conditional distributions that are given in Appendix A.3.

The MCMC algorithm draws samples, cyclically from each full conditional
distribution, conditioning on the most recent samples drawn from the other full
conditionals. This iterative procedure defines a Markov chain whose stationary
distribution is the joint distribution of all the unknowns given the data (i.e.,
the posterior distribution). Hence, after a “burn-in” number of iterations, we
obtain samples from the posterior distribution. Notice that in our case, except
for [σ2

ζS
|rest] and [σ2

ζI
|rest], which follow the Inverse Gamma distributions, and

[WS(t),WI(t)|rest] for t > T , which follow a multivariate Normal distribution
(in Appendix A.3, we define “rest” to represent all other unknowns as well
as the data {ZS(1), ..., ZS(T )} and {ZI(1), ..., ZI(T )}), the full conditional
distributions of all the other unknowns cannot be simulated directly, and so
Metropolis-Hastings updates are applied (e.g., Robert and Casella, 2004).

4.3 Posterior Analysis and Forecasting

4.3.1 Posterior Analysis Based on the HSIRS Model

For the purpose of comparison, we fit the approximate HSIRS (i.e., ASIRS)
model to each of the two datasets, and we refer to them as:
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– case AH : fit the ASIRS model to the HSIRS dataset

– case AM : fit the ASIRS model to the modified-CSIRS dataset

For each of these two cases, we ran an MCMC chain of 30,000 iterations.
After a burn-in of 3,000 iterations, we obtained a total of 27,000 samples from
the posterior distribution for each case listed above. Notice that this is not a
particle-filtering approach in which new data are used to update current and
past posteriors, so avoiding the need to re-run the MCMC.

Figure 2 shows the posterior behavior of β, γ, σ2
ζS
, σ2

ζI
, and ϕ, for the case

AH. Similar figures are obtained for the case AM (not shown). The posterior
median, mean, variance, and 95% Bayes credible interval (95%CI) for param-
eters in each of the two cases are shown in Table 2-3. For both cases, we can
see that, except for γ (recall that θγ in the tables is the logit transformation of
γ), the posteriors for the parameters are much tighter than the priors. See also
Figure 3, which shows the prior and posterior distributions of β (chosen as a
representative parameter) for both cases. Hence, there is substantial learning
about these parameters, but there is almost no learning for γ because it al-
ready has a tight prior.

Because the data are simulated, we have the opportunity to compare the pos-
terior samples with the true values. As mentioned in Section 4.1, for both
datasets, we use β∗ = 5.1 ∗ 10−7, γ∗ = 0.33, and ϕ∗ = 0.05, as the true val-
ues of the transmission rate, the recovery rate, and the loss-of-immunity rate,
respectively (in units of per day). Tables 2-3 show that ASIRS, the (approxi-
mate) hierarchical model, performs well to recover these parameters, and the
posterior 95%CIs of β and ϕ are much tighter than those of their priors. (The
parameter for γ already has a tight prior, and its posterior hardly changes.)
Figures 2(a), 2(b), and 2(e) show the true values of the three parameters as
red lines for the case AH. We find the agreements are excellent, especially for
β and γ. The same conclusions hold for the case AM (not shown).

Recall that the HSIRS dataset has uncertainties associated with the hidden
epidemic process, and we selected σ2∗

ξS
= 0.038, σ2∗

ξI
= 0.012 as the true values

of the small-scale variance components. Tables 2 and 3 indicate that when
fitting the ASIRS model to the HSIRS dataset (case AH), the posterior samples
of the small-scale variances in the ASIRS model (i.e., σ2

ζS
and σ2

ζI
) tend to

be quite a bit larger than these values. These results are expected since, as
explained in Section 3, the small-scale variation terms in the ASIRS model
have the flexibility to capture higher-order terms not included in the linear
approximations.

To assess the general performance of the ASIRS model to approximate the
HSIRS model, we use a discrepancy measure, as described in Cressie and
Wikle (2011), Section 2.2.2, due to Gelman et al. (1996). Based on a given
discrepancy measure, we obtain a posterior predictive p-value and perform a
diagnostic procedure to determine whether the model fits the data.
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Specifically, for the kth sample from the MCMC, k = 1, ...,m = 27, 000, we

define a discrepancy measure, ψ
(
Z;λ(k)

)
, as follows:

ψ
(
Z;λ(k)

)
≡

T∑
t=1

[
Z(t)− E

(
Z(t)|λ(k)(t)

)]′ (
Σ

(k)
Z (t)

)−1 [
Z(t)− E

(
Z(t)|λ(k)(t)

)]
,

(64)

where λ(k)(t) ≡
(
λ
(k)
S (t), λ

(k)
I (t)

)′
denotes the vector of true counts at time t

for the kth MCMC sample, and

λ
(k)
S (t) ≡ λNP

(k)
S (t), (65)

λ
(k)
I (t) ≡ λNP

(k)
I (t). (66)

Recall that we assume data are only available on the first T = 35 days for each
of the two datasets. Based on the Poisson data model defined in (10)-(11) and

on the definitions of λ(k)(t) in (65) and (66),(
Σ

(k)
Z (t)

)
≡ diag

(
λ
(k)
S (t), λ

(k)
I (t)

)
,

represents the data model’s covariance matrix, and hence (64) take the form
of a Wald statistic. Furthermore, for t = 1, ..., T , if we use Zrep(t) to denote an
independent replicate of the data, then the posterior-predictive distribution of
Zrep(t) can be defined as (Gelman et al., 1996),

[Zrep(t)|Z(t)] =
∫ ∫

[Zrep(t)|{W(t)},Θ] [{W(t)},Θ|Z(t)] d{W(t)}dΘ(t),

(67)
where

Θ ≡ {β, γ, ϕ, σ2
ζS , σ

2
ζI}.

Thus, for the kth sample, Z
(k)
rep(t) is drawn from the posterior distribution

[Zrep(t)|Z(t)], t = 1, ..., T , and we obtain the discrepancy measure ψ
(
Z

(k)
rep;λ

(k)
)

by replacing Z in (64) with Z
(k)
rep(t) defined in (67). Therefore, the replicates,

{Z(1)
rep(t),Z

(2)
rep(t), ...,Z

(m)
rep },

should “look like” the data Z(t) if the model is appropriate. Based on this idea,
we can apply posterior-predictive diagnostics in the case AH and the case AM.
Since the HSIRS dataset is simulated from the HSIRS model, we can also assess
the performances of the ASIRS model to approximate the HSIRS model.

The posterior predictive p-value can be obtained as below (Gelman et al.,
1996):

Pr (ψ(Zrep;λ) ≥ ψ(Z;λ)) =
1

m

m∑
k=1

I
[
ψ
(
Z(k)

rep;λ
(k)
)
≥ ψ

(
Z;λ(k)

)]
, (68)
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where I(·) denotes an indicator function.

Based on (68), we obtain the posterior predictive p-values for the case AH, to
be 0.458; hence, there is no striking evidence for a lack of model fit when fitting
the ASIRS model to the HSIRS dataset. This conclusion is further supported

by Figure 4, which plots ψ
(
Z

(k)
rep;λ

(k)
)
against ψ

(
Z;λ(k)

)
for the case AH;

there is no striking departure from the 45-degree line. Indeed, the same is true
for the case AM, and we conclude that there is no evidence for lack of fit for
the ASIRS model when fitted to either dataset. That is, the ASIRS model
appears to have considerable flexibility.

4.3.2 Comparisons of the fitted ASIRS model and the fitted CSIRS model

We now fit the (discrete-time) CSIRS model to each of the two simulated
datasets described in Section 4.1. In practice, estimates of β, γ, and ϕ, denoted
as β̂, γ̂, and ϕ̂, are needed in order to solve for {S(t)} and {I(t)} in equations
(6)-(8). Here, we minimize the sum of squares between the estimated and
observed infectious counts over time (e.g., Anderson and May, 1991; Wearing
et al., 2005; Burr and Chowell, 2006). That is,

(β̂, γ̂, ϕ̂) = arg min
(β,γ,ϕ)

[
T∑

t=1

(
Î(t;β, γ, ϕ)− ZI(t)

)2]
, (69)

where Î(t;β, γ, ϕ) is the deterministic estimate of infectious counts at time t,
obtained after substituting β, γ, and ϕ into equations (6)-(8). Recall that here

T = 35, and also notice that these least squares estimates, β̂, γ̂, and ϕ̂, are
the values selected in Section 3 for the initial MCMC values (denoted β0, γ0,
and ϕ0, there.) Finally, the CSIRS forecasts are given by (6)-(8) for t = T +

1, ..., T+F ; using obvious notation, they are {Ŝ(t; β̂, γ̂, ϕ̂) : t = T+1, ..., T+F},
{Î(t; β̂, γ̂, ϕ̂) : t = T + 1, ..., T + F}, and {R̂(t; β̂, γ̂, ϕ̂) : t = T + 1, ..., T + F},
where T = 35 and F = 10. For t = 1, ..., T , the observed counts are considered
to be the CSIRS-predicted counts.

Now, for the HSIRS model (approximated by ASIRS), the appropriate pre-
dictions are obtained from posterior inference on λS(t), and λI(t), for the
entire study period t = 1, ..., T, T + 1, ..., T + F , but based only on data from
t = 1, ..., T . The Bayesian predictions are actually given for PS(t) and PI(t);
then to obtain ASIRS-predicted counts, equations (13)-(15) along with mass
balance given by (17) are used.

In the infectious-disease setting, the number of infectious individuals is one of
the most important quantities of interest. The estimated trajectories given in
Figure 5 show infectious counts for the entire 45-day study period, obtained
by fitting the ASIRS model and the CSIRS model to each of the two datasets.
These are compared to the true (hidden) values of infectious counts. Consider
the modified-CSIRS dataset: upon inspection of Figure 5(b), we see that both
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models can capture the overall epidemic pattern very well, not only during
the first 35 days when data are available, but also in the last 10 days when
there are no data. Now consider the HSIRS dataset: when the underlying
epidemic process has stochastic components, the disadvantage of the CSIRS
model becomes apparent; upon inspection of Figure 5(a), estimates from fitting
the CSIRS model are oversmoothed, even on the days when data are available.
In contrast, the agreement between the true value and the posterior median
of {λI(t)}, obtained from fitting the ASIRS model, is excellent when data are
available. On the last 10 days when there are no data, the hierarchical model is
able to predict the general downward trend at the end of the epidemic process;
however, the CSIRS model is unable to deal with the uncertainties, mistakenly
forecasting that the epidemic is maintained in the last 10 days.

Another disadvantage of the CSIRS model is that it is unable to provide
any uncertainty measures to accompany its deterministic-modeling strategy.
In contrast, when fitting the hierarchical model, we can obtain uncertainty
measures for any quantity of interest, based on its posterior distribution. For
example, Figure 6 shows 0.025, 0.25, 0.5, 0.75, 0.975 quantiles of posterior dis-
tributions of the hidden infectious counts, λI(t), during the forecasting period
{T + 1, ..., T + F}. We can see that in all cases, the posterior 50%CI of λI(t)
obtained from fitting the ASIRS model, cover the true values at all times.

Now consider the susceptible counts. Figure 7 and Figure 8 clearly indicate
that the ASIRS model performs better than the CSIRS model, when fitting
to the HSIRS dataset.

The analyses given in this section illustrate the advantages and the prac-
ticalities associated with a hierarchical statistical approach to inferring the
dynamical evolution of an infectious disease. In the next section, we confirm
those inferential advantages through a simulation experiment.

5 A Simulation Experiment

In this section, a simulation experiment is presented to compare the perfor-
mances of the HSIRS model (actually, the approximative ASIRS model) and
the CSIRS model using design-based criteria under various factor combina-
tions (i.e., a factorial experimental design), assuming that data are from an
HSIRS model (defined in Section 2). That is, the processes {W(t)} and {P(t)}
are simulated according to (26) and (78)-(79), from which the data processes
{ZS(t)} and {ZI(t)} are simulated from the Poisson distributions defined in
(10)-(11), conditional on {P(t)}. As in Section 4.1.1, we set the true values of
the parameters in (26) as (γ∗ = 0.33, ϕ∗ = 0.05), and we simulate the base-
line W(1) from (62) with µW∗(1) = (2.934,−1.609). The baseline small-scale
variation Σ∗

ξ in (62), the values of T and F , and the parameter β in (26) are
chosen in ways that relate to factors in the experiment and will be described
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in Section 5.1. For each of the factor combinations, we simulate L = 100
replications.

5.1 Factors of the Simulation Experiment

Four factors are considered in this simulation experiment: fitted model (FM)
is a factor that compares the HSIRS model and the CSIRS model; in the
terminology of experimental design, this is considered the “treatment.” Three
other factors related to the data-generating schemes are also included; these
are data information (DI), small-scale variation (SV), and transmission rate
(TR). The details of these four factors are now presented.

Fitted Model (FM)
The factor FM has two levels, where FM=0 represents the CSIRS model and
FM=1 represents the HSIRS model. The HSIRS model is specified by (10),
(11), and (26) in Section 2, and by (78), (79), and (80) in Appendix A.1. The
CSIRS model is specified by (6)-(8) in Section 1.

Data Information (DI)

Two different levels of DI are considered. One is where there are data for 15
days (DI=0), and the other for 35 days (DI=1). In each situation, we perform
forecasting for up to 10 days beyond the last day where there were data. The
choice of 15 days (DI=0) was based on CDC’s response to the 2009 H1N1 pan-
demic. According to “The 2009 H1N1 Pandemic: Summary Highlights, April
2009-April 2010” (CDC: http://www.cdc.gov/h1n1flu/cdcresponse.html), an
H1N1 infection was first detected in the US in a 10-year-old patient in Cali-
fornia on April 15, 2009; 15 days later, that is, on April 29, 2009, WHO raised
the influenza pandemic alert from phase 4 to phase 5, signaling that a pan-
demic was imminent. We selected 35 days (DI=1) because, in retrospect, the
2009 H1N1 pandemic took 35 days to develop from the time the first case
occurred in Mexico (Figure 9, from “Outbreak of Swine-Origin Influenza A
(H1N1) Virus Infection—Mexico, March–April 2009”;
CDC: http://www.cdc.gov/mmwR/preview/mmwrhtml/mm58d0430a2.html).

Small-scale Variation (SV)

Two different levels of SV are considered. Recall the definitions of signal-to-
noise ratios, SNRWS (t) and SNRWI (t), in equations (56) and (57) in Section
4.1.1. These are put equal to each other, and the two levels are SNR=15
(SV=0) and SNR=5 (SV=1). Consider the initial time t = 1. Then for SV=0,

SNRWS
(1) = SNRWI

(1) = 15;

hence (60)-(61) gives σ2
ξS
(1) = 0.038, σ2

ξI
(1) = 0.012. For SV = 1,

SNRWS
(1) = SNRWI

(1) = 5;
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then from (56)-(57), we have

σ2
ξS (1) = (2.934/5)

2
= 0.344,

σ2
ξI (1) = (−1.609/5)

2
= 0.104.

To control this factor in the simulation, we assume henceforth that σ2
ξS
(t) ≡

σ2
ξS
(1) and σ2

ξI
(t) ≡ σ2

ξI
(1), for t = 1, 2, .... Therefore, SV=0 represents

{σ2
ξS
(t) = 0.038, σ2

ξI
(t) = 0.012, SNR=15}, and SV=1 represents {σ2

ξS
(t) =

0.344, σ2
ξI
(t) = 0.104, SNR=5}.

Transmission Rate (TR)

Two levels of the transmission rate (TR) per unit time are considered: β =
3.3958 × 10−7 (TR=0) and β = 5.8654 × 10−7 (TR=1). These two levels
of β result in the basic reproduction number R0 = 1.1 and 1.9, respectively,
given by equation (54). According to Anderson (2006), R0 usually has a value
between 1 and 2 for new strains of influenza in the human community. There-
fore, by selecting these two levels of TR, we are aiming to mimic scenarios
with small and large transmission rates, respectively, but still within the usual
range.

5.2 Results of the Simulation Experiment

In order to compare the approximate HSIRS model and the CSIRS model, we
define a response variable based on the empirical mean squared prediction er-
ror (MSPE) in each simulation run: Let TO denote the times at which data are
observed, and let TM denote the times at which data are missing; note that in
our case, TM is a 10-day forecast period that follows TO. Let PX(t, l) denote
the l-th simulated realization of the underlying true rate of the population in
subgroup X (see equations (13)-(15) for the definition of “true rate”); in our
case, X denotes either the susceptible (S) or the infectious (I) population. Let
P̂X(t, l) denote a generic predictor of PX(t, l). Note that PX(t, l) contains the
same information as λX(t, l), which denotes the l-th realization of the simu-
lated true counts for the population in subgroup X, since λX(t, l) = λNPX(t, l)
and λN is a known constant total population. Then we define

MSPEX(T ∗, l) ≡ 1

|T ∗|
∑
t∈T∗

(
P̂X(t, l)− PX(t, l)

)2
; l = 1, ..., L, (70)

where T ∗ = TO or TM , |T ∗| is the number of days in the time period T ∗, and
L is the total number of simulation runs for each of the factor combinations
in this study. The bias of the predictor can be studied through,

BIASX(T ∗, l) ≡ 1

|T ∗|
∑
t∈T∗

(
P̂X(t, l)− PX(t, l)

)
; l = 1, ..., L. (71)
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We performed an analysis of variance (ANOVA) to investigate which fac-
tors are important and under which scenarios the approximate HSIRS model
provides substantial improvement over the CSIRS model. First, we consider
MSPE. Because of the skewness and mean-variance dependence in {MSPEX(T ∗, l)},
we use a fourth-root transformation to transform the response (Cressie et al.,
2010). The boxplots in Figures 10 and 11 show that the distributions of the
differences between the fourth-root transformations (superscripts “C” and “H”
denote, respectively, analysis under the CSIRS model and under the approxi-
mate HSIRS model):{
MSPEC

X(T ∗, l)1/4 −MSPEH
X (T ∗, l)1/4 : l = 1, ..., L; X = S, I; T ∗ = TO, TM

}
,

is suitable for a classical ANOVA. We then define

AY
X(T ∗) ≡ avel

{
MSPEX(T ∗, l)1/4

}
; X = S, I;Y = C,H; T ∗ = TO, TM ,

(72)
where the average is taken over L = 100 replications for each of the factor
combinations. We construct the “response” variable of the ANOVA study as
AC

X(T ∗)−AH
X(T ∗), for X = S and I. These paired comparisons will tell us for

which factor combinations the approximate HSIRS model shows improvement
over the CSIRS model. Four ANOVAs showing up to two-way interactions are
reported in Tables 4–7; they are based on the response variables, AC

S (T
O) −

AH
S (TO), AC

S (T
M )−AH

S (TM ), AC
I (T

O)−AH
I (TO), and AC

I (T
M )−AH

I (TM ),
respectively.

Table 4 gives the paired-comparison ANOVA for the infectious population, for
T ∗ = TO. It indicates that the main effect of the small-scale variation factor,
SV, explains over 65% of the variability in the response. We also find that the
difference, AC

S (T
O) − AH

S (TO), increases by 83% when SV=1, relative to its
value when SV=0. The remaining variability is mostly explained by the main
effects of DI and TR. Figure 12 supports the results shown in Table 4, where
the red and blue lines show that the SV-TR, SV-DE, andTR-DI interactions
for AC

S (T
O)−AH

S (TO) are not obvious. Moreover, from Figure 12, we see that
for all factor combinations, the approximate HSIRS model always outperforms
the CSIRS model, for T ∗ = TO, since the responses are always greater than
zero. Notice that they increase as data information becomes longer (DI=1),
as SNR becomes smaller (SV=1), and as the transmission rate becomes larger
(TR=1), which are all reasonable results that match our intuition. Clearly, as
more variability is introduced into the pandemic and its observed counts, the
relative inability of the CSIRS model to handle it becomes more obvious.

Table 5 gives the paired-comparison ANOVA for the infectious population,
again for T ∗ = TO. It indicates that SV and TR are the two most impor-
tant factors; their main effects together explain over 89% of the variability in
the response. By investigating the main effects of SV and TR, we find that
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the difference, AC
I (T

O) − AH
I (TO), increases by 85% when SV=1, relative

to its value at SV=0; and it increases by 81% when TR=1, relative to its
value at TR=0. The pattern is broadly consistent with that for the suscep-
tible population, and the responses increase when data information become
longer (DI=1), as we expect. These results are supported further by Figure
13, where the red and blue lines show the SV-TR, SV-DI, and TR-DI in-
teractions for AC

I (T
O) − AH

I (TO); it again indicates no evident interactions.
Importantly, Figure 13 shows that for T ∗ = TO and all factor combinations,
the approximate HSIRS model outperforms the CSIRS model.

Forecasting in the period TM is of more interest, so we turn our attention to
the susceptible populations, Table 6, and the ANOVA of AC

S (T
M )−AH

S (TM ).
It indicates that DI is the most dominant, which explains over 60% of the vari-
ability in the response. We also find that the difference, AC

S (T
M )−AH

S (TM ),
increases by 145% when DI=1, relative to its value when DI=0. The remain-
ing variability is mostly explained by the main effect of SV and its interaction
with TR. The green and black lines in Figure 12 show the SV-TR, SV-DE,
and TR-DI interactions for AC

S (T
M )−AH

S (TM ). It supports the results shown
in Table 6, namely that the SV-TR interaction is more evident than the other
two interactions. We see that when TR=0, the value of AC

S (T
M )− AH

S (TM )
increases substantially when the SNR becomes smaller (SV=1), in contrast
to very little change between the two levels of SV when TR=1. From Figure
12, the values of AC

S (T
M ) − AH

S (TM ) are always greater than zero, and they
increase as SNR becomes smaller (SV=1) or as data information becomes
longer (DI=1), which matches our intuition. This again indicates that for the
susceptible population, the approximate HSIRS model always outperforms the
CSIRS model holding all other factors the same, even though the difference
is not as pronounced as during the period TO. Since forecasting is inherently
difficult, this is not surprising.

Table 7 gives the paired-comparison ANOVA for the infectious population in
the period TM : the SV-TR interaction has the largest impact on the response
and explains about 50% of the variability. The main effects of TR, SV, and the
SV-DI interaction explain most of the remaining variation. These results are
supported further by Figure 13, where the green and black lines show the SV-
TR, SV-DI, and TR-DI interactions for AC

I (T
M )−AH

I (TM ). We see that the
SV-TR interaction is similar to that for the susceptible population, but it is
more evident, because when TR=1, the value of AC

I (T
M )−AH

I (TM ) decreases
as SNR becomes smaller (SV=1). A similar pattern is seen for the DI-SV
interaction; however, the DI-TR interaction is not as evident as the other two
interactions. Notice that at both levels of DI, the values of AC

I (T
M )−AH

I (TM )
are larger when TR is smaller (TR=0). Importantly, Figure 13 shows that
for T ∗ = TM and all factor combinations, the values of AC

I (T
M ) − AH

I (TM )
are always greater than zero; that is, the approximate HSIRS model always
outperforms the CSIRS model.
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To investigate further the performances of the approximate HSIRS model and
the CSIRS model, we turn our attention to bias (as specified in (71)) and
define the fraction of MSPE that can be explained by the squared bias as

κYX(T ∗, l) ≡ BIASY
X(T ∗, l)2

MSPEY
X(T ∗, l)

; X = S, I; T ∗ = TO, TM ; Y = H,C; l = 1, ..., L.

(73)
Notice that 0 ≤ κYX(T ∗, l) ≤ 1. The boxplots in Figures 14 and 15 show the
distributions of {κHS (T ∗, l)} and {κHI (T ∗, l)}, respectively, for all factor com-
binations. For both the susceptible and infectious populations, Figures 14 and
15 show that the fractions of MSPE explained by the squared bias are much
smaller (around 0.1 or less) in the period TO than those in the period TM

(around 0.5), for all factor combinations. Again because forecasting is inher-
ently difficult, this is not surprising. By comparing Figures 14 and 15 with
Figures 10 and 11, we see that those factor combinations where squared bias
is relatively small are the same combinations where the approximate HSIRS
model yields much better MSPE than that for the CSIRS model. In particular,
Figures 14 and 15 clearly show that in the period of TO, the responses decrease
(or do not increase) as data information becomes longer (DI=1), as SNR be-
comes smaller (SV=1), and as the transmission rate becomes larger (TR=1),
which supports our conclusion that the approximate HSIRS model has bet-
ter predictive capability even when more variability is introduced into the
pandemic through its observed counts. Figures 14 and 15 indicate the strong
interactions among DI, SV, and TR in the period of TM , which agrees with
the conclusions drawn from Figures 12 and 13.

6 Discussion and Conclusions

In this article, we develop a Bayesian hierarchical SIRS (HSIRS) model that
captures the various sources of uncertainties in modeling infectious diseases
such as seasonal or pandemic influenza. Important features of our HSIRS
model are that it preserves mass balance on the (hidden) true counts rather
than on the observed counts, and that the dynamical process is modeled on
a log-odds-ratio scale. Furthermore, our approach captures the stochastic and
discrete nature of the epidemic process, as well as keeping the SIRS flow that
underlies the classic SIRS (CSIRS) model.

In Section 4, we simulated two datasets, an HSIRS dataset and a modified-
CSIRS dataset, where we assumed that data were available on the first 35 days
and missing on the following 10 days. Then we used an MCMC algorithm to
fit the HSIRS model to each of the two datasets; for computational efficiency,
a well calibrated linear approximation was used. We saw that the approximate
HSIRS (ASIRS) model was a very good approximation, and that accounting
for all known uncertainties led to a superior performance over the deterministic
classic SIRS (CSIRS) model.
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In Section 5, a carefully designed simulation experiment at various levels of
various factors with sufficient replication is presented. It allows us to conclude
that the approximate HSIRS model offers an accurate and computationally
efficient approach to analyzing infectious-disease data. The comparisons given
there clearly show that the HSIRS model is better, according to both the
MSPE and bias criteria, than the CSIRS model, during either the observation
period or the forecast period for all the conditions tested.

In this research, the HSIRS model is based on assuming a constant popula-
tion for a short period of time; however, the model is not restricted to this
assumption and can be extended to include population turnover that handles
long-term influenza dynamics. For example, equations (21)-(23) in Section 2.2
could instead be derived from an SIRS flow with birth and death rates (see
the SIR flow incorporating birth and death rates given in Anderson and May,
1991). This extension is useful because recovery from seasonal influenza may
give immunity to that specific pathogen, but this immunity can be lost over the
years due to the evolution of the virus (e.g., Dushoff et al., 2004). In ongoing
research, we are investigating more complicated epidemic dynamics that not
only incorporate birth, death, but also emigration/immigration processes for
appropriate time periods. Also, spatial (e.g., Hooten and Wikle, 2010; Oleson
and Wikle, 2013) and multivariate (e.g., Zhuang et al., 2013) aspects could be
incorporated into these hierarchical dynamical models through vector-valued
processes, although the form of such models would require careful integration
of the aforementioned emigration/immigration processes.
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Appendix

A.1

Here we derive the nonlinear dynamical structure of µW (t) given in (27) and
(28) in Section 2.2.

Assume PR(t) > 0, for t = 1, 2, ... . From the difference equations (21)-(23),
we can obtain

PS(t+ 1)

PR(t+ 1)
=
PS(t)− β∆λNPS(t)PI(t) + ϕ∆PR(t)

PR(t) + γ∆PI(t)− ϕ∆PR(t)
, (74)

PI(t+ 1)

PR(t+ 1)
=
PI(t) + β∆λNPS(t)PI(t)− γ∆PI(t)

PR(t) + γ∆PI(t)− ϕ∆PR(t)
. (75)

Notice that equations (74)-(75) can be rewritten as

PS(t+ 1)

PR(t+ 1)
=

PS(t)
PR(t)

1
PR(t) − β∆λN

PS(t)
PR(t)

PI(t)
PR(t) +

ϕ∆
PR(t)

1
PR(t) + γ∆ PI(t)

PR(t)
1

PR(t) −
ϕ∆

PR(t)

, (76)

PI(t+ 1)

PR(t+ 1)
=
β∆PS(t)

PR(t)
PI(t)
PR(t) + (1− γ∆) PI(t)

PR(t)
1

PR(t)

1
PR(t) + γ∆ PI(t)

PR(t)
1

PR(t) −
ϕ∆

PR(t)

. (77)

From (24)-(25),

PS(t) =
exp(WS(t))

1 + exp(WS(t)) + exp(WI(t))
, (78)

PI(t) =
exp(WI(t))

1 + exp(WS(t)) + exp(WI(t))
. (79)

Then substituting (78)-(79) into (17), we obtain

PR(t) =
1

1 + exp(WS(t)) + exp(WI(t))
. (80)

Hence,
PS(t)

PR(t)
= exp(WS(t)), (81)

PI(t)

PR(t)
= exp(WI(t)) (82)

1

PR(t)
=

exp(WS(t)) + exp(WI(t)) + 1

1
. (83)
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For t = 1, 2, ..., substitute (81)-(83) into equations (76)-(77) to obtain

exp(WS(t+ 1)) = exp (WS(t))

·
[
1 +

ϕ∆

exp (WS(t))
− (β∆λN )exp (WI(t))

1 + exp (WS(t)) + exp (WI(t))

]
· 1

[1 + γ∆exp (WI(t))− ϕ∆]
, (84)

exp (WI(t+ 1)) = exp (WI(t))

·
[
1− γ∆+

(β∆λN )exp (WS(t))

1 + exp (WS(t)) + exp (WI(t))

]
· 1

[1 + γ∆exp (WI(t))− ϕ∆]
. (85)

Taking logrithms on both sides of (84)-(85), for t = 1, 2, ..., we obtain,

WS(t+ 1) = WS(t)

+log

[
1 +

ϕ∆

exp (WS(t))
− β∆λNexp (WI(t))

1 + exp (WS(t)) + exp (WI(t))

]
+log

[
1

1 + γ∆exp (WI(t))− ϕ∆

]
,

(86)

WI(t+ 1) = WI(t)

+log

[
1− γ∆+

β∆λNexp (WS(t))

1 + exp (WS(t)) + exp (WI(t))

]
+log

[
1

1 + γ∆exp (WI(t))− ϕ∆

]
.

(87)

Then (86)-(87) are used to define µW (t) in the nonlinear autoregressive struc-
ture given by (26), which captures the uncertainties in the hidden epidemic
process.

A.2

Here, we derive a well calibrated linear process {µLW (t)}, as defined by (38)-
(39), to approximate {µW (t)} given by (27)-(28). Specifically, for t = 1, 2, ...,
{Âi(t) : i = 1, ..., 10} are initializations of the nonlinear components in equa-
tions (27)-(28), as shown in Table 1.
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Consider µW
S (t) given by (27), and use a Taylor-series expansion up to second

order. The second term on the right-hand side is:

log

(
1 +

ϕ∆

eWS(t)
− β∆λNe

WI(t)

1 + eWS(t) + eWI(t)

)

=log(A1(t)) + log

1 +
1 + ϕ∆

eWS(t) − β∆λNeWI (t)

(1+eWS(t)+eWI (t))

A1(t)
− 1




≈log(Â1(t)) +

1 + ϕ∆

eWS(t) − β∆λNeWI (t)

(1+eWS(t)+eWI (t))

Â1(t)
− 1



− 1

2

1 + ϕ∆

eWS(t) − β∆λNeWI (t)

(1+eWS(t)+eWI (t))

Â1(t)
− 1


2

. (88)

Now, eWI (t)

(1+eWS(t)+eWI (t))
can be further expanded using a Taylor series to second

order:

eWI(t)(
1 + eWS(t) + eWI(t)

) = 1− 1

1−
(
− eWI (t)

1+eWS(t)

)
≈ 1−

 1

1− Â7(t)
+

− eWI (t)

1+eWS(t) − Â7(t)

(1− Â7(t))2
+

(
− eWI (t)

1+eWS(t) − Â7(t)
)2

(1− Â7(t))3

 .
(89)

Then we expand the remaining nonlinear component in (89), eWI (t)

1+eWS(t) , using

a Taylor series to second order:

eWI(t)

1 + eWS(t)
=
[
e(WI(t)−WS(t))

]
·
[

1

1− (−e−WS(t))

]
≈

[
eÂ4(t) + eÂ4(t)(WI(t)−WS(t)− Â4(t)) +

eÂ4(t)

2
(WI(t)−WS(t)− Â4(t))

2

]

·

 1

1− Â9(t)
+

(
−e−WS(t) − Â9(t)

)
(
1− Â9(t)

)2 +
−eWS(t) − Â9(t)(

1− Â9(t)
)3

 ,
(90)

and

e−WS(t) ≈ eÂ5(t) + eÂ5(t)
(
−WS(t)− Â5(t)

)
+
eÂ5(t)

(
−WS(t)− Â5(t)

)2
2

.

(91)
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Upon substituting (91) into (90), we obtain:

eWI(t)

1 + eWS(t)
=B0(t) +B1(t)WS(t) +B2(t)WI(t)

+ o(WS(t)
2) + o(WI(t)

2) + o (WS(t)WI(t)) , (92)

where {Bi(t) : i = 0, 1, 2} are defined in equations (46)-(48) and (52).

Hence, combining (88), (89), and (92), we can finally approximate

log

[
1 +

ϕ∆

exp (WS(t))
− β∆λNe

WI(t)

1 + eWS(t) + eWI(t)

]
in equation (27) with,

logÂ1(t) +
1

Â1(t)
+ ϕ∆

[
e(Â5(t))(1− Â5(t))

Â1(t)

]

− β∆λN

Â1(t)

(
1− 1

1− Â7(t)
+
B0(t) + Â7(t)

(1− Â7(t))2

)
− 1

+

[
1− ϕ∆eÂ5(t)

Â1(t)
− β∆λNB1(t)

Â1(t)(1− Â7(t))2

]
WS(t)−

[
β∆λNB2(t)

Â1(t)(1− Â7(t))2

]
WI(t).

(93)

Also, the third term, log
(
1 +∆γeWI(t) −∆ϕ

)
, on the right-hand side of (27),

can be expanded using a Taylor series to second order:

log
(
1 +∆γeWI(t) −∆ϕ

)
=log(A2(t)) + log

[
1 +

(
1 + γ∆eWI(t) − ϕ∆

A2(t)
− 1

)]
≈log(Â2(t)) +

(
1 + γ∆eWI(t) − ϕ∆

Â2(t)
− 1

)

− 1

2

(
1 + γ∆eWI(t) − ϕ∆

Â2(t)
− 1

)2

.

(94)

Then we expand eWI(t) using a Taylor series to second order:

eWI(t) ≈ eÂ6(t) + eÂ6(t)(WI(t)− Â6(t)) +
eÂ6(t)

2
(WI(t)− Â6(t))

2. (95)

Upon substituting (95) into (94), we obtain:

log
(
1 + γ∆eWI(t) − ϕ∆

)
≈ logÂ2(t) +

1

Â2(t)
+

γ∆

Â2(t)
eÂ6(t)(1− Â6(t))−

ϕ∆

Â2(t)
− 1

+
γ∆eÂ6(t)

Â2(t)
WI(t). (96)
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Consider µW
I (t) given by (28). Using a Taylor-series expansion to second order,

the second term on the right-hand side is:

log

(
1− γ∆+

β∆λNe
WS(t)

1 + eWS(t) + eWI(t)

)

=log(A3(t)) + log

1 +
1− γ∆+ β∆λNeWS(t)

1+eWS(t)+eWI (t)

A3(t)
− 1


≈log(Â3(t)) +

1− γ∆+ β∆λNeWS(t)

1+eWS(t)+eWI (t)

Â3(t)
− 1

− 1

2

1− γ∆+ β∆λNeWS(t)

1+eWS(t)+eWI (t)

Â3(t)
− 1

2

,

(97)

Now, eWS(t)

1+eWS(t)+eWI (t) can be further expanded using a Taylor series to second

order:

eWS(t)

1 + eWS(t) + eWI(t)
=

1

1−
(
− 1+eWI (t)

eWS(t)

)
≈ 1

1− Â10(t)
+

(
−1+eWI (t)

eWS(t) − Â10(t)
)

(1− Â10(t))2
+

(
−1+eWI (t)

eWS(t) − Â10(t)
)2

(1− Â10(t))3
.

(98)

Then we expand the remaining nonlinear component in (98), 1+eWI (t)

eWS(t) , using
a Taylor series to second order:

1 + eWI(t)

eWS(t)
=eWI(t)−WS(t) + e−WS(t)

≈

[
eÂ4(t) + eÂ4(t)(WI(t)−WS(t)− Â4(t)) +

eÂ4(t)

2
(WI(t)−WS(t)− Â4(t))

2

]

+

[
eÂ5(t) + eÂ5(t)(−WS(t)− Â5(t)) +

eÂ5(t)

2
(−WS(t)− Â5(t))

2

]
.

(99)

Then we rewrite (99) as

1 + eWI(t)

eWS(t)
=B3(t) +B4(t)WS(t) +B5(t)WI(t)

+ o
(
WS(t)

2
)
+ o

(
WI(t)

2
)
+ o (WS(t)WI(t)) , (100)

where {Bi(t) : i = 3, 4, 5} are defined in (49)-(51).

Hence, combining (97), (98), and (100), we can finally approximate

log

[
(1− γ∆) +

β∆λNe
WS(t)

1 + eWS(t) + eWI(t)

]
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in equation (28) with

logÂ3(t) +
1− γ∆

Â3(t)
+

β∆λN

Â3(t)(1− Â10(t))
− β∆λN (B3(t) + Â10(t))

Â3(t)(1− Â10(t))2
− 1

+

[
−β∆λNB4(t)

Â3(t)(1− Â10(t))2

]
WS(t) +

[
1− β∆λNB5(t)

Â3(t)(1− Â10(t))2

]
WI(t). (101)

The third component on the right-hand side of (28) is identical to that of (27),
and hence we use the linear approximation given by (96).

Therefore, (93), (96), and (101) yields the linear dynamical process µLW (t) as
defined in (38)-(39) in Section 3. That is, µLW (t) approximates the nonlinear
dynamical process, µW (t), in the HSIRS model defined by equations (27)-(28).

A.3

Here we give the full conditional distributions that define our Markov chain
Monte Carlo (MCMC) algorithm. We use “rest” to represent all other un-
knowns as well as the data {ZS(1), ..., ZS(T )} and {ZI(1), ..., ZI(T )}. Notice
that this is not a particle-filtering approach in which new data are used to
update current and past posteriors without re-running the MCMC.

– β

[β|rest] ∝
T+F∏
t=2

[WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ
2
ζS , σ

2
ζI ][β].

– θγ

[θγ |rest] ∝
T+F∏
t=2

[WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ
2
ζS , σ

2
ζI ][θγ ].

– ϕ

[ϕ|rest] ∝
T+F∏
t=2

[WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ
2
ζS , σ

2
ζI ][ϕ].

– σ2
ζS

[σ2
ζS |rest] ∝ [WS(1),WI(1)|σ2

ζS , σ
2
ζI ]

·
T+F∏
t=2

[WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ
2
ζS , σ

2
ζI ][σ

2
ζS ].
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– σ2
ζI

[σ2
ζI |rest] ∝ [WS(1),WI(1)|σ2

ζS , σ
2
ζI ]

·
T+F∏
t=2

[WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ
2
ζS , σ

2
ζI ][σ

2
ζI ].

– {WS(t),WI(t)}: for t = 1, ..., T, T + 1, ..., T + F ,

[WS(t),WI(t)|rest] ∝



[ZS(t)|WS(t),WI(t)] [ZI(t)|WS(t),WI(t)]
·[WS(t+ 1),WI(t+ 1)|WS(t),WI(t), β, θγ , ϕ, σ

2
ζS
, σ2

ζI
]

·[WS(t),WI(t)|σ2
ζS
, σ2

ζI
],

if t = 1;
[ZS(t)|WS(t),WI(t)] [ZI(t)|WS(t),WI(t)]
·[WS(t+ 1),WI(t+ 1)|WS(t),WI(t), β, θγ , ϕ, σ

2
ζS
, σ2

ζI
]

·[WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ
2
ζS
, σ2

ζI
],

if 2 ≤ t ≤ T ;[
WS(t+ 1),WI(t+ 1)|WS(t),WI(t), β, θγ , ϕ, σ

2
ζS
, σ2

ζI

]
·
[
WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ

2
ζS
, σ2

ζI

]
,

if T < t < T + F ;
·[WS(t),WI(t)|WS(t− 1),WI(t− 1), β, θγ , ϕ, σ

2
ζS
, σ2

ζI
],

if t = T + F.
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Tables

Table 1 Table of the initializations {Âi(t) : i = 1, ..., 10} and the quantities {Ai(t) : i =
1, ..., 10} that they approximate.

Value Initializations (Â(t)) Nonlinear Components in HSIRS

A1(t) 1 +
∆ϕ0ZR(t)

ZS(t)
− ∆β0ZI (t) 1 +

∆ϕ

eWS(t)
− ∆βλNeWI (t)

1+eWS(t)+eWI (t)

A2(t) 1 + ∆γ0
ZI (t)
ZR(t)

− ∆ϕ0 1 + ∆γeWI (t) − ∆ϕ

A3(t) (1 − ∆γ0) + ∆β0ZS(t) (1 − ∆γ) +
∆βλNeWS(t)

1+eWS(t)+eWI (t)

A4(t) log
ZI (t)
ZS(t)

(
WI (t) − WS(t)

)
A5(t) −log

ZS(t)
ZR(t)

−WS(t)

A6(t) log
ZI (t)
ZR(t)

WI (t)

A7(t) − ZI (t)
(ZN−ZI (t))

− e(WI (t))

(1+e(WS(t)))

A8(t) − ZS(t)
ZR(t)

−e(WS(t))

A9(t) −ZR(t)
ZS(t)

−e(−WS(t))

A10(t) −ZN−ZS(t)
ZS(t)

−(1+e(WI (t)))

e(WS(t))

Table 2 Table of parameters and summaries of their priors and posteriors for the case AH.

Parameter Prior distribution Prior quantiles Prior Posterior quantiles Posterior

0.025 0.5 0.975 standard deviation 0.025 0.5 0.975 mean standard deviation

β × 106 Uniform[0, βmax × 106 = 6.7686] 0.1692 3.384 6.599 1.9545 0.2244 0.4763 0.7260 0.4769 0.1257
θγ Normal(-0.708 ,0.01) -0.904 -0.708 -0.512 0.1001 -0.897 -0.707 -0.515 -0.707 0.0096
ϕ Uniform[0,1] 0.025 0.5 0.975 0.2889 0.0071 0.0836 0.1996 0.0876 0.0026

σ2
ξS

Inverse Gamma(0.25, 0.4) 1.457 57.2 9.48e6 2.84e24 0.1546 0.2599 0.4878 0.2758 0.0075

σ2
ξI

Inverse Gamma(0.25, 0.4) 1.457 57.2 9.48e6 2.84e24 0.1357 0.2276 0.4198 0.2405 0.0055

Table 3 Table of parameters and summaries of their priors and posteriors for the case AM.

Parameter Prior distribution Prior quantiles Prior Posterior quantiles Posterior

0.025 0.5 0.975 standard deviation 0.025 0.5 0.975 mean standard deviation

β × 106 Uniform[0, βmax × 106 = 9.7523] 0.2438 4.876 9.508 2.816 0.2471 0.4814 0.7241 0.4820 0.1209
θγ Normal( -0.708 ,0.01) -0.904 -0.708 -0.512 0.1001 -0.9009 -0.7009 -0.5095 -0.7023 0.0099
ϕ Uniform[0,1] 0.025 0.5 0.975 0.2889 0.0060 0.0707 0.1711 0.0749 0.0020

σ2
ξS

Inverse Gamma(0.25, 0.4) 1.457 57.2 9.48e6 2.84e24 0.1246 0.2074 0.3850 0.2194 0.0046

σ2
ξI

Inverse Gamma(0.25, 0.4) 1.457 57.2 9.48e6 2.84e24 0.1248 0.2099 0.3888 0.2217 0.0047
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Table 4 Analysis of variance (ANOVA) on AC
S (TO)−AH

S (TO) up to two-way interactions.
In the table, DF denotes degrees of freedom; SS denotes sums of squares; MS denotes mean
squares; and F value denotes the value of the F statistic. Relatively large F values are
highlighted in gray.

Source DF SS MS F value

DI 1 0.014403 0.014403 9040.97

SV 1 0.04542 0.04542 28511.79

TR 1 0.005874 0.005874 3686.90

DI× SV 1 0.001107 0.001107 694.92

DI× TR 1 0.001098 0.001098 689.03

SV× TR 1 0.000171 0.000171 107.24

Residuals 1 0.000002 0.000002

Total 7 0.06808

Table 5 Analysis of variance (ANOVA) on AC
I (TO)−AH

I (TO) up to two-way interactions.
In the table, DF denotes degrees of freedom; SS denotes sums of squares; MS denotes mean
squares; and F value denotes the value of the F statistic. Relatively large F values are
highlighted in gray.

Source DF SS MS F value

DI 1 0.0013685 0.0013685 45.2129

SV 1 0.0076848 0.0076848 253.8924

TR 1 0.0071008 0.0071008 234.5970

DI× SV 1 0.0000914 0.0000914 3.0193

DI× TR 1 0.0001487 0.0001487 4.9117

SV× TR 1 0.0001683 0.0001683 5.5596

Residuals 1 0.0000303 0.0000303

Total 7 0.01659275

Table 6 Analysis of variance (ANOVA) on AC
S (TM )−AH

S (TM ) up to two-way interactions.
In the table, DF denotes degrees of freedom; SS denotes sums of squares; MS denotes mean
squares; and F value denotes the value of the F statistic. Relatively large F values are
highlighted in gray.

Source DF SS MS F value

DI 1 0.0040394 0.0040394 7.18

SV 1 0.0008263 0.0008263 1.47

TR 1 0.0001459 0.0001459 0.26

DI× SV 1 0.0000168 0.0000168 0.03

DI× TR 1 0.0001824 0.0001824 0.32

SV× TR 1 0.0008041 0.0008041 1.43

Residuals 1 0.0005623 0.0005623

Total 7 0.006577339

Table 7 Analysis of variance (ANOVA) on AC
I (TM )−AH

I (TM ) up to two-way interactions.
In the table, DF denotes degrees of freedom; SS denotes sums of squares; MS denotes mean
squares; and F value denotes the value of the F statistic. Relatively large F values are
highlighted in gray.

Source DF SS MS F value

DI 1 0.00001648 0.00001648 0.10

SV 1 0.00011556 0.00011556 0.71

TR 1 0.00021602 0.00021602 1.33

DI× SV 1 0.00016583 0.00016583 1.02

DI× TR 1 0.00005301 0.00005301 0.33

SV× TR 1 0.00067383 0.00067383 4.15

Residuals 1 0.00016244 0.00016244

Total 7 0.001403168
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Figures

Fig. 1 Plots of counts {Z(t)} for the HSIRS and the modified-CSIRS datasets as a function
of time. The left-hand plots (a) and (c) show {Zs(t)}, and the right-hand plots (b) and (d)
show {ZI(t)}. The vertical line in each plot emphasizes that for the analysis the data are
only available on days 1-35, and they are missing on days 36-45.
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Fig. 2 Trace plots for the case AH: (a) trace plot for β; (b) trace plot for γ; (c) trace plot
for σ2

ζS
; (d) trace plot for σ2

ζI
; (e) trace plot for ϕ. Red lines in plots (a)-(e) indicate the

true values of the parameters used for simulating the HSIRS dataset, namely, β∗, γ∗, σ2∗
ξS

,

σ2∗
ξI

, and ϕ∗, respectively

Fig. 3 Prior (red line) and Posterior (histogram) distributions of β for (a) case AH; (b)
case AM. In each plot, blue dashed lines indicate 95% posterior credible intervals; the green
solid line indicates the true value.
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Fig. 4 Scatter plot of ψ
(
Z;λ(k)

)
versus ψ

(
Z
(k)
rep;λ

(k)
)
for the case AH.
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Fig. 5 Estimated infectious counts obtained from fitting the ASIRS model and the CSIRS
model to the HSIRS and modified-CSIRS datasets, as a function of time. The vertical line in
each plot emphasizes that data are only available on days 1-35, and that they are missing on
days 36-45. The blue solid line is the posterior median of {λI(t)} obtained from the ASIRS
model. The black thin line is the estimate of the infectious counts from the CSIRS model.
The pink stars give the true infectious counts.
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Fig. 6 Posterior quantiles of {λI(t)} for the infectious population, obtained from the ASIRS
model during the forecasting period from day 36 to day 45 (based on data from day 1 to
day 35, from the respective datasets). Lines (from bottom to top) indicate the 0.025, 0.25,
0.5, 0.75 and 0.975 quantiles, and pink stars give the true values of {λI(t)}.
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Fig. 7 Estimated susceptible counts obtained from fitting the ASIRS model and the CSIRS
model to the HSIRS and modified-CSIRS datasets, as a function of time. The vertical line in
each plot emphasizes that data are only available on days 1-35, and that they are missing on
days 36-45. The blue solid line is the posterior median of {λS(t)} obtained from the ASIRS
model. The black thin line is the estimate of the infectious counts from the CSIRS model.
The pink stars give the true susceptible counts.
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Fig. 8 Posterior quantiles of {λS(t)} for the susceptible population, obtained from the
ASIRS model during the forecasting period from day 36 to day 45 (based on data from day
1 to day 35, from the respective datasets). Lines (from bottom to top) indicate the 0.025,
0.25, 0.5, 0.75 and 0.975 quantiles, and pink stars give the true values of {λS(t)}.

Fig. 9 A figure from “Outbreak of Swine-Origin Influenza A (H1N1) Virus Infection—
Mexico, March–April 2009,” Centers for Disease Control and Prevention (CDC).
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Fig. 10 Boxplots of differences,
{
MSPEC

S (T ∗, l)1/4 −MSPEH
S (T ∗, l)1/4 : l = 1, ..., L

}
,

for the susceptible population, at given levels of DI (Data Information), TR (Transmis-
sion Rate), and SV (Small-scale Variation). Left panels: T ∗ = TO; right panels: T ∗ = TM .
Upper panels: DI=0; lower panels: DI=1. The x-axis labels are ‘ab’, where ‘a’ (=0 and 1)
represents the level for the factor TR, and ‘b’ (=0 and 1) represents the level for the factor
SV. The triangles show the mean of the differences.
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Fig. 11 Boxplots of differences,
{
MSPEC

I (T ∗, l)1/4 −MSPEH
I (T ∗, l)1/4 : l = 1, ..., L

}
,

for the infectious population, at given levels of DI (Data Information), TR (Transmis-
sion Rate), and SV (Small-scale Variation). Left panels: T ∗ = TO; right panels: T ∗ = TM .
Upper panels: given DI=0; lower panels: given DI=1. The x-axis label ‘ab’, where ‘a’ (=0
and 1) represents the level for the factor TR; and ‘b’ (=0 and 1) represents the level for the
factor SV. The triangles show the mean of the differences.

Fig. 12 Plots showing interaction for the susceptible population, between SV (Small-scale
Variation) and TR (Transmission Rate), between SV and DI (Data Information), and
between TR and DI in the ANOVA of AC

S (T ∗) − AH
S (T ∗) (red and blue lines: T ∗ = TO;

green and black lines: T ∗ = TM ).
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Fig. 13 Plots showing interaction for the infectious population between SV (Small-scale
Variation) and TR (Transmission rate), between SV and DI (Data Information), and be-
tween TR and DI in the ANOVA of AC

I (T ∗)−AH
I (T ∗) (red and blue lines: T ∗ = TO; green

and black lines: T ∗ = TM ).

Fig. 14 Boxplots of fractions of MSPE explained by squared bias,
{
κHS (T ∗, l) : l = 1, ..., L

}
,

for the susceptible population, at given levels of DI (Data Information), TR (Transmission
Rate), and SV (Small-scale Variation). Left panels: T ∗ = TO; right panels: T ∗ = TM .
Upper panels: DI=0; lower panels: DI=1. The x-axis labels are ‘ab’, where ‘a’ (=0 and 1)
represents the level for the factor TR, and ‘b’ (=0 and 1) represents the level for the factor
SV. The triangles show the mean of the fraction.
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Fig. 15 Boxplots of fractions of MSPE explained by squared bias,
{
κHI (T ∗, l) : l = 1, ..., L

}
,

for the infectious population, at given levels of DI (Data Information), TR (Transmission
Rate), and SV (Small-scale Variation). Left panels: T ∗ = TO; right panels: T ∗ = TM .
Upper panels: given DI=0; lower panels: given DI=1. The x-axis label ‘ab’, where ‘a’ (=0
and 1) represents the level for the factor TR; and ‘b’ (=0 and 1) represents the level for the
factor SV. The triangles show the mean of the fractions.
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