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Re-thinking soil carbon modelling: A
stochastic approach to quantify uncertainties

D. Clifforda∗ D. Pagendama, J. Baldockb, N. Cressiec, R.

Farquharsonb, M. Farrellb, L. Macdonaldb, and L. Murraya

Summary:

The benefits of sequestering carbon are many, including improved crop productivity, reductions in greenhouse

gases, and financial gains through the sale of carbon credits. Achieving better understanding of the

sequestration process has motivated many deterministic models of soil carbon dynamics, but none of

these models addresses uncertainty in a comprehensive manner. Uncertainty arises in many ways - around

the model inputs, parameters, and dynamics, and subsequently model predictions. In this paper, these

uncertainties are addressed in concert by incorporating a physical-statistical model for carbon dynamics

within a Bayesian hierarchical modelling framework. This comprehensive approach to accounting for

uncertainty in soil carbon modelling has not been attempted previously. This paper demonstrates proof-of-

concept based on a one-pool model and identifies requirements for extension to multi-pool carbon modelling.

Our model is based on the soil carbon dynamics in Tarlee, South Australia. We specify the model conditionally

through its parameters, soil carbon input and decay processes, and observations of those processes. We

use a particle marginal Metropolis-Hastings approach specified using the LibBi modelling language. We

highlight how samples from the posterior distribution can be used to summarise our knowledge about model

parameters, to estimate the probabilities of sequestering carbon, and to forecast changes in carbon stocks

under crop rotations not represented explicitly in the original field trials.
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1. INTRODUCTION

Organic carbon stored in soils represents a significant global sink that accounts for 1260-

2400 petagrams C depending on the depth over which the stocks were integrated (Eswaran

et al., 1995; Jobbágy and Jackson, 2000; Houghton, 2003; Todd-Brown et al., 2013), where

1 petagram = 1015g. Using estimates of 1500 Pg C and 720 Pg C respectively, for organic

carbon in soils and atmospheric CO2 (Powlson, 2005) and an atmospheric CO2 concentration

of 390 ppm (Mauna Loa Observatory, Dec 2010, http://www.esrl.noaa.gov/gmd/ccgg/

trends/global.html), losses or gains of 1% of carbon stocks in soils would alter atmospheric

concentrations of CO2 by up to 2% or nearly 8 ppm, although actual variations may be

lower due to buffering effects of vegetation and oceanic processes. Given reports that the

introduction of agricultural production in Australia has resulted in losses of 20-75% of the

organic carbon that was present in undisturbed native soil (Lal, 2004; Luo et al., 2010), the

potential exists to store increases in atmospheric CO2 in soil and reduce the net effect of

anthropogenic greenhouse gas emissions on atmospheric and global processes.

At the farm scale, the positive effect that soil organic matter (i.e., organic carbon,

nitrogen, phosphorus, and sulphur) has on a variety of soil properties and on

processes that are key to ensuring productivity, sustainability, and resilience of the

soil resource, provides additional incentive to landowners to enhance storage of organic

carbon in soil (Baldock and Skjemstad, 1999; Hoyle et al., 2011). Furthermore, the

development of carbon crediting systems (e.g., the Australian Government’s legislated

Carbon Farming Initiative (CFI), http://www.climatechange.gov.au/reducing-carbon/

carbon-farming-initiative) encourages storage and retention of additional organic

carbon in soil through the provision of financial incentives for landowners who add and

store carbon for one hundred years.

Changes in soil organic carbon (SOC) stocks occur as a result of alterations to the

balance between the magnitudes of carbon input and loss. In the absence of soil erosion or
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deposition, inputs are generated when atmospheric carbon is captured by plants through

photosynthesis and is deposited on or in soil as plant material, leaf material, roots or

root exudates (Jones et al., 2009). Losses occur through decomposition of plant material

and subsequent mineralisation of SOC to CO2. Erosion and deposition may contribute

significantly to any changes in soil carbon stocks and may confound attempts to quantify

the impact of management practices (Sanderman and Chappell, 2013). Given strong effects

on SOC magnitudes due to soil, climate conditions, and diverse management practices,

measurements over more than ten years may be required to quantify trends in SOC stocks

due to applied management practices (Sanderman and Baldock, 2010).

In response to this requirement of a lengthy sampling period, computer-simulation models

such as Century (Parton et al., 1988) and RothC (Jenkinson et al., 1987) were constructed

and have been used to estimate changes in soil carbon stocks induced by variations in

applied agricultural management practices (Liu et al., 2009, 2011; Robertson and Nash,

2013; Wang et al., 2013) or variations in climatic conditions (Smith et al., 2009; Wan

et al., 2011; Gottschalk et al., 2012; Senapati et al., 2013). Sierra et al. (2012) describe

a modelling framework that provides easy access to a variety of multi-pool deterministic

models including Century and RothC. These models handle differences in observed carbon

dynamics through the conceptualisation of multiple pools that differ in terms of turnover

time and chemical composition. Recent work has linked conceptual pools to measurable

pools for the calibration of RothC based on data from Australia (Skjemstad et al., 2004)

and Switzerland (Zimmermann et al., 2007). In the former case, Skjemstad et al. (2004)

calibrated the RothC model using measurable SOC fractions across the continuous-wheat

and wheat-fallow rotations of the Tarlee dataset. This dataset is the result of a twenty-year

field trial in the mid-north of South Australia, designed to assess agronomic productivity

for which observations of SOC were also recorded. The calibration referred to above, which

also involved a similar-sized dataset from Brigalow Research Station in Queensland, led to
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the development of the Full Carbon Accounting Model (FullCAM) and database system

(Richards and Evans, 2004), which were created to provide retrospective estimates of annual

changes in Australian national soil carbon stocks that satisfy the United Nations Framework

Convention on Climate Change reporting requirements (http://unfccc.int).

Despite the widespread use of FullCAM, RothC, and Century in estimating temporal

changes in soil carbon stocks for carbon-accounting purposes at a range of spatial scales,

there has been little work to account for uncertainty in the data nor to quantify uncertainty

in the model outcomes. FullCAM’s estimates of changes in stocks can be linked to a point

in the landscape or across a series of paddocks with defined areas. To provide meaningful

outputs for carbon-accounting purposes, sources of uncertainty associated with input data

and the values assigned to model parameters must be identified, quantified, and propagated

through modelling scenarios, allowing one to establish a “level of confidence” in the model

outputs (Refsgaard et al., 2007). Attaching a certainty measure to a model’s output would

help landowners understand the risks associated with putting their sequestered carbon into

a trading scheme.

Some effort has been made to quantify certainty in model outputs, for example, either

through a sensitivity analysis where models are run for various sets of parameter values,

or under simulated climate scenarios (e.g., Paul et al., 2003; Juston et al., 2010; Stamati

et al., 2013). A statistical modelling approach also makes it possible to quantify certainties

in modelled carbon stocks (Koo et al., 2007; Post et al., 2008; Jones et al., 2007). Various

forms of data assimilation/inverse modelling have been undertaken to provide information on

crop inputs (Meermans et al., 2013), sensitivity of decomposition to temperature (Sakurai

et al., 2012), pool structure (Schädel et al., 2013), initialisation of SOC pools (Scharnagl

et al., 2010; Yeluripati et al., 2009), and carbon transfer coefficients (Xu et al., 2006). Others

demonstrate the difficulties in constraining soil carbon parameters (Richardson et al., 2010;

Rahn et al., 2011; Wang and Chen, 2013).

4
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Here we highlight the Bayesian hierarchical modelling (BHM) framework as a viable

approach for achieving this goal. One advantage of BHMs is the ability to combine coherently

the underlying soil carbon process and its exponential decay over time, with observations of

soil carbon and our understanding of its associated measurement errors.

The objective of this paper is to create a BHM for SOC, drawing on management practices,

crop production, and soil data collected from a research trial located near Tarlee in South

Australia. While our model may not have broad applicability from a soil-science perspective,

the approach taken is broadly applicable. A simple one-pool model for SOC inside a BHM was

developed to demonstrate its potential utility and outcomes. Stochastic errors associated with

the one-pool model account for heterogeneity in the decay time, although its generalisation

to multiple pools will then fully capture the diverse composition and decomposition rates

of SOC. In Section 2, we give a one-pool physical-statistical model for soil carbon dynamics

within the BHM framework. In Section 3, this BHM is made specific to the Tarlee dataset,

and statistical computational aspects are presented. In Section 4, we use the results of

Section 3 to answer important questions that may be asked by a landowner, a scientist,

or a policy-maker. Section 5 contains discussion and conclusions, particularly a discussion

of what would be required to extend our BHM approach to a multi-pool model. Technical

aspects can be found in the Appendix.

2. A PHYSICAL-STATISTICAL APPROACH TO MODELLING SOIL

CARBON DYNAMICS

Soil organic carbon is heterogeneous, with various chemistries and protective physical and

chemical associations resulting in functionally discrete pools of carbon of varying stabilities.

To capture this heterogeneity, the dynamics are typically modelled using a fixed number of

discrete pools or compartments that interact over time. Each of these conceptual pools can

be considered to represent organic molecules of a particular complexity, size, and resistance
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to decomposition. For example, simple carbohydrate molecules are more readily utilised by

soil microorganisms than say complex polymers such as lignins, whilst even more resistant

carbon molecules (e.g., natural charcoal from fires or added biochar) may belong to an inert

pool that degrades very slowly, generally over centennial or millennial timescales (Lehmann

et al., 2008). Commonly, soil carbon models make use of simple, first-order reaction kinetics,

such that the masses in each of the carbon pools undergo exponential decay over time.

The rates of decomposition associated with the pools are modified by changes in moisture

and temperature. As organic carbon in a pool decays, it is metabolised and either enters

a different pool, or it is mineralised to CO2 and lost to the atmosphere. In this article we

assume a single pool where heterogeneity is captured stochastically; hence as organic carbon

decays it goes directly into the atmosphere. This allows us to demonstrate unambiguously

the importance of generalising from deterministic decay models to stochastic decay models.

Alternative to the compartment models, some models have cohorts of carbon where the

SOC decomposes as a continuous function of its age (e.g., the Q model by Bosatta and

Ågren, 1985), reflecting the changes in quality of each cohort over time. Regardless of whether

carbon is pooled based on its decay-rate or based on its age, assumptions are made about the

biophysical processes that govern decomposition, and the validity of these assumptions has

not been adequately tested because the models contain parameters that cannot be easily

estimated (Feng, 2009). Models based on conceptual pools need to be calibrated using

data collected on physical fractions. Skjemstad et al. (2004) and Zimmermann et al. (2007)

demonstrate two different approaches for linking physical fractions with conceptual pools,

but such pools are not homogeneous and models of the soil organic continuum remain the

ultimate research challenge.

In what follows, we show how a one-pool dynamical model of SOC can be incorporated

into the BHM framework (Section 1) to account for: (i) uncertainties in model parameters;

(ii) randomness inherent to the underlying physical processes (plant growth, carbon inputs,

6
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and carbon decomposition ); and (iii) errors in the observations of above-ground and below-

ground crop inputs and below-ground SOC. Uncertainties arising from each of these three

sources are modelled respectively through the prior [Θ], the process model [Y |Θ = θ], and the

data model [Z|Y = y,Θ = θ], where the notation [·] denotes the probability density function

of the enclosed random variable (e.g., Cressie and Wikle, 2011, Ch. 2), [·|E] denotes the

conditional probability density function given the event E, Θ denotes unknown parameters,

Y denotes an unobserved state process, and Z denotes observations. Under this hierarchical

framework, we can write the joint distribution of all of the quantities in our model as,

[Θ, Y, Z] = [Θ]× [Y |Θ]× [Z|Y,Θ]. Note that all the uncertainty in the model is captured

by the joint distribution, which conveniently can be written as a simple product of the

components of the BHM.

Unlike deterministic models, where parameters (Θ) are set and remain fixed, a model

analysed within the BHM framework allows prior knowledge about the parameters to

be incorporated into the analysis, but the distributions (and hence uncertainty) of these

parameters are updated as data are observed. Moreover, the true physical state of the SOC

(Y ) at different times t can also be updated. That is, we build a physical-statistical model

based on the BHM framework, and we make inferences about parameters, soil carbon, and

functions of these through the posterior distribution, [Y,Θ|Z], which is the conditional

distribution of Y and Θ given the data (Z). Bayes’ Theorem (Bayes and Price, 1763)

allows us to write the posterior distribution as [Y,Θ|Z] = [Z|Y,Θ]× [Y,Θ]/[Z], which, using

the law of total probability, can be rewritten as [Y,Θ|Z] = [Z|Y,Θ]× [Y |Θ]× [Θ]/[Z]. The

denominator, [Z], which depends only on the data, ensures that the posterior distribution

integrates to 1; this may be difficult to calculate analytically or numerically, which in turn

means that the posterior itself may be difficult to evaluate. Fortunately, it is not necessary

to evaluate the posterior as long as one can simulate from it. In the next section, the

physical-statistical modelling of soil carbon dynamics, and our method for simulating from

7
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the associated posterior distribution, are made more specific through an application to a

dataset from Tarlee, South Australia.

3. BAYESIAN HIERARCHICAL MODELLING AND COMPUTATIONAL

STATISTICS: THE TARLEE DATASET

3.1. Background to the Tarlee Dataset

Tarlee is located 80 km north of Adelaide, South Australia. A long-term trial was established

in 1977 on a hard-setting red-brown earth soil (1% C, pH 6.8, clay 14%; Schultz, 1995)

with sandy loam texture (Alfisols as classified by the USDA soil classification system; Soil

Survey Staff, 1975). The trial site has winter-dominated rainfall (average of 355 mm, April-

October) with an annual average of 475 mm. The effects of rotation (cereal, grain legume,

pasture, fallow), stubble (with and without removal), cultivation (with and without tillage),

and nitrogen fertiliser rate (0, 40, 80 kg N ha−1) on crop production and soil properties

were monitored over a twenty-year period. The long-term-monitoring dataset has been used

in carbon-modelling studies across Australia (Skjemstad et al., 2004; Luo et al., 2011). It

appears that from 1979-1997 these is a greater decline in SOC under wheat-fallow rotation

(from 38.6 t ha−1 to 33.8 t ha−1) compared to continuous wheat (39.2 t ha−1 to 35.9 t ha−1).

3.2. Notation

We let YC(i, t), YG(i, t), YW (i, t), and YP (i, t) denote respectively, the masses of SOC, total

grain dry matter, total wheat dry matter, and total pasture dry matter produced in field i

at time t (all in t ha−1). We let Y (i, t) serve as shorthand for all processes in field i at time t,

that is, Y (i, t) ≡ {YC(i, t), YG(i, t), YW (i, t), YP (i, t)}. In order to indicate all processes in all

fields at time t we use Y (., t) ≡ {Y (1, t), Y (2, t), Y (3, t)}, and to refer to a specific process in

all fields we use YC(., t), etc. All processes in all fields and all times is denoted by Y , and all

8
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SOC process are denoted by YC . Similar index notation is used when referring to the data

associated with each process; for example ZC(i, t) is the SOC data in field i at time t, and

Z refers to all data (in all fields and all times).

3.3. Process Model

Let IC(i, t) denote the mass of carbon inputs (t ha−1) for field i at time t. We model the soil

carbon dynamics (i.e., the state process) for field i using the following process model:

log (YC(i, t+ ∆t)) = log
(
YC(i, t)e−K∆t + IC(i, t+ ∆t)

)
+ η(i, t); η(i, t)

i.i.d.∼ N(0, σ2
η). (1)

Notice that, at its core, the model has exponential decay with rate K (like the models

used by RothC and Century), but it also has a stochastic component, represented by η(i, t),

that captures the uncertainty we have in the way that YC(i, t+ ∆t) evolves from YC(i, t). A

component of that uncertainty captures the heterogeneity that the one-pool model does not

account for.

The soil carbon dynamics of each field are modelled independently, with each field’s initial

conditions at t = 1978 specified as part of the prior distribution for Θ. For the purposes of

this paper, the rate of decay K is assumed to be the same in each field, and the distribution

of the stochastic component η(i, t) does not change over time or from one field to another.

Spatial models for the underlying SOC process are also possible. However, the information

required to parameterise such a model is not available, since the Tarlee study does not

contain data to learn about the nature of the spatial relationships of the SOC process.

The carbon input, IC(i, t), to field i at time t, is dependent on the crops growing that

year and how they were harvested. The total wheat dry matter includes the total grain dry

matter (i.e., YG(i, t) ≤ YW (i, t)), but we separate the two processes here due to the fact that

grain yield is usually measured, and the associated wheat dry matter is inferred from the

grain yield. The conditionally independent process models for YG(i, t), YW (i, t), and YP (i, t)

9
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are:

YG(i, t+ ∆t) ∼ LogN
(
µG + ρG (YG(i, t)− µG) , σ2

G

)
; (2)

YW (i, t+ ∆t) ∼ LogN(log h+ log yG(i, t+ ∆t), σ2
W ); and (3)

YP (i, t+ ∆t) ∼ LogN(µP + ρP (YP (i, t)− µP ) , σ2
P ), (4)

where YW (i, t+ ∆t) is defined conditional on YG(i, t+ ∆t) = yG(i, t+ ∆t) and LogN(µ, σ2)

denotes the lognormal distribution with parameters µ and σ2. The parameters ρG and ρP

are used to model grain and pasture yields as autoregressive processes. The parameter h is

known as the harvest index, and is used in a model for the expected wheat yield as a function

of the grain yield. That is, YW has no direct autoregressive relationship, but it does have

temporal variability through its dependence on YG.

Finally, the input function, IC(i, t), can now be specified: It depends upon the crop

type and includes carbon that comes into the soil both from plant-matter that remains

above–ground after harvesting and from plant-matter that is already below-ground (i.e.,

roots). When wheat is sown for grain, the carbon that enters the soil from the plant-matter

that remains above-ground after harvesting is, c (YW (i, t)− YG(i, t)), where c is the carbon

content of generic plant material and (YW (i, t)− YG(i, t)) is the above-ground plant-matter

biomass. Root-to-shoot ratios are used to infer below-ground plant-matter biomass based

on above-ground plant-matter biomass. The amount of carbon below-ground for wheat is

then crWYW (i, t), where rW is the root-to-shoot ratio for wheat. Five management practices

based on three crops were used in the Tarlee study. The carbon input to field i at time t

10
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based on the management practice is:

IC(i, t) =



c (YW (i, t)− YG(i, t)) + crWYW (i, t) Wheat for Grain

cpYW (i, t) + crWYW (i, t) Wheat for Hay

cYP (i, t) + crPYP (i, t) Pasture

cpYP (i, t) + crPYP (i, t) Pasture for Hay

0 + 0 Fallow,

(5)

where p is the proportion of the crop left above-ground as stubble following harvesting as

hay, and rW and rP are respectively, the root-to-shoot ratios for wheat crops and for pasture.

Each entry in Equation 5 is of the form A+B where A is the above-ground carbon input

and B is the below-ground carbon input. Wheat and pasture crops were harvested for hay

in 1988 and 1989 only.

Within each field, the dynamics of all four processes are modelled jointly as follows.

[Y (i, t+ ∆t)|Y (i, t),Θ] = [YC(i, t+ ∆t)|YW (i, t+ ∆t), YG(i, t+ ∆t), YP (i, t+ ∆t), Y (i, t),Θ]

× [YW (i, t+ ∆t), YG(i, t+ ∆t), YP (i, t+ ∆t)|Y (i, t),Θ]

= [YC(i, t+ ∆t)|IC(i, t+ ∆t), YC(i, t),Θ]

× [YG(i, t+ ∆t)|YG(i, t),Θ]

× [YW (i, t+ ∆t)|YG(i, t+ ∆t),Θ]

× [YP (i, t+ ∆t)|YP (i, t),Θ]

These four components are defined, respectively, by Equations 1, 2, 3, and 4. We model the

dynamics of all processes independently for each field, that is,

[Y (., t+ ∆t)|Y (., t),Θ] =
3∏
i=1

[Y (i, t+ ∆t)|Y (i, t),Θ]. (6)

11
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We make the initial conditions of the four processes a part of [Θ], and so products of terms

such as those represented in Equation 6 give [Y |Θ], our overall process model.

3.4. Data Model

The data model captures the uncertainty in the observations, given the state of the underlying

processes and parameters. The components of the data model are specified to be conditionally

independent, namely,

[Z|Y,Θ] = [ZC |Y,Θ]× [ZG|Y,Θ]× [ZW |Y,Θ]× [ZP |Y,Θ]

= [ZC |YC ,Θ]× [ZG|YG,Θ]× [ZW |YW ,Θ]× [ZP |YP ,Θ].

For each process, we invoke conditional independence across time and across fields; for

example, in the case of the SOC process,

[ZC |YC ,Θ] =
3∏
i=1

∏
t

[ZC(i, t)|YC(i, t),Θ].

Finally, we use multiplicative error structures for observations of each process in field i at

time t. We write the components of the data model as follows:

given YC(i, t) = yC(i, t), ZC(i, t) ∼ LogN(log yC(i, t), σ2
εC

); (7)

given YG(i, t) = yG(i, t), ZG(i, t) ∼ LogN(log yG(i, t), σ2
εG

); (8)

given YW (i, t) = yW (i, t), ZW (i, t) ∼ LogN(log yW (i, t), σ2
εW

); and (9)

given YP (i, t) = yP (i, t), ZP (i, t) ∼ LogN(log yP (i, t), σ2
εP

), . (10)

3.5. Parameter Model

The data and process models defined above involve 28 independent parameters, which

includes the initial conditions of seven processes at t = 1978. Table 1 describes the

12
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priors for each of these parameters and our parameter model, [Θ], is the product of the

probability density functions listed therein. These priors and hyperpriors could be considered

informative, weakly informative, or uninformative; and they were set according to the current

state of scientific knowledge about the 28 parameters. The state of scientific knowledge was

codified into priors by soliciting typical values and associated confidence intervals from those

of us with expertise in soil science. Our elicitation process was based around 95% confidence

intervals, other elicitation processes such as Sheffield Elicitation Framework (Oakley and

O’Hagan, 2010) work in a more structured manner with intervals based on quartiles or

tertiles; such approaches, for example, have been applied to models of the terrestrial carbon

cycle (O’Hagan, 2012).

The four variance parameter values from Equations 7 - 10 were set based on analysis of

independent data sets. In the case of σ2
εC

, observations of soil carbon from four paddocks

(areas 20 to 66 hectares) in the Tarlee region, collected as part of Australia’s National Soil

Carbon Research Programme (Sanderman et al., 2011), were used to evaluate the spatial

variability of SOC. Data from each paddock included 10 observations within a 25m by 25m

grid as well as 10 observations spread uniformly across the paddock. Robust estimates of

the variogram were found based on these samples (Cressie and Hawkins, 1980). The nugget

variance, which is a combination of measurement error variance and microscale variation,

could not be disentangled into its components and so the estimate of nugget variance was used

for σ2
εC

. For the remaining variance parameters, independent field trial data from the region

were analysed using mixed effects models for block and treatment effects. The estimates of

measurement error variance from these models were used for σ2
εG

, σ2
εW

, and σ2
εP

.

[Table 1 about here.]
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3.6. Obtaining the Posterior Distribution

Our interest lies in drawing samples from the posterior distribution [YC ,Θ|Z = z]. We

achieved this by drawing samples from [Y,Θ|Z = z] and retaining the components pertaining

to the SOC process and its parameters, that is, YC and Θ. The approach we used to draw

these samples is known as particle marginal Metropolis-Hastings (PMMH), one of a number

of particle Markov chain Monte Carlo (PMCMC) methods (e.g., Andrieu et al., 2010). We

provide a detailed overview of our particle-sampling approach in Appendix A.

In brief, the posterior distribution [Y,Θ|Z] can be factored into two components,

namely, [Y,Θ|Z] = [Y |Θ, Z]× [Θ|Z]. The idea of PMMH is to use a Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970) to draw samples of the parameters from

[Θ|Z] using a particle filter (Doucet et al., 2001) to estimate the marginal likelihood [Z|Θ]

required to achieve this; then that particle filter is reused to draw a sample of the state

process from [Y |Θ, Z]. The simplest particle filter, the bootstrap particle filter (Gordon et al.,

1993), provides marginal likelihood and state estimates that work sufficiently well for the

model and dataset, so that it has been unnecessary to explore more elaborate schemes. The

Metropolis-Hastings algorithm requires the selection of an appropriate proposal distribution

for generating each candidate parameter; these proposal distributions are given in Table 2.

As is usual practice, we tuned the proposal by using a few pilot runs until a reasonable

acceptance rate was achieved. The rule-of-thumb acceptance rate for as many parameters

as we have here is 23% (Gelman et al., 1996). However, because PMMH uses a likelihood

estimator, it is appropriate to aim lower than this. The final run has an acceptance rate of

16%, which we find gives good mixing. We drew 500,000 such samples, of which we discarded

the initial 50,000 as burn-in.

[Table 2 about here.]

An advantage of the PMMH method, using the bootstrap particle filter, is that it requires

only that the process model can be simulated. That is, it requires that samples can be

14
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drawn from the conditional density, p
(
Y(., t)

∣∣ Y(., t−∆t) = y(., t−∆t),Θ = θ
)
, but it does

not require that the conditional density function be evaluated. This allows for quite complex

process models to be handled. In our application, soil carbon models were not developed

with the evaluation of the conditional density function in mind, and indeed requiring so may

impose unjustifiable constraints on the process model. Hence we were able to compute based

on the posterior distribution without compromising our model of SOC dynamics.

The model is specified using the LibBi modelling language (Murray, 2013, www.LibBi.org),

and LibBi is also used to sample from the posterior distribution using PMMH. The results of

our implementation of PMMH to the BHM that incorporates our physical-statistical model

and the Tarlee dataset are given in the next section.

4. INFERENCE ON THE HIDDEN PROCESS AND ITS FUNCTIONALS

The ultimate goal of this project is to quantify the uncertainty associated with statements

about the amount of carbon that lies within the soil in the landscape, about how much of

that SOC was added through the management practices of the landowner, and about the

parameters driving the sequestration of carbon. We have chosen the one-pool SOC model

to illustrate inference on the (hidden) carbon sequestration and decay processes and their

associated parameters. In this section, we show how the BHM approach allows us to predict

the amount of SOC present under various management practices as well as obtain associated

credible intervals.

The carbon credits associated with Australia’s Carbon Farming Initiative (CFI) are tied to

changes in SOC over time, so both farmers and government are interested in the mass of SOC

added over say a twenty-year period, depending on management practices. The uncertainty

of our estimate can be quantified in many ways, through a 95% credible interval for example,

or through the estimated probability of functionals of interest. We might estimate a change of

15
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4 t ha−1 during a twenty-year period, but that number is not certain. A landowner’s decision

about committing to Australia’s CFI is a personal one, depending on that individual’s risk

tolerance. Consequently, quantifying the risk through the probability that at least k t ha−1

is sequestered, for various k, would be a highly informative tool.

All of these inference tools can be developed under a BHM framework. Recall from

Section 3.6 that we are sampling from the posterior distribution using PMMH. Consequently,

the posterior distribution, [Y,Θ|Z = z], is represented byN samples {(yn, θn) : n = 1, . . . , N}

drawn from [Y,Θ|Z = z], with superscripts used for indexing each sample. The samples can

be used to estimate the posterior expectation of any function f(Y,Θ):

E
(
f(Y,Θ)

∣∣Z = z
)
≈ Ê

(
f(Y,Θ)

∣∣Z = z
)
≡ 1

N

N∑
n=1

f(yn, θn). (11)

The only limit to the accuracy of such estimates is the size of N . The error is made negligible

with N sufficiently large.

4.1. Inference on SOC Dynamics

Consider the change in SOC to field i between 1978 and a subsequent year t:

f1(Y,Θ) ≡ YC(i, t)− YC(i, 1978).

Making inference on f1 depends on the posterior distribution, [YC(i, t)− YC(i, 1978)
∣∣Z = z].

For example, a common (Bayes) estimate of f1 is,

f̂1 ≡ E
(
YC(i, t)− YC(i, 1978)

∣∣Z = z
)
,

and a measure of uncertainty associated with this estimate is the posterior variance,

var
(
YC(i, t)− YC(i, 1978)

∣∣Z = z
)
. A 95% credible interval for f1 can be found by computing

the 2.5th percentile and the 97.5th percentile of the posterior distribution and defining them

16
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to be respectively, the lower and upper limits of the interval. Then the probability that the

true value f1 is contained in the interval is 0.95.

Of course, f1 could be negative, so suppose we wish to make inference on

f2(Y,Θ) ≡ I
(
YC(i, t)− YC(i, 1978) > k

)
; k ≥ 0,

where I is the indicator function that takes the value 1 when its argument is true (i.e., the

carbon content has increased by more than k units) and 0 when its argument is false. This

can be interpreted as the risk of sequestering k t ha−1 or more (e.g., k = 4). The Bayes

estimate is

f̂2(Y,Θ) = Pr
(
YC(i, t)− YC(i, 1978) > k

∣∣Z = z
)
.

The competing risk of sequestering no carbon at all is based on

f3(Y,Θ) ≡ I(
(
YC(i, t)− YC(i, 1978) < 0),

resulting in

f̂3(t) ≡ Pr
(
YC(i, t)− YC(i, 1978) < 0

∣∣Z = z
)
.

Clearly, any event of interest can be estimated by the posterior probability of that event.

For the three fields in the Tarlee trial (Field 1, Field 2, and Field 3) our estimates of the

amount of carbon added between 1978 and 1997 are f̂1 = −11.4 t ha−1, −10.8 t ha−1, and

3.25 t ha−1 respectively, with negative values indicating that the first two fields are expected

to lose carbon over a twenty-year period. The 95% credible intervals for the amount of carbon

added are (−24.1, 2.30), (−23.6, 2.75), and (−12.5, 18.6), respectively.

In terms of the functionals f2 and f3, we find that Fields 1 and 2 have only a 2% chance
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each of sequestering more than 4 t ha−1 and a 95% chance of sequestering no carbon or losing

carbon. Field 3 (which is under a wheat-pasture rotation) has a 46% chance of sequestering

more than 4 t ha−1 and a 33% chance of sequestering no carbon or losing carbon.

Other visual summaries of the posterior distribution may be of interest in highlighting

what can be learned in a BHM framework. In Figure 1, we plot 200 samples drawn from the

posterior distribution of the SOC process for each field. Crop-yield data collection ceased

at Tarlee in 1996 but we can run the model forward under the same management practices

for each field (forecasting). Figure 1 also highlights the 2.5th, 25th, 50th, 75th, and 97.5th

percentiles for the SOC process of each field based on all 450,000 draws from the posterior

distribution.

[Figure 1 about here.]

We can also make inference about the carbon inputs to the soil each year, which are directly

informed by the measurements of crop production from 1979 to 1996; see Figure 2.

[Figure 2 about here.]

Information about the initial SOC level, the final SOC level, and the change in SOC level

can be gleaned from the posterior distributions of, respectively, YC(i, 1978), YC(i, 1997), and

(YC(i, 1997)− YC(i, 1978)). We highlight histograms of the change in SOC level for each

field in the top row of Figure 3. The bottom row of Figure 3 highlights the cumulative

distribution function for the change in SOC for each field. The dotted lines indicate the

chance of sequestering zero or fewer tonnes of carbon per hectare for the three fields.

[Figure 3 about here.]

Finally, for each model parameter, we can compare the prior distribution with a histogram

of samples drawn from the posterior distribution to highlight what we have learned about the

parameters; see Figure 4, which includes eighteen such plots for the key model parameters.
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[Figure 4 about here.]

Based on Figure 4, it is clear that we learn quite a lot about some parameters, namely

the initial SOC conditions in the three fields, the harvest index, the mean grain yield, and

various variance parameters. It is also clear that we learn little new about other parameters,

something that is evident when the posterior and prior are very similar. Examples of such

parameters include c, p, and the root-to-shoot ratios. That there is little to learn about these

parameters should come as no surprise when one considers the form of the data. Nevertheless,

these parameters remain important and useful components of the model; because they are

well known to the agricultural research community, we are able to specify priors for them

quite easily.

Another aspect of Figure 4 is worth pointing out. The posterior for K indicates that the

rate of decomposition of SOC is slower than what we specified in our prior. The prior mean

for K is 0.067 year−1, which should be compared to the posterior mean for K equal to 0.061

year−1.

The posterior distributions noted in Figure 4 are based on a field trial carried out on red-

brown earth soil in South Australia. The information captured in these posterior distributions

could be used when modelling soil carbon dynamics within similar soils under similar climatic

conditions.

4.2. Forecasting and Counterfactuals

One of the benefits of the BHM framework is the ability to make inference with quantified

uncertainty about future scenarios, that is, to forecast SOC stocks in the absence of

observations and to do so under scenarios that were not part of the initial data collection

(counterfactuals). Figures 1 and 2 highlight forecasted SOC dynamics without changes to the

management practices. To implement these forecasts, we ran the posterior model forward

from 1998 to 2018, a period for which no observations are available. Hence there is large
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uncertainty around the SOC inputs and, as a result, large uncertainty on SOC levels for

each field. Figures 5 highlights forecasted SOC dynamics for Fields 2 and 3 under changed

management practices, pasture-pasture for Field 2 and wheat-wheat-pasture for Field 3.

[Figure 5 about here.]

Together, the panels of Figures 1, 2, and 5 tell a coherent story about SOC dynamics. The

most obvious feature across the three figures, and one that is to be expected, is increased

uncertainty in SOC levels the further into the future we forecast. Under continuous wheat

(Figure 1A) we forecast the gradual sequestration of carbon, which rises from a median value

of 30.8 t ha−1 in 1997 to about 35.7 t ha−1 by 2018. We also see that the rate at which SOC

is building up within the soil is slowing over time and it is not hard to imagine the SOC

levels eventually levelling out at perhaps 41 t ha−1.

Contrast this with what happens under a wheat-fallow rotation in Field 2 (Figure 1B).

Here we see continued loss of carbon from the soil. The loss of carbon levels off slighty over

time, reflecting the exponential decay that is central to the model. We also see less variability

in the SOC dynamics in Figure 1B, because in fallow years there is no randomness in the

inputs (the inputs are identically zero).

In Figure 1C, the wheat-pasture rotation has resulted in high SOC levels rising from 44.1

t ha−1 to around 45 t ha−1 between 1997 and 2018. Individual dynamics are quite variable

but an examination of the median forecast shows that during years when wheat is sown,

the amount of carbon added to the soil fails to offset the carbon lost to decay, and we see a

slight dip in median SOC levels. In subsequent years, the pasture crop adds more than the

amount that decays and we see a slight rise in median SOC levels. Over time the median

SOC level rises, showing net sequestration of carbon.

The median carbon sequestered by wheat is 1.9 t ha−1, and the median carbon sequestered

by pasture is 2.9 t ha−1 (Figure 2). Seeing the behavior in Figure 1, we might ask what

would happen to SOC levels under alternative management practices such as continuous
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pasture or wheat-wheat-pasture. These practices are explored in Figure 5 for Fields 2 and

3, respectively.

Under continuous pasture (Figure 5A) we are clearly adding more SOC than we are losing

to decay every year (hence the increase in SOC values). In the case of wheat-wheat-pasture

(Figure 5B), like with wheat-pasture in Figure 1C, the median SOC levels are not changing

very much from one year to the next. Field 3 was under a wheat-pasture rotation up until

1997 and, as such, it is starting out with the highest SOC levels at that point in time with

levels at approximately 44.1 t ha−1. Figure 5B shows subtle oscillations in the median SOC

levels from 1998 onwards, where two years of decline in median SOC are followed by one

year of growth, corresponding to two years of wheat followed by one year of pasture. As we

are above the putative equilibrium hinted at in Figure 1A, the wheat crops are failing to add

more carbon than what is decaying and so, in terms of median-level dynamics, we forecast

two years of overall loss followed by one year of significant gain under pasture. A closer

examination of the median levels shows overall slow growth in median SOC levels under

this wheat-wheat-pasture strategy, though this is not immediately obvious when looking at

Figure 5B.

5. DISCUSSION AND CONCLUSIONS

In this paper, we incorporate a one-pool model of carbon dynamics into a physical-

statistical model that is part of a BHM framework and that allows us to think critically

and conditionally about the data, the process, and the parameters, and it is a natural way

to engage with researchers in a science-team setting. The model structure created in Section 3

has physical decay at its core (Equation 1) yet most of the modelling effort is placed on the

input processes, reflecting the fact that most of the data is informative about the inputs

(Equations 2–5). Our success with this proof-of-concept model so far is due in no small part
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to the modelling flexibility provided by the LibBi modelling language and the computational

efficiency of sampling from the posterior distributions once that model has been properly set

up. As is evident in Section 4, the ability to sample from the posterior distribution of the

process and parameters, conditional on the data, enables one to answer any question related

to the process and parameters in the BHM.

Quite complex models can be tackled in this manner, and our next research goal is to

continue development of the model to account for multiple pools of carbon that are decaying

and interacting within the soil on a finer time scale. Currently we capture this heterogeneity

as a component of the model error, σ2
η. The fact that multi-pool models based on conceptual

pools are calibrated using data from measurable pools indicates some uncertainty within the

modelling community. Ultimately we aim to represent the soil organic continuum directly,

including interactions between SOC and other soil constituents (Lehmann et al., 2007). To

achieve this in future work, the availability of data from which we can learn about different

aspects of the models and continue with model development is critical. While the Tarlee

dataset does have information about individual carbon pools, it is limited in that spatial

effects cannot be modelled, and the temporal resolution is coarse relative to a scientifically

more meaningful monthly time-step used by RothC, Century, and FullCAM.

The availability of appropriate data is key to future development of these models, but the

reverse of this statement is also true. Models such as this can highlight gaps in our knowledge

of SOC dynamics, and field trials can be designed to directly address those gaps. One such

gap will centre around what effect given may have on SOC stocks. Climate information such

as rainfall and temperature are used to modify the rate of decay K, and historical weather

information can be used to extract information about how the rate of decay relates to changes

in temperature and rainfall. But climate-change scenarios go beyond the annual variation one

sees in historical weather information, in which case the right kinds of controlled experiments

within laboratory settings will be required to more accurately model SOC dynamics.

22



Re-thinking soil carbon modelling Environmetrics

Re-thinking soil carbon modelling presents several challenges. For soil scientists, these

challenges include thinking conditionally and probabilistically about components of the

models and model structure, and moving from deterministic models with fixed parameters

to thinking about how to represent knowledge about model parameters in terms of

prior probability distributions. For statisticians, the challenge becomes one of translation,

converting conditional-probability models written in terms of mathematics into a model

specification where posterior-probability sampling can be implemented in a computationally

efficient manner. These are challenges we face in all forms of physical-statistical modelling,

and overcoming them paves the way to insights and scientific inferences based on all available

data and knowledge.
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APPENDIX

A. PARTICLE MARGINAL METROPOLIS-HASTINGS

A brief overview of the particle marginal Metropolis-Hastings (PMMH) method (Andrieu

et al., 2010) is provided here, with the aim of motivating its use for this particular model

and dataset. In doing so, it is conducive to work with the probability density function

corresponding to the posterior distribution, p(Y,Θ|Z) ≡ [Y,Θ|Z]. This may be factorised as

p(Y,Θ|Z) = p(Y |Θ, Z)p(Θ|Z). (12)
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The idea of PMMH is then to use a Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970) to draw samples of the parameters from [Θ|Z], using a particle filter (Doucet

et al., 2001) to estimate the marginal likelihood [Z|Θ] required to achieve this, and reusing

that particle filter to draw a sample of the state process from [Y |Θ, Z].

A.1. Particle Filter

For a given Θ = θ and the Tarlee dataset Z = z, the bootstrap particle filter (Gordon et al.,

1993) proceeds as follows, where NY denotes the number of state samples, and superscripts

index these samples:

1 for eachn ∈ {1, . . . , NY }

2 draw yn(., 0) ∼ p(Y (., 0)|θ)

3 set ωn(0)← 1/NY

4 for t = 1, . . . , T

5 for eachn ∈ {1, . . . , NY }

6 draw an(t) ∼Multinomial(ω1(t− 1), . . . , ωNY (t− 1))

7 draw yn(., t) ∼ p(Y (., t)|yan(t)(., t− 1), θ)

8 set ωn(t)← p(z(., t)|yn(., t), θ)

The Multinomial on line 6 refers to a multinomial distribution that gives an index

n ∈ {1, . . . , NY } with the probability of drawing n being proportional to ωn(t− 1).

The particle filter has two interesting properties that are used below. First, at the conclusion

of the algorithm, one can recursively draw a single trajectory y∗ from the particle filter as

follows:
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1 draw b∗(T ) ∼Multinomial(ω1(T ), . . . , ωNY (T ))

2 set y∗(., T )← yb
∗(T )(., T )

3 for t = T, . . . , 1

4 set b∗(t− 1)← ab
∗(t)(t)

5 set y∗(t− 1)← yb
∗(t−1)(t− 1)

The trajectory y∗, drawn in this way, is distributed according to p(Y |θ, z) (Andrieu et al.,

2010). Second, a simple function of the weights gives an unbiased estimate of the marginal

likelihood (Del Moral, 2004):

p(z|θ) ≈ p̂(z|θ) ≡
T∏
t=1

(
1

NY

NY∑
n=1

ωn(t)

)
. (13)

A.2. Metropolis-Hastings Algorithm

Sampling from the second factor in (12) using a Metropolis-Hastings (Metropolis et al., 1953;

Hastings, 1970) algorithm proceeds as follows, where NΘ is the number of parameter samples

to draw and q(Θ′|θ) is a proposal distribution (details follow):
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1 draw θ0 ∼ p(Θ)

2 set l0 ← p(z|θ0)

3 forn = 1, . . . , NΘ

4 draw θ′ ∼ q(Θ|θn−1) // propose

5 set l′ ← p(z|θ′)

6 draw α ∼ Uniform([0, 1])

7 if α ≤ (l′p(θ′)q(θn−1|θ′)) / (ln−1p(θn−1)q(θ′|θn−1))

8 set θn ← θ′ // accept proposal

9 set ln ← l′

10 else

11 set θn ← θn−1 // reject proposal

12 set ln ← ln−1

Where it occurs, the marginal likelihood, p(z|θ), cannot be readily computed for the soil

carbon model. However, by running a particle filter, the unbiased estimate p̂(z|θ) in (13) can

be used as a substitute. When a proposed θ′ is accepted, a trajectory y′ = y∗ can be drawn

from the same particle filter that was used to estimate the likelihood of θ′, and (y′, θ′) is then

a complete sample from the posterior distribution. The correctness of the approach is seen

by considering the extended space of all auxiliary random variables upon which the particle

filter operates, and observing that the posterior distribution is a marginal of this. The proof

and further details, are given in Andrieu et al. (2010).
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Figure 1. SOC (t ha−1) dynamics in the three Tarlee fields. The measured SOC values are indicated by black dots. The 2.5th percentiles

and the 97.5th percentiles for the SOC process are indicated by the dashed red lines. The 25th percentiles and the 75th percentiles for

the SOC process are indicated by the solid red lines. The median carbon mass is indicated by the white line. From 1998 onwards these

plots indicate forecasted SOC dynamics in Fields 1, 2, and 3 under the same management strategies.
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Figure 2. SOC inputs (t ha−1) in the three Tarlee fields based on the crop sown each year, see Equation 5. The 2.5th percentiles and

the 97.5th percentiles for the SOC process are indicated by the dashed red lines. The 25th percentiles and the 75th percentiles for the

SOC process are indicated by the solid red lines. The median carbon mass is indicated by the white line. From 1998 onwards these

plots indicate forecasted SOC inputs in Fields 1, 2, and 3 under the same management strategies.
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Figure 3. Histograms (top row) and Cumulative Distribution Functions (bottom row) of the change in soil carbon between 1978 and

1997 for each field. The posterior probability of sequestering no carbon under each management scheme (i.e., f̂3) is indicated in the

plots on the bottom row. These probabilities for each field are noted as, respectively, 0.95, 0.95, and 0.33.
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Figure 4. Panels show the prior distribution (grey density) and marginal posterior distribution (histogram) for eighteen model

parameters. Uninformative priors for some of the parameters are barely visible when plotted over the histograms due to the fact

that much has been learned about those parameters from the data.
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Figure 5. SOC dynamics (t ha−1) in Fields 2 and 3 based on the crop sown each year with a change in management practice from

1998 onwards. The 2.5th percentiles and the 97.5th percentiles for the SOC process are indicated by the dashed red lines. The 25th

percentiles and the 75th percentiles for the SOC process are indicated by the solid red lines. The median carbon mass is indicated by

the white line. From 1998 onwards these plots indicate forecasted SOC dynamics under continuous pasture for Field 2 and under a

wheat-wheat-pasture management practice in Field 3.
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Table 1. Treatment of parameters in the model.

Parameter Prior Type Equation

YC(1, 1978) Truncated-Normal(40, 102,lower=0) Uninformative 1
YC(2, 1978) Truncated-Normal(40, 102,lower=0) Uninformative 1
YC(3, 1978) Truncated-Normal(40, 102,lower=0) Uninformative 1

K Log-Normal(−2.71, (0.127)2) Informative 1
c Normal(0.45, (0.01)2) Informative 5
rW Normal(0.5, (0.067)2) Informative 5
rP Normal(1.0, (0.125)2) Informative 5
p Beta(89.9, 809.1) Informative 5
h Log-Normal(0.825, 0.362) Weakly Informative 3
µG Normal(0.42, (1.18)2) Weakly Informative 2
µW Normal(1.24, (1.12)2) Weakly Informative 3
µP Normal(1.41, (1.81)2) Weakly Informative 4
ρG Uniform(-1,1) Uninformative 2
ρP Uniform(-1,1) Uninformative 4
σ2
η Inv-Gamma(0.001,0.001) Uninformative 1

σ2
G Inv-Gamma(0.001,0.001) Uninformative 2

σ2
W Inv-Gamma(0.001,0.001) Uninformative 3
σ2
P Inv-Gamma(0.001,0.001) Uninformative 4

σ2
εC

0.025 Fixed 7
σ2
εG

0.023 Fixed 8
σ2
εW

0.133 Fixed 9
σ2
εP

0.067 Fixed 10
YG(1, 1978) Log-Normal(µG, 4σ

2
G) Uninformative 2

YG(2, 1978) Log-Normal(µG, 4σ
2
G) Uninformative 2

YG(3, 1978) Log-Normal(µG, 4σ
2
G) Uninformative 2

YP (1, 1978) Log-Normal(µP , 4σ
2
P ) Uninformative 4

YP (2, 1978) Log-Normal(µP , 4σ
2
P ) Uninformative 4

YP (3, 1978) Log-Normal(µP , 4σ
2
P ) Uninformative 4
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Table 2. Proposal distributions used in PMMH.

Parameter Proposal

K Normal(K, 0.0012)
c Truncated-Normal(c, 0.0052, lower = 0, upper = 1)
rW Truncated-Normal(rW , 0.052, lower = 0)
rP Truncated-Normal(rP , 0.052, lower = 0)
p Truncated-Normal(p, 0.0052, lower = 0, upper = 1)
h Truncated-Normal(h, 0.052, lower = 0)
µG Normal(µG, 0.052)
µW Normal(µW , 0.2

2)
µP Normal(µP , 0.052)
ρG Truncated-Normal(ρG, 0.05, lower = −1, upper = 1)
ρP Truncated-Normal(ρP , 0.1, lower = −1, upper = 1)
σ2
η Truncated-Normal(σ2

η, 0.0012, lower = 0)
σ2
G Truncated-Normal(σ2

G, σ
2
G/202, lower = 0)

σ2
W Truncated-Normal(σ2

W , 0.0012, lower = 0)
σ2
P Truncated-Normal(σ2

P , 0.1
2, lower = 0)
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