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This paper describes sufficient conditions for the existence of optimal policies for partially observable Markov decision processes
(POMDPs) with Borel state, observation, and action sets, when the goal is to minimize the expected total costs over finite or
infinite horizons. For infinite-horizon problems, one-step costs are either discounted or assumed to be nonnegative. Action sets
may be noncompact and one-step cost functions may be unbounded. The introduced conditions are also sufficient for the validity
of optimality equations, semicontinuity of value functions, and convergence of value iterations to optimal values. Since POMDPs
can be reduced to completely observable Markov decision processes (COMDPs), whose states are posterior state distributions,
this paper focuses on the validity of the above-mentioned optimality properties for COMDPs. The central question is whether the
transition probabilities for the COMDP are weakly continuous. We introduce sufficient conditions for this and show that the
transition probabilities for a COMDP are weakly continuous, if transition probabilities of the underlying Markov decision
process are weakly continuous and observation probabilities for the POMDP are continuous in total variation. Moreover, the
continuity in total variation of the observation probabilities cannot be weakened to setwise continuity. The results are illustrated
with counterexamples and examples.
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1. Introduction. Partially observable Markov decision processes (POMDPs) play an important role in
operations research, electrical engineering, and computer science. They have a broad range of applications to
various areas including sensor networks, artificial intelligence, target tracking, control and maintenance of complex
systems, finance, and medical decision making. In principle, it is known how to solve POMDPs. A POMDP can be
reduced to a completely observable Markov decision process (COMDP), which is a fully observable Markov
decision process (MDP) whose states are belief (posterior state) probabilities for the POMDP; see Hinderer [23,
§7.1] and Sawarigi and Yoshikawa [29] for countable state spaces and Rhenius [26], Yushkevich [36], Dynkin and
Yushkevich [12, Chapter 8], Bertsekas and Shreve [8, Chapter 10], and Hernández-Lerma [20, Chapter 4] for Borel
state spaces. After an optimal policy for the COMDP is found, it can be used to compute an optimal policy for the
POMDP. However, except for finite state and action POMDPs (Sondik [33]), problems with a continuous filtering
transition probability H described in Equation (6) (Hernández-Lerma [20, Chapter 4], Hernández-Lerma and
Romera [22]), and a large variety of particular problems considered in the literature, little is known regarding the
existence and properties of optimal policies for COMDPs and POMDPs.

This paper investigates the existence of optimal policies for COMDPs and therefore for POMDPs with the
expected total discounted costs and, if the one-step costs are nonnegative, with the expected total costs. We provide
conditions for the existence of optimal policies and for the validity of other properties of optimal values and
optimal policies: they satisfy optimality equations, optimal values are lower semicontinuous functions, and value
iterations converge to optimal infinite-horizon values.

Since a COMDP is an MDP with Borel state and action sets, it is natural to apply results on the existence of
optimal policies for MDPs to COMDPs. Feinberg et al. [14] introduced a mild assumption, called Assumption (W∗),
for the existence of stationary optimal policies for infinite-horizon MDPs, lower semicontinuity of value functions,
characterization of the sets of optimal actions via optimality equations, and convergence of value iterations to
optimal values for the expected total discounted costs, if one-step costs are bounded below, and for the expected
total costs, if the one-step costs are nonnegative (according to the main result in Feinberg et al. [14], if another
mild assumption is added to Assumption (W∗)), then there exist stationary optimal policies for average costs per
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unit time). Assumption (W∗) consists of two conditions: transition probabilities are weakly continuous and one-step
cost functions are �-inf-compact. The notion of �-inf-compactness (see the definition below) was introduced
in Feinberg et al. [15], and it is slightly stronger than the lower semicontinuity of the cost function and its
inf-compactness in the action parameter. In operations research applications, one-step cost functions are usually
�-inf-compact.

Here we consider a POMDP whose underlying MDP satisfies Assumption (W∗). According to Theorem 3.3, this
implies �-inf-compactness of the cost function for the COMDP. Theorem 3.6 states that weak continuity of
transition probabilities and continuity of observation probabilities in total variation imply weak continuity of transi-
tion probabilities for the COMDP. Thus, Assumption (W∗) for the underlying MDP and continuity of observation
probabilities in total variation imply that the COMDP satisfies Assumption (W∗) and therefore optimal policies
exist for the COMDP and for the POMDP, value iterations converge to the optimal value, and other optimality
properties hold; see Theorem 3.5. Example 4.1 demonstrates that continuity of observation probabilities in total
variation cannot be relaxed to setwise continuity.

For problems with incomplete information, the filtering equation zt+1 =H4zt1 at1 yt+15 presented in Equation (7),
that links the posterior state probabilities zt1 zt+11 the selected action at , and the observation yt+11 plays an
important role. This equation presents a general form of Bayes’s rule. Hernández-Lerma [20, Chapter 4] showed
that the weak continuity of the stochastic kernel H in all three variables and weak continuity of transition and
observation probabilities imply weak continuity of transition probabilities for the COMDP. In this paper we
introduce another condition, Assumption (H), which is weaker than the weak continuity of the filtering kernel H in
4zt1 at1 yt+15. We prove that Assumption (H) and setwise continuity of the stochastic kernel on the observation
set, given a posterior state probability and prior action, imply weak continuity of the transition probability for
the COMDP; see Theorem 3.4. Furthermore, weak continuity of transition probabilities and continuity of the
observation kernel in total variation imply Assumption (H) and setwise continuity of the stochastic kernel described
in the previous sentence; see Theorem 3.6. In particular, if either of these two assumptions or the weak continuity
of H and observation probabilities are added to Assumption (W∗) for the underlying MDP of the POMDP,
the COMDP satisfies Assumption (W∗) and therefore various optimality properties, including the existence of
stationary optimal policies and convergence of value iterations; see Theorem 3.2.

If the observation set is countable and it is endowed with the discrete topology, convergence in total variation
and weak convergence are equivalent. Thus, Theorem 3.6 implies weak continuity of the transition probability for
the COMDP with a countable observation set endowed with the discrete topology and with weakly continuous
transition and observation kernels; see Hernández-Lerma [20, p. 93]. However, as Example 4.2 demonstrates, under
these conditions the filtering transition probability H may not be continuous. In other words, the statement in
Hernández-Lerma [20, p. 93], that continuity of transition and observation kernels imply weak continuity of H1 if
the observation set is countable and endowed with discrete topology, is incorrect. Example 4.2 motivated us to
introduce Assumption (H).

The main results of this paper are presented in §3. Section 4 contains three counterexamples. In addition to
the two described examples, Example 4.3 demonstrates that setwise continuity of the stochastic kernel on the
observation set, given a posterior state probability and prior action, is essential to ensure that Assumption (H)
implies continuity of the transition probability for the COMDP. Section 5 describes properties of stochastic kernels
used in the proofs of the main results presented in §6. Section 7 introduces a sufficient condition for the weak
continuity of transition probabilities for the COMDP that combines Assumption (H) and the weak continuity of H .
Combining these properties together is important because Assumption (H) may hold for some observations and
weak continuity of H may hold for others. Section 8 contains three illustrative examples: (i) a model defined by
stochastic equations including Kalman’s filter; (ii) a model for inventory control with incomplete records (for
particular inventory control problems of such type see Bensoussan et al. [4, 5, 6, 7] and references therein);
and (iii) the classic Markov decision model with incomplete information studied by Aoki [1], Dynkin [11],
Shiryaev [31], Hinderer [23, §7.1], Sawarigi and Yoshikawa [29], Rhenius [26], Yushkevich [36], and Dynkin and
Yushkevich [12, Chapter 8], for which we provide a sufficient condition for the existence of optimal policies,
convergence of value iterations to optimal values, and other optimality properties formulated in Theorems 3.1, 3.2,
and 3.5.

Some of the results of §§5 and 8.3 have been further developed in Feinberg et al. [17, 18]. In particular,
new results on convergence of probability measures and on continuity of stochastic kernels are described in
Feinberg et al. [17, §§3, 4], and they are used to generalize in Feinberg et al. [17, Theorem 6.2] the main result
of §8.3, Theorem 6.2, that states sufficient conditions for optimality for Markov decision models with incomplete
information. The uniform Fatou’s lemma is introduced in Feinberg et al. [18, Theorem 1.1]. It provides the natural
necessary and sufficient condition for a stronger inequality than Fatou’s lemma, and Theorem 5.2 presents a
particular version of its necessary condition.
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2. Model description. For a metric space �, let B4�5 be its Borel �-field, that is, the �-field generated by
all open subsets of the metric space �. For a Borel set E ∈B4�51 we denote by B4E5 the � -field whose elements
are intersections of E with elements of B4�5. Observe that E is a metric space with the same metric as on �, and
B4E5 is its Borel � -field. For a metric space �, we denote by �4�5 the set of probability measures on 4�1B4�550
A sequence of probability measures 8�4n59n=1121 : : : from �4�5 converges weakly 4setwise5 to � ∈�4�5 if for any
bounded continuous (bounded Borel-measurable) function f on �

∫

�
f 4s5�4n54ds5→

∫

�
f 4s5�4ds5 as n→ �0

A sequence of probability measures 8�4n59n=1121 : : : from �4�5 converges in total variation to � ∈�4�5 if

sup
{

∣

∣

∣

∫

�
f 4s5�4n54ds5−

∫

�
f 4s5�4ds5

∣

∣

∣

∣

∣

∣

∣

f 2 �→ 6−1117 is Borel-measurable
}

→ 0 as n→ �3

see Feinberg et al. [18] for properties of these three types of convergence of probability measures. These types of
convergence of measures are used in Yüksel and Linder [35] to describe convergence of observation channels.
Note that �4�5 is a separable metric space with respect to the weak convergence topology for probability
measures, when � is a separable metric space; see Parthasarathy [25, Chapter II]. For metric spaces �1 and �2, a
(Borel-measurable) stochastic kernel R4ds1 � s25 on �1 given �2 is a mapping R4· � ·52 B4�15×�2 → 60117, such
that R4· � s25 is a probability measure on �1 for any s2 ∈�2, and R4B � ·5 is a Borel-measurable function on �2 for
any Borel set B ∈B4�15. A stochastic kernel R4ds1 � s25 on �1 given �2 defines a Borel-measurable mapping
s2 →R4· � s25 of �2 to the metric space �4�15 endowed with the topology of weak convergence. A stochastic
kernel R4ds1 � s25 on �1 given �2 is called weakly continuous 4setwise continuous, continuous in total variation5,
if R4· � x4n55 converges weakly (setwise, in total variation) to R4· � x5 whenever x4n5 converges to x in �2. For
one-point sets 8s19⊂�1, we sometimes write R4s1 � s25 instead of R48s19 � s25.

For a Borel subset S of a metric space 4�1 �5, where � is a metric, consider the metric space 4S1�5. A set B is
called open (closed, compact) in S if B ⊆ S and B is open (closed, compact, respectively) in 4S1�5. Of course, if
S =�, we omit “in �.” Observe that, in general, an open (closed, compact) set in S may not be open (closed,
compact, respectively).

Let �, �, and � be Borel subsets of Polish spaces (a Polish space is a complete separable metric space),
P4dx′ � x1a5 be a stochastic kernel on � given �×�, Q4dy � a1x5 be a stochastic kernel on � given �×�,
Q04dy � x5 be a stochastic kernel on � given �, p be a probability distribution on �, c2 �×�→ �̄=�∪ 8+�9
be a bounded below Borel function on �×�, where � is a real line.

A POMDP is specified by a tuple 4�1�1�1 P 1Q1 c5, where � is the state space, � is the observation set, � is
the action set, P4dx′ � x1a5 is the state transition law, Q4dy � a1x5 is the observation kernel, c2 �×�→ �̄ is the
one-step cost.

The partially observable Markov decision process evolves as follows:
• at time t = 0, the initial unobservable state x0 has a given prior distribution p;
• the initial observation y0 is generated according to the initial observation kernel Q04· � x05;
• at each time epoch t = 0111 : : : 1 if the state of the system is xt ∈� and the decision maker chooses an action

at ∈�, then the cost c4xt1 at5 is incurred;
• the system moves to a state xt+1 according to the transition law P4· � xt1 at5, t = 0111 : : : ;
• an observation yt+1 ∈� is generated by the observation kernel Q4· � at1 xt+15, t = 0111 : : : 0
Define the observable histories: h0 2= 4p1 y05 ∈ �0 and ht 2= 4p1 y01a01 : : : 1 yt−11at−11 yt5 ∈ �t for all

t = 1121 : : : , where �0 2=�4�5×� and �t 2=�t−1 ×�×� if t = 1121 : : : 0 A policy � for the POMDP is
defined as a sequence � = 8�t9t=0111 : : : of stochastic kernels �t on � given �t . A policy � is called nonrandomized,
if each probability measure �t4· � ht5 is concentrated at one point. The set of all policies is denoted by ç. The
Ionescu Tulcea theorem (Bertsekas and Shreve [8, pp. 140–141] or Hernández-Lerma and Lassere [21, p. 178])
implies that a policy � ∈ç and an initial distribution p ∈�4�5, together with the stochastic kernels P , Q, and Q0,
determine a unique probability measure P�

p on the set of all trajectories 4�×�×�5� endowed with the �-field
defined by the products of Borel � -fields B4�5, B4�5, and B4�5. The expectation with respect to this probability
measure is denoted by Ɛ�

p .
For a finite horizon T = 0111 : : : 1 the expected total discounted costs are

V �
T 1�4p5 2= Ɛ�

p

T−1
∑

t=0

�tc4xt1 at51 p ∈�4�51 � ∈ç1 (1)

where �≥ 0 is the discount factor, V �
01�4p5= 00 Consider the following assumptions.
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Assumption (D). The function c is bounded below on �×� and � ∈ 60115.

Assumption (P). The function c is nonnegative on �×� and � ∈ 60117.

When T = �1 formula (1) defines the infinite horizon expected total discounted cost, and we denote it by
V �
� 4p50 We use the notations (D) and (P) following Bertsekas and Shreve [8, p. 214], where cases (D), (N), and (P)

are considered. However, Assumption (D) here is weaker than the conditions assumed in case (D) in Bertsekas and
Shreve [8, p. 214], where one-step costs are assumed to be bounded.

Since the function c is bounded below by a constant M on �×�, a discounted model can be converted into a
model with nonnegative costs by replacing costs c4x1a5 with c4x1a5+M . Though Assumption (P) is more
general, Assumption (D) is met in a wide range of applications. Thus we formulate the results for either of these
assumptions.

For any function g�4p5, including g�4p5= V �
T 1�4p5 and g�4p5= V �

� 4p5, define the optimal values

g4p5 2= inf
�∈ç

g�4p51 p ∈�4�50

A policy � is called optimal for the respective criterion, if g�4p5= g4p5 for all p ∈�4�50 For g� = V �
T 1�, the

optimal policy is called T -horizon discount-optimal; for g� = V �
� , it is called discount-optimal.

In this paper, for the expected total costs and objective values, we use similar notations for POMDPs, MDPs,
and COMDPs. However, we reserve the symbol V for POMDPs, the symbol v for MDPs, and the notation v̄ for
COMDPs. So, in addition to the notations V �

T 1�1 V
�
� 1 VT 1�1 and V� introduced for POMDPs, we shall use the

notations v�T 1�1 v
�
� 1 vT 1�, v� and v̄�T 1�1 v̄

�
� 1 v̄T 1�, v̄� for the similar objects for MDPs and COMDPs, respectively.

We recall that a function c defined on �×� with values in �̄ is inf-compact if the set 84x1 a5 ∈�×�2 c4x1 a5≤ �9
is compact for any finite number �. A function c defined on �×� with values in �̄ is called �-inf-compact
on �×�, if for any compact set K ⊆�, the function c2 K ×�→ �̄ defined on K ×� is inf-compact; see
Feinberg et al. [13, 15, Definition 1.1]. According to Feinberg et al. [15, Lemma 2.5], a bounded below function c
is �-inf-compact on the product of metric spaces � and � if and only if it satisfies the following two conditions:

(a) c is lower semicontinuous;
(b) if a sequence 8x4n59n=1121 : : : with values in � converges and its limit x belongs to �, then any sequence

8a4n59n=1121 : : : with a4n5 ∈�, n= 1121 : : : 1 satisfying the condition that the sequence 8c4x4n51a4n559n=1121 : : : is
bounded above, has a limit point a ∈�.

Various applications deal with �-inf-compact cost functions that are not inf-compact. For example, the functions
c4x1a5= 4x− a52 and c4x1a5= �x− a� defined on �×� are �-inf-compact, but they are not inf-compact.

For a POMDP 4�1�1�1 P1Q1c5, consider the MDP 4�1�1 P1 c5, in which all the states are observable. An
MDP can be viewed as a particular POMDP with �=� and Q4B � a1x5=Q4B � x5= I8x ∈ B9 for all x ∈�1
a ∈�, and B ∈B4�5. In addition, for an MDP an initial state is observable. Thus, for an MDP, an initial state x is
considered instead of the initial distribution p0 In fact, this MDP possesses the property that action sets at all the
states are equal. For MDPs, Feinberg et al. [14] provides general conditions for the existence of optimal policies,
validity of optimality equations, and convergence of value iterations. Here we formulate these conditions for an
MDP whose action sets in all states are equal.

Assumption (W∗) (cp. Feinberg et al. [14, 15, Lemma 2.5]).
(i) the function c is �-inf-compact on �×�;

(ii) the transition probability P4· � x1a5 is weakly continuous in 4x1a5 ∈�×�.

For an MDP, a nonrandomized policy is called Markov if all decisions depend only on the current state and time.
A Markov policy is called stationary if all decisions depend only on current states.

Theorem 2.1 (cp. Feinberg et al. [14, Theorem 2]). Let MDP 4�1�1 P1 c5 satisfy Assumption (W∗). Let
either Assumptions (P) or (D) hold. Then,

(i) the functions vt1�, t = 0111 : : : , and v� are lower semicontinuous on �, and vt1�4x5→ v�4x5 as t → � for
all x ∈�3

(ii) for each x ∈� and t = 0111 : : : 1

vt+11�4x5= min
a∈�

{

c4x1a5+�
∫

�
vt1�4y5P4dy � x1a5

}

1 (2)

where v01�4x5= 0 for all x ∈�, and the nonempty sets

At1�4x5 2=

{

a ∈�2 vt+11�4x5= c4x1a5+�
∫

�
vt1�4y5P4dy � x1a5

}

1 x ∈�1 t = 0111 : : : 1
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satisfy the following properties: (a) the graph Gr4At1�5= 84x1a52 x ∈�1 a ∈At1�4x59, t = 0111 : : : 1 is a Borel
subset of �×�, and (b) if vt+11�4x5= +�, then At1�4x5=� and, if vt+11�4x5 <+�, then At1�4x5 is compact;

(iii) for each T = 1121 : : : , there exists an optimal Markov T -horizon policy 4�01 : : : 1�T−15, and if for a
T -horizon Markov policy 4�01 : : : 1�T−15 the inclusions �T−1−t4x5 ∈At1�4x5, x ∈�1 t = 01 : : : 1 T − 11 hold, then
this policy is T -horizon optimal;

(iv) for each x ∈�

v�4x5= min
a∈�

{

c4x1a5+�
∫

�
v�4y5P4dy � x1a5

}

1 (3)

and the nonempty sets

A�4x5 2=

{

a ∈�2 v�4x5= c4x1a5+�
∫

�
v�4y5P4dy � x1a5

}

1 x ∈�1

satisfy the following properties: (a) the graph Gr4A�5= 84x1a52 x ∈�1 a ∈A�4x59 is a Borel subset of �×�,
and (b) if v�4x5= +�, then A�4x5=� and, if v�4x5 <+�, then A�4x5 is compact;

(v) for infinite-horizon problems there exists a stationary discount-optimal policy ��, and a stationary policy
�∗

� is optimal if and only if �∗
�4x5 ∈A�4x5 for all x ∈�;

(vi) (Feinberg and Lewis [19, Proposition 3.1(iv)]) if c is inf-compact on �×�, then the functions vt1�,
t = 1121 : : : , and v� are inf-compact on �.

3. Reduction of POMDPs to COMDPs and main results. In this section we formulate the main results of
the paper, Theorems 3.2, 3.5, and the relevant statements. These theorems provide sufficient conditions for the
existence of optimal policies for COMDPs and therefore for POMDPs with expected total costs, as well as
optimality equations and convergence of value iterations for COMDPs. These conditions consist of two major
components: the conditions for the existence of optimal policies for the underlying MDP and additional conditions
on the POMDP. Theorem 3.5 states that the continuity of the observation kernel Q in total variation is the
additional sufficient condition under which there is a stationary optimal policy for the COMDP, and this policy
satisfies the optimality equations and can be found by value iterations. In particular, the continuity of Q in total
variation and the weak continuity of P imply the setwise continuity of the stochastic kernel R′ defined in (5) and
the validity of Assumption (H) introduced in this section; see Theorem 3.6. These two additional properties imply
the weak continuity of the transition probability q for the COMDP (Theorem 3.4) and eventually the desired
properties of the COMDP; see Theorem 3.2.

This section starts with the description of known results on the general reduction of a POMDP to the COMDP;
see Bertsekas and Shreve [8, §10.3], Dynkin and Yushkevich [12, Chapter 8], Hernández-Lerma [20, Chapter 4],
Rhenius [26], and Yushkevich [36]. To simplify notations, we sometimes drop the time parameter. Given a
posterior distribution z of the state x at time epoch t = 0111 : : : and given an action a selected at epoch t,
denote by R4B×C � z1a5 the joint probability that the state at time 4t + 15 belongs to the set B ∈B4�5 and the
observation at time t + 1 belongs to the set C ∈B4�5,

R4B×C � z1a5 2=
∫

�

∫

B
Q4C � a1x′5P4dx′

� x1a5z4dx51 B ∈B4�51 C ∈B4�51 z ∈�4�51 a ∈�0 (4)

Observe that R is a stochastic kernel on �×� given �4�5×�; see Bertsekas and Shreve [8, §10.3], Dynkin and
Yushkevich [12, Chapter 8], Hernández-Lerma [20, p. 87], Yushkevich [36], or Rhenius [26] for details. The
probability that the observation y at time t + 1 belongs to the set C ∈B4�5, given that at time t the posterior state
probability is z and selected action is a1 is

R′4C � z1a5 2=
∫

�

∫

�
Q4C � a1x′5P4dx′

� x1a5z4dx51 C ∈B4�51 z ∈�4�51 a ∈�0 (5)

Observe that R′ is a stochastic kernel on � given �4�5×�0 By Bertsekas and Shreve [8, Proposition 7.27], there
exists a stochastic kernel H on � given �4�5×�×� such that

R4B×C � z1a5=

∫

C
H4B � z1a1 y5R′4dy � z1a51 B ∈B4�51 C ∈B4�51 z ∈�4�51 a ∈�0 (6)

The stochastic kernel H4· � z1a1 y5 defines a measurable mapping H2 �4�5 × � × � → �4�5, where
H4z1a1 y54 · 5=H4· � z1a1 y50 For each pair 4z1a5 ∈�4�5×�, the mapping H4z1a1 ·52 �→�4�5 is defined
R′4· � z1a5-almost surely uniquely in y ∈ �; see Bertsekas and Shreve [8, Corollary 7.27.1] or Dynkin and
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Yushkevich [12, Appendix 4.4]. For a posterior distribution zt ∈�4�5, action at ∈�, and an observation yt+1 ∈�1
the posterior distribution zt+1 ∈�4�5 is

zt+1 =H4zt1 at1 yt+150 (7)

However, the observation yt+1 is not available in the COMDP model, and therefore yt+1 is a random variable with
the distribution R′4· � zt1 at5, and the right-hand side of (7) maps 4zt1 at5 ∈�4�5×� to �4�4�550 Thus, zt+1 is a
random variable with values in �4�5 whose distribution is defined uniquely by the stochastic kernel

q4D � z1a5 2=
∫

�
I8H4z1a1 y5 ∈D9R′4dy � z1a51 D ∈B4�4�551 z ∈�4�51 a ∈�3 (8)

see Hernández-Lerma [20, p. 87]. The particular choice of a stochastic kernel H satisfying (6) does not effect the
definition of q from (8), since for each pair 4z1a5 ∈�4�5×�, the mapping H4z1a1 ·52 �→�4�5 is defined
R′4· � z1a5 almost surely uniquely in y ∈�; see Bertsekas and Shreve [8, Corollary 7.27.1], and Dynkin and
Yushkevich [12, Appendix 4.4].

Similar to the stochastic kernel R, consider a stochastic kernel R0 on �×� given �4�5 defined by

R04B×C � p5 2=
∫

B
Q04C � x5p4dx51 B ∈B4�51 C ∈B4�51 p ∈�4�50

This kernel can be decomposed as

R04B×C � p5=

∫

C
H04B � p1y5R′

04dy � p51 B ∈B4�51 C ∈B4�51 p ∈�4�51 (9)

where R′
04C � p5=R04�×C � p5, C ∈B4�5, p ∈�4�5, is a stochastic kernel on � given �4�5 and H04dx � p1 y5

is a stochastic kernel on � given �4�5×�. Any initial prior distribution p ∈�4�5 and any initial observation y0

define the initial posterior distribution z0 =H04p1 y05 on 4�1B4�55. Similar to (7), the observation y0 is not
available in the COMDP and this equation is stochastic. In addition, H04p1 y5 is defined R′

04dy � p5 almost surely
uniquely in y ∈� for each p ∈�4�5.

Similar to (8), the stochastic kernel

q04D � p5 2=
∫

�
I8H04p1 y5 ∈D9R′

04dy � p51 D ∈B4�4�55 and p ∈�4�51 (10)

on �4�5 given �4�5 defines the initial distribution on the set of posterior probabilities. Define q04p54D5= q04D � p51
where D ∈B4�4�550 Then q04p5 is the initial distribution of z0 =H04p1 y05 corresponding to the initial state
distribution p0

The COMDP is defined as an MDP with parameters (�4�51�1 q1 c̄), where
(i) �4�5 is the state space;

(ii) � is the action set available at all states z ∈�4�5;
(iii) the one-step cost function c̄2 �4�5×�→ �̄, defined as

c̄4z1 a5 2=
∫

�
c4x1a5z4dx51 z ∈�4�51 a ∈�3 (11)

(iv) transition probabilities q on �4�5 given �4�5×� defined in (8).
Denote by it , t = 0111 : : : , a t-horizon history for the COMDP, also called an information vector,

it 2= 4z01 a01 : : : 1 zt−11 at−11 zt5 ∈ It1 t = 0111 : : : 1

where z0 is the initial posterior distribution and zt ∈ �4�5 are recursively defined by Equation (7), It 2=
�4�5× 4�×�4�55t for all t = 0111 : : : , with I0 2=�4�5. An information policy (I-policy) is a policy in a
COMDP, i.e., I -policy is a sequence �= 8�t2 t = 0111 : : : 9 such that �t4· � it5 is a stochastic kernel on � given It
for all t = 0111 : : : ; see Bertsekas and Shreve [8, Chapter 10], and Hernández-Lerma [20, p. 88]. Denote by ã the
set of all I-policies. We also consider Markov I-policies and stationary I-policies.

For an I-policy �= 8�t2 t = 0111 : : : 91 define a policy �� = 8��
t 2 t = 0111 : : : 9 in ç as

��
t 4· � ht5 2= �t4· � it4ht55 for all ht ∈Ht and t = 0111 : : : 1 (12)

where it4ht5 ∈ It is the information vector determined by the observable history ht via (7). Thus � and �� are
equivalent in the sense that ��

t assigns the same conditional probability on � given the observed history ht as �t
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for the history it4ht5. If � is an optimal policy for the COMDP then �� is an optimal policy for the POMDP. This
follows from the facts that Vt1�4p5= v̄t1�4q04p55, t = 0111 : : : 1 and V�4p5= v̄�4q04p55; see Hernández-Lerma [20,
p. 89] and references therein. Let zt4ht5 be the last element of the information vector it4ht5. With a slight abuse of
notations, by using the same notations for a measure concentrated at a point and a function at this point, if � is
Markov, then (12) becomes ��

t 4ht5= �t4zt4ht55, and if � is stationary, then ��
t 4ht5= �4zt4ht551 t = 0111 : : : 0

Thus, an optimal policy for a COMDP defines an optimal policy for the POMDP. However, very little is known
for the conditions on POMDPs that lead to the existence of optimal policies for the corresponding COMDPs. For
the COMDP, Assumption (W∗) has the following form:

(i) c̄ is �-inf-compact on �4�5×�;
(ii) the transition probability q4· � z1a5 is weakly continuous in 4z1a5 ∈�4�5×�.
Recall that the notation v̄ has been reserved for the expected total costs for COMDPs. The following theorem

follows directly from Theorem 2.1 applied to the COMDP 4�4�51�1 q1 c̄5.

Theorem 3.1. Let either Assumption (D) or Assumption (P) hold. If the COMDP 4�4�51�1 q1 c̄5 satisfies
Assumption (W∗), then

(i) the functions v̄t1�, t = 0111 : : : , and v̄� are lower semicontinuous on �4�5, and v̄t1�4z5→ v̄�4z5 as t → �

for all z ∈�4�53
(ii) for each z ∈�4�5 and t = 0111 : : : 1

v̄t+11�4z5 = min
a∈�

{

c̄4z1 a5+�
∫

�4�5
v̄t1�4z

′5q4dz′
� z1a5

}

= min
a∈�

{

∫

�
c4x1a5z4dx5+�

∫

�

∫

�

∫

�
v̄t1�4H4z1a1 y55Q4dy � a1x′5P4dx′

� x1a5z4dx5

}

1 (13)

where v̄01�4z5= 0 for all z ∈�4�5, and the nonempty sets

At1�4z5 2=

{

a ∈�2 v̄t+11�4z5= c̄4z1 a5+�
∫

�4�5
v̄t1�4z

′5q4dz′
� z1a5

}

1 z ∈�4�51 t = 0111 : : : 1

satisfy the following properties: (a) the graph Gr4At1�5= 84z1 a52 z ∈�4�51 a ∈At1�4z59, t = 0111 : : : 1 is a Borel
subset of �4�5×�, and (b) if v̄t+11�4z5= +�, then At1�4z5=� and, if v̄t+11�4z5 <+�, then At1�4z5 is compact;

(iii) for each T = 1121 : : : , there exists an optimal Markov T -horizon I-policy 4�01 : : : 1�T−15, and if for a
T -horizon Markov I -policy 4�01 : : : 1�T−15 the inclusions �T−1−t4z5 ∈At1�4z5, z ∈�4�51 t = 01 : : : 1 T − 11 hold,
then this I-policy is T -horizon optimal;

(iv) for each z ∈�4�5

v̄�4z5 = min
a∈�

{

c̄4z1 a5+�
∫

�4�5
v̄�4z

′5q4dz′
� z1a5

}

= min
a∈�

{

∫

�
c4x1a5z4dx5+�

∫

�

∫

�

∫

�
v̄�4H4z1a1 y55Q4dy � a1x′5P4dx′

� x1a5z4dx5

}

1 (14)

and the nonempty sets

A�4z5 2=

{

a ∈�2 v̄�4z5= c̄4z1 a5+�
∫

�4�5
v̄�4z

′5q4dz′
� z1a5

}

1 z ∈�4�51

satisfy the following properties: (a) the graph Gr4A�5 = 84z1a52 z ∈ �4�51a ∈ ��4z59 is a Borel subset of
�4�5×�, and (b) if v̄�4z5= +�, then A�4z5=� and, if v̄�4z5 <+�, then A�4z5 is compact;

(v) for infinite-horizon problems there exists a stationary discount-optimal I-policy ��, and a stationary
I-policy �∗

� is optimal if and only if �∗
�4z5 ∈A�4z5 for all z ∈�4�53 and

(vi) if c̄ is inf-compact on �4�5×�, then the functions v̄t1�, t = 1121 : : : , and v̄� are inf-compact on �4�5.

Thus, in view of Theorem 3.1, the important question is under which conditions on the original POMDP, the
COMDP satisfies the conditions under which there are optimal policies for MDPs. Monograph Hernández-Lerma [20,
p. 90] provides the following conditions for this: (a) � is compact, (b) the cost function c is bounded and
continuous, (c) the transition probability P4dx′ � x1a5 and the observation kernel Q4dy � a1 x5 are weakly continuous
stochastic kernels, and (d) there exists a weakly continuous stochastic kernel H on � given �4�5×�×�
satisfying (6). Consider the following relaxed version of assumption (d) that does not require that H is continuous
in y. We introduce this assumption, called Assumption (H), because it holds in many important situations when a
weakly continuous stochastic kernel H satisfying (6) does not exist; see Example 4.2 and Theorem 3.6.
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Assumption (H). There exists a stochastic kernel H on � given �4�5×�×� satisfying (6) such that if a
sequence 8z4n59n=1121 : : : ⊆�4�5 converges weakly to z ∈�4�5, and a sequence 8a4n59n=1121 : : : ⊆� converges to
a ∈� as n→ �, then there exists a subsequence 84z4nk51 a4nk559k=1121 : : : ⊆ 84z4n51 a4n559n=1121 : : : and a measurable
subset C of � such that R′4C � z1a5= 1 and for all y ∈C

H4z4nk51 a4nk51 y5 converges weakly to H4z1a1 y50 (15)

In other words, (15) holds R′4· � z1a5 almost surely.

Theorem 3.2. Let the following assumptions hold:
(a) either Assumption (D) or Assumption (P) holds;
(b) the function c is �-inf-compact on �×�;
(c) either

(i) the stochastic kernel R′4dy � z1 a5 on � given �4�5×� is setwise continuous and Assumption (H) holds;
or

(ii) the stochastic kernels P4dx′ � x1a5 on � given �×� and Q4dy � a1x5 on � given �×� are weakly
continuous and there exists a weakly continuous stochastic kernel H4dx � z1a1 y5 on � given �4�5×�×�
satisfying (6).

Then the COMDP 4�4�51�1 q1 c̄5 satisfies Assumption (W∗) and therefore statements (i)–(vi) of Theorem 3.1
hold.

Remark 3.1. Assumption (H) is weaker than weak continuity of H stated in Assumption (ii) of Theorem 3.2.
Assumption (H) is introduced because, according to Theorem 3.6, this assumption and setwise continuity of R′

stated in assumption (i) hold, if the stochastic kernel P4dx′ � x1a5 on � given �×� is weakly continuous and the
stochastic kernel Q4dy � a1x5 on � given �×� is continuous in total variation, whereas a weakly continuous
version of H may not exist; see Example 4.2.

Remark 3.2. Throughout this paper we follow the terminology according to which finite sets are countable.
If � is countable, then Equation (13) transforms into

v̄t+11�4z5= min
a∈�

{

∫

�
c4x1a5z4dx5+�

∑

y∈�

v̄t1�4H4z1a1 y55R′4y � z1a5

}

1 z ∈�4�51 t = 0111 : : : 1

and Equation (14) transforms into

v̄�4z5= min
a∈�

{

∫

�
c4x1a5z4dx5+�

∑

y∈�

v̄�4H4z1a1 y55R′4y � z1a5

}

1 z ∈�4�50

Theorem 3.2 follows from Theorems 3.1, 3.3, and 3.4. In particular, Theorem 3.3 implies that, if Assumption (D)
or (P) holds for a POMDP, then it also holds for the corresponding COMDP.

Theorem 3.3. If the function c2 �×�→ �̄ is bounded below and �-inf-compact on �×�, then the cost
function c̄2 �4�5×�→ �̄ defined for the COMDP in (11) is bounded from below by the same constant as c and
�-inf-compact on �4�5×�.

Theorem 3.4. The stochastic kernel q4dz′ � z1 a5 on �4�5 given �4�5×� is weakly continuous if condition (c)
from Theorem 3.2 holds.

The following theorem provides sufficient conditions for the existence of optimal policies for the COMDP and
therefore for the POMDP in terms of the initial parameters of the POMDP.

Theorem 3.5. Let assumptions (a) and (b) of Theorem 3.2 hold, the stochastic kernel P4dx′ � x1a5 on �
given �×� be weakly continuous, and the stochastic kernel Q4dy � a1x5 on � given �×� be continuous in
total variation. Then the COMDP 4�4�51�1 q1 c̄5 satisfies Assumption (W∗) and therefore statements (i)–(vi) of
Theorem 3.1 hold.

Theorem 3.5 follows from Theorem 3.3 and from the following statement.

Theorem 3.6. The weak continuity of the stochastic kernel P4dx′ � x1a5 on � given �×� and continuity in
total variation of the stochastic kernel Q4dy � a1x5 on � given �×� imply that condition (i) from Theorem 3.2
holds (that is, R′ is setwise continuous and Assumption (H) holds) and therefore the stochastic kernel q4dz′ � z1 a5
on �4�5 given �4�5×� is weakly continuous.
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Example 4.1 demonstrates that, if the stochastic kernel Q4dy � a1x5 on � given �×� is setwise continuous,
then the transition probability q for the COMDP may not be weakly continuous in 4z1a5 ∈�4�5×�. In this
example the state set consists of two points. Therefore, even if the stochastic kernel P4dx′ � x1a5 on � given
�×� is setwise continuous (even if it is continuous in total variation) in 4x1a5 ∈�×� then the setwise
continuity of the stochastic kernel Q4dy � a1x5 on � given �×� is not sufficient for the weak continuity of q.

Corollary 3.1 (cp. Hernández-Lerma [20, p. 93]). If the stochastic kernel P4dx′ � x1a5 on � given �×�
is weakly continuous, � is countable, and for each y ∈� the function Q4y � a1 x5 is continuous on �×�, then the
following statements hold:

(a) for each y ∈� the function R′4y � z1a5 is continuous on �4�5×� with respect to the topology of weak
convergence on �4�51 and Assumption (H) holds;

(b) the stochastic kernel q4dz′ � z1a5 on �4�5 given �4�5×� is weakly continuous; and
(c) if, in addition to the above conditions, assumptions (a) and (b) from Theorem 3.2 hold, then the COMDP

4�4�51�1 q1 c̄5 satisfies Assumption (W∗) and therefore statements (i)–(vi) of Theorem 3.1 hold.

Proof. For a countable �, the continuity in total variation of the stochastic kernel Q4· � a1x5 on � given
�×� follows from the continuity of Q4y � a1 x5 for each y ∈� in 4a1 x5 ∈�×� and from Q4� � a1 x5= 1 for all
4a1x5 ∈�×� (the similar fact holds for the stochastic kernel R′4· � z1a5). Indeed, let 4a4n51 x4n55→ 4a1x5 as
n→ �. For an arbitrary � > 0 choose a finite set Y� ⊆� such that Q4Y� � a1x5≥ 1 − �1 which is equivalent
to Q4�\Y� � a1x5≤ �0 Let us choose a natural number N� such that Q4Y� � a4n51 x4n55≥ 1 − 2� and, therefore,
Q4�\Y� � a4n51 x4n55≤ 2� for n>N�. Denote ãn 2=

∑

y∈� �Q4y � a4n51 x4n55−Q4y � a1x5�0 Observe that

ãn ≤Q4�\Y� � a4n51 x4n55+Q4�\Y� � a1x5+
∑

y∈Y�

�Q4y � a4n51 x4n55−Q4y � a1x5�0

Since Q4y � a1 x5 is continuous in 4a1 x5 ∈�×� for each y ∈� and the set Y� is finite, the limit of the sum in the
right-hand side of the last inequality is 0 as n→ �0 This implies that lim supn→� ãn ≤ 3�0 Since � > 0 is arbitrary,
then ãn → 0 as n→ �0 Thus, the continuity of Q4· � a1x5 in total variation takes place. Statements (a) and (b)
follow from Theorem 3.6, and statement (c) follows from Theorem 3.5. �

4. Counterexamples. In this section we provide three counterexamples. Example 4.1 demonstrates that
the assumption in Theorems 3.5 and 3.6, that the stochastic kernel Q is continuous in total variation, cannot
be weakened to the assumption that Q is setwise continuous. Example 4.2 shows that, under conditions of
Corollary 3.1, a weakly continuous mapping H satisfying (7) may not exist. The existence of such a mapping is
mentioned in Hernández-Lerma [20, p. 93]. Example 4.3 illustrates that the setwise continuity of the stochastic
kernel R′4dy � z1a5 on � given �4�5×� is essential in condition (i) of Theorem 3.2. Without this assumption,
Assumption (H) alone is not sufficient for the weak continuity of the stochastic kernel q4dz′ � z1 a5 on �4�5 given
�4�5×� and therefore for the correctness of the conclusions of Theorems 3.2 and 3.4.

We would like to mention that before the authors constructed Example 4.1, Huizhen (Janey) Yu provided them
with an example when the weak continuity of the observation kernel Q is not sufficient for the weak continuity of
the stochastic kernel q4· � z1a50 In her example, �= 81129, the system does not move, �=�= 60117, at state 1
the observation is 0 for any action a and at state 2, under an action a ∈�1 the observation is uniformly distributed
on 601 a70 The initial belief distribution is z= 4005100550

Example 4.1. Continuity of Q in total variation cannot be relaxed to setwise continuity in Theorems 3.5
and 3.6. Let �= 81129, �= 60117, and �= 809∪ 81/n2 n= 1121 : : : 9. The system does not move. This means that
P4x � x1a5= 1 for all x = 112 and a ∈�. This stochastic kernel P is weakly continuous and, since � is finite, it is
setwise continuous and continuous in total variation. The observation kernel Q is Q4dy � a115=Q4dy � 0125=m4dy5,
a ∈�, with m being the Lebesgue measure on �= 601171 and Q4dy � 1/n125=m4n54dy5, n= 1121 : : : 1 where
m4n5 is the absolutely continuous measure on �= 60117 with the density f 4n5,

f 4n54y5=

{

01 if 2k/2n < y < 42k+ 15/2n for k = 0111 : : : 12n−1 − 1;

21 otherwise.
(16)

First we show that Q4dy � a1x5 on � given �×� is setwise continuous in 4a1 x5. In our case, this means that
the probability distributions Q4dy � 1/n1 i5 converge setwise to Q4dy � 01 i5 as n→ �, where i = 112. For i = 1 this
statement is trivial, because Q4dy � a115=m4dy5 for all a ∈�. For i = 2 we need to verify that m4n5 converge
setwise to m as n→ �. According to Bogachev [10, Theorem 8.10.56], which is Pfanzagl’s generalization
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of the Fichtenholz-Dieudonné-Grothendiek theorem, measures m4n5 converge setwise to the measure m, if
m4n54C5→m4C5 for each open set C in 60117. Since m4n5405=m405=m4n5415=m4151 n= 1121 : : : 1 then
m4n54C5→m4C5 for each open set C in 60117 if and only if m4n54C5→m4C5 for each open set C in 40115.
Choose an arbitrary open set C in 40115. Then C is a union of a countable set of open disjoint intervals
4ai1 bi5. Therefore, for any �> 0 there is a finite number n� of open intervals 84ai1 bi52 i = 11 : : : 1 n�9 such that
m4C\C�5≤ �, where C� =

⋃n�
i=14ai1 bi50 Since f 4n5 ≤ 2, this implies that m4n54C\C�5≤ 2� for any n= 1121 : : : 0

Since �m4n544a1b55 − m44a1b55� ≤ 1/2n−11 n = 1121 : : : 1 for any interval 4a1b5 ⊂ 601171 this implies that
�m4C�5−m4n54C�5� ≤ � if n≥N�, where N� is any natural number satisfying 1/2N�−1 ≤ �0 Therefore, if n≥N�1
then �m4n54C5−m4C5� ≤ �m4n54C�5−m4C�5�+m4C\C�5+m4n54C\C�5≤ 4�0 This implies that m4n54C5→m4C5 as
n→ �. Thus m4n5 converge setwise to m as n→ �.

Second, we verify that the transition kernel q does not satisfy the weak continuity property. Consider the
posterior probability distribution z= 4z4151 z4255= 400510055 of the state at the current step. Since the system does
not move, this is the prior probability distribution at the next step. If the action 0 is selected at the current
step, then nothing new can be learned about the state during the next step. Thus q4z � z105= 1. Let y be an
observation at the next step, and let D be the event that the state is 2. At the next step, the prior probability of the
event D is 0.5, because z425= 0050 Now let an action 1/n be selected at the current step. The new posterior
state probabilities depend on the event A= 8f 4n54y5= 290 If the event D takes place (the state is 2), then the
probability of the event A is 1 and the probability of the event Ā= 8f 4n54y5= 09 is 0. If the event D̄ takes place
(the new state is 1), then the probabilities of the events A and Ā are 0.5. Bayes’s formula implies that the posterior
probabilities are 41/312/351 if f 4n54y5= 21 and 411051 if f 4n54y5= 0. Since f 4n5425= 2 with probability 3/4
and f 4n54y5= 0 with probability 1/41 then q441/312/35 � z11/n5= 3/4 and q441105 � z11/n5= 1/4. So, all the
measures q4· � z11/n5 are constants and they are not equal to the measure q4· � z1051 which is concentrated at the
point z= 4005100550 Thus the transition kernel q on �4�5 given �4�5×� is not weakly continuous. �

Example 4.2. Under conditions of Corollary 3.1 there is no weakly continuous stochastic kernel H4· � z1 a1 y5
on � given �4�5×�×� satisfying (7). Consider a POMDP with the state and observation spaces �=�= 81129;
the action space �= 6−1117; the system does not move, that is P41 � 11 a5= P42 � 21 a5= 1 for all a ∈�3 for each
y ∈� the observation kernel Q4y � a1x5 is continuous in a ∈�,

Q41 � a115 =

{

�a�1 a ∈ 6−11051

a21 a ∈ 601171
Q41 � a125=

{

a21 a ∈ 6−11051

�a�1 a ∈ 601171

Q42 � a115 =

{

1 − �a�1 a ∈ 6−11051

1 − a21 a ∈ 601171
Q42 � a125=

{

1 − a21 a ∈ 6−11051

1 − �a�1 a ∈ 601173

and z= 4z4151 z4255= 4 1
2 1

1
2 5 is the probability distribution on �= 81129.

Formula (4) with B = 819 and C = 819 implies

R441115 � z1a5=
1
2
Q41 � a115=















�a�

2
1 a ∈ 6−11051

a2

2
1 a ∈ 601170

(17)

Setting C = 819 in (5), we obtain

R′41 � z1a5=
1
2
Q41 � a115+

1
2
Q41 � a125=

�a� + a2

2
1 a ∈ 6−11170 (18)

Formulas (17) and (18) imply that, if H satisfies (6), then

H41 � z1a115=
R441115 � z1a5

R′41 � z1a5
=



















�a�

�a� + a2
1 a ∈ 6−11051

a2

�a� + a2
1 a ∈ 401170

Therefore,
lim
a↑0

H41 � z1a115= 1 and lim
a↓0

H41 � z1a115= 00

Thus, the stochastic kernel H on � given �4�5×�×� is not weakly continuous in a, that is, H2 �4�5×�×

�→�4�5 is not a continuous mapping. In view of Corollary 3.1, Assumption (H) holds. �
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Example 4.3. Stochastic kernels P on � given �×� and Q on � given �×� are weakly continuous,
the stochastic kernel R′ on � given �4�5×�, defined by formula (5), is weakly continuous, but it is not
setwise continuous. Though Assumption (H) holds, the stochastic kernel q on �4�5 given �4�5×�, defined by
formula (8), is not weakly continuous.

Let �= 81129, �=�= 811 1
2 1

1
3 1 : : : 9∪ 809 with the metric �4a1b5= �a− b�, a1b ∈�, and P4x � x1a5= 1,

x ∈ �1a ∈ �. Let also Q40 � 01 x5 = 1, Q40 � 1/m1x5 = Q41/n � 01 x5 = 0, x ∈ �1 and Q41/n � 1/m115 =

am1n sin24�n/42m55, Q41/n � 1/m125= am1n cos24�n/42m55, m1n= 1121 : : : 1 where am12mk+` = 1/42k+1m5 for
k= 0111 : : : 1 `= 1121 : : : 12m. Since

∑2m
`=1 sin24�`/42m55=

∑2m
`=1 cos24�`/42m55=

∑m
`=14sin24�`/42m55+

cos24�`/42m555=m, then
∑�

n=1 Q41/n � 1/m1x5=
∑�

k=0

∑2m
`=1 Q41/42mk+ `5 � 1/m1x5=

∑�

k=041/2k+15= 1,
x ∈�, and Q is a stochastic kernel on � given �×�. The stochastic kernels P on � given �×� and Q
on � given �×� are weakly continuous. The former is true for the same reasons as in Example 4.1. The
latter is true because lim supm→� Q4C � am1 x5 ≤ Q4C � 01 x5 for any closed set C in �0 Indeed, a set C is
closed in � if and only if either (i) 0 ∈ C or (ii) 0 y C and C is finite. Let C ⊆ � be closed. In case (i),
lim supm→� Q4C � am1 x5≤ 1 =Q4C � 01 x5 as am → 0, x ∈�. In case (ii), limm→� Q4C � am1 x5= 0 =Q4C � 01 x5
as am → 0, since limm→� Q41/n � am1 x5= 0 =Q41/n � 01 x5 for n= 1121 : : : and for x ∈�0

Formula (4) implies that R4111/n � z11/m5 = z415am1n sin24�n/42m55, R4211/n � z11/m5 =

z425am1n cos24�n/42m55, R4110 � z11/m5= 0, R4210 � z11/m5= 0, and R4111/n � z105= 0, R4211/n � z105= 0,
R4110 � z105 = z415, R4210 � z105 = z425 for m1n = 1121 : : : , z = 4z4151 z4255 ∈ �4�5. Formula (5) yields
R′40 � z11/m5= 0, R′41/n � z11/m5= z415am1n sin24�n/42m55+ z425am1n cos24�n/42m55, and R′40 � z105= 1,
R′41/n � z105= 0 for m1n= 1121 : : : 1 z= 4z4151 z4255 ∈�4�5. Therefore, R′40 � z11/m5 6→R′40 � z105 as m→ �.
Thus the stochastic kernel R′ on � given �4�5×� is not setwise continuous. However, stochastic kernel R′ on �
given �4�5×� is weakly continuous.

Observe that �4�5= 84z4151 z42552 z4151 z425≥ 01 z415+ z425= 19⊂�2. Let z= 4z4151 z4255 ∈�4�5. If
R′4y � z1 a5 > 0, in view of (6), H4x′ � z1 a1 y5=R44x′1 y5 � z1 a5/R′4y � z1 a5 for all x′ ∈�1 a ∈�, and y ∈�0 Thus,
if R′4y � z1a5 > 0, then

H4z1a1 y5=



































(

z415 sin24�n/42m55

z415 sin24�n/42m55+ z425 cos24�n/42m55
1

z425 cos24�n/42m55

z415 sin24�n/42m55+ z425 cos24�n/42m55

)

1

if a=
1
m
1 y =

1
n
1 m1n= 1121 : : : 1

4z4151 z42551 if a= y = 00

If R′4y � z1a5= 0, we set H4z1a1 y5= z= 4z4151 z42550 In particular, H4z11/m105= z for all m= 1121 : : : 0
Observe that Assumption (H) holds because, if R′4y � z1a5 > 0 and if sequences 8z4N 59N=1121 : : : ⊆�4�5 and

8a4N 59N=1121 : : : ⊆� converge to z ∈�4�5 and a ∈�, respectively, as N → �, then H4z4N 51 a4N 51 y5→H4z1a1 y5 as
N → �0 Indeed, it is sufficient to verify this property only for the following two cases: (i) y = 1/n, a= 1/m, and
R′41/n � z11/m5 > 0, where m1n= 1121 : : : 1 and (ii) y = a= 00 In case (i), a4N 5 = 1/m, when N is large enough,
and H4z4N 511/m11/n5→H4z11/m11/n5 as N → � because the function H4z11/m11/n5 is continuous in z, when
R′41/n � z11/m5 > 0. For case (ii), H4z4N 51 a4N 5105= z4N 5 → z as N → �0

Fix z = 4 1
2 1

1
2 5. According to the above formulae, H4z11/m11/n5 = 4sin24�n/2m51 cos24�n/2m55 and

R′41/n � z11/m5= am1n/2. Consider a closed subset D = 84z′4151 z′4255 ∈�4�52 z′415≥
3
49 in �4�5. Then

q4D � z11/m5 =
∑

n=1121 : : :

8sin24�n/2m5≥ 3/494am1n/25=

�
∑

k=0

2m
∑

`=1

I
{

sin4�`/42m55≥
√

3/2
}

44am12mk + `5/25

=

2m
∑

`=1

I8sin4�`/2m5≥
√

3/291/2m
�
∑

k=0

41/2k+15→
1
3 > 0

as m → �, where the limit takes place because �62m/37−
∑2m

`=1 I8sin4�`/2m5 ≥
√

3/29� ≤ 1, where 6 · 7 is
the integer part of a number, and

∑�

k=041/2k+15= 1. In addition, q4D � z105= 0 since zyD and q4z � z105=

I8H4z10105= z9R′40 � z105= 1. Thus, limm→� q4D � z11/m5=
1
3 > 0 = q4D � z105 for a closed set D in �4�50

This implies that the stochastic kernel q on �4�5 given �4�5×� is not weakly continuous. �

5. Continuity of transition kernels for posterior probabilities. This section contains the proofs of
Theorems 3.4 and 3.6. The following two versions of Fatou’s lemma for a sequence of measures 8�4n59n=1121 : : : are
used in the proofs provided below.
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Lemma 5.1 (Generalized Fatou’s Lemma). Let � be an arbitrary metric space, 8�4n59n=1121 : : : ⊂�4�5, and
8f 4n59n=1121 : : : be a sequence of measurable nonnegative �̄-valued functions on �. Then

(i) (Royden [28, p. 231]) if 8�4n59n=1121 : : : ⊂�4�5 converges setwise to � ∈�4�5, then

∫

�
lim inf
n→�

f 4n54s5�4ds5≤ lim inf
n→�

∫

�
f 4n54s5�4n54ds53 (19)

(ii) (Schäl [30, Lemma 2.3(ii)], Jaśkiewicz and Nowak [24, Lemma 3.2], Feinberg et al. [14, Lemma 4],
Feinberg et al. [16, Theorem 1.1]) if 8�4n59n=1121 : : : ⊂�4�5 converges weakly to � ∈�4�5, then

∫

�
lim inf

n→�1 s′→s
f 4n54s′5�4ds5≤ lim inf

n→�

∫

�
f 4n54s5�4n54ds50 (20)

Proof of Theorem 3.4. According to Parthasarathy [25, Theorem 6.1, p. 40], Shiryaev [32, p. 311], or
Billingsley [9, Theorem 2.1], the stochastic kernel q4dz′ � z1a5 on �4�5 given �4�5×� is weakly continuous if
and only if q4D � z1a5 is lower semicontinuous in 4z1a5 ∈ 4�4�5×�5 for every open set D in �4�51 that is,

lim inf
n→�

q4D � z4n51 a4n55≥ q4D � z1a51 (21)

for all z1 z4n5 ∈�4�5, and a1a4n5 ∈�, n= 1121 : : : , such that z4n5 → z weakly and a4n5 → a0
To prove (21), suppose that

lim inf
n→�

q4D � z4n51 a4n55 < q4D � z1a50

Then there exists �∗ > 0 and a subsequence 84z4n1151 a4n11559n=1121 : : : ⊆ 84z4n51 a4n559n=1121 : : : such that

q4D � z4n1151 a4n1155≤ q4D � z1a5− �∗1 n= 1121 : : : 0 (22)

If condition (ii) of Theorem 3.2 holds, then formula (8), the weak continuity of the stochastic kernel R′

on � given �4�5×� (this weak continuity is proved in Hernández-Lerma [20, p. 92]), and Lemma 5.1(ii)
contradict (22). If condition (i) of Theorem 3.2 holds, then there exists a subsequence 84z4n1251a4n12559n=1121 : : :

⊆ 84z4n1151 a4n11559n=1121 : : : such that H4z4n1251 a4n1251 y5→H4z1a1 y5 weakly as n→ �1 R′4· � z1a5 almost surely in
y ∈�0 Therefore, since D is an open set in �4�5,

lim inf
n→�

I8H4z4n1251 a4n1251 y5 ∈D9≥ I8H4z1a1 y5 ∈D91 R′4· � z1a5 almost surely in y ∈�0 (23)

Formulas (8), (23), the setwise continuity of the stochastic kernel R′ on � given �4�5×�, and Lemma 5.1(i)
imply lim infn→� q4D � z4n1251 a4n1255≥ q4D � z1a51 which contradicts (22). Thus (21) holds. �

To prove Theorem 3.6, we need to formulate and prove several auxiliary facts. Let � be a metric space, �4�5
and �4�5 be, respectively, the spaces of all real-valued functions and all bounded continuous functions defined
on �. A subset A0 ⊆ �4�5 is said to be equicontinuous at a point s ∈�, if supf∈A0

�f 4s′5− f 4s5� → 0 as s′ → s. A
subset A0 ⊆ �4�5 is said to be uniformly bounded, if there exists a constant M <+� such that �f 4s5� ≤M1 for all
s ∈� and for all f ∈A00 Obviously, if a subset A0 ⊆ �4�5 is equicontinuous at all the points s ∈� and uniformly
bounded, then A0 ⊆�4�50

Theorem 5.1. Let �1, �2, and �3 be arbitrary metric spaces, ë4ds2 � s15 be a weakly continuous stochastic
kernel on �2 given �1, and a subset A0 ⊆�4�2 ×�35 be equicontinuous at all the points 4s21 s35 ∈�2 ×�3 and
uniformly bounded. If �2 is separable, then for every open set O in �2 the family of functions defined on �1 ×�3,

AO =

{

4s11 s35→

∫

O
f 4s21 s35ë4ds2 � s152 f ∈A0

}

1

is equicontinuous at all the points 4s11 s35 ∈�1 ×�3 and uniformly bounded.

Proof. The family A� consists of a single function, which is identically equal to 0. Thus, the statement of the
theorem holds when O= �0 Let O 6= �0 Since A0 ⊆�4�2 ×�35 is uniformly bounded, then

M= sup
f∈A0

sup
s2∈�2

sup
s3∈�3

�f 4s21 s35�<�1 (24)

and, since ë4ds2 � s15 is a stochastic kernel, the family of functions AO is uniformly bounded by M.
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Let us fix an arbitrary nonempty open set O⊆�2 and an arbitrary point 4s11 s35 ∈�1 ×�3. We shall prove that
AO ⊂ �4�1 ×�35 is equicontinuous at the point 4s11 s35. For any s ∈�2 and �> 0 denote by B�4s5 and B̄�4s5,
respectively, the open and closed balls in the metric space �2 of radius � with center s and by S�4s5 the sphere in
�2 of radius � with center s. Note that S�4s5= B̄�4s5\B�4s5 is the boundary of B�4s5. Every ball B�4s5 contains a
ball B�′4s5, 0 <�′ ≤ �, such that

ë4B̄�′4s5\B�′4s5 � s15=ë4S�′4s5 � s15= 01

that is, B�′4s5 is a continuity set for the probability measure ë4· � s15; Parthasarathy [25, p. 50]. Since O is an open
set in �2, for any s ∈ O there exists �s > 0 such that B�s

4s5 is a continuity set for a probability measure ë4· � s15
and B�s

4s5⊆ O. The family 8B�s
4s52 s ∈ O9 is a cover of O. Since �2 is a separable metric space, by Lindelöf’s

lemma, there exists a sequence 8s4j59j=1121 : : : ⊂ O such that 8B�
s4j5
4s4j552 j = 1121 : : : 9 is a cover of O. The sets

A415 2= B�
s415

4s41551 A425 2= B�
s425

4s4255\B�
s415

4s41551 : : : 1 A4j5 2= B�
s4j5
4s4j55

∖

(j−1
⋃

i=1

B�
s4i5
4s4i55

)

1 : : : 1

are continuity sets for the probability measure ë4· � s15. In view of Parthasarathy [25, Theorem 6.1(e), p. 40],

ë4A4j5
� s′

15→ë4A4j5
� s151 as s′

1 → s11 j = 1121 : : : 0 (25)

Moreover,
⋃

j=1121 : : :

A4j5
= O and A4i5

∩A4j5
= �1 for all i 6= j0 (26)

The next step of the proof is to show that for each j = 1121 : : :

sup
f∈A0

∣

∣

∣

∣

∫

A4j5
f 4s21 s

′

35ë4ds2 � s′

15−

∫

A4j5
f 4s21 s35ë4ds2 � s15

∣

∣

∣

∣

→ 0 as 4s′

11 s
′

35→ 4s11 s350 (27)

Fix an arbitrary j = 1121 : : : 0 If ë4A4j5 � s15= 0, then formula (27) directly follows from (25) and (24). Now let
ë4A4j5 � s15 > 0. Formula (25) implies the existence of such �> 0 that ë4A4j5 � s′

15 > 0 for all s′
1 ∈B�4s15. We

endow A4j5 with the induced topology from �2 and set

ëj4C � s′

15 2=
ë4C � s′

15

ë4A4j5 � s′
15
1 s′

1 ∈ B�4s151 C ∈B4A4j550

Formula (25) yields

ëj4ds2 � s′

15 converges weakly to ëj4ds2 � s151 in �4A4j55 as s′

1 → s10 (28)

According to Parthasarathy [25, Theorem 6.8, p. 51],

sup
f∈A0

∣

∣

∣

∣

∫

A4j5
f 4s21 s35ë4ds2 � s′

15−

∫

A4j5
f 4s21 s35ë4ds2 � s15

∣

∣

∣

∣

→ 01 as s′

1 → s10 (29)

Equicontinuity of A0 ⊆�4�2 ×�35 at all the points 4s21 s35 ∈�2 ×�3 and the inequality �f 4s′
21 s

′
35− f 4s′

21 s35� ≤
�f 4s′

21 s
′
35− f 4s21 s35� + �f 4s′

21 s35− f 4s21 s35� imply

lim sup
4s′21 s

′
35→4s21 s35

sup
f∈A0

�f 4s′

21 s
′

35− f 4s′

21 s35� = 01 for all s2 ∈�20 (30)

Thus, formulas (30) and (28) and Lemma 5.1(ii) imply

lim sup
4s′11 s

′
35→4s11 s35

sup
f∈A0

∣

∣

∣

∣

∫

A4j5
4f 4s21 s

′

35− f 4s21 s355ë4ds2 � s′

15

∣

∣

∣

∣

≤

∫

A4j5
lim sup

4s′21 s
′
35→4s21 s35

sup
f∈A0

�f 4s′

21 s
′

35− f 4s′

21 s35�ë4ds2 � s15= 00 (31)

Formula (27) follows from (29) and (31).
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Since, for all j = 1121 : : : and for all 4s′
11 s

′
35 ∈�1 ×�3,

sup
f∈A0

∣

∣

∣

∣

∫

A4j5
f 4s21 s

′

35ë4ds2 � s′

15−

∫

A4j5
f 4s21 s35ë4ds2 � s15

∣

∣

∣

∣

≤ 2Më4A4j5
� s15

and
∑�

j=1 ë4A4j5 � s15=ë4O � s15≤ 1, then equicontinuity of AO at the point 4s11 s35 follows from (26) and (27).
Indeed,

sup
f∈A0

∣

∣

∣

∣

∫

O
f 4s21 s

′

35ë4ds2 � s′

15−

∫

O
f 4s21 s35ë4ds2 � s15

∣

∣

∣

∣

≤
∑

j=1121 : : :

sup
f∈A0

∣

∣

∣

∣

∫

A4j5
f 4s21 s

′

35ë4ds2 � s′

15−

∫

A4j5
f 4s21 s35ë4ds2 � s15

∣

∣

∣

∣

→ 01 as 4s′

11 s
′

35→ 4s11 s350

As 4s11 s35 ∈�1 ×�3 is arbitrary, the above inequality implies that AO is equicontinuous at all the points
4s11 s35 ∈�1 ×�3. In particular, AO ⊆�4�1 ×�35. �

For a set B ∈B4�5, let RB be the following family of functions defined on �4�5×�:

RB = 84z1a5→R4B×C � z1a52 C ∈B4�590 (32)

Lemma 5.2. Let the stochastic kernel P4dx′ � x1a5 on � given �×� be weakly continuous and the stochastic
kernel Q4dy � a1x5 on � given �×� be continuous in total variation. Consider the stochastic kernel R4· � z1a5
on �×� given �4�5×� defined in formula (4). Then, for every pair of open sets O1 and O2 in �, the
family of functions RO1\O2

defined on �4�5×� is uniformly bounded and is equicontinuous at all the points
4z1 a5 ∈�4�5×�, that is, for all z1 z4n5 ∈�4�5, a1a4n5 ∈�, n= 1121 : : : , such that z4n5 → z weakly and a4n5 → a,

sup
C∈B4�5

�R44O1\O25×C � z4n51 a4n55−R44O1\O25×C � z1a5� → 00 (33)

Proof. Since R is a stochastic kernel, all the functions in the family RO1\O2
are nonnegative and bounded

above by 1. Thus, this family is uniformly bounded. The remaining proof establishes the equicontinuity of RO1\O2
at

all the points 4z1 a5 ∈�4�5×�. First we show that RO is equicontinuous at all the points 4z1 a5 when O is an open
set in �. Theorem 5.1, with �1 =�×�, �2 =�, �3 =�, O= O, ë = P1 and A0 = 84a1 x5→Q4C � a1x52 C ∈

B4�59⊆�4�×�5, implies that the family of functions A1
O = 84x1a5→

∫

OQ4C � a1x′5P4dx′ � x1a52 C ∈B4�59
is equicontinuous at all the points 4x1a5 ∈�×�. In particular, A1

O ⊆�4�×�5. Thus, Theorem 5.1, with
�1 =�4�5, �2 =�, �3 =�, O=�, ë4B � z5= z4B5, B ∈B4�5, z ∈�4�5, and A0 =A1

O, implies that the family
RO is equicontinuous at all the points 4z1 a5 ∈�4�5×�. Second, let O1 and O2 be arbitrary open sets in �. Then
the families of functions RO1

, RO2
, and RO1∪O2

are equicontinuous at all the points 4z1 a5 ∈�4�5×�. Thus, for
all z1 z4n5 ∈�4�5, a1a4n5 ∈�, n= 1121 : : : , such that z4n5 → z weakly and a4n5 → a,

sup
C∈B4�5

∣

∣R44O1\O25×C � z4n51 a4n55−R44O1\O25×C � z1a5
∣

∣

≤ sup
C∈B4�5

∣

∣R44O1 ∪O25×C � z4n51 a4n55−R44O1 ∪O25×C � z1a5
∣

∣

+ sup
C∈B4�5

∣

∣R4O2 ×C � z4n51 a4n55−R4O2 ×C � z1a5
∣

∣→ 01 (34)

that is, the family of functions RO1\O2
is equicontinuous at all the points 4z1a5 ∈�4�5×�. �

Corollary 5.1. Let assumptions of Lemma 5.2 hold. Then the stochastic kernel R′4dy � z1a5 on � given
�4�5×�, defined in formula (5), is continuous in total variation.

Proof. This corollary follows from Lemma 5.2 applied to O1 =� and O2 = �. �
Theorem 5.2 (cp. Feinberg et al. [18, Corollary 1.8]). Let � be an arbitrary metric space, 8h1h4n59n=1121 : : :

be Borel-measurable uniformly bounded real-valued functions on �, 8�4n59n=1121 : : : ⊂�4�5 converges in total
variation to � ∈�4�5, and

sup
S∈B4�5

∣

∣

∣

∣

∫

S
h4n54s5�4n54ds5−

∫

S
h4s5�4ds5

∣

∣

∣

∣

→ 01 as n→ �0 (35)

Then 8h4n59n=1121 : : : converges in probability � to h, and therefore there is a subsequence 8h4nk59k=1121 : : : ⊆

8h4n59n=1121 : : : such that 8h4nk59k=1121 : : : converges � almost surely to h0
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Proof. Fix an arbitrary �> 0 and set

S4n1+5 2= 8s ∈�2 h4n54s5−h4s5≥ �91 S4n1−5 2= 8s ∈�2 h4s5−h4n54s5≥ �91

S4n5 2= 8s ∈�2 �h4n54s5−h4s5� ≥ �9= S4n1+5
∪ S4n1−51 n= 1121 : : : 0

Note that for all n= 1121 : : :

��4n54S4n1+55≤

∫

S4n1+5
h4n54s5�4n54ds5−

∫

S4n1+5
h4s5�4n54ds5

≤

∣

∣

∣

∣

∫

S4n1+5
h4n54s5�4n54ds5−

∫

S4n1+5
h4s5�4ds5

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

S4n1+5
h4s5�4n54ds5−

∫

S4n1+5
h4s5�4ds5

∣

∣

∣

∣

0 (36)

The convergence in total variation of �4n5 to � ∈�4�5 implies that
∣

∣

∣

∣

∫

S4n1+5
h4s5�4n54ds5−

∫

S4n1+5
h4s5�4ds5

∣

∣

∣

∣

→ 0 and
∣

∣�4n54S4n1+55−�4S4n1+55
∣

∣→ 01 as n→ �0 (37)

Formula (35) yields �
∫

S4n1+5 h
4n54s5�4n54ds5−

∫

S4n1+5 h4s5�4ds5� → 0 as n→ �. Thus, in view of (36) and (37),

�4S4n1+55→ 01 as n→ �0 (38)

Being applied to the functions 8−h1−h4n59n=1121 : : : , formula (38) implies that �4S4n1−55→ 0 as n→ �0 This fact
and (38) yield �4S4n55=�4S4n1+55+�4S4n1−55→ 0 as n→ �0 Since � > 0 is arbitrary, 8h4n59n=1121 : : : converges to
h in probability � and, therefore, 8h4n59n=1121 : : : contains a subsequence 8h4nk59k=1121 : : : that converges � almost
surely to h. �

Lemma 5.3. If the topology on � has a countable base �b = 8O4j59j=1121 : : : such that, for each finite
intersection O =

⋂N
i=1 O

4ji5 of its elements O4ji5 ∈ �b1 i = 1121 : : : 1N , the family of functions RO defined in
(32) is equicontinuous at all the points 4z1a5 ∈�4�5×�, then for any sequence 84z4n51a4n559n=1121 : : : 1 such
that 8z4n59n=1121 : : : ⊆�4�5 converges weakly to z ∈�4�5 and 8a4n59n=1121 : : : ⊆� converges to a, there exists a
subsequence 84z4nk51 a4nk559k=1121 : : : and a set C∗ ∈B4�5 such that

R′4C∗
� z1a5= 1 and H4· � z4nk51 a4nk51 y5 converges weakly to H4· � z1a1 y51 for all y ∈C∗1 (39)

and, therefore, Assumption (H) holds.

As explained in Feinberg et al. [17, Remark 4.5], the intersection assumption in Lemma 5.3 is equivalent to the
similar assumption for finite unions.

Proof of Lemma 5.3. According to Billingsley [9, Theorem 2.1] or Shiryaev [32, p. 311], (39) holds if there
exists a subsequence 84z4nk51 a4nk559k=1121 : : : of the sequence 84z4n51 a4n559n=1121 : : : and a set C∗ ∈B4�5 such that

R′4C∗
� z1a5= 1 and lim inf

k→�
H4O � z4nk51 a4nk51 y5≥H4O � z1a1 y51 for all y ∈C∗1 (40)

for all open sets O in �. The rest of the proof establishes the existence of a subsequence 84z4nk51 a4nk559k=1121 : : : of
the sequence 84z4n51 a4n559n=1121 : : : and a set C∗ ∈B4�5 such that (40) holds for all open sets O in �.

Let A1 be a family of all the subsets of � that are finite unions of sets from �b, and let A2 be a family of all
subsets B of � such that B = Õ\O′ with Õ ∈ �b and O′ ∈A1. Observe that (i) both A1 and A2 are countable, (ii)
any open set O in � can be represented as

O=
⋃

j=1121 : : :

O4j115
=

⋃

j=1121 : : :

B4j1151 for some O4j115
∈ �b1 j = 1121 : : : 1 (41)

where B4j115 = O4j115\4
⋃j−1

i=1 O
4i1155 are disjoint elements of A2 (it is allowed that O4j115 = � or B4j115 = � for some

j = 1121 : : : ).
To prove (40) for all open sets O in �, we first show that there exists a subsequence 84z4nk51 a4nk559k=1121 : : : of

the sequence 84z4n51 a4n559n=1121 : : : and a set C∗ ∈B4�5 such that (40) holds for all O ∈A20
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Consider an arbitrary O∗ ∈A10 Then O∗ =
⋃n

i=1 O
4ji5 for some n= 1121 : : : 1 where O4ji5 ∈ �b1 i = 11 : : : 1 n0 Let

A4n5 = 8
⋂k

m=1 O
4im52 8i11 i21 : : : 1 ik9⊆ 8j11 j21 : : : 1 jn99 be the finite set of possible intersections of O4j151 : : : 1O4jn50

The principle of inclusion exclusion implies that for O∗ =
⋃n

i=1 O
4ji51 C ∈B4�5, z1 z′ ∈�4�51 and a1a′ ∈�,

∣

∣R4O∗
×C � z1a5−R4O∗

×C � z′1 a′5
∣

∣≤
∑

B∈A4n5

∣

∣R4B×C � z1a5−R4B×C � z′1 a′5
∣

∣0 (42)

In view of the assumption of the lemma regarding finite intersections of the elements of the base �b, for each
O∗ ∈A1 the family RO∗ is equicontinuous at all the points 4z1 a5 ∈�4�5×�. Inequality (34) implies that for each
B ∈A2 the family RB is equicontinuous at all the points 4z1a5 ∈�4�5×�, that is, (33) holds with arbitrary
O1 ∈ �b and O2 ∈A1. This fact along with the definition of H (see (6)) means that

lim
n→�

sup
C∈B4�5

∣

∣

∣

∣

∫

C
H4B � z4n51 a4n51 y5R′4dy � z4n51 a4n55−

∫

C
H4B � z1a1 y5R′4dy � z1a5

∣

∣

∣

∣

= 0 (43)

for all B ∈A2.
Since the set A2 is countable, let A2 2= 8B4j52 j = 1121 : : : 90 Denote z4n105 = z4n5, a4n105 = a4n5 for all n=

1121 : : : 0 For j = 1121 : : : , from (43) and Theorem 5.2 with �=�, s = y, h4n54s5=H4B4j5 � z4n1 j−151 a4n1 j−151 y5,
�4n54 · 5= R′4· � z4n1 j−151a4n1 j−155, h4s5=H4B4j5 � z1a1 y5, and �4 · 5= R′4· � z1a5, there exists a subsequence
84z4n1 j51 a4n1 j559n=1121 : : : of the sequence 84z4n1 j−151 a4n1 j−1559n=1121 : : : and a set C4∗1 j5 ∈B4�5 such that

R′4C4∗1 j5
� z1a5= 1 and lim

n→�
H4B4j5

� z4n1 j51 a4n1 j51 y5=H4B4j5
� z1a1 y51 for all y ∈C4∗1 j50 (44)

Let C∗ 2=
⋂�

j=1 C
4∗1 j5. Observe that R′4C∗ � z1a5= 1. Let z4nk5 = z4k1 k5 and a4nk5 = a4k1 k51 k = 1121 : : : 0 As

follows from Cantor’s diagonal argument, (40) holds with O= B4j5 for all j = 1121 : : : 0 In other words, (40) holds
for all O ∈A20

Let O be an arbitrary open set in � and B411151B421151 : : : be disjoint elements of A2 satisfying (41). Countable
additivity of probability measures H4· � ·1 ·5 implies that for all y ∈C∗

lim inf
k→�

H4O � z4nk51 a4nk51 y5= lim inf
k→�

�
∑

j=1

H4B4j115
� z4nk51 a4nk51 y5

≥

�
∑

j=1

lim
k→�

H4B4j115
� z4nk51 a4nk51 y5=

�
∑

j=1

H4B4j115
� z1a1 y5=H4O � z1a1 y51

where the inequality follows from Fatou’s lemma. Since R′4C∗ � z1a5= 1, (40) holds. �

Proof of Theorem 3.6. The setwise continuity of the stochastic kernel R′ follows from Corollary 5.1 that
states the continuity of R′ in total variation. The validity of Assumption (H) follows from Lemmas 5.2 and 5.3.
In particular, �b is any countable base of the state space �, and, in view of Lemma 5.2, the family RO is
equicontinuous at all the points 4z1 a5 ∈�4�5×� for each open set O in �1 which implies that the assumptions of
Lemma 5.3 hold. �

6. Preservation of properties of one-step costs and proof of Theorem 3.3. As shown in this section, the
reduction of a POMDP to the COMDP preserves properties of one-step cost functions that are needed for the
existence of optimal policies. These properties include inf-compactness and �-inf-compactness. In particular, in
this section we prove Theorem 3.3 and thus complete the proof of Theorem 3.2.

We recall that an �̄-valued function f 1 defined on a nonempty subset U of a metric space �1 is called
inf-compact on U if all the level sets 8y ∈ U2 f 4y5≤ �9, � ∈�, are compact. A function f is called lower
semicontinuous if all the level sets are closed.

The notion of a �-inf-compact function c4x1a51 defined in section 2 for a function c2 �×�→ �̄1 is also
applicable to a function f 2 �1 ×�2 → �̄, where �1 and �2 are metric spaces, or certain more general toplogical
spaces; see Feinberg et al. [15, 13] for details, where the properties of �-inf-compact functions are described. In
particular, according to Feinberg et al. [15, Lemma 2.1], if a function f is inf-compact on �1 ×�2 then it is
�-inf-compact on �1 ×�2. According to Feinberg et al. [15, Lemmas 2.2, 2.3], a �-inf-compact function f on
�1 ×�2 is lower semicontinuous on �1 ×�2, and, in addition, for each s1 ∈�1, the function f 4s11 ·5 is inf-compact
on �2.
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Lemma 6.1. If the function c2 �×�→ �̄ is bounded below and lower semicontinuous on �×�, then the
function c̄2 �4�5×�→ �̄ defined in (11) is bounded below and lower semicontinuous on �4�5×�.

Proof. The statement of this lemma directly follows from the generalized Fatou’s Lemma 5.1(ii). �
The inf-compactness of c on �×� implies the inf-compactness of c̄ on �4�5×�. We recall that an

inf-compact function on �×� with values in �̄=�∪ 8+�9 is bounded below on �×�.

Theorem 6.1. If c2 �×�→ �̄ is an inf-compact function on �×�, then the function c̄2 �4�5×�→ �̄
defined in (11) is inf-compact on �4�5×�.

Proof. Let c2 � × � → �̄ be an inf-compact function on � × �. Fix an arbitrary � ∈ �. To prove
that the level set Dc̄4�3�4�5 × �5 = 84z1a5 ∈ �4�5 × �2 c̄4z1a5 ≤ �9 is compact, consider an arbitrary
sequence 84z4n51 a4n559n=1121 : : : ⊂Dc̄4�3�4�5×�5. It is enough to show that 84z4n51 a4n559n=1121 : : : has a limit point
4z1a5 ∈Dc̄4�3�4�5×�5.

Let us show that the sequence of probability measures 8z4n59n=1121 : : : has a limit point z ∈ �4�5. Define
�<+� 2=�\�+�, where �+� 2= 8x ∈�2 c4x1a5= +� for all a ∈�9.

The inequalities
∫

�
c4x1a4n55z4n54dx5≤ �1 n= 1121 : : : 1 (45)

imply that z4n54�+�5= 0 for each n= 1121 : : : 0 Thus (45) transforms into
∫

�<+�

c4x1a4n55z4n54dx5≤ �1 n= 1121 : : : 0 (46)

By definition of inf-compactness, the function c2 �×� → �̄ is inf-compact on �<+� ×�. According to
Feinberg et al. [14, Corollary 3.2], the real-valued function �4x5 = infa∈� c4x1a5, x ∈ �<+�, with values
in �, is inf-compact on �<+�. Furthermore, (46) implies that

∫

�<+�
�4x5z4n54dx5≤ �1 n= 1121 : : : 0 Thus,

Hernández-Lerma and Lassere [21, Proposition E.8] and Prohorov’s Theorem (Hernández-Lerma and Lassere [21,
Theorem E.7]) yield relative compactness of the sequence 8z4n59n=1121 : : : in �4�<+�5. Thus there exists a
subsequence 8z4nk59k=1121 : : : ⊆ 8z4n59n=1121 : : : and a probability measure z ∈�4�<+�5 such that z4nk5 converges to z
in �4�<+�5. Let us set z4�+�5= 0. As z4n54�+�5= 0 for all n= 1121 : : : , then the sequence of probability
measures 8z4nk59k=1121 : : : converges weakly and its limit point z belongs to �4�5.

The sequence 8a4nk59k=1121 : : : has a limit point a ∈�. Indeed, inequality (45) implies that for any k = 1121 : : :
there exists at least one x4k5 ∈� such that c4x4k51 a4nk55≤ �. The inf-compactness of c2 �×�→ �̄ on �×�
implies that 8a4k59k=1121 : : : has a limit point a∈�. To finish the proof, note that Lemma 6.1, the generalized
Fatou’s Lemma 5.1(ii), and (45) imply that

∫

� c4x1a5z4dx5≤ �0 �
Proof of Theorem 3.3. If c is bounded below on �×�, then formula (11) implies that c̄ is bounded below

on �4�5×� by the same lower bound as c0 Thus, it is enough to prove the �-inf-compactness of c̄ on �4�5×�.
Let a sequence of probability measures 8z4n59n=1121 : : : on � weakly converges to z ∈�4�5. Consider an arbitrary

sequence 8a4n59n=1121 : : : ⊂� satisfying the condition that the sequence 8c̄4z4n51 a4n559n=1121 : : : is bounded above.
Observe that 8a4n59n=1121 : : : has a limit point a ∈�0 Indeed, boundedness below of the �̄-valued function c on
�×� and the generalized Fatou’s Lemma 5.1(ii) imply that for some �<+�

∫

�
c4x5z4dx5≤ lim inf

n→�

∫

�
c4x1a4n55z4n54dx5≤ �1 (47)

where
c4x5 2= lim inf

y→x1n→�
c4y1a4n550 (48)

Inequalities (47) imply the existence of x405 ∈ � such that c4x4055 ≤ �. Therefore, formula (48) implies the
existence of a subsequence 8a4nk59k=1121 : : : ⊆ 8a4n59n=1121 : : : and a sequence 8y4k59k=1121 : : : ⊂� such that y4k5 → x405

as k→ � and c4y4k51a4nk55≤ �+ 1 for k= 1121 : : : 0 Since c2 �×�→ �̄ is �-inf-compact on �×�, the
sequence 8a4nk59k=1121 : : : has a limit point a ∈�, which is the limit point of the initial sequence 8a4n59n=1121 : : : .
Thus, the function c̄ is �-inf-compact on �4�5×�0 �

Arguments similar to the proof of Theorem 3.3 imply the inf-compactness of c̄4z1 a5 in a ∈� for any z ∈�4�5,
if c4x1a5 is inf-compact in a ∈� for any x ∈�.

Theorem 6.2. If the function c4x1a5 is inf-compact in a ∈� for each x ∈� and bounded below on �×�,
then the function c̄4z1 a5 is inf-compact in a ∈� for each z ∈�4�5 and bounded below on �4�5×�.
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Proof. Fix z ∈ �4�5 and consider a sequence 8a4n59n=1121 : : : in � such that c4z1a4n55 ≤ � for some
� < �1 n= 1121 : : : 0 The classic Fatou’s lemma implies that (47) holds with z4n5 = z, n= 1121 : : : 1 and
c4x5= lim infn→� c4x1 a4n551 x ∈�0 Thus, there exists x405 ∈� such that lim infn→� c4x4051 a4n55≤ �. This together
with the inf-compactness of c4x4051 a5 in a ∈� implies that the sequence 8a4n59n=1121 : : : has a limit point in �. �

Proof of Theorem 3.2. Theorem 3.2 follows from Theorems 3.1, 3.3, and 3.4. �

7. Combining Assumption (H) and the weak continuity of H . Theorem 3.2 assumes either the weak
continuity of H or Assumption (H) together with the setwise continuity of R′. For some applications, see, e.g.,
§8.2 that deals with inventory control, the filtering kernel H satisfies Assumption (H) for some observations and it
is weakly continuous for other observations. The following theorem is applicable to such situations.

Theorem 7.1. Let the observation space � be partitioned into two disjoint subsets �1 and �2 such that �1 is
open in �. If the following assumptions hold:

(a) the stochastic kernels P on � given �×� and Q on � given �×� are weakly continuous;
(b) the measure R′4· � z1a5 on 4�21B4�255 is setwise continuous in 4z1a5∈�4�5×�1 that is, for every

sequence 84z4n51 a4n559n=1121 : : : in �4�5×� converging to 4z1 a5 ∈�4�5×� and for every C ∈B4�251 we have
R′4C � z4n51 a4n55→R′4C � z1a53

(c) there exists a stochastic kernel H on � given �4�5×�×� satisfying (6) such that
(i) the stochastic kernel H on � given �4�5×�×�1 is weakly continuous;

(ii) Assumption (H) holds on �2, that is, if a sequence 8z4n59n=1121 : : : ⊆�4�5 converges weakly to z ∈�4�5
and a sequence 8a4n59n=1121 : : : ⊆� converges to a ∈�, then there exists a subsequence 84z4nk51 a4nk559k=1121 : : : ⊆

84z4n51 a4n559n=1121 : : : and a measurable subset C of �2 such that R′4�2\C � z1 a5= 0 and H4z4nk51 a4nk51 y5 converges
weakly to H4z1a1 y5 for all y ∈C;
then the stochastic kernel q on �4�5 given �4�5×� is weakly continuous. If, in addition to the above conditions,
assumptions (a) and (b) from Theorem 3.2 hold, then the COMDP 4�4�51�1 q1 c̄5 satisfies Assumption (W∗) and
therefore statements (i)–(vi) of Theorem 3.1 hold.

Proof. The stochastic kernel q4dz′ � z1a5 on �4�5 given �4�5×� is weakly continuous if and only if for
every open set D in �4�5 the function q4D � z1 a5 is lower semicontinuous in 4z1 a5 ∈�4�5×�; see Billingsley [9,
Theorem 2.1]. Thus, if q is not weakly continuous, there exist an open set D in �4�5 and sequences z4n5 → z
weakly and a4n5 → a, where z1 z4n5 ∈�4�5 and a1a4n5 ∈�, n= 1121 : : : 1 such that

lim inf
n→�

q4D � z4n51 a4n55 < q4D � z1a50

Then there exists �∗ > 0 and a subsequence 84z4n1151a4n11559n=1121 : : : ⊆ 84z4n51a4n559n=1121 : : : such that for all
n= 1121 : : :

∫

�1

I8H4z4n1151 a4n1151 y5 ∈D9R′4dy � z4n1151 a4n1155+

∫

�2

I8H4z4n1151 a4n1151 y5 ∈D9R′4dy � z4n1151 a4n1155

= q4D � z4n1151 a4n1155≤ q4D � z1a5− �∗ (49)

=

∫

�1

I8H4z1a1 y5 ∈D9R′4dy � z1a5+

∫

�2

I8H4z1a1 y5 ∈D9R′4dy � z1a5− �∗1

where the stochastic kernel H on � given �4�5×�×� satisfies (6) and assumption (c) of Theorem 7.1.
Since �1 is an open set in � and the stochastic kernel H on � given �4�5×�×�1 is weakly continuous, for

all y ∈�1

lim inf
n→�
y′→y

I8H4z4n1151 a4n1151 y′5 ∈D9= lim inf
n→�

y′→y1 y′∈�1

I8H4z4n1151 a4n1151 y′5 ∈D9≥ I8H4z1a1 y5 ∈D90 (50)

The weak continuity of the stochastic kernels P and Q on � given �×� and on � given �×�, respectively,
imply the weak continuity of the stochastic kernel R′ on � given �4�5×�; see Hernández-Lerma [20, p. 92].
Therefore,

lim inf
n→�

∫

�1

I8H4z4n1151 a4n1151 y5 ∈D9R′4dy � z4n1151 a4n1155

≥

∫

�1

lim inf
n→�1 y′→y

I8H4z4n1151 a4n1151 y′5 ∈D9R′4dy � z4n1151 a4n1155

≥

∫

�1

I8H4z1a1 y5 ∈D9R′4dy � z1a51 (51)

where the first inequality follows from Lemma 5.1(ii) and the second one follows from formula (50).
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The inequality

lim sup
n→�

∫

�2

I8H4z4n1151 a4n1151 y5 ∈D9R′4dy � z4n1151 a4n1155≥

∫

�2

I8H4z1a1 y5 ∈D9R′4dy � z1a5 (52)

together with (51) contradicts (49). This contradiction implies that q4· � z1a5 is a weakly continuous stochastic
kernel on �4�5 given �4�5×�.

To complete the proof of Theorem 7.1, we prove inequality (52). If R′4�2 � z1 a5= 0, then inequality (52) holds.
Now let R′4�2 � z1a5 > 0. Since R′4�2 � z4n1151 a4n1155→R′4�2 � z1a5 as n→ �, there exists N = 1121 : : : such
that R′4�2 � z4n1151 a4n1155 > 0 for any n≥N . We endow �2 with the same metric as in � and set

R′

14C � z′1 a′5 2=
R′4C � z′1 a′5

R′4�2 � z′1 a′5
1 z′

∈�4�51 a′
= a ∈�1 C ∈B4�250

Assumption (b) of Theorem 7.1 means that the stochastic kernel R′
14dy � z1a5 on �2 given �4�5×� is setwise

continuous. Assumption (ii) of Theorem 7.1 implies the existence of a subsequence 84z4n1251 a4n12559n=1121 : : : ⊆

84z4n1151 a4n11559n=1121 : : : and a measurable subset C of �2 such that R′
14�2\C � z1a5= 0 and H4z4n1251 a4n1251 y5

converges weakly to H4z1a1 y5 as n→ � for all y ∈C. Therefore, since D is an open set in �4�5, we have

lim inf
k→�

I8H4z4n1251 a4n1251 y5 ∈D9≥ I8H4z1a1 y5 ∈D91 y ∈C0 (53)

Formula (53), the setwise continuity of the stochastic kernel R′
1 on �2 given �4�5×�, and Lemma 5.1(i) imply

1
R′4�2 � z1a5

lim inf
k→�

∫

�2

I8H4z4n1251 a4n1251 y5 ∈D9R′4dy � z4n1251 a4n1255

≥ lim inf
k→�

∫

�2
I8H4z4n1251 a4n1251 y5 ∈D9R′4dy � z4n1251 a4n1255

R′4�2 � z4n1251 a4n1255
≥

∫

�2
I8H4z1a1 y5 ∈D9R′4dy � z1a5

R′4�2 � z1a5
1

and thus (52) holds. �

Corollary 7.1. Let the observation space � be partitioned into two disjoint subsets �1 and �2 such that �1

is open in � and �2 is countable. If the following assumptions hold:
(a) the stochastic kernels P on � given �×� and Q on � given �×� are weakly continuous;
(b) Q4y � a1x5 is a continuous function on �×� for each y ∈�23
(c) there exists a stochastic kernel H on � given �4�5×�×� satisfying (6) such that the stochastic kernel

H on � given �4�5×�×�1 is weakly continuous;
then assumptions (b) and (ii) of Theorem 7.1 hold, and the stochastic kernel q on �4�5 given �4�5×� is
weakly continuous. If, in addition to the above conditions, assumptions (a) and (b) from Theorem 3.2 hold, then
the COMDP 4�4�51�1 q1 c̄5 satisfies Assumption (W∗) and therefore statements (i)–(vi) of Theorem 3.1 hold.

Proof. To prove the corollary, it is sufficient to verify conditions (b) and (ii) of Theorem 7.1. For each
B ∈ B4�5 and for each y ∈ �2, Hernández-Lerma [20, Appendix C, Proposition C.2(b)], being repeatedly
applied to formula (4) with C = 8y91 implies the continuity of R4B × 8y9 � z1a5 in 4z1a5 ∈ �4�5 × �.
In particular, the function R′4y � ·1 ·5 is continuous on �4�5 × �. If R′4y � z1a5 > 0 then, in view of (6),
H4B � z1a1 y5=R4B× 8y9 � z1a5/R′4y � z1a5, and, if y is fixed, this function is continuous at the point 4z1a50
Thus, condition (ii) of Theorem 7.1 holds. Since the set �2 is closed in �, the function Q4�2 � a1x5 is upper
semicontinuous in 4a1x5∈�×�0 The generalized Fatou’s Lemma 5.1, being repeatedly applied to (5) with
C =�2, implies that R′4�2 � z1a5 is upper semicontinuous in 4z1a5 ∈�4�5×�. This implies that, for every
Y ⊆�2 and for every sequence 84z4n51 a4n559n=1121 : : : ⊂�4�5×� converging to 4z1a5 ∈�4�5×�1

�R′4Y � z4n51 a4n55−R′4Y � z1a5� ≤
∑

y∈�2

�R′4y � z4n51 a4n55−R′4y � z1a5� → 0 as n→ �1

where the convergence takes place because of the same arguments as in the proof of Corollary 3.8. Thus,
condition (b) of Theorem 7.1 holds. �

Remark 7.1. All the statements in this paper, that deal with finite-horizon problems under Assumption (D),
including the corresponding statements in Theorems 2.1 and 3.1, hold for all �≥ 0 rather than just for � ∈ 601150
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8. Examples of applications. To illustrate theoretical results, they are applied in this section to three
particular models: (i) problems defined by stochastic equations; see Striebel [34], Bensoussan [3], and Hernández-
Lerma [20, p. 83]; (ii) inventory control; and (iii) Markov decision model with incomplete information.

8.1. Problems defined by stochastic equations. Let 8�t9t=0111 : : : be a sequence of identically distributed
random variables with values in � and with the distribution �0 Let 8�t9t=0111 : : : be a sequence of random variables
uniformly distributed on 40115. An initial state x0 is a random variable with values in �. It is assumed that the
random variables x01 �01�01 �11�11 : : : are defined on the same probability space and mutually independent.
Consider a stochastic partially observable control system

xt+1 = F 4xt1 at1 �t51 t = 0111 : : : 1 (54)

yt+1 =G4at1 xt+11�t+151 t = 0111 : : : 1 (55)

where F and G are given measurable functions from �×�×� to � and from �×�× 40115 to �, respectively.
The initial observation is y0 =G04x01�051 where G0 is a measurable function from �× 40115 to �. The states xt
are not observable, whereas the states yt are observable. The goal is to minimize the expected total discounted
costs.

Instead of presenting formal definitions of the functions at , we describe the above problem as a POMDP with
the state space �=�, observation space �=�, and action space �=�. The transition law is

P4B � x1a5=

∫

�
I8F 4x1a1 s5 ∈ B9�4ds51 B ∈B4�51 x ∈�1 a ∈�0 (56)

The observation kernel is

Q4C � a1x5=

∫

40115
I8G4a1x1 s5 ∈C9�4ds51 C ∈B4�51 a ∈�1 x ∈�1

where � ∈�4401155 is the Lebesgue measure on 40115. The initial state distribution p is the distribution of the
random variable x0, and the initial observation kenel Q04C � x5=

∫

40115 I8G04x1 s5 ∈C9�4ds5 for all C ∈B4�̄5 and
for all x ∈�.

Assume that 4x1 a5→ F 4x1a1 s5 is a continuous mapping on �×� for �-a.e. s ∈�. Then the stochastic kernel
P4dx′ � x1a5 on � given �×� is weakly continuous; see Hernández-Lerma [20, p. 92].

Assume that (i) G is a continuous mapping on �×�× 40115, (ii) the partial derivative g4x1 y1 s5= ¡G4x1 y1 s5/¡s
exists everywhere and is continuous, and (iii) there exists a constant �> 0 such that �g4a1 x1 s5� ≥ � for all a ∈�,
x ∈�, and s ∈ 40115. Denote by G the inverse function for G with respect the last variable. Assume that G is
continuous.

Let us prove that under these assumptions the observation kernel Q on � given �×� is continuous in total
variation. For each � ∈ 401 1

2 5, for each Borel set C ∈B4�5, and for all 4a′1 x′51 4a1 x5 ∈�×�

�Q4C � a′1 x′5−Q4C � a1x5� =

∣

∣

∣

∣

∫ 1

0
I8G4a′1 x′1 s5 ∈C9�4ds5−

∫ 1

0
I8G4a1x1 s5 ∈C9�4ds5

∣

∣

∣

∣

≤ 4�+

∣

∣

∣

∣

∫ 1−�

�
I8G4a′1 x′1 s5 ∈C9�4ds5−

∫ 1−�

�
I8G4a1x1 s5 ∈C9�4ds5

∣

∣

∣

∣

= 4�+

∣

∣

∣

∣

∫

G4a′1 x′1 6�11−�75

I8s̃ ∈C9

g4a′1 x′1G4a′1 x′1 s̃55
�̃4ds̃5−

∫

G4a1x1 6�11−�75

I8s̃ ∈C9

g4a1x1G4a1 x1 s̃55
�̃4ds̃5

∣

∣

∣

∣

≤ 4�+
�G4a′1 x′1 �5−G4a1x1�5� + �G4a′1 x′11 − �5−G4a1x11 − �5�

�

+
1
�2

∫

G4a1x1 6�11−�75∩G4a′1 x′1 6�11−�75

∣

∣g4a′1 x′1G4a′1 x′1 s̃55− g4a1x1G4a1 x1 s̃55
∣

∣�̃4ds̃51

where �̃ is the Lebesgue measure on �, the second equality holds because of the changes s̃ =G4a′1 x′1 s5 and
s̃ =G4a1x1 s5 in the corresponding integrals, and the second inequality follows from direct estimations. Since, the
function G is continuous, G4a′1 x′1 �5→G4a1x1�5 and G4a′1 x′11 − �5→G4a1x11 − �5 as 4a′1 x′5→ 4a1 x5, for
any 4a1 x1�5 ∈�×�× 401 1

2 5. Thus, if
∫

�
D4a1x1a′1 x′1 �1 s̃5�̃4ds̃5→ 0 as 4a′1 x′5→ 4x1a51 (57)
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where D4a1x1a′1 x′1 �1 s̃5 2= �g4a′1 x′1G4a′1 x′1 s̃55 − g4a1x1G4a1 x1 s̃55�, when s̃ ∈ G4a1x1 6�11 − �75 ∩

G4a′1 x′1 6�11 − �75, and D4a1x1a′1 x′1 �1 s̃5= 0 otherwise, then

lim
4a′1 x′5→4a1 x5

sup
C∈B4�5

�Q4C � a′1 x′5−Q4C � a1x5� = 00

So, to complete the proof of the continuity in total variation of the observation kernel Q on � given
� × �, it is sufficient to verify (57). We fix an arbitrary vector 4a1x1�5 ∈ � × � × 401 1

2 5 and consider
arbitrary converging sequences a4n5 → a and x4n5 → x. Let 4a′1 x′5= 4a4n51 x4n55, n= 1121 : : : 0 Since the sets
K 2= 84a4n51 x4n552 n = 1121 : : : 9∪ 84a1x59 and 6�11 − �7 are compact and the function g is continuous on
�×�× 40115, the function �g� is bounded above on the compact set K × 6�11 − �7 by a positive constant M .
Thus, the integrand in (57) is bounded above by 2M on the compact set G4K × 6�11 − �75 and is equal to 0 on its
complement. Since G, g1 and G are continuous functions, for each s̃ ∈� the integrand in (57) converges to 0 as
4a′1 x′5→ 4a1x5. Therefore, (57) follows from the dominated convergence theorem, because the Lebeasgue
measure of the set G4K × 6�11 − �75 is finite since this set is compact.

Finally, we assume that the one-period cost function c2 �×�→ �̄ is bounded below and �-inf-compact. Thus,
the assumptions of Theorem 3.5 are satisfied. Therefore, for this COMDP there exists a stationary optimal policy,
the optimality equations hold, and value iterations converge to the optimal value.

We remark that the one-dimensional Kalman filter in discrete time satisfies the above assumptions. In this case,
F 4xt1 at1 �t5= d∗xt + b∗at + �t and G4at1 xt+11�t+15= h∗xt+1 + c∗ê−14�t+151 where c∗ 6= 0 and ê−1 is the inverse
to the cumulative distribution function of a standard normal distribution (ê−14�t+15 is a standard normal random
variable). In particular, �g4a1x1 s5� = �c∗�42�51/2eê

−14s52/2 ≥ �c∗�42�51/2 > 0 for all s ∈ 60117. Thus, if the cost
function c4x1 a5 is �-inf-compact, then the conclusions of Theorem 3.5 hold for the Kalman filter. In particular, the
quadratic cost function c4x1a5= c1x

2 + c2a
2 is �-inf-compact if c1 ≥ 0 and c2 > 0. Thus, the linear quadratic

Gaussian control problem is a particular case of this model. The one-step cost functions c4x1a5= 4a− x52 and
c4x1 a5= �x− a�1 which are typically used for identification problems, are also �-inf-compact. However, these two
functions are not inf-compact. This illustrates the usefulness of the notion of �-inf-compactness.

8.2. Inventory control with incomplete records. This example is motivated by Bensoussan et al. [4, 5, 6, 7],
where several inventory control problems for periodic review systems, when the inventory manager (IM) may
not have complete information about inventory levels, are studied. In Bensoussan et al. [6, 7], problems with
backorders are considered. In the model considered in Bensoussan et al. [7], the IM does not know the inventory
level, if it is nonnegative, and the IM knows the inventory level, if it is negative. In the model considered in
Bensoussan et al. [6], the IM only knows whether the inventory level is negative or nonnegative. In Bensoussan
et al. [4] a problem with lost sales is studied, when the IM only knows whether a lost sale took place or not. The
underlying mathematical analysis is summarized in Bensoussan et al. [5], where additional references can be found.
The analysis includes transformations of density functions of demand distributions.

The current example studies periodic review systems with backorders and lost sales, when some inventory levels
are observable and some are not. The goal is to minimize the expected total costs. Demand distribution may not
have densities.

In the case of full observations, we model the problem as an MDP with a state space �=� (the current
inventory level), action space �=� (the ordered amount of inventory), and action sets �4x5=� available at
states x ∈�. If in a state x the amount of inventory a is ordered, then the holding/backordering cost h4x5, ordering
cost C4a51 and lost sale cost G4x1a5 are incurred, where it is assumed that h1 C1 and G are nonnegative lower
semicontinuous functions with values in �̄ and C4a5→ +� as �a� → �0 Observe that the one-step cost function
c4x1a5= h4x5+C4a5+G4x1a5 is �-inf-compact on �×�. Typically G4x1a5= 0 for x ≥ 00

Let Dt1 t = 0111 : : : 1 be i.i.d. random variables with the distribution function FD, where Dt is the demand at
epoch t = 0111 : : : 0 The dynamics of the system is defined by xt+1 = F 4xt1at1Dt51 where xt is the current
inventory level and at is the ordered (or scrapped) inventory at epoch t = 0111 : : : 0 For problems with backorders
F 4xt1 at1Dt5= xt +at −Dt and for problems with lost sales F 4xt1 at1Dt5= 4xt +at −Dt5

+. In both cases, F is
a continuous function defined on �3. To simplify and unify the presentation, we do not follow the common
agreement that �= 601�5 for models with lost sales. However, for problems with lost sales, it is assumed that the
initial state distribution p is concentrated on 601�5, and this implies that states x < 0 will never be visited.
We assume that the distribution function FD is atomless (an equivalent assumption is that the function FD is
continuous). The state transition law P on � given �×� is

P4B � x1a5=

∫

�
I8F 4x1a1 s5 ∈ B9dFD4s51 B ∈B4�51 x ∈�1 a ∈�0 (58)
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Since we do not assume that demands are nonnegative, this model also covers cash balancing problems and
problems with returns; see Feinberg and Lewis [19] and references therein. In a particular case, when C4a5= +�

for a< 0, orders with negative sizes are infeasible, and, if an order is placed, the ordered amount of inventory
should be positive.

As mentioned previously, some states (inventory levels) x ∈�=� are observable and some are not. Let
the inventory be stored in containers. From a mathematical prospective, containers are elements of a finite or
countably infinite partition of �=� into disjoint convex sets, and each of these sets is not a singleton. In other
words, each container Bi+1 is an interval (possibly open, closed, or semiopen) with ends di and di+1 such that
−� ≤ di <di+1 ≤ +�, and the union of these disjoint intervals is �0 In addition, we assume that di+1 −di ≥ � for
some constant � > 0 for all containers, that is, the sizes of all the containers are uniformly bounded below by a
positive number. We also follow an agreement that the 0-inventory level belongs to a container with end points d0

and d1, and a container with end points di and di+1 is labeled as the 4i+ 15th container Bi+1. Thus, container B1 is
the interval in the partition containing point 0. Containers’ labels can be nonpositive. If there is a container with
the smallest (or largest) finite label n, then dn−1 = −� (or dn = +�, respectively). If there are containers with
labels i and j , then there are containers with all the labels between i and j . In addition, each container is either
transparent or nontransparent. If the inventory level xt belongs to a nontransparent container, the IM only knows
which container the inventory level belongs to. If an inventory level xt belongs to a transparent container, the IM
knows that the amount of inventory is exactly xt .

For each nontransparent container with end points di and di+1, we fix an arbitrary point bi+1 satisfying
di < bi+1 <di+1. For example, it is possible to set bi+1 = 005di + 005di+11 when max8�di�1 �di+1�9 <�0 If an
inventory level belongs to a nontransparent container Bi, the IM observes yt = bi0 Let L be the set of labels of the
nontransparent containers. We set YL = 8bi2 i ∈L9 and define the observation set �=�∪ YL, where � is the
union of all transparent containers Bi (transparent elements of the partition). If the observation yt belongs to a
transparent container (in this case, yt ∈�), then the IM knows that the inventory level xt = yt . If yt ∈ YL (in this
case, yt = bi for some i), then the IM knows that the inventory level belongs to the container Bi, and this container
is nontransparent. Of course, the distribution of this level can be computed.

Let � be the Euclidean distance on �2 �4a1 b5= �a− b� for a1 b ∈�. On the state space �=� we consider the
metric ��4a1 b5= �a− b�, if a and b belong to the same container, and ��4a1 b5= �a− b� + 1 otherwise, where
a1b ∈�. The space 4�1 ��5 is a Borel subset of a Polish space (this Polish space consists of closed containers,
that is, each finite point di is represented by two points: one belonging to the container Bi and another one to
the container Bi+1). We notice that ��4x

4n51 x5→ 0 as n→ � if and only if �x4n5 − x� → 0 as n→ � and the
sequence 8x4n59n=N1N+11 : : : belongs to the same container as x for a sufficiently large N . Thus, convergence on �
in the metric �� implies convergence in the Euclidean metric. In addition, if x 6= di for all containers i, then
��4x

4n51 x5→ 0 as n→ � if and only if �x4n5 − x� → 0 as n→ �0 Therefore, for any open set B in 4�1 ��5, the
set B\4

⋃

i8di95 is open in 4�1 �50 We notice that each container Bi is an open and closed set in 4�1 ��50
Observe that the state transition law P given by (58) is weakly continuous in 4x1a5 ∈�×�. Indeed, let

B be an open set in 4�1��5 and ��4x
4n51 x5→ 0 and �a4n5 −a� → 0 as n→ �. The set B� 2=B\4

⋃

i8di95=

B∩ 4
⋃

i4di1di+155 is open in 4�1 �50 Since F (as a function from 4�1 ��5× 4�1 �5× 4�1 �5 into 4�1 ��5) is a
continuous function in the both models, with backorders and lost sales, Fatou’s lemma yields

lim inf
n→�

P4B�
� x4n51 a4n55= lim inf

n→�

∫

�
I8F 4x4n51 a4n51 s5 ∈ B�9dFD4s5

≥

∫

�
lim inf
n→�

I8F 4x4n51 a4n51 s5 ∈ B�9dFD4s5≥

∫

�
I8F 4x1a1 s5 ∈ B�9dFD4s5= P4B�

� x1a51

where the second inequality holds because lim infn→� I8F 4x4n51a4n51 s5∈B�9≥ I8F 4x1a1 s5∈B�90 Therefore,
lim infn→� P4B � x4n51 a4n55≥ P4B � x1a5 because for the model with backorders P4x∗ � x′1 a′5= 0 for all x∗1 x′1 a′ ∈�
in view of the continuity of the distribution function FD, and, for the model with lost sales, P4x∗ � x′1a′5= 0
for any x′1a′ ∈� and x∗ 6= 0, and P40 � x′1a′5= 1 − FD4x

′ +a′5 is continuous in 4x′1a′5 ∈�×�. Since B is
an arbitrary open set in 4�1��5, the stochastic kernel P on � given �×� is weakly continuous. Therefore,
lim supn→� P4B � x4n51 a4n55≤ P4B � x1a5, for any closed set B in 4�1 ��5. Since any container Bi is simultaneously
open and closed in 4�1 ��5, we have P4Bi � x

4n51 a4n55→ P4Bi � x1a5 as n→ �.
Set ë4x5= x1 if the inventory level x belongs to a transparent container, and ë4x5= bi1 if the inventory level

belongs to a nontransparent container Bi with a label i. As follows from the definition of the metric ��, the
function ë2 4�1 ��5→ 4�1 �5 is continuous. Therefore, the observation kernels Q0 on � given � and Q on �
given �×�, Q04C � x5 2=Q4C � a1x5 2= I8ë4x5 ∈C9, C ∈B4�5, a ∈�, x ∈�, are weakly continuous.
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If all the containers are nontransparent, the observation set �= YL is countable, and conditions of Corollary 3.1
hold. In particular, the function Q4bi � a1 x5= I8x ∈ Bi9 is continuous, if the metric �� is considered on �0 If some
containers are transparent and some are not, the conditions of Corollary 7.1 hold. To verify this, we set �1 2=�
and �2 2= YL and note that �2 is countable and the function Q4bi � x5= I8x ∈ Bi9 is continuous for each bi ∈ YL
because Bi is open and closed in 4�1 ��50 Note that H4B � z1a1 y5= P4B � y1a5 for any B ∈B4�5, C ∈B4�5,
z∈�4�5, a∈�, and y ∈�. The kernel H is weakly continuous on �4�5×�×�1. In addition, �=

⋃

i B
t
i ,

where Bt
i are transparent containers, is an open set in 4�1 ��50 Thus, if either Assumption (D) or Assumption (P)

holds, then POMDP (�, �, �, P , Q, c) satisfies the assumptions of Corollary 7.1. Thus, for the corresponding
COMDP, there are stationary optimal policies, optimal policies satisfy the optimality equations, and value iterations
converge to the optimal value.

The models studied in Bensoussan et al. [4, 6, 7] correspond to the partition B1 = 4−�107 and B2 = 401+�5 with
the container B2 being nontransparent and with the container B1 being either nontransparent (backordered amounts
are not known Bensoussan et al. [6]) or transparent (models with lost sales (Bensoussan et al. [4]), backorders are
observable (Bensoussan et al. [7])). Note that, since FD is atomless, the probability that xt +at −Dt = 0 is 0,
t = 1121 : : : 0

The model provided in this subsection is applicable to other inventory control problems, and the conclusions
of Corollary 7.1 hold for them too. For example, for problems with backorders, a nontransparent container
B0 = 4−�105 and a transparent container B1 = 601+�5 model a periodic review inventory control system for
which nonnegative inventory levels are known, and, when the inventory level is negative, it is known that they are
backorders, but their values are unknown.

8.3. Markov decision model with incomplete information (MDMII). An MDMII is a particular version of a
POMDP studied primarily before the POMDP model was introduced in its current formulation. The reduction
of MDMIIs with Borel state and action sets to MDPs was described in Rhenius [26] and Yushkevich [36];
see also Dynkin and Yushkevich [12, Chapter 8]. MDMIIs with transition probabilities having densities were
studied in Rieder [27]; see also Bäuerle and Rieder [2, Part II]. An MDMII is defined by an observed state
space �, an unobserved state space �, an action space �, nonempty sets of available actions A4y51 where
y ∈�, a stochastic kernel P on �×� given �×�×�, and a one-step cost function c2 G→ �̄1 where
G= 84y1w1a5 ∈�×�×�2 a ∈A4y59 is the graph of the mapping A4y1w5=A4y51 4y1w5 ∈�×�0 Assume that

(i) �, �, and � are Borel subsets of Polish spaces. For each y ∈� a nonempty Borel subset A4y5 of �
represents the set of actions available at y3

(ii) the graph of the mapping A2 �→ 2�, defined as Gr4A5= 84y1 a52 y ∈�1 a ∈A4y59 is measurable, that is,
Gr4A5 ∈B4�×�5, and this graph allows a measurable selection, that is, there exists a measurable mapping
�2 �→� such that �4y5 ∈A4y5 for all y ∈�;

(iii) the transition kernel P on � given �×�×� is weakly continuous in 4y1w1a5 ∈�×�×�;
(iv) the one-step cost c is �-inf-compact on G, that is, for each compact set K ⊆�×� and for each � ∈�,

the set DK1c4�5= 84y1w1a5 ∈G2 4y1w5 ∈K1c4y1w1a5≤ �9 is compact.
Let us define �=�×�1 and for x = 4y1w5 ∈� let us define Q4C � x5= I8y ∈C9 for all C ∈B4�50 Observe

that this Q corresponds to the continuous function y = F 4x51 where F 4y1w5= y for all x = 4y1w5 ∈� (here F is a
projection of �=�×� on �). Thus, as explained in Example 4.1, the stochastic kernel Q4dy � x5 is weakly
continuous in x ∈�0 Then by definition, an MDMII is a POMDP with the state space �, observation set �, action
space �, available action sets A4y5, transition kernel P , observation kernel Q4dy � a1x5 2=Q4dy � x5, and one-step
cost function c. However, this model differs from our basic definition of a POMDP because the action sets A4y5
depend on observations and the one-step costs c4x1a5= c4y1w1a5 are not defined when ayA4y50 To avoid this
difficulty, we set c4y1w1a5= +� when ayA4y5. The extended function c is �-inf-compact on �×� because
the set DK1c4�5 remains unchanged for each K ⊆�×� and for each � ∈�0

Thus, an MDMII is a special case of a POMDP 4�1�1�1 P 1Q1 c5, when �=�×� and observation kernels Q
and Q0 are defined by the projection of � on �0 The observation kernel Q4· � x5 is weakly continuous in x ∈�.
As Example 4.1 demonstrates, in general this is not sufficient for the weak continuity of q and therefore for the
existence of optimal policies. The following example confirms this conclusion for MDMIIs by demonstrating even
the stronger assumption, that P is setwise continuous, is not sufficient for the weak continuity of the transition
probability q.

Example 8.1. Setwise continuity of a transition probability P on � given �×� for an MDMII is not
sufficient for the weak continuity of the transition probability q for the corresponding COMDP. Set �= 81129,
�= 60117, �=�×�, and �= 809∪ 81/n2 n= 1121 : : : 9. Let m be the Lebesgue measure on �= 60117
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and m4n5 be an absolutely continuous measure on �= 60117 with the density f 4n5 defined in (16). As shown in
Example 4.1, the sequence of probability measures 8m4n59n=1121 : : : converges setwise to the Lebesgue measure m on
�= 60117. Recall that Q4C � a1 y1w5= I8y ∈C9 for C ∈B4�5. In this example, the setwise continuous transition
probability P is chosen to satisfy the following properties: P4B � y1w1a5= P4B �w1a5 for all B ∈B4�5, y ∈�1
w ∈�1 a ∈�, that is, the transition probabilities do not depend on observable states, and P4�× 8w′9 �w1a5= 0,
when w′ 6=w for all w1w′ ∈�, a ∈�, that is, the unobservable states do not change. For C ∈B4�5, w ∈�, and
a ∈�, we set

P4C × 8w9 �w1a5=







m4n54C51 w = 21 a=
1
n
1 n= 1121 : : : 3

m4C51 otherwise.

Fix z ∈�4�5 defined by

z4C × 8w95= 005
(

I8w = 19+ I8w = 29
)

m4C51 w ∈�1 C ∈B4�50

Direct calculations according to formulas (4)–(8) imply that for C1C ′ ∈B4�5 and w ∈�

R4C × 8w9×C ′
� z1a5=







005m4n54C ∩C ′51 if w = 2 and a=
1
n
3

005m4C ∩C ′51 otherwise,

which implies R′4C ′ � z11/n5= 0054m4C ′5+m4n54C ′55, R′4C ′ � z105=m4C ′5, and therefore we can choose

H4C × 8w9 � z1a1 y5=























005I8y ∈C91 if a= 03

I8y ∈C1f 4n54y5= 09+
1
3 I8y ∈C1f 4n54y5= 291 if w = 11 a= 1/n3

2
3 I8y ∈C1f 4n54y5= 291 if w = 21 a= 1/n3

y ∈� and n= 1121 : : : 0 The subset of atomic probability measures on �

D 2=
{

z4y5 ∈�4�52 z4y54y115=
1
3 1 z

4y54y125=
2
3 1 y ∈�

}

is closed in �4�5. Indeed, an integral of any bounded continuous function g on � with respect to a measure
z4y5 ∈D equals 1

3g4y115+ 2
3g4y125, y ∈�0 Therefore, a sequence 8z4y

4n559n=1121 : : : of measures from D weakly
converges to z′ ∈ �4�5 if and only if y4n5 → y ∈ � as n → � for some y ∈ Y 1 and thus z′ = z4y5 ∈ D0
Since D is a closed set in �4�5, if the stochastic kernel q on �4�5 given �4�5×A is weakly continuous
then lim supn→� q4D �z11/n5 ≤ q4D � z1053 see Billingsley [9, Theorem 2.1(iii)]. However, q4D � z11/n5 =

z4f 4n54y5= 25 = 0056m4f 4n54y5 = 25+m4n54f 4n54y5 = 257 =
3
4 1 n = 1121 : : : 1 and q4D � z105 = 00 Thus, the

stochastic kernel q on �4�5 given �4�5×� is not weakly continuous. �
Thus, the natural question is which conditions are needed for the existence of optimal policies for the COMDP

corresponding to an MDMII? The first author of this paper learned about this question from Alexander A.
Yushkevich around the time when Yushkevich was working on Yushkevich [36]. The following theorem
provides such a condition. For each open set O in � and for any C ∈B4�5, consider a family of functions
P∗

O = 84x1a5→ P4C ×O � x1a52 C ∈B4�59 mapping �×� into 60117. Observe that equicontinuity at all the
points 4x1a5 ∈�×� of the family of functions P∗

O is a weaker assumption, than the continuity of the stochastic
kernel P on � given �×� in total variation.

Theorem 8.1 (cp. Feinberg et al. [17, Theorem 6.2]). Consider the expected discounted cost criterion with
the discount factor � ∈ 60115 and, if the cost function c is nonnegative, then �= 1 is also allowed. If for each
nonempty open set O in � the family of functions P∗

O is equicontinuous at all the points 4x1 a5 ∈�×�, then the
POMDP (�1�1�1 P 1Q1 c) satisfies assumptions (a), (b), and (i) of Theorem 3.2, and therefore the conclusions of
that theorem hold.

Proof. Assumptions (a) and (b) of Theorem 3.2 are obviously satisfied, and the rest of the proof verifies
assumption (i). From (4) and (5),

R4C1 ×B×C2 � z1a5=

∫

�
P44C1 ∩C25×B � x1a5z4dx51 B ∈B4�51 C11C2 ∈B4�51 z ∈�4�51 a ∈�1

R′4C � z1a5=

∫

�
P4C ×� � x1a5z4dx51 C ∈B4�51 z ∈�4�51 a ∈�0
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For any nonempty open sets O1 in � and O2 in �, respectively, Theorem 5.1, with �1 =�4�5, �2 =�, �3 =�,
O=�, ë4B � z5= z4B5, and A0 = 84x1 a5→ P44O1 ∩C5×O2 � x1a52 C ∈B4�59, implies the equicontinuity of the
family of functions

RO1×O2
= 84z1a5→R4O1 ×O2 ×C � z1a52 C ∈B4�591

defined on �4�5×�, at all the points 4z1 a5 ∈�4�5×�. Being applied to O1 =� and O2 =�, this fact implies
that the stochastic kernel R′ on � given �4�5×� is continuous in total variation. In particular, the stochastic
kernel R′ is setwise continuous.

Now, we show that Assumption (H) holds. Since the metric spaces � and � are separable, there exist
countable bases ��

b and ��
b of the topologies for the separable metric spaces � and �, respectively. Then

�b = 8O� ×O�2 O� ∈ ��
b 1 O

� ∈ ��
b 9 is a countable base of the topology of the separable metric space �=�×�.

Therefore, Assumption (H) follows from Lemma 5.3, the equicontinuity of the family of functions RO1×O2
for any

open sets O1 in � and O2 in �, and the property that, for any finite subset N of 81121 : : : 9,

⋂

j∈N

4O�
j ×O�

j 5=

(

⋂

j∈N

O�
j

)

×

(

⋂

j∈N

O�
j

)

= O1 ×O21 O�
j ∈ ��

b 1 O�
j ∈ ��

b 1 for all j ∈N1

where O1 =
⋂

j∈N O�
j and O2 =

⋂

j∈N O�
j are open subsets of � and �1 respectively. �
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