
Montana Tech Library
Digital Commons @ Montana Tech
Proceedings of the Annual Montana Tech Electrical
and General Engineering Symposium Student Scholarship

4-2017

Educational LED Board
Nathan Ericksen
Montana Tech of the University of Montana

Tyana Rasmusan
Montana Tech of the University of Montana

Ashtyn Aumueller
Montana Tech of the University of Montana

Follow this and additional works at: http://digitalcommons.mtech.edu/engr-symposium

This Article is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for
inclusion in Proceedings of the Annual Montana Tech Electrical and General Engineering Symposium by an authorized administrator of Digital
Commons @ Montana Tech. For more information, please contact sjuskiewicz@mtech.edu.

Recommended Citation
Advisor: Bryce Hill

http://digitalcommons.mtech.edu?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/engr-symposium?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/engr-symposium?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/stdt_schr?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/engr-symposium?utm_source=digitalcommons.mtech.edu%2Fengr-symposium%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sjuskiewicz@mtech.edu

Nathan Ericksen

Tyana Rasmusan

Ashtyn Aumueller

Senior Design 2016-2017

Mentor: Bryce Hill

Educational LED Board

Introduction

The goal of this project is to develop a programmable LED board to be used for

educational purposes and encourage students to pursue degrees in the science, technology,

engineering, and mathematics (S.T.E.M.) fields. When the board is complete, it will be brought

into middle and high school classrooms for use as an interactive activity to demonstrate the

basics of memory and programming. When students are finished programming their boards, they

can mount it on a stick and swing it in circles to display their message in the air. The goal is to

make the average production cost of each board under $5 so that the students can take them

home and demonstrate the project to their friends and parents.

The LED board will communicate with a user interface that will allow students to

program the LEDs to light up in a desired design with dipswitches. The user interface features

four pushbuttons, a bank of eight dipswitches, a 3-D printed case, and an LCD display. For each

“bit” the students program into the LED board their selection will be displayed on an LCD

display. Eventually after programming in their select word or character the LCD will display

their whole series. After the student moves from each memory location to the next, the sequence

will be saved into the LED board for when it is mounted. The LED board will be mounted on a

3D-printed box attached to a piece of PVC pipe. After being disconnected from the user

interface, the LED board will be powered with AA batteries. The teacher will receive a user

interface to keep in the classroom for future use.

Design

 Our design consists of a user interface, an LED board, and a mounting system for the

LED board. The user interface was designed to be as simple and easy to understand as possible.

It consists of eight dipswitches, an LCD screen, and four pushbuttons. The dipswitches are used

to turn on the LEDs of the LED board. The LCD screen displays which bits or LEDs will be

turned on and the current memory location. The green pushbutton accepts the data and sends it to

the LED board’s random access memory (RAM), as well as interrupting the LED display

sequence when held for approximately three seconds. The red pushbutton sends a command to

the LED board to move the ram data to the flash memory as well as the current memory location

that determines the length of the design that will displayed. The red pushbutton also starts the

LED display sequence. The two black buttons allow the student to increment and decrement the

memory location. Although the flash memory on the microcontroller is able to store thousands of

bytes, we have limited storage to just 64 bytes. The PCB for the user interface was built using

ExpressPCB and is shown in Appendix A. This PCB includes a 330Ω bias resistor used by the

LCD screen, pins that will be used to program the LED board, a 3.3V regulator, an oscillator,

and both USB and barrel jack connections. A cover and box for the user interface was designed

in SolidWorks and then 3-D printed. This design can be seen in Appendix D.

 The LED board consists of a one square inch PCB, shown in Appendix B. This board has

eight LEDs along one side. Each of these LEDs has a 10kΩ pull-up resistor. The LED boards

have programming pins to connect to and receive data from the user interface. The board PCBs

also have places for female sockets and male pins headers so that in future project development,

multiple boards can be docked together to expand student design possibilities.

 The LED board will be mounted and spun on a rotating platform so that the student’s

final design can be seen. The mounting system was initially designed in AutoCAD and then built

in SolidWorks to be 3-D printed. These designs can be seen in Appendix E. The 3-D printed box

has a slot to hold a battery clip that will be used to power the LED board after it is disconnected

from the user interface. The box has a hole for a piece of PVC pipe to be inserted and capped in

place on either side. The LED board will be attached on top of the flat portion of the box to be

spun.

Pinout

Both the user interface and LED board use a 28-pin Texas Instruments MSP430G2553IPW28

microcontroller. The pinouts for both the user interface and the LED board are given in

Appendix C. The pinouts had to be chosen based on pins needed for communication between the

two boards and ease of use. On the user interface microcontroller, two pins are required for USB

to serial communication. Two pins are also required for I
2
C communication. The LCD screen

requires four pins. All of port two is dedicated to the eight dipswitches. The pushbuttons pins are

on port 3. The LED board also uses two pins for I
2
C, but has four extra pins dedicated to this for

future development. All of port three on this microcontroller is dedicated to the LEDs. The

microcontrollers on both boards have a pin dedicated to clock.

Financing and Components List

The biggest constraint on our design was component cost. Because an LED board will be given

to each student in a classroom workshop, this board needed to be designed using the most cost-

effective part choices. The user interface was designed to be reliable and simple, so parts for this

board were chosen based on functionality. Fewer of these boards will be needed and only one

will be given away per classroom.

As the boards were designed, a list of necessary components was compiled for each. Table 1

gives this list for the user interface. This list includes the part number for each component from

the Digikey website, where parts were ordered from. The final cost of this board was determined

to be $48.38.

Table 1. User Interface Parts List for One Board.

User Interface

Item Part Number

Number

Needed per

Board

Price

per Part

Total

Cost

8 Position Dipswitch GH7177-ND 1 $1.47 $1.47

Black Pushbutton EG4791-ND 2 $0.53 $1.06

Green Pushbutton EG4793-ND 1 $0.53 $0.53

Red Pushbutton EG4792-ND 1 $0.53 $0.53

LCD Display

NHD-C0216CZ-NSW-

BBW-3V3-ND 1 $11.00 $11.00

3.3V Regulator

AZ1117CH-3.3TRG1DICT-

ND 2 $0.38 $0.76

Pull Up Resistor - 10kΩ 311-10KJRCT-ND 4 $0.10 $0.40

USB to Serial MCP2200-I/SS-ND 1 $1.94 $1.94

Barrel Jack CP-202A-ND 1 $0.93 $0.93

Oscillator 490-7848-1-ND 1 $0.67 $0.67

USB Jack 609-4613-1-ND 1 $0.46 $0.46

Microcontroller 296-33466-5-ND 1 $2.63 $2.63

Female 6-Pin Socket 609-3558-ND 1 $0.90 $0.90

PCB n/a 1 $25.00 $25.00

Bias Resistor - 330Ω 311-330JRCT-ND 1 $0.10 $0.10

Total $48.38

The goal for the LED Board was to make the final price of an individual board less five dollars.

This would make it realistic to put ten to twenty boards into a classroom and allow students to

take them home with them once programmed. The cost of one, 10, 100, and 1,000 boards were

compared to give us an idea of how much a bulk order would save us. In the end, the cost for

1,000 boards was by far the cheapest. The price went down to $4.18, meeting the price goal for

the LED board. The price for one board without bulk ordering would be $10.12, which is more

than double our goal amount. Tables 2 through 5 show the necessary components for the LED

board and cost for an order of the respective size.

Table 2. LED Board Parts List for One Board.

LED Board

Item Part Number

Number

Needed per

Board

Price per

Part
Total Cost

Green LED 160-1131-ND 8 $0.27 $2.16

Microcontroller 296-33466-5-ND 1 $2.63 $2.63

10kΩ Resistor 311-10KJRCT-ND 8 $0.10 $0.80

Female 6-Pin Socket 609-3558-ND 1 $0.90 $0.90

Male Pin Heads SAM8918-ND 1 $1.91 $1.91

Battery Clip BC22AAW-ND 1 $0.99 $0.99

PCB n/a 1 $0.73 $0.73

Total $10.12

Table 3. LED Board Parts List for 10 Boards.

LED Board - Bulk Order (10 Boards)

Item Part Number

Number

Needed

per Board

Price per

Part Total

Needed

Total

Cost

Green LED 160-1131-ND 8 $0.14 80 $11.58

Microcontroller 296-33466-5-ND 1 $2.36 10 $23.61

10kΩ Resistor 311-10KJRCT-ND 8 $0.0084 80 $0.67

Female 6-Pin Socket 609-3558-ND 1 $0.79 10 $7.92

Male Pin Heads SAM8918-ND 1 $1.58 10 $15.84

Battery Clip BC22AAW-ND 1 $0.92 10 $9.20

PCB n/a 1 $0.73 10 $7.31

Total $76.13

Cost per

Board $7.61

Table 4. LED Board Parts List for 100 Boards.

LED Board - Bulk Order (100 Boards)

Item Part Number

Number

Needed

per

Board

Price per

Part

Total

Needed

Total

Cost

Green LED 160-1131-ND 8 0.0621 800 $49.68

Microcontroller 296-33466-5-ND 1 $1.90 100 $189.78

10kΩ Resistor 311-10KJRCT-ND 8 $0.0029 800 $2.32

Female 6-Pin Socket 609-3558-ND 1 $0.68 100 $68.35

Male Pin Heads SAM8918-ND 1 $1.19 100 $118.80

Battery Clip BC22AAW-ND 1 $0.83 100 $83.00

PCB n/a 1 $0.73 100 $73.08

Total $585.01

Cost

per

Board $5.85

Table 5. LED Board Parts List for 1,000 Boards.

LED Board - Bulk Order (1,000 Boards)

Item Part Number

Number

Needed

per

Board

Price per

Part Total

Needed

Total

Cost

Green LED 160-1131-ND 8 $0.04 8000 $331.20

Microcontroller 296-33466-5-ND 1 $1.11 1000 $1,113.75

10kΩ Resistor 311-10KJRCT-ND 8 $0.00153 8000 $12.24

Female 6-Pin Socket 609-3558-ND 1 $0.50 1000 $497.12

Male Pin Heads SAM8918-ND 1 $0.88 1000 $877.80

Battery Clip BC22AAW-ND 1 $0.62 1000 $620.00

PCB n/a 1 $0.73 1000 $730.83

Total $4,182.94

Cost

per

Board $4.18

Printed Circuit Board Design

The Printed Circuit Boards (PCB) were designed using the ExpressPCB software. The size

constrains for the LED board were to keep the footprint under 1”x1”. This maximized the

amount of LED boards that could be cut from one PCB wafer while also minimizing the cost.

The user interface board needed to be built within a 2.8”x3.5” footprint so the budget ordering

option could be used and keep ordering prices down. The most important component on both of

the PCB’s is the MSP430 microcontroller, so the trace layout was designed around the pinout for

the chip. On the user interface an intuitive design was desired so the through holes for buttons

and the dipswitch were placed on the footprint first. Then the through hole layout for the LCD

screen was placed on the footprint. All component pads were arranged for convenience in the

future when traces are being laid out. Traces for ground and power were placed on the PCB

footprint before any other traces to ensure no grounding or power errors on the microcontroller

or floated inputs. Then the traces for all the microcontroller inputs were laid out to their

respective buttons, switches, and pins. The trace building was taken with great care to avoid

crossing traces and shorting any inputs.

The LED board was designed with a compact package in mind, for the design phase the footprint

for the LED board was adjusted to 1”x1”. Pads for the I
2
C pin header, pulling resistors, LED’s,

and MSP430 microcontroller were all placed first. The traces to power and ground were placed

first and connected into a loop around the perimeter of the board. Then traces for the LED’s were

placed to allow more direct paths and prevent unintended crossing. The clock and slave pads for

I
2
C were connected as well to allow synchronicity between communicating boards.

Coding

This project involved writing code to light LEDs, use dipswitches and pushbuttons, light and

display information on an LCD screen, save information to FLASH memory, and send data from

master pins to slave pins using I
2
C. The code for each of these separate tasks had to be

integrated. The commented final version of this code is given in Appendices G and H. Code was

first written that was able to turn on and off eight LEDs at a variable frequency. Next, code was

written to turn these same LEDs on and off with dipswitches. The LCD screen was used to

display both the dipswitch positions and the memory location. First the LCD screen had to be

initilized and then the dipswitches were added onto the screen with a star character for an 'on'

dipswitch and a blank for an 'off'. Next the values of 0 to 63 were added to show the position in

the memory location to make this project functional. After the LCD screen was properly

working, this code was integrated with previous code to display which LEDs had been turned on

by the switches. I
2
C is used to communicate between the two boards. The user interface is the

master and the LED board is the slave. Both microcontrollers have an SDA and SLC connection

in which the information is sent back and forth. The addresses for each of the boards were found

and the activation values for reading and writing were tested. The final piece of code that was

written individually was for FLASH memory. Our project needs to utilize this kind of storage so

that the LED board will retain the data that was sent by the user interface after the two boards are

disconnected. The MSP430Gxx microcontroller series has a very limited amount of RAM,

however there is much more flash storage available. There are two downsides to flash memory

though, it is much slower to read/write to and from than RAM and it can only read/written a few

thousand times before it becomes unreliable. The biggest challenge is moving data from the

RAM to flash. This can be done by having the microcontroller specifically index data to a certain

memory location, e.g. 1140. Later on when the microcontroller wants to read the code back it

will look at the memory location and start reading values until it is instructed to stop. Values for

the memory location and what is going into the memory location are received from the user

interface over I
2
C. When the microcontroller senses any sort of I

2
C data it automatically goes

into write mode which will then overwrite any data in the desired memory location with the most

current data. The microcontroller can then take the values it read back and use them to fill the

LED array when the board is powered back on. The final integration of the coding was simple as

it all worked in parts which made the troubleshooting for the small sections minimal.

Assembly

After the necessary components were received from Digikey, they had to be mounted on the

PCB. On the user interface, the microcontroller, voltage regulator chips, pulling resistors,

capacitors, oscillator, and USB to serial chip were soldered on and then the board was baked in

the reflow oven. After the completion of this process, the LCD screen, buttons, dipswitches,

USB jack, barrel jack, and programming pins were soldered on to the board by hand. The same

technique was used with the LED board, with the microcontroller and pulling resistors being

placed prior to baking and the LEDs, pin sockets, and pin headers being soldered on afterwards.

The SolidWorks files for the user interface enclosure and mounting setup were transferred to the

program MakerBot and then loaded on to an SD card. This card was plugged into the printer and

the designs were 3-D printed. PVC pipe and stoppers were purchased at Ace Hardware. The user

interface was placed in its box, the LCD board was glued to the rotating platform and the battery

clip was secured inside. The PVC pipe was inserted into the hole in the rotation setup and

stoppers were added to either end. Photos of the completed assemblies are in Appendix I.

Programming with the User Interface

Our design allows for 64 memory locations to be programmed. Each memory location contains a

byte, or eight bits, of information. The student will use the design worksheet given in Appendix

F to plan out their design. The worksheet shows a grid with 8 rows and 64 columns. The student

will fill in boxes in the grid to create a design. They will then use the user interface to program

their board. Starting with memory location 00, they will turn on the dipswitches indicated in the

vertical columns on the worksheet. Once the column has been pressed into the dipswitches, the

data is sent to the LED board using the green pushbutton. The green pushbutton also makes the

LED board light up the corresponding pattern just programmed into the board. They will then

move to the next memory location using the right pushbutton. If a mistake was made they can

press the left black pushbutton to go to the previous memory location and reprogram. This will

be repeated until data has been entered into each of the memory locations on the worksheet. To

ensure that the information will remain on the LED board’s microcontroller after it is

disconnected from the user interface, it must be moved from the RAM to the flash memory. This

is done using the red pushbutton. When the red button is pushed, it also sends the current

memory location over to the led board to determine the length of the design that is displayed.

The red pushbutton then starts the cycle for displaying the message programmed into the LED

board. If revisions are desired, press and hold the green button for three seconds, which stops the

pattern from displaying and puts the LED board in programming mode. When the LED board is

disconnected from the user interface, connected to power from the batteries, and spun, the board

will move through length of the design and light up the corresponding LEDs.

Problems and Troubleshooting

We encountered several problems while completing this project. Our design had to be adjusted

throughout the year as issues arose. We initially planned for our red pushbutton to be used to

clear all of the data from the memory locations. After realizing we needed to utilize the

microcontroller’s flash memory, we decided that it was more logical to use this button to commit

the data to the flash memory.

Our PCBs required several revisions. Changes had to be made to ensure traces were adequately

spaced and via holes were placed correctly. Our first complete user interface PCB design was

missing several things. After receiving these boards, we realized that our dipswitches were not

mapped properly and the pins for programming and the LCD screen were not spaced properly.

We redesigned this board to fix these problems and also moved the barrel jack and programming

pins to the back of the board for ease of use. On our first LED board PCB, the microcontroller

test pin was not connected and this had to be corrected.

While assembling the PCBs, we had issues with building bridges while baking in the reflow

oven. This means that the solder holding down one pin came in contact with another pin,

shorting them together. These bridges were discovered during the coding phase and were

corrected using solder wick to remove the excess solder.

The 3-D printed portions of our project also took several redesigns. We initially planned for both

the battery clip and the LED board to be attached on top of the rotating platform. We decided to

move the battery clip into the box to add weight at the far end of the box, allowing it to swing

more easily. We also decided to build a cover for the bottom of this platform to ensure that the

battery clip would stay inside. The first prints for both parts of the user interface box were

incorrectly sized and the holes for the components were misaligned. After these holes were

repositioned, the outside of the enclosure was adjusted to make sure the user interface was secure

inside. A lip was added to the cover and the outside margins were increased slightly so it would

fit tightly. While printing, we also experienced issues with the plastic warping, which caused us

to reprint several times.

The majority of our problems came while coding. We began coding using the MRT

Development board provided to us by our mentor, Bryce Hill, and MSP430G2553

microcontroller launch pads. The Development boards feature LEDs, pushbuttons, and

dipswitches. We were able to get each of these components to work with some troubleshooting.

Some issues were experienced when coding for the LCD screen such as displaying the right

information in the right place on the screen. These issues were resolved using the data sheet for

the LCD screen provided on DigiKey. Another issue for the LCD screen was adjusting the code

so that the screen would only update the dipswitch and position values on the screen when that

value had changed. Before this issue was solved, the screen blinked quickly which was

distracting. This was easily fixed by adding a simple loop onto the existing code. The biggest

issues came once we began coding for I
2
C to communicate between our two boards. Most of this

code was provided by Bryce Hill but the troubleshooting did prove to be difficult and tedious.

The fixes to these problems, once determined, were very simple. Changes as simple as

commenting out one line of code fixed all of the slave code for the LED board to communicate.

This line that was taken out was forcing the I
2
C flag value to zero after each execution, and

therefore would not allow the values to reach the final destination. This code was also the most

sensitive to even the smallest changes, so again troubleshooting took the longest for this part of

the code. The last piece of code that was written individually was to use flash memory. The issue

with using flash memory is how the microcontroller finds memory indexes and reads them.

Initially, a value would be sent to a specific location but when read back it would be hex 0xFF.

There is actually an offset on the microcontroller when it comes to reading memory locations,

but this also comes with the issue of validating where the values are actually being written. The

microcontroller can only read back memory in even numbered locations, so this actually doubled

the amount of space in the flash memory required for a 64 character array. With some tweaking

to the provided example code we were able to have the memory read and write back from the

same locations without overwriting or reading back the default 0xFF value. Once all of the code

was integrated for the final design to perform, small tweaks throughout the code were made to

improve the quality and functionality for our final design.

One of the last design flaws that was discovered was that when programming the LED board, a

memory location that is included in the design cannot be left empty. If a blank or all the LEDs

off is wanted, a value of zero must be entered into that memory location. If a location is left

empty, the program will not work properly and will show a random design that was not entered.

On top of the random design, the green button, which is regularly used to break out of running

mode, does not function properly. Therefore, a value must be entered into every location within

the desired design length.

Potential Project Impacts

As the United States continues to grow and progress, careers in STEM are becoming

increasingly important. According to the US Department of Education, the number of available

STEM jobs will increase by 14% between 2010 and 2020 [1]. In comparison, the US Department

of commerce reports that other fields are growing at 9.8% [2]. This growth must be met with

growth in the number of qualified STEM employees. Adecco Engineering and Technology has

found that by 2018 there by be 2.4 million unfilled positions in STEM industries [3]. This is

where STEM education comes into play. Exposing students to the STEM may get them

interested in pursuing a career in this field. Thousands of careers fall under the STEM umbrella,

creating possibilities for students of many different backgrounds and interests. We hope that

hands-on learning, like what will be done with our project, will show students a side of science,

technology, engineering, and mathematics that they may not have known about before and will

spark an interest in learning more. To be continued…¯_(ツ)_/¯

References

[1]. “Science, Technology, Engineering and Math: Education for Global Leadership,” Science,

Technology, Engineering and Math: Education for Global Leadership | U.S. Department of

Education. [Online]. Available: http://www.ed.gov/stem. [Accessed: 20-Nov-2016].

[2]. “Why Is STEM Education So Important,” Engineering For Kids. [Online]. Available:

http://engineeringforkids.com/article/02-02-2016_importanceofstem. [Accessed: 21-Mar-2017].

[3]. “Infographic: STEM Skills Are Driving Innovation,” Infographic: STEM Skills Are Driving

Innovation, 04-Oct-2016. [Online]. Available:

https://www.adeccousa.com/employers/resources/infographic-stem-skills-are-driving-

innovation/. [Accessed: 20-Nov-2016].

Appendix A. User Interface PCB Design.

Figure 1A. User Interface PCB.

Appendix B. LED Board PCB Design.

Figure 1B. LED Board PCB.

Appendix C. Microcontroller Pinouts.

Table 1C. User Interface Pinout.

USER INTERFACE: 28-PIN MICROCONTROLLER

DVCC (+) DVSS 0

P1.0 LCD-CS XIN/P2.6 DIPSWITCH-2

P1.1 TX(USB TO UART) XOUT/P2.7 DIPSWITCH-1

P1.2 RX(USB TO UART) TEST (to programming pins)

P1.3 SDA(MASTER) RST (pullup)

P1.4 SLC(MASTER) P1.7 LCD - MOSI

P1.5 LCD-RST P1.6 LCD -RS

P3.1 BUTTON-RIGHT P3.7

 P3.0 BUTTON-RED P3.6

 P2.0 DIPSWITCH-8 P3.5 LCD-SCL

P2.1 DIPSWITCH-7 P2.5 DIPSWITCH-3

P2.2 DIPSWITCH-6 P2.4 DIPSWITCH-4

P3.2 BUTTON-LEFT P2.3 DIPSWITCH-5

P3.3 BUTTON-GREEN P3.4 GLOBAL CLK

Table 2C. LED Board Pinout.

LED BOARD: 28-PIN MICROCONTROLLER

DVCC (+) DVSS 0

P1.0 SDA(EXTRA) XIN/P2.6

 P1.1 SLC(EXTRA) XOUT/P2.7

 P1.2 SDA(EXTRA) TEST (to programming pins)

P1.3 SLC(EXTRA) RST (pullup)

P1.4 CLK P1.7 SDA(SLAVE)

P1.5

P1.6 SLC(SLAVE)

P3.1 LED P3.7 LED

P3.0 LED P3.6 LED

P2.0

P3.5 LED

P2.1

P2.5

 P2.2

P2.4

 P3.2 LED P2.3

 P3.3 LED P3.4 LED

Appendix D. User Interface Enclosure Design.

Figure 1D. SolidWorks Design for UI Front Cover.

Figure 2D. SolidWorks Design for UI Enclosure.

Appendix E. Mounting Design.

Figure 1E. Bottom View of Mounting Setup.

Figure 2E. Side View of Mounting Setup.

Figure 3E. SolidWorks Design of Rotation Platform.

Figure 4E. SolidWorks Design of Rotation Platform Cover.

Appendix F. Design Worksheet

Figure 1F. Blank Design Worksheet.

Figure 2F. Example of Completed Design Worksheet.

Appendix G. User Interface Master Code.

I. main.c

//TYANA RASMUSAN 4/8/17-- MASTER USERINTERFACE
// LED EDUCATIONAL BOARD -- SENIOR DESIGN SPRING 2017
// GROUP: NATHAN ERICKSEN & ASHTYN AUMUELLER

#include <msp430.h>
#include "i2c.h"

/*
 * main.c
 */
//LCD PINS
#define MOSI BIT7 //Master-out Slave-in
#define CS BIT0 //CHIP SELECT
#define RS BIT6 //REGISTER SELECT
//#define SCL BIT5 on port 3 // SERIAL CLOCK
#define RST BIT5 //RESET
#define tidelay 1600

void init_lcd(); //INITIALIZE LCD
void writecom(); //WRITE TO ADDRESS
void writedata(); //WRITE CHARACTER TO ADDRESS
void writelcd(); //WRITE TO LCD
void writeswitches(); //SEND SWITCH PATTERN TO LCD
void lcdmemloc(); //MEMORY LOCATION TO WRITE TO LCD
void buttons(); //BUTTON FUNCTIONS

volatile int value; //POINTS TO ARRAY TO DISPLAY ON LCD
volatile int row; //POINTS TO TOP OR BOTTOM ROW ON LCD
int previousswitch=0; //PREVIOUS SWITCH POSITION
int memorylocation=0; //MEMORY LOCATION VALUE TO SEND TO LED BOARD
int fullval; //VALUE USED TO GET TENS & ONES PLACE FOR PO. ON LCD

char bottomrow[16]; //SWITCH POSTIIONS AND
POSITION NUMBER
char toprow[16]={"01234567 POS."}; //SWITCH NUMBERS AND POSITION (NEVER
CHANGES)
char pnumber[] = {"00 "}; //START POSITION NUMBER AT 00 ON
LCD
char sendbuf[3] = {0x90, 0x00, 0x00}; //90 TO WRITE TO LED BOARD I2C
//char writebuf[] = {0x91}; //91 TO RECEIVE FROM LED BOARD I2C
char ramtoflash[3] ={0x90, 0xFF, 0x00}; //SEND COMMAND TO SAVE CURRENT RAM TO
FLASH I2C

void init_lcd(){ //INITIALIZE LCD

 __delay_cycles(tidelay);
 writecom(0x30); //WAKE UP
 __delay_cycles(tidelay);
 writecom(0x30);//WAKE UP
 __delay_cycles(tidelay);

 writecom(0x39); //FUNCTION SET
 __delay_cycles(tidelay);
 writecom(0x14); //INTERNAL OSC FREQUENCY
 __delay_cycles(tidelay);
 writecom(0x56);//POWER CONTROL
 __delay_cycles(tidelay);
 writecom(0x6D); //FOLLOWER CONTROL
 __delay_cycles(tidelay);
 writecom(0x70);//CONTRAST
 __delay_cycles(tidelay);
 writecom(0x0C);//DISPLAY ON
 __delay_cycles(tidelay);
 writecom(0x06);//ENTRY MODE
 __delay_cycles(tidelay);
 writecom(0x01); //CLEAR
 __delay_cycles(tidelay);
}

void writecom(int d){ //WRITE TO ADDRESS
 P1OUT &= ~CS; //CS LOW
 P1OUT &= ~RS; //RS LOW FOR INITIALIZATION MODE
 __delay_cycles(tidelay);
 unsigned int SC = 0; //A0 = COMMAND
 for(SC = 1;SC <= 8; SC++){ //SEND 8 BITS
 if((d&0x80)==0x80){ //GET ONLY THE MSB
 P1OUT |= MOSI; //IF 1,THEN MOSI = 1
 }
 else {
 P1OUT &= ~MOSI; //IF 0, THEN MOSI = 0
 }
 d = (d<<1); //SHIFT DATA BYTE LEFT
 P3OUT &= ~(BIT5); //SCL
 P3OUT |= (BIT5); //SCL
 __delay_cycles(tidelay);
 P3OUT &= ~(BIT5); //SCL
 __delay_cycles(tidelay);
 }
 P1OUT |= CS; //CS HIGH
}

void writedata(int d){ //WRITE CHARACTER TO ADDRESS
 P1OUT &= ~CS; //CS LOW
 P1OUT |= RS; //RS HIGH FOR WRITING MODE
 __delay_cycles(tidelay);
 unsigned int SC = 0; //A0 = DATA
 for(SC = 1; SC <= 8; SC++){ //SEND 8 BITS
 if((d&0x80)==0x80){ //GET ONLY THE MSB
 P1OUT |= MOSI; //IF 1, THEN MOSI = 1
 }
 else{
 P1OUT &= ~MOSI; //IF 0, THEN MOSI = 0
 }
 d=(d<<1); //SHIFT DATA BYTE LEFT
 P3OUT &= ~(BIT5); //SCL
 P3OUT |= (BIT5); //SCL
 __delay_cycles(tidelay);

 P3OUT &= ~(BIT5); //SCL
 __delay_cycles(tidelay);
 }
 P1OUT |= CS; //CS HIGH
}

void writelcd(int address, char* value){ //WRITE TO LCD
 P1DIR |= (BIT5 + BIT6 + BIT7 + BIT0); //SET CS RS MOSI & RST TO OUPUTS
 P1OUT |= (BIT5 + BIT6 + BIT7 + BIT0); //SET ALL HIGH
 P3DIR |= (BIT5); //SET SCL TO OUTPUT
 P3OUT |= (BIT5); //SET HIGH

 P1OUT |= CS; //CS HIGH

 __delay_cycles(tidelay);
 __delay_cycles(tidelay);

 int k;

 writecom(address); //WRITE TO ADDRESS
SPECIFIED

 for(k=0;k<16;k++){
 writedata(value[k]); //WRITE CHARACTERS IN VALUE ARRAY
SEPCIFIED
 __delay_cycles(tidelay);
 }

}

void writeswitches(char* row){ //SEND SWITCH PATTERN TO LCD
 int ledbit; //VALUE TO FILL BOTTOM ROW ARRAY
WITH SWITCH PATTERN
 P2DIR &=~ (BIT0 + BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6 + BIT7); //ENABLE
INPUT DIRECTORY FOR SWITCHES
 P2REN |= BIT0 + BIT1 + BIT2 + BIT3 + BIT4 + BIT5 + BIT6 + BIT7;
//ENABLE INTERNAL PULLING RESISTORS
 P2SEL &=~ (BIT6 + BIT7);

 if(previousswitch != P2IN){ //IF PREVIOUS SWITCH
PATTERN DOESN'T EQUAL NEW SWITCH PATTERN
 previousswitch = P2IN; //SET NEW
PATTERN

 for(ledbit=0; ledbit<8; ledbit++){ //BIT COMPARISON
 if(previousswitch&(BIT7)){
 row[ledbit] = ' '; //SWITCH OFF
 }
 else {
 row[ledbit] = '*'; //SWITCH ON
 }
 previousswitch=(previousswitch<<1); //BIT SHIFT TEMP

 }}
 else{ //IF
PREVIOUS SWITCH PATTERN DOES EQUAL NEW SWITCH PATTERN CONTINUE

 }

}

void lcdmemloc(){ //MEMORY LOCATION TO
WRITE TO LCD

 int div = 10; //DIVISION VALUE
 int val;

 if(fullval <= 0x09){ //FOR VALUES 0-9
 pnumber[0]= 0x30; //TENS PLACE IS 0 ON
LCD
 pnumber[1]=fullval+0x30; //ONES PLACE ON LCD
 }
 else{ //FOR VALUES
10-63
 val = fullval/div; //DIVIDE THE FULL
VALUE BY 10
 pnumber[0]= val + 0x30; //TENS PLACE ON LCD
 fullval = fullval - (val*div); //SUBTRACT THE FULL VALUE
BY THE TENS PLACE
 pnumber[1]= fullval + 0x30; //ONES PLACE ON LCD
 }

}

void buttons(){ //BUTTON FUNCTIONS

 P3DIR &=~ (0xFF); //INPUT DIRECTORY
FOR BUTTONS 0=RED 1=RIGHT 2=LEFT 3=GREEN
 P3IN &=~ (0xFF); //SET ALL INPUTS LOW

 int oldfullval;

 fullval = memorylocation; //DECLARE MEMORY LOCATION
 oldfullval = memorylocation; //SET OLD FULL VALUE TO THE
MEMORY LOCATION FOR COMPARISON

 if((P3IN&BIT2) ==0){ //LEFT BUTTON HIT
 __delay_cycles(tidelay);
 memorylocation = memorylocation-1; //SHIFT IN MEMORY LOCATION VECTOR
 if (memorylocation < (0x00)){
 memorylocation = (0x3F); //IF MEMORY LOCATION HITS 0
ROLL OVER TO 63
 }
 fullval = memorylocation; //FULL VALUE FOR LCD SCREEN
 }
 else if((P3IN&BIT3) ==0){ //GREEN BUTTON HIT
 __delay_cycles(tidelay);
 sendbuf[1] = memorylocation; //MEMORY LOCATION TO SEND
TO MAP FLASH MEMORY
 sendbuf[2] = ~(P2IN); //DIPSWITCHES INTO
SENDBUF VECTOR
 i2c_rx_bb(sendbuf,0x03, 0x00); //SEND TO LED BOARD I2C

 }
 else if((P3IN&BIT1) ==0){ //RIGHT BUTTON HIT
 __delay_cycles(tidelay);
 memorylocation = memorylocation+1; //SHIFT IN VECTOR
 if(memorylocation == (0x40)){
 memorylocation = (0x00); //IF MEMORY LOCATION HITS
63 ROLL OVER TO 0
 }
 fullval = memorylocation; //FULL VALUE FOR LCD SCREEN
 }
 else if((P3IN&BIT0) ==0){ //RED BUTTON HIT
 __delay_cycles(tidelay);
 ramtoflash[2] = memorylocation; //SEND NUMBER OF MEMORY
LOCATIONS TO CYCLE THROUGH ON LED BOARD
 i2c_rx_bb(ramtoflash, 0x03, 0x00); //WRITE CURRENT RAM TO FLASH ON
LED BOARD I2C & SEND NUMBER FOR DESIGN
 }
 else{ //IF NO
BUTTONS HIT CONTINUE

 }

 if(fullval!= oldfullval){ //IF FULL VALUE HAS
CHANGED CONTINUE TO REWRITE TO LCD
 lcdmemloc(); //MEMORY
LOCATION TO WRITE TO LCD
 writelcd(0xCB, pnumber); //WRITE MEMORY
LOCATION OF LED DESIGN ON LCD
 }
}

int main(void) {
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 while(1){

 init_lcd(); //INITIALIZE LCD
 i2c_init(); //INITIALIZE I2C

 writeswitches(bottomrow); //WRITE SWITCH PATTERN TO DISPLAY
 writelcd(0x80,toprow); //WRITE 0-7 & POS.
 writelcd(0xC0, bottomrow); //WRITE SWITCH PATTERN
 writelcd(0xCB, pnumber); //WRITE INITIAL MEMORY LOCATION ON LCD
 buttons(); //BUTTON FUNCTIONS

 }
}

II. i2c.c

/*
 * i2c.c
 *
 * Created on: Jul 28, 2014
 * Author: BHill
 */
#include "msp430.h"
#define tide 800
#define SDA BIT3
#define SCL BIT4
//volatile char i2cbuf[16];

void i2c_init(void){
 BCSCTL1 = CALBC1_16MHZ; // Set DCO
 DCOCTL = CALDCO_16MHZ;
 P1DIR |= (SDA+SCL);
 P1OUT |= (SDA+SCL);
}

void wait_burn(int cycles){
 volatile int k;
 for(k=cycles;k>0;k--){
 __delay_cycles(5000);
 }

}

int i2c_rx_bb(char *i2cbuf,int txnum, int rxnum){
 volatile unsigned int i,k, temp;
 // wait_burn(100);
 P1OUT|=SCL; //CLK High
 P1DIR |=SDA; //Data Output

 P1OUT &=~SDA; //Data low
 __delay_cycles(tide);
 P1OUT&=~SCL; //Clk low
 __delay_cycles(2);
 for (i=0;i<txnum;i++){
 temp=i2cbuf[i];
 for (k=0;k<8;k++){
 __delay_cycles(tide);
 if ((temp&0x80)==0x80){
 P1OUT |=SDA;
 }
 else{
 P1OUT&=~SDA;
 }
 P1OUT|=SCL; //CLK High
 __delay_cycles(tide);
 temp<<=1;
 P1OUT&=~SCL; //CLK Low

 }
 P1DIR &=~SDA; //Set input on data for ACK
 P1OUT &=~SDA;

 __delay_cycles(tide);
 P1OUT|=SCL; //CLK high
 __delay_cycles(tide);
 if (P1IN&SDA){ // Acknowledge missed, stop
condition ensues
 P1DIR|=SDA; // Set data as output
 P1OUT&=~SDA; // Data low
 P1OUT&=~SCL; //CLK Low
 __delay_cycles(tide);
 P1OUT|=SCL; //CLK High
 __delay_cycles(tide); //Stop Condition
 P1OUT |=SDA; //Data High
 return 1;
 }
 P1OUT &=~SCL; //CLK Low
 P1DIR|=SDA; //Set direction to output for data
 __delay_cycles(tide);
 P1OUT&=~SDA;
 }

 P1DIR&=~SDA;
 P1OUT&=~SDA;
 if (rxnum==-1)
 rxnum=100;

 for (i=(txnum); i<(txnum+rxnum); i++){
 temp=0x00;
 P1DIR&=~SDA;
 for (k=0; k<8; k++){
 temp<<=1;
 __delay_cycles(tide);

 P1OUT|=SCL; //CLK High
 __delay_cycles(tide);
 if ((P1IN&SDA)==SDA){
 temp|=0x01;
 }
 else{
 temp&=~0x01;
 }
 // __delay_cycles(7);
 P1OUT&=~SCL; //CLK Low

 P1OUT |=SDA;
 }

 P1DIR |=SDA; //Set output for Master ACK
 if (i==(txnum+rxnum-1)){ // make NACK
 P1OUT |=SDA; //Data High for NACK
 }
 else{ //Master send ACK
 P1OUT &=~SDA; //Data Low
 __delay_cycles(tide);

 }
 if (i==txnum){
 if (rxnum==100)
 rxnum=temp;

 }

 i2cbuf[i]=temp;

 __delay_cycles(tide);
 P1OUT|=SCL; //CLK high
 __delay_cycles(tide*3);

 P1OUT &=~SCL; //CLK Low

 __delay_cycles(tide);
 P1OUT &=~SDA; //Data Low
 P1DIR&=~SDA;

 }
 P1DIR |=SDA; //Set output
 P1OUT &=~SDA; //Data low
 __delay_cycles(tide);
 P1OUT|=SCL; //CLK high
 __delay_cycles(tide);
 P1OUT|=SDA; // Data high: Stop bit
 return 0;

}

III. i2c.h

/*
 * i2c.h
 *
 * Created on: Jul 28, 2014
 * Author: BHill
 */

#ifndef I2C_H_
#define I2C_H_
void i2c_init(void);
int i2c_rx_bb(char *,int, int);
void wait_burn(int);
//extern volatile char i2cbuf[16];

#endif /* I2C_H_ */

Appendix H. LED Board Slave Code.

I. main.c/*
 * LED BOARD CODE -- SLAVE,FLASH MEMORY READ AND WRITE, AND DISPLAY LED PATTERN
 *
 * Created on: April 8, 2017
 * Author: Nathan Ericksen
 *
 * LED EDUCATIONAL BOARD -- SENIOR DESIGN SPRING 2017
 * GROUP: TYANA RASMUSAN & ASHTYN AUMUELLER
 */

#include <msp430.h>
#include "serial_handler.h"

char *Flash_ptr;
//char design[64] = {0X00, 0xFF, 0x02, 0x04, 0x02, 0xFF, 0x00, 0x00, 0x01, 0x01, 0xFF,
0x01, 0x01, 0x00, 0x00, 0xFF, 0x89, 0x89, 0x89, 0x00, 0x00, 0xFF, 0x81, 0x81, 0x81, 0x00,
0x00, 0xFF, 0x08, 0x08, 0x08, 0xFF};
char design[64]; //LED DESIGN TO BE FILLED
volatile int led[64]; //ARRAY FOR READING OUT OF FLASH
volatile char memloc, ledconfig; //VARIABLES FOR MEMORY LOCATION AND LED CHARACTER
volatile int setparam = 0;
volatile int rtrn = 1;
volatile int stp_val; //VALUE RECEIVED FROM USERINTERFACE FOR DESIGN LENGTH
void memory_mode(); //READ/WRITE RAM TO FLASH
void writemem(); //FUNCTION THAT DECIDES WHEN TO READ OR WRITE

//FUNCTION TO DISPLAY FLASHING LED PATTERN
void write_word(){

 volatile int i,j,l,m;

 //WHILE LOOP THAT CHECKS FOR ANY I2C INPUT AND DISPLAYS LED PATTERN
 while(1){

 //DELAY THAT CHECKS FOR BUTTON PRESS ON UI
 for(i=5800;i>0;i--);
 //IF LED BOARD RECIEVES ANY I2C SIGNAL IT ENDS THE FUNCTION AND RETURNS TO
PROGRAMMING MODE
 if(i2crxflag > 0){
 return; //END FUNCTION
 }

 //OTHERWISE IF NO I2C SIGNAL IS DETECTED RUN TWO CYCLES OF THE LED PATTERN
 else{
 for(l=0;l<2;l++){
 //INDEXES THROUGH ALL DESIGN VALUES OF LED ARRAY DELAY ADDS A
SLOWER BLINK SPEED
 for(j=0;j<(stp_val);j++){
 for(i=30000;i>0;i--){
 P3OUT = led[j];
 }

 }
 }
 }
 }
}

//FUNCTION FOR READING OR WRITING TO FLASH MEMORY FROM THE CONTROLLER'S RAM
void memory_mode(int setparam){

 volatile int k,l,p,z;

 Flash_ptr = (char *) 0x1040;
 if (setparam==-1){ // Read the current mode
from the memory

 for (k=0;k<(64);k++);
 design[k]=*(Flash_ptr+k+1); //Read stored flash memory
back into design matrix

 }
 else if (setparam){ //Set the mode to
active mode
 //write to memory this mode
 FCTL1 = FWKEY + ERASE; // Set Erase bit
 FCTL3 = FWKEY; // Clear Lock bit
 *Flash_ptr = 1; // Dummy write to erase Flash
segment

 FCTL1 = FWKEY + WRT; // Set WRT bit for write
operation

 for (l=0;l<(stp_val);l++){
 *Flash_ptr++=design[l]; //write design
matrix to flash memory
 }

 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY + LOCK; // Set LOCK bit
 rtrn = 0;
 }

}

void writemem(){

 volatile int z;

 if(memloc == 0xFF){ //RED BUTTON PRESS ON UI
 i2crxflag = 0; //SET I2C FLAG LOW TO LOOK FOR ANOTHER I2C
INITIALIZATION
 stp_val = ledconfig;
 memory_mode(1); //WRITE RAM TO FLASH
 write_word(); //CALL FUNCTION TO DISPLAY PATTERN ON LED'S
 }

 else{ //GREEN BUTTON PRESS ON UI OR NO BUTTON PRESS
 memory_mode(-1); //READ FLASH
 design[memloc] = ledconfig; //UI SENDS MEMORY LOCATION NUMBER OVER, THE LED
DESIGN ARRAY READS IN THAT ONE LOCATION
 P3OUT = ledconfig; //DISPLAYS SAMPLE LED PATTERN FOR MEMORY LOCATION
 }

 //FILLS LED ARRAY WITH DESIGN ARRAY FOR USE IN WRITE_WORD FUNCTION
 for(z=0;z<64;z++){
 led[z] = design[z];
 }

}

/*
 * main.c
 */
int main(void) {
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 volatile int extflg = 0;
 P3DIR |= 0xFF; //SET PORT 3 TO OUTPUT MODE
 P3OUT &=~ 0xFF; //SET ALL OF PORT 3 LOW
 P1DIR |= 0xFF; //SET PORT 1 TO OUTPUT MODE
 P1OUT |= 0xFF; //SET ALL OF PORT 1 HIGH

 i2c_slave_init(0x48); //START I2C SLAVE INITIALIZATIONS
 uart_init(0x08);

//UI SENDS THREE I2C DATA VALUES STARTING WITH WRITE, MEMORY LOCATION, THEN LED PATTERN
VALUE

 //writemem();
// write_word();

 while(1){

 if (i2crxflag>0){ //BOARD RECIEVES I2C SIGNAL
 memloc=i2cRXData[0]; //THE MEMORY LOCATION THE PATTERN IS TO BE
STORED IN
 ledconfig=i2cRXData[1]; //PATTERN OF LED'S STORED IN HEX VALUES
 writemem(); //CALL WRITEMEM FUNCTION TO READ
OR WRITE VALUES
 i2crxflag = 0;
 extflg = 0;
 }

 else{
 writemem(); //OTHERWISE READ FROM MEMORY AND
CONTINUE DISPLAYING PATTERN
 }

 }

 return 0;
}

II. serial_handler.c

/*
 * uart_control.c
 *
 * Created on: Jul 28, 2014
 * Author: BHill
 */
#include "msp430.h"
#include "serial_handler.h"
#define uart_max 36
#define i2c_max 64

unsigned char tx_data_str[uart_max], rx_data_str[uart_max], rx_flag = 0, dec_str[6],
eos_flag=0;
char dec_char[6];
int tx_ptr,e_tx_ptr;
unsigned char i2cTXData[i2c_max],i2cRXData[i2c_max];
volatile int i2cTXData_ptr=0,i2cRXData_ptr=0,i2crxflag=0;
volatile int i2cmode=0;
volatile int address = 0x48;

void i2c_slave_init(int address){

 BCSCTL1 = CALBC1_16MHZ; // Set DCO
 DCOCTL = CALDCO_16MHZ;

 P1SEL |= BIT6 + BIT7; // Assign I2C pins to USCI_B0
 P1SEL2|= BIT6 + BIT7; // Assign I2C pins to USCI_B0

 UCB0CTL1 |= UCSWRST; // Enable SW reset
 UCB0CTL0 = UCMODE_3 + UCSYNC; // I2C Slave, synchronous mode
 UCB0I2COA = address; // Own Address is input
 UCB0CTL1 &= ~UCSWRST; // Clear SW reset, resume operation
 UCB0I2CIE |= UCSTTIE; // Enable STT interrupt
 IE2 |= (UCB0TXIE+UCB0RXIE); // Enable TX interrupt
 i2cmode=0;
 P2OUT = P1SEL;
}

void uart_init(int br){
 volatile int temp=0;
 //Set baud rate to 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200,
230400, 460800, 921600
 // use index of 0 1 2 3... corresponding to the rates above
 volatile unsigned int brvec[]={0x55, 0x15, 0x0B, 0x05, 0x83, 0x41, 0xA1, 0x16,
139, 69, 35, 17};
 volatile unsigned int hrvec[]={0xD0,0x34,0x1A,0x0D,6,3,1,1,0,0,0,0};
 BCSCTL1 = CALBC1_16MHZ; // Set DCO

 DCOCTL = CALDCO_16MHZ;
 P1SEL |= (BIT1+BIT2); // P3.4,5 = USCI_A0 TXD/RXD
 P1SEL2 |= (BIT1+BIT2);
 // UCA0CTL1 |= UCSWRST;
 UCA0CTL1 |= UCSSEL_2; // SMCLK
 UCA0BR0 = brvec[br];
 UCA0BR1 = hrvec[br];
 UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt
 __bis_SR_register(GIE); // interrupts enabled
}

void uart_write_string(int vals, int vale){
 int i; // writes a string
from global variable tx_data_str. vals is starting pointer and vale is the ending value
 for(i=vals;i<vale;i++){
 while (!(IFG2&UCA0TXIFG));
 UCA0TXBUF=tx_data_str[i];
 }
 while (!(IFG2&UCA0TXIFG));
 UCA0TXBUF='\n';
 while (!(IFG2&UCA0TXIFG));
 UCA0TXBUF='\r';
}

void uart_write_fast_string(int vals, int vale){
 tx_ptr=vals; // writes a string
from global variable tx_data_str. vals is starting pointer and vale is the ending value
 e_tx_ptr=vale; // Uses
interrupts to send out bytes
 UCA0TXBUF=tx_data_str[tx_ptr];
 IE2 |= UCA0TXIE;

}

#pragma vector=USCIAB0TX_VECTOR
__interrupt void USCI0TX_ISR(void)
{
 if (IE2&UCA0TXIE){
 //portion of uart_write_fast_string
 tx_ptr++;
 if (tx_ptr<e_tx_ptr)
 UCA0TXBUF=tx_data_str[tx_ptr];
 else{
 while (!(IFG2&UCA0TXIFG));
 UCA0TXBUF='\n';
 while (!(IFG2&UCA0TXIFG));
 UCA0TXBUF='\r';
 IE2 &=~ UCA0TXIE;
 }
 }
 else{

 //if (i2cmode){
 if (i2crxflag == 2){

 UCB0TXBUF = i2cTXData[i2cTXData_ptr]; // TX
data on i2c slave bus
 i2cTXData_ptr++;
 }
 else{
 i2cRXData[i2cRXData_ptr]=UCB0RXBUF;
 // rx data on i2c slave bus
 i2cRXData_ptr++;
 i2crxflag++;
 }
 //i2crxflag = 0;
 }

}

// Place data in RX-buffer and set flag
#pragma vector=USCIAB0RX_VECTOR
__interrupt void USCI0RX_ISR(void)
{
 volatile char temp;
 if(IFG2 & UCA0RXIFG){ // Receive
data on UART
 rx_data_str[rx_flag]=UCA0RXBUF; // data is stored in
rx_data_str
 temp=rx_data_str[rx_flag];
 while (!(IFG2&UCA0TXIFG));
 // UCA0TXBUF=temp;
 if (rx_data_str[rx_flag]=='\r') // new line or
carriage return set eos_flag global variable
 eos_flag=1;
 if (rx_data_str[rx_flag]=='\n')
 eos_flag=1;
 rx_flag++;
 if (rx_flag>uart_max){ //
maximum of characters starts at the beginning again
 rx_flag=1;
 }
 }
 if(IFG2 & UCB0TXIFG){ // detect
beginning of i2c in slave-master mode
 i2cmode=1;
 if (UCB0STAT&UCSTTIFG){
 UCB0STAT &= ~(UCSTPIFG + UCSTTIFG); // Clear interrupt flags
 i2cTXData_ptr=0;
 } // Increme
 }
 if(IFG2&UCB0RXIFG){ // detect
beginning of i2c in master-slave mode
 i2cmode=0;
 if (UCB0STAT&UCSTTIFG){
 UCB0STAT &= ~(UCSTPIFG + UCSTTIFG); // Clear interrupt flags
 i2cRXData_ptr=0;
 } // Increment data
 }

}

char uart_get_char(int num){
 return rx_data_str[num];
}
void uart_set_char(char tx_data,int num){
 tx_data_str[num]=tx_data;
}

void conv_hex_dec(int val){
 volatile int temp,prev;
 unsigned int divider=10000;
 volatile int n=1,z=0,neg=0;
 dec_str[0]='0';
 if (val<0){
 neg=1;
 val=val*(-1);
 dec_str[0]='-';
 }
 prev=0;
 for(n=1;n<6;n++){
 temp=(val-prev)/divider;

 dec_str[n]=temp+0x30;
 prev=prev+(temp*divider);

 divider=divider/10;
 }

}

void unsigned_conv_hex_dec(int val){
 volatile unsigned int temp,prev;
 unsigned int divider=10000;
 volatile unsigned int n=1,z=0,neg=0;
 dec_str[0]='0';
 prev=0;
 for(n=1;n<6;n++){
 temp=(val-prev)/divider;

 dec_str[n]=temp+0x30;
 prev=prev+(temp*divider);

 divider=divider/10;
 }

}

int conv_dec_hex (void){
 volatile int num,k,temp;
 num=0;
 for (k=1;k<6;k++){
 num*=10;
 temp=dec_char[k];

 if (dec_char[k]>0x39)
 return 0x7FFF;
 if (dec_char[k]<0x30)
 return 0x7fff;
 num+=(dec_char[k]-0x30);
 }
 if (dec_char[0]=='-')
 num=num*(-1);
 return num;
}

 III. serial_handler.h

/*
 * serial_handler.h
 *
 * Created on: Mar 3, 2016
 * Author: BHill
 */

#ifndef SERIAL_HANDLER_H_
#define SERIAL_HANDLER_H_

extern unsigned char tx_data_str[36], rx_data_str[36],rx_flag ,dec_str[6],eos_flag;
extern char dec_char[6];
void uart_init(int);
void uart_write_string(int,int);
char uart_get_char(int);
void uart_set_char(char,int);
void conv_hex_dec(int);
void unsigned_conv_hex_dec(int);
int conv_dec_hex (void);
void i2c_slave_init(int);
//void uart_write_fast_string(int, int);
extern unsigned char i2cTXData[64],i2cRXData[64];
extern volatile int i2cTXData_ptr,i2cRXData_ptr,i2crxflag;
extern volatile int i2cmode;

#endif /* SERIAL_HANDLER_H_ */

Appendix I. Photos of Completed Assemblies.

Figure 1I. Front of User Interface PCB.

Figure 2I. Back of User interface PCB.

Figure 3I. Front of LED Board PCB.

Figure 4I. Back of LED Board PCB.

Figure 5I. User Interface with Enclosure.

Figure 6I. Battery Box with Battery Clip.

Figure 7I. Battery Box with Cover.

Figure 8I. Mounted LED Board.

Figure 9I. Complete Assembly

	Montana Tech Library
	Digital Commons @ Montana Tech
	4-2017

	Educational LED Board
	Nathan Ericksen
	Tyana Rasmusan
	Ashtyn Aumueller
	Recommended Citation

	tmp.1495560180.pdf.car07

