
Czech Technical University in Prague 
Faculty of Electrical Engineering 

Department of Cybernetics 
 

BACHELOR PROJECT ASSIGNMENT 

Student:   Jan   S t u d e n ý 

Study programme:  Open Informatics 

Specialisation:  Computer and Information Science 

Title of Bachelor Project:    Learning Relevant Reasoning Patterns with Neuro-Logic  
                                               Programming 
 
 

 

Guidelines: 
Incorporating common sense reasoning patterns into machine learning remains one of the challenges  
in Artificial Intelligence. The goal of this thesis is to practically demonstrate how, mainly symbolic, 
reasoning and, mainly statistical, learning may be tighly integrated with differentiable neuro-logic 
programming across diverse AI scenarios with different reasoning patterns, such as rule or similarity 
based reasoning with corresponding underlying learning patterns. 
 
1. Get an overview of Artificial Intelligence methods and common underlying principles of  
    continuous/discrete state space search. Focus mostly on learning and reasoning. 
2. Get familiar with Statistical Relational Learning frameworks, primarily Lifted Relational Neural  
    Networks. 
3. Define suitable learning and reasoning problems, such as common sense classification where vague  
    background knowledge may be given in addition to learning examples. Focus on extensions into  
    relational setting. 
4. Encode the diverse problems with relevant differentiable logic templates and showcase your learned  
    solutions. 
5. Discuss your findings, focus on generality of your approach, and compare with related work. 
 
 
Bibliography/Sources:    
[1] Getoor, Lise - Introduction to statistical relational learning - MIT press, 2007. 
[2] De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen - ProbLog: A Probabilistic Prolog and Its  
     Application in Link Discovery - IJCAI. Vol. 7. 2007. 
[3] Sourek, Gustav, et al. - Lifted Relational Neural Networks - NIPS 2015 Workshop on Cognitive  
     Computation: Integrating Neural and Symbolic Approaches, 2015. 

Bachelor Project Supervisor:   Ing. Gustav Šourek 

Valid until:   the end of the summer semester of academic year 2017/2018 

 

       L.S. 

prof. Dr. Ing. Jan Kybic 
Head of Department 

 prof. Ing. Pavel Ripka, CSc. 
Dean 

Prague, January 6, 2017 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Library of the Czech Technical University in Prague

https://core.ac.uk/display/84832329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s thesis

Learning Relevant Reasoning Patterns with
Neuro-Logic Programming

Jan Studený

Supervisor: Ing. Gustav Šourek

26th May 2017





Acknowledgements

I would like to thank my supervisor Ing. Gustav Šourek so much for his invaluable
support and optimism during the whole thesis. I would like to thank my entire family
for their tolerance and sympathy during writing this thesis.





Author statement for undergraduate
thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

In Prague on 26th May 2017 …………………



Czech Technical University in Prague
Faculty of Electrical Engineering
© 2017 Jan Studený. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Electrical Engineering.
The thesis is protected by the Copyright Act and its usage without author’s permission
is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis
Studený, Jan. Learning Relevant Reasoning Patterns with Neuro-Logic Programming.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Electrical Engineer-
ing, 2017.



Abstrakt

Tato práce demonstruje schopnosti vylepšeného neuro-logického frameworku podchytit
různé úlohy umělé inteligence, které jsou založeny na různorodých metodách uvažování.
Základadem k tomuto frameworku je stávající engine nazvaný Lifted Relational Neural
Networks.

V práci popisujeme nejčastější metody strojového uvažování používané ve statistick-
ých a symbolických metodách a také jak mohou být jednotlivé vzorce uvažování zakó-
dovány do podoby navrženého neuro-logického programování. Dále se blíže zaměřujeme
na schopnosti vyjadřování, které vzniknou kombinací obou přístupů.

Na vybraných příkladech z herního prostředí ilustrujeme, jak tento společný neuro-
logický přístup rozšiřuje schopnosti již existujísích metod uvažování pracovat nad re-
lačními strukturami při zachování výhod neurálního učení.

Klíčová slova metody uvažování, strojové učení relevantního uvažování,neuro-logické
programování,strojové učení
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Abstract

This thesis demonstrates the capability of an enhanced neuro-logic programming frame-
work to capture diverse artificial intelligence tasks based on different reasoning patterns.
The enhanced framework is building on existing engine called Lifted Relational Neural
Networks.

We describe common reasoning patterns used in statistical and symbolic methods
and demonstrate how each particular pattern may be captured from the perspective of
the proposed neuro-logic programming framework.

We discuss the patterns in context of learning and reasoning and further focus more
closely on abilities that arise from combination of both approaches. On selected examples
from simple game environments, we illustrate how this joint neuro-logic programming
approach broadens the scope of existing reasoning patterns through the ability to repres-
ent and reason with relational information while keeping the benefits of neural learning.

Keywords reasoning patterns, learning relevant reasoning patterns,neuro-logic pro-
gramming,common sense patterns,machine learning
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Chapter 1
Introduction

1.1 Motivation
Artificial intelligence (AI) has a goal for machines to exhibit rational, educated behaviour
that is as good as, or superior to, human being. At the time of writing, this, rather
philosophical, goal is far from fulfillment. Most researchers restrict themselves to pursue
the mentioned goal only in some specific field instead. In some fields, the machines
already surpassed human performance 1, but advancement in other fields such as image
recognition or language translation is tough and unpredictable. Searching for a face in
an image with hard-wired ”if-then-else” structure proved infeasible, since detection of a
face is not a task that has an explicit solution. Instead of studying the morphology of a
face and hard-wiring every single aspect of it, researchers came up with a brilliant idea.
Why couldn’t a program learn to recognize a face by itself in a way similar to humans?
To help with this elevated goal, statistical modeling and optimization techniques started
to be employed to give a rise to the field of Machine Learning (ML).

In machine learning, we try to model complex systems 𝒮 using generic architectures
ℳ, such as neural networks or decision trees. In the process of learning we then try to
optimize the fit of a model from ℳ onto a system from 𝒮. After some early attempts in
symbolic AI, the majority of research in the field shifted towards vector representations
of 𝒮 and corresponding statistical methods for optimization of ℳ.

A considerable flaw of most of the current statistical machine learning tools is that
the training data is the only source of knowledge. Moreover these training data have
to be represented with real-valued vectors which limits the expressiveness scope of 𝒮.
Finally the interpretability of the learned models is often dubious. On the other hand,
the symbolic AI approaches offer rich representation language, clear interpretability but
a much weaker generalization through learning.

Thus to solve an AI task, we can typically either write a classical, structured, lo-
gical program explicitly encoding the solution, or rely purely on the power of statistical

1These are mostly simple axiomatic tasks, e.g., solving mathematical formulas, sorting numbers,
finding shortest path in a graph, etc.
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1. Introduction

modeling. Approaches from in between these two worlds are thus subject to much of
scientific inquiry.

1.2 Aim of the Work
The aim of this thesis is to show that there is a place for symbolic reasoning in statist-
ical learning models, and to demonstrate that such a joint approach is able to capture
variety of existing learning and reasoning patterns, as well as it allows for introduction
of novel concepts that could not be expressed with the traditional, separate approaches.
For the demonstrations, we build on a particular Statistical Relational Learning (SRL)
framework combining logical reasoning with neural network learning, and instantiate
the discussed reasoning patterns in simple and interpretable game environments.

1.3 Structure of the Thesis
The structure of the thesis can be divided into four parts.

Initially in chapter 2 - Background we discuss goals, views and approaches in Artificial
Intelligence and introduce the concept of Machine Learning. Furthermore in section 2.4
- Statistical Relational Learning we discuss a particular field of machine learning - Stat-
istical Relational Learning (SRL) into which this thesis might be classified. Chapter 3 -
Related Work discusses different SRL frameworks.

The second part of this thesis, chapter 4 - Neuro-Logical Formalization discusses
the rationale and defines an enhanced framework on top of existing SRL engine (Lifted
Relational Neural network).

Next, in chapter 5 - Relevant Reasoning Patterns we firstly show the key reasoning
patterns present in both statistical a symbolic learning models and their relation to our
framework. Afterwards, we focus on combining the statistical and symbolic patterns
with neuro-logic programming and show its benefits.

Lastly, in chapter 6 - Experiments the thesis illustrates the diversity of reasoning
patterns on selected examples from simple game environments.

2



Chapter 2
Background

2.1 Artificial Intelligence

“ Artificial intelligence (AI) is intelligence exhibited by machines. ”
wikipedia.org, Artificial learning

Artificial intelligence has a goal for machines to exhibit rational, educated behaviour,
that is as good as, or superior to human being. Beginning of Artificial intelligence dates
back to post-war era, just right after the first computer was developed. It is a huge field
containing different views on almost every possible non-trivial type of problem solved
by humans. For the lack of any widely accepted definition, there is no easy answer to
whether a particular problem solution belongs to the field of Artificial Intelligence.

There are even multiple approaches proposed on how to fulfill the AI goal. One
approach is through Cognitive Science, where people try to do so by modeling human
thinking. Cognitive scientists study human brain and try to incorporate that knowledge
into a program that would correspond to human thinking.

A different approach is to build machines that act and think rationally. From this
perspective, machines should make their best response to the environment, considering
their actual and past observations, and the background knowledge they have. This
approach appeals to most scientist because it is general, rationality is well defined, and
the best response can be proved.

Historically, Artificial intelligence went through periods of success and optimism, but
also lack of advancement which cut the funding and caused recession. Proposed ideas
were often working well on toy examples, but generalization to bigger examples was
typically computationally infeasible or inaccurate. A good example is the incentive from

3



2. Background

1950’s to translate Russian text to English. Small, simple sentences were translated
quite well, but more difficult pieces went often out of control2.

2.2 Machine Learning
In machine learning, we try to build models ℳ that ideally respond as accurately as
the original system 𝒮 would given some input observation, without being explicitly
programmed. Given this ability, the model may be seen as improving its performance 𝑃
through time by the experience 𝐸 it is presented in the form of the observations of the
system 𝒮 (i.e. its input-output data).

Machine learning is vital for AI because of this ability to adapt to a new environment
- an ability that is impossible to achieve with any other existing approach. Also, as
machine learning requires only the experience 𝐸, a program can learn to respond in
problems that humans are unable to code. That includes, for example, the discussed
face detection problem, but a variety of others, such as image classification, speech
recognition, machine translation, etc.

Machine learning can be classified based on the type of 𝐸 the program receives into
3 categories, (i) supervised learning (when the program is given a set of observations
together with the responses of 𝒮), unsupervised learning (when the program is given
only the set of input observations of 𝒮) and reinforcement learning (when the program
receives a reward based on its own response).

2.2.1 Supervised Learning
Supervised Learning (also known as learning with a teacher) is probably the most com-
monly utilized type of learning. Let 𝑇 = {(𝑥𝑖, 𝑦𝑖)} be a set of tuples, with 𝑥𝑖 representing
the input observation and 𝑦𝑖 representing the 𝒮’s response to it. This set 𝑇 is called the
training set. The goal of supervised learning is to learn an approximation of the transfer
function 𝑓 ∶ 𝑋 ↦ 𝑌 of the system 𝒮 that outputs the best response 𝑦 ∈ 𝑌 given the
observation 𝑥 ∈ 𝑋 from the training set 𝑇 . This is done via minimization of a given
cost (also called objective or error) function, capturing the discrepancies between 𝑦𝑖, the
actual response of 𝒮, and the model’s prediction. The aim of supervised learning is then
to generalize from these known examples in 𝑇 onto new, unseen observations of 𝒮.

2.2.2 Unsupervised Learning
Unsupervised Learning (also known as learning without a teacher) is the type of learning
where the training set is given without the 𝒮’s responses as 𝑇 = {(𝑥𝑖)}. One example
of such learning setting is the anomaly detection, where the underlying assumption is
that most of the observations are normal and thus will be fitted by a generalizing learner
𝑀 as opposed to the anomalous observations. Another example is cluster analysis with

2One of the ”good” translations was: ”the spirit is willing but the flesh is weak” translated as ”the
vodka is good but the meat is rotten”
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2.3. Symbolic Reasoning

the underlying assumption that similar observations will share the same, possibly latent,
target concepts. For the lack of the ground-truth response from 𝒮, there is no obvious
way of measuring the quality 𝑃 of an unsupervised learner.

2.2.3 Reinforcement Learning
This type of learning can be seen as a generalization of supervised learning. Learner
doesn’t receive any training set, but instead is rewarded based on his response in the en-
vironment he continuously observes. The learner tries to maximize a cumulative reward
during a given period of learning. This type of learning is heavily used in robotic, because
the reward can be extracted from the environment (e.g. whether robot moves towards
the desired location or not), with the big advantage that there is no need to reward each
response of an agent, but rather there can be a reward only for accomplishment of some
high level goals (e.g. to get somewhere).

2.3 Symbolic Reasoning
Reasoning is the, equally important, counterpart to learning. Two distinct reasoning
types are used prominently in the field of artificial intelligence. The first type, statistical
reasoning, uses numerical features to reason about the environment. Second type of
reasoning is symbolic reasoning that uses abstract symbols, expressions and processes
that operate on top of expressions to produce other expressions that can be useful in a
given context.

Symbolic reasoning is the foundation of logic and mathematics in general. For its
formal nature, logical reasoning is a typical example of symbolic reasoning used in any
field of artificial intelligence. Logical reasoning allows to unambiguously reason about
facts, encode background knowledge and act rationally. We further discuss symbolic
reasoning in more detail in section 5.2 - Symbolic Reasoning Patterns.

2.4 Statistical Relational Learning
Typical learning algorithms, such as Neural Networks or Support Vector Machines, re-
quire that each observation is a fixed-length vector of (real) numbers, as well as the
output. While this assumption is common in the theory of modeling dynamic systems
and it is a natural representation for many sources, e.g. images of the the same size, it
is almost impossible to restrict more complex environments, e.g., words, to have a fixed
length.

Relational Learning doesn’t impose this fixed-length restriction, and while building
on rich representation languages, such as the first order logic, the input can be a word, a
tree structure, a graph, everything that can be represented in the given formal language.
Aim of relational learning is not only to remove the fixed-length restriction but to exploit
the structure of data. This means that if some objects relate to each other in some way,
they should have similar properties. For example, if we want to classify a product, we
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2. Background

can do so not only based on its attributes, but also using the links and attributes of the
related products.

Statistical Relational Learning then tries to add typical generalization properties
from statistical learning on top of the rich representation languages in order to learn
from complex, relational data that also exhibit uncertainty.

A direct advantage this strategy brings to common statistical models is parameter
sharing. This occurs when there are hidden symmetries in the parameters of the sys-
tem, and ergo the model, rendering the functionality of different parameters to be the
same. This however may be only be captured on a higher level of abstraction than that
of the original, statistical model such as neural network or SVM, resulting into often
dramatic reduce of the number of parameters to estimate leading to faster and better
generalization.

6



Chapter 3
Related Work

Statistical relational learning is still a rather unconventional field proposing multiple
strategies on how to combine statistical and relational approaches to learning (and reas-
oning), and the body of related work is naturally vast. In this thesis, we will cover
two representatives from the two most promising directions. The first direction is the
strategy of lifting of graphical models, with Markov Logic Networks (MLN) as the most
successful representative. Second, we will briefly introduce the strategy of probabilistic
logic programming with the language of Problog as its core representative. Finally, we
will introduce a SRL framework of Lifted Relational Neural Networks that is inspired
by these strategies and which we will elaborate on more closely for the use in the rest of
the thesis.

3.1 Markov Logic Networks
Markov Logic Networks [7] are a SRL framework that lifts Markov Networks to the
expressiveness of first order logic (FOL). This means that they make it possible to use
Markov Networks to learn from relational data and incorporate first order background
knowledge. They do it by introducing a so called template, consisting of weighted FOL
formulae representing the lifted model, which is then merged with (relational) data, also
represented in (relational) logic, to finally create a Herbrand model [3] of the merged
set, representing all possible worlds that can be inferred from the given situation. This
process is commonly referred to as grounding, and in the ground model all atoms from
the Herbrand model stand as nodes in a constructed markov network in which two
nodes are connected iff their corresponding literals were grounded from the same FOL
formula. The weights associated with the formulae then determine potentials of cliques
in the constructed markov network and thus completely determine probabilities of all
possible worlds.

The resulting ground markov network can then be used for inference and learning3.
3In principle, for computational speed up only the smallest part of the whole network that can infer

knowledge or learn weights is built
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3. Related Work

Advantage of MLN is the capability to work with the full expressiveness of FOL formulae.
MLN allows existential quantifiers, usage of function symbols and is not limited to
definite clauses, a common restriction of many other SRL frameworks. MLN has a
well defined probability of formulae and if the weight of every formula goes towards
infinity, then MLN infers all satisfiable formulas with probability 1. A big disadvantage
is the tractability of learning, as even inference is NP-complete and is intractable in all
but smallest domains. Instead of exact inference, probabilistic method are used. The
same problems arises in learning, because maximizing the underlying log-likelihood is
intractable as well.

3.2 ProbLog
Other promising SRL framework is ProbLog [6], which combines logic programming
with probabilistic inference. ProbLog is a straightforward extension of Prolog which
adds probability to each clause contained in a logical program. Each formula is then
considered mutually independent. Probability of satisfying a query is then computed as
a probability that the query will be satisfied in randomly sampled program. This is a
neat idea that enables to express probabilities of complex events, beyond capabilities of
ordinary probabilistic models, as they may be described in the first order setting. Again
however, computing probability of a query is NP-hard, hence approximation algorithms
are being used. For learning of the probabilities of clauses in a program from the training
set, EM algorithm is used, which is again computationally expensive.

3.3 Lifted Relational Neural Networks
Lifted Relational Neural Networks (LRNN) [10] is another SRL framework that enhances
neural networks to be able to handle relational data. In the lifting strategy, LRNNs are
very similar in spirit to MLNs, and in the representation language to Problog. LRNN
is a logical program described by a set of weighted first order definite clauses 𝒩 =
{(𝐶𝑖, 𝑤𝑖)|𝑖 ∈ 𝜄𝑛}. Similarly to MLN, this logical program acts as a template for building
ground models when presented with some relational data, only in this case, the ground
models are neural networks instead of markov networks. To build a neural network from
the set 𝒩 and some given data, a least Herbrand model 𝐻 is created and following steps
are performed.

• For each ground fact from the data 𝐹𝑖 create a fact neuron 𝐹 𝜃4. This neuron acts
as an input and its output is always 1.

• Connect it to a corresponding atom neuron 𝐴𝜃 with the same signature and a
weight 𝑤𝑖, corresponding to the truth value of the fact 𝐹𝑖.

4𝜃 acts as a grounding substitution
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3.3. Lifted Relational Neural Networks

• For every grounding of a definite clause, i.e. rule 𝑅𝑖 ∈ 𝒩, that has all atoms from
the body satisfied, i.e. present in 𝐻, create a rule instance neuron 𝑅𝐼𝜃 which has
its inputs from the atom neurons (corresponding to all atoms in the body of 𝑅𝑖)
with weight 1, and outputs to a rule aggregation neuron 𝑅𝑎𝑔𝑔𝜃, also with weight 1.
This aggregation neuron gathers all groundings of 𝑅𝑖 that have the same grounded
head literal.

• The aggregation neuron then connects again to an atom neuron 𝐴𝜃 corresponding
to the 𝑅𝑖 rule’s head literal with weight 𝑤𝑗, associated with 𝑅𝑖 in 𝒩.

• These steps are repeated until all ground literals from 𝐻 are connected in the
network.

This is the procedure to build the ground structure of a network, but to fully describe
the network behavior, activation functions are to be determined.

The fact neurons do not have any input so they do not need any activation function.
Atom neurons gather all possible weighted explanations for an atom, so a corresponding
activation function should have a high output whenever any of the rule-based explana-
tions looks promising. For this purpose, authors [10] propose a sigmoidal approximation
of Łukasiewicz disjunction.

Rule neurons represent instantiations of conjunctive rules, so they should behave
as an approximation of a conjunction. In the LRNN [10], sigmoidal approximation of
Łukasiewicz conjunction is used again.

Rule aggregation neurons gather the rule instance neurons and they should aggregate
the individual instances of a rule into a single output. For that the authors propose two
possible activation functions, maximum and average.

The built network can be used to estimate the truth value of any ground literal
from 𝐻. To be able to estimate the truth value of the literal, given some observation
in the form of weighted definite clauses ℰ, we just build a network from the set 𝒩 ∪
ℰ. Because the underlying model is a feed-forward neural network, we can use simple
stochastic gradient descend (SGD) based on back-propagation (BP) to learn the weights
that correspond to the rules in 𝒩. The most obvious difference from regular NNs is that
for each example the ground NN may be different. This however does not cause any
problem for generalization, because we tied all the weights using the single template 𝒩.
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Chapter 4
Neuro-Logical Formalization

We chose LRNN as a base for our proposed neuro-logical formalization of SRL problems
because it combines two powerful modeling approaches, (i) neural networks that were
theoretically proved to approximate every possible functional input-output correspond-
ence, and First Order Logic that is expressive enough to formulate, and by resolution
compute, wide range of fundamental problems in science. Restriction to Horn clauses
does not impose any restriction on the structure of resulting NNs, and every possible NN
can thus be represented using this formalization. Moreover, by building NNs using Horn
clauses, every sub-network can be interpreted as proving a truth value of the atom in
the sub-network’s root. This sheds some light on how the output of the whole network is
being recursively computed, which can be used to investigate and interpret the learned
model.

To demonstrate the learning process for the model, encoding of the training examples
and other core properties of our enhanced framework, we present a simple regression
problem that illustrates the important features.

4.1 Proposed formalism

The following example aims to familiarize the reader with the proposed formalism and
briefly illustrate its benefits. The goal for the learned model is to predict (compute)
score of words in Scrabble5.

The model is described as a weighted logic program, further referred to as a template.
The template reflects the high-level structure of the resulting models and possibly some
background knowledge about the problem. In Srabble for instance, we know that every
letter affects the score of a word. To make the situation more interesting, we will consider
that the same holds for bi-grams of letters. To encode the knowledge, we use Horn clauses

5Further, bonus points are added for selected bi-grams to demonstrate the use of rules with more
than one literal in the body.
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4. Neuro-Logical Formalization

(also called rules). Each rule is in the following format:

0.0
weight

score()
rule head

:- letterA(X)
rule tail

. [lukasiewicz]
activation function (optional)

Weight of the rule is either learnable (then the weight represents the initial value for
learning with the exception of 0.0, where the initial weight value will be randomly gen-
erated) or fixed (fixed weights are enclosed in angle brackets). In our sample scenario,
we do not know the weight of any letter, and so every rule in this example will have
learnable weight. The template for this problem will look as follows6.

0.0 score() :- letterA(X).
0.0 score() :- letterB(X).
...
0.0 score() :- letterE(X),letterR(Y),next(X,Y).
...

The training set consists of grounded rules. These rules act as examples to learn the
right weights in the lifted (templated) model. Every example should be provable from
the (learned) model. In this particular example, we know only scores for some words,
the corresponding rules will be in the following format.

7.0
desired output

score()
query

:- letterH(l1),letterI(l2),next(l1,l2)
evidence

.

4.1.1 Learning

Learning of the rule weights in a template works the same way as learning of a traditional
neural network. We have to specify meta-parameters for learning such as the learning
rate, number of epochs, number of restarts and so on (the full list of parameters can
be found in Appendix A - Parameters for the learning). There is no definite guide on
how to set them, but most of them have a default value that proved to be better than
others in general. This is the only thing to set before running the program interpreter
and start learning the weights.

4.2 Activation functions

Activation functions play important role in our neuro-logic formalism as they define how
the antecedent of the rule determines the truth value of the consequent. Activation func-
tions can be categorized into three groups w.r.t. to the logical operators they represent
as 𝑔𝜆,𝑔∨,𝑔∗. To see the rationale behind these groups, see Figure 4.1.

6for the whole template see Appendix B - Scrabble - template
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4.2. Activation functions

holds_party(pepa)
out: 1.0
in: 3.0

activation: lukasiewicz

holds_partyV1(pepa)
out: 1.0

aggregation: sum

1

holds_partyV2(pepa)
out: 2.0

aggregation: sum

1

holds_partyV1(pepa)#0
out: 1.0
in: 2.0

offset: -1.0
activation: lukasiewicz

birthday(pepa)
out: 1.0

happy(pepa)
out: 1.0

holds_partyV2(pepa)#0
out: 1.0
in: 1.0

offset: 0.0
activation: lukasiewicz

holds_partyV2(pepa)#1
out: 1.0
in: 1.0

offset: 0.0
activation: lukasiewicz

celebrates(pepa,thesis)
out: 1.0

celebrates(pepa,life)
out: 1.0

Figure 4.1: Neural network created from template with rules ℎ𝑜𝑙𝑑𝑠_𝑝𝑎𝑟𝑡𝑦(𝑋) ⟸
𝑏𝑖𝑟𝑡ℎ𝑑𝑎𝑦(𝑋) ∧ ℎ𝑎𝑝𝑝𝑦(𝑋) and ℎ𝑜𝑙𝑑𝑠_𝑝𝑎𝑟𝑡𝑦(𝑋) ⟸ 𝑐𝑒𝑙𝑒𝑏𝑟𝑎𝑡𝑒𝑠(𝑋, 𝑌 ). The blue neur-
ons are rule instance neurons with activation function from 𝑔𝜆. Red neurons are rule
aggregation neurons with activation function from 𝑔∗. Green neurons are atom neurons
with activation function from 𝑔∨.

4.2.1 𝑔𝜆

First group of activation functions, 𝑔𝜆, defines how to calculate the value of a grounded
body of a rule. Because we want to derive the truth value of the consequent, a useful
property of 𝑔𝜆 would be to output high if all the input values are high. But what if some
of the inputs are low? The right value depends on intention of the logical interpretation.
If we assume Open World of the domain, we should output something neutral, maybe
0.5 if our atom truth values range from zero to one. If we assume Close World of the
domain, we should probably output low value as we did not prove otherwise.

All possible functions for fuzzy conjunction are good representatives for this 𝑔𝜆 group.
Beside interpretable meaning of the activation, we need to have a function that is dif-
ferentiable because we need the derivative for the learning phase. This property rules
out the standard fuzzy conjunction in the form of max𝑖(𝑥𝑖) because the derivative is
zero for all but the single value input with maximal value, which has a negative impact
on the gradient descend. Good candidates for 𝑔𝜆 activation function we propose are as
follows.

𝑔𝜆(𝑥1, … , 𝑥𝑛) = 𝑠𝑖𝑔𝑚(∑
𝑖

𝑥𝑖 − (𝑛 − 1)) (sigmoidal simple)

13



4. Neuro-Logical Formalization

𝑔𝜆(𝑥1, … , 𝑥𝑛) = 𝑠𝑖𝑔𝑚(6 ∗ (∑
𝑖

𝑥𝑖 − (𝑛 − 1) − 0.5)) (sigmoidal conjunction)

𝑔𝜆(𝑥1, … , 𝑥𝑛) = 𝑚𝑎𝑥(∑
𝑖

𝑥𝑖 − (𝑛 − 1), 0) (Łukasiewicz conjunction)

4.2.2 𝑔∗

Second group of activation functions, 𝑔∗, defines how to combine multiple proofs of
the same grounded atom entailed by the same FOL rule. This aggregation intuitively
corresponds to quantification over free variables used in the body of the rule. Two
straightforward activation functions are inspired by existential quantification (described
by max function) and universal quantification (described by min function). Another,
more hybrid, approach between maximum and minimum is to use an average of the
inputs. By using the average, every proof contributes to the final decision. This makes
the average more robust to noisy inputs as opposed to max or min, where just a single
noisy input may cause a noisy output. If used with caution, we also propose a sum
function saturated between zero and one as another possible activation function. There,
every bit of a proof supports the final output and even a lot of uncertain proofs can
result in a high output.

𝑔∗(𝑥1, … , 𝑥𝑛) = min(𝑥1, … , 𝑥𝑛)
𝑔∗(𝑥1, … , 𝑥𝑛) = max(𝑥1, … , 𝑥𝑛)

𝑔∗(𝑥1, … , 𝑥𝑛) = ∑(𝑥1, … , 𝑥𝑛)
𝑛

𝑔∗(𝑥1, … , 𝑥𝑛) = min(∑(𝑥1, … , 𝑥𝑛), 1)

4.2.3 𝑔∨

Last group of activation functions, 𝑔∨, defines how deal with multiple FOL rules that
entail the same grounded atom. Because the different rules act as alternatives to prove
the same consequent, all types of fuzzy disjunctions are good candidates for this group.
In situations where we want to satisfy a multitude of rules at the same time, we can
substitute them with a single combined rule with the same head and merge of their
bodies (this substitution will have the same interpretation as long as a proper fuzzy
logic activation function is chosen for 𝑔𝜆).

𝑔∨(𝑥1, … , 𝑥𝑛) = 𝑠𝑖𝑔𝑚(∑
𝑖

𝑥𝑖) (sigmoidal simple)

𝑔∨(𝑥1, … , 𝑥𝑛) = 𝑠𝑖𝑔𝑚(6 ∗ (∑
𝑖

𝑥𝑖 − 0.5)) (sigmoidal disjunction)

𝑔∨(𝑥1, … , 𝑥𝑛) = 𝑚𝑖𝑛(∑
𝑖

𝑥𝑖, 1) (Łukasiewicz disjunction)
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4.3. Activation functions’ derivatives

4.3 Activation functions’ derivatives
Evaluation of created Neural Network doesn’t impose any requirement on the shape of
activation functions, but for the learning phase that is crucial for generalization we need
to have a function where we know what happens if we shift the input by some 𝜖. That’s
exactly the purpose of differentiation in the SGD strategy.

A central problem arises when, in the learning phase, we arrive at some plateau of
the cost function that is to be optimized. At this point, the gradient is zero and SGD
does not know where to move to lower the cost function. Since our objective function is
generally not constant, certainly at the end of the plateau the function will rise or fall,
but this information is not locally available for BP. This problem can be alleviated with
a simple trick, where in the backpropagation phase we output a gradient of a smoothed
variation of the original activation function instead. The reason why do not use this
smoothed variant as the actual activation function as well is that it suppresses the
logical interpretation where we would be missing the constant truth values of absolute
true and false, respectively. As a result, a disjunction of ”almost” false values may still
result in a somewhat high output.

Particularly in this work, to help backpropagation from stucking at plateaus that can
be found in both Łukasiewicz conjunction and disjunction, we utilized smoothed variants
of these operators in the form of sigmoidal conjunction and sigmoidal disjunction defined
in this chapter. The difference between those two functions can be seen in Figure 4.2 -
Activation function plots.
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Figure 4.2: Activation function plots
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Chapter 5
Relevant Reasoning Patterns

In this chapter, we will introduce common learning and reasoning patterns in AI from
the perspective of our neuro-logic programming framework.

5.1 Statistical Reasoning Patterns
Statistical reasoning patterns are typically based on some intuition from geometry. This
is because the input (or the observation of 𝒮) in statistical learning is restricted to the
form of a fixed length vector of real numbers (or the observation have to be convertible
to it). There are ways how to use variable length input (such as padding it with some
constant or splitting it to number of fixed width inputs) but in its core form, the fixed
width assumption must hold. With this assumption, every input can thus be described
as a point in n-dimensional space.

5.1.1 Hyperplane Pattern
Let us first start with the simplest hyperplane reasoning pattern in the setting of binary
classification. One of the easiest and most intuitive ways how to solve this problem is to
pick a hyperplane (generalization of plane from 2D) and decide to which class the input
point belongs, based on which side of the plane the point lies.

Even though this sounds as a rather naïve pattern, it is the basis for a number of
statistical learning methods such as Logistic Regression, Perceptron and Support Vector
Machines with a linear kernel. All of them try to find the best hyperplane that separates
the corresponding points in the training set.

We can reason and learn in our neuro-logic framework with this pattern as well. The
corresponding template for a generic separating hyperplane is simply as follows.

w_0 firstClass() :- coordinate(x_0).
...
w_(n-1) firstClass() :- coordinate(x_(n-1)).
w_n firstClass() :- true(). // offset variable
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5. Relevant Reasoning Patterns

firstClass/0 [sigmoidal_disjunction_simple].

This correspondence brings a closer view on how we separate between positive and
negative outputs through each of the rules in a template. Generally, if we choose
appropriate cost function, we can even model some of the patterns mentioned more
closely. For example, if we choose our cost function to be the cross-entropy loss (𝐶 =
− 1𝑛 ∑𝑛

𝑖=1[𝑦𝑖 ln(𝑓(𝑥𝑖)) + (1 − 𝑦𝑖) ln(1 − 𝑓(𝑥𝑖)]) we will learn the separating plane in
a manner akin to Logistic Regression. If we decide to minimize the hinge loss (𝐶 =
∑𝑛

𝑖=1 1 − 𝑦𝑖𝑓(𝑥𝑖)), we will emulate the rationale of the SVM’s.
Extension to multiple classes can be done simply by creating a modified problem

with a separating hyperplane for every class vs. the other classes, or with a pairwise
separation. The resulting prediction can be taken as the one most far away from the
separating plane.

The hyperplane pattern can be used as a regressor as well. Again, intuitively we
should find a plane that minimizes the error between the prediction and the desired out-
put value. The most commonly used cost function is the mean squared error (MSE) and
in this particular linear case, the corresponding simple optimization method is named
the Least Squares Method. For that purpose, almost exactly the same neuro-logic tem-
plate is used as in the classification mode, with the exception that for the disjunction a
simple sum is used (and with the exception that the output is not clamped between 0
and 1).

5.1.2 Transformation Pattern
Modelling an output value using only the hyperplane pattern works well if the data
exhibit linear properties. If not, the separation or the regression doesn’t work which
results in poor training and testing errors. One way how to deal with this is to define
more complex patterns and methods that build on top of these, or more easily, transform
the input to a space where they do show linear properties. The transformation itself must
be non-linear because the linear transformation only rotates and scales the input (affine
transform also translates the input), resulting into a state where the same problem still
remains. This is what SVM does with the kernel trick. For instance, using a polynomial
kernel of degree 𝑑, the separating hyperplane in the transformed space corresponds to
any polynomial function of degree 𝑑.

Transformation pattern is also the very essence of every deep neural network. They
transform the input to a space where interesting (and finally linear) features emerge,
and every the next layer combines these features from the previous layer into yet more
complex concepts, until there is a clear correspondence to the target concept.

The neuro-logic framework takes essentially the same strategy. Activation functions
that represent logical connectives are non-linear and we can infer the result from atoms
that have been previously inferred (transformed) from the input data in a recursive
fashion. There is no restriction on the length of a proof path and so the transformation
can be stacked on top of another transformation and result into a multitude of deep
neural networks. The following example illustrates this learning pattern.
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5.1. Statistical Reasoning Patterns

5.1.2.1 Transformation example
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Figure 5.1: Image of red points in a center surrounded by blue points within a frame
used as a motivation for the transformation pattern.

Given the Figure 5.1, learn a classifier that separates the blue points from the red.
We can create a template that has 4 hidden neurons that transform the input image and
then use the plane separation pattern in this newly created space.
w_0 hidden1() :- coordinate(x).
w_1 hidden1() :- coordinate(y).
...
w_7 hidden4() :- coordinate(x).
w_8 hidden4() :- coordinate(y).
w_9 firstClass() :- hidden1().
...
w_12 firstClass() :- hidden4().

The hidden neurons are meant to learn the useful transformation that will make the
points linearly separable. For this particular example, the hidden neurons learn whether
a point is on the (left, right, upper, lower) part of the image or not. This transformation
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5. Relevant Reasoning Patterns

will cause that a separating plane can be found, for example a plane that goes through
a point on every axis that is at some distance 𝜖 from the origin. Thus a point that is
on the border of the image will be classified as blue and in the center as red. A deeper
network can learn such patterns in the first layer and combine them into more complex
patterns in the next layer.

5.1.3 Similarity Pattern

As the inputs are situated in n-dimensional space, we can make use of some metric, or
distance function (if a meaningful one exists) to compare a new input with the inputs
from the training set in term of some inherent similarity given by the form of the metric
used.

Probably the simplest (lazy) method in statistical learning, the k-Nearest Neighbours,
uses this pattern. All it does is when it comes to evaluation a new input, it finds its
𝑘 nearest neighbours from the training set. A combination of these neighbours (for
classification the majority vote, for regression the weighted average with weights inversely
proportional to their distances) gives the final decision.

For binary classification, more complex methods are typically used. Radial Basis
Function (RBF) as a kernel for SVM is based on this neighbouring/similarity pattern,
too. This is one of the kernel functions whose dimensionality of explicit feature space is
infinite. As we cannot explicitly construct the separating plane, the learned model uses
a biased weighted sum of RBF similarities between the input vector and the support
vectors (points in the training set that determine the separating plane in the feature
space). Intuitively, when we choose these support vectors (or rather centers) ahead,
we can use some of the previous patterns to learn the final model. RBF NNs [9] use
exactly this approach. As our framework can represent any FF NN, we can use the same
principle as in RBF NN to handle the neighbouring pattern as well.

The neighbouring pattern also gives us the ability to search for neighborhoods, form-
ally clusters, where objects in the same cluster are similar to each other. A generalization
of this clustering pattern with the neuro-logic approach is described later in subsec-
tion 5.3.2.

5.2 Symbolic Reasoning Patterns

As opposed to statistical learning, symbolic approaches take a whole different view to
model the world. Instead of numerical approximation of the original system, symbolic
methods work with rules and symbols to derive the target concepts. One of the main
advantages of this approach is the interpretability. We, as a human beings, are more
used to reason about knowledge, derive conclusions, and test understandable hypotheses.
All of this is even part of our natural language, the most powerful tool to reason about
the surrounding world. On the other hand, most of us can’t imagine nor reason in
n-dimensional space of real numbers.
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5.2.1 Relational Pattern
As we want to have a compact and unambiguous representation of statements, we have to
use some formal language. Simplest formalization for symbolic reasoning is propositional
logic. It allows for a statement to have the form of a proposition (e.g. ”It is raining”)
or multiple propositions connected with logical connectives (or, and, not, if-then, …).
Propositional logic naturally captured in the neuro-logic programming (if we restrict
ourselves to Horn clauses) and so every propositional statement can be written in a
template.

A central problem with propositional logic is that we cannot encode any statement
that generalizes over sets of objects, i.e. that relates between different sets. An example
of non-propositional statement is ”All humans are mortal”. The ability to take into
account the sets of objects is important if we want to capture relations. Without this
generalization, if we have, for example, 𝑛 people that can go to 𝑚 places, we would have
to have 𝑛 ∗ 𝑚 statements of what can happen. Exactly this problem is targeted by first
order logic via addition of predicates (relations), variables and quantifiers. We can then
rephrase the previous sentence as: ”All objects (quantifier) that are humans (relation) are
mortal (implication to another relation)”, or formally: ∀𝑥(human(𝑥) ⟹ mortal(𝑥)).

This is the expressive power of the neuro-logic templates (again if we restrict ourselves
to horn clauses) and most of the other SRL methods based on (subsets of) first order
logic. With predicate logic we can encode variety of structures, such as graphs (edges
between nodes will be interpreted as binary relation) and hypergraphs, and these struc-
tures can be used to encode molecules, relations between products, people, and so on.

5.2.2 Deductive Reasoning Pattern
Formal reasoning is the cause why logic as a formalism is so popular in symbolic ap-
proaches and what differentiates it from other representations (such as graph or special
database formalisms).

Deductive reasoning is the process of arriving from premises (that are known to be
true) to logical conclusions. To reach a conclusion, rules of inference are used. One of
the rules is for example the “modus ponens”, which states: ”If P implies Q and P is
asserted as true, then Q must be true as well”. There is an infinite number of logical
conclusions from premises. If P is true then by disjunction introduction rule the ”P or
Q” is one conclusion, ”P or Q or Z”, is another one, and we can continue endlessly.
Rather than deriving all possible conclusions, we will focus on whether some conclusion
follows directly from premises. For example if we have the following premises:

(A1): It is raining.
(A2): If it is raining I need an umbrella.
We can ask whether we need an umbrella.
One method for proving the validity of a consequent is the resolution method. It

works by negating the consequent, adding it to premises and trying to deduce a contra-
diction. Resolution is refutation complete and so if a proof to the consequent exists, it
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will be found. Resolution method is used in neuro-logic programming the same way as
it is in Prolog [3]. In contrast to Prolog which stops when the first proof for the query is
reached, we find all possible ways how to prove it. Subsequently, merging all of the proof
trees will result into a directed acyclic graph (as parts of the different proof trees may
be shared). This graph is then transformed (as described in section 3.3) and interpreted
as a neural network.

The interpretation as a proof graph also sheds some light on how a generic neural
network can be understood.

5.2.3 Inductive Reasoning Pattern

Deductive reasoning tries to prove a specific fact from some general knowledge. Inductive
reasoning goes the opposite direction. It tries to “prove” a general statement from specific
facts. For an example, if we see multiple times that the sun rises in the morning, we can
conclude that sunrise probably happens in the morning. We can then use that general
rule to predict that tomorrow the sun will rise in the morning as well. The word probably
is important because, as opposed to deductive reasoning where everything we concluded
was assured to be valid, here we are only assuming it is the case given some strong
evidence.

One of the most successful methods for learning in the symbolic formalism, inductive
logic programming (ILP) [5], uses inductive reasoning to learn the generic rules from a
set of relational examples.

In its basic setting, ILP is given a background theory (𝐵), set of positive examples
(𝐸+), and a set of negative examples (𝐸−), and its goal is to derive a hypothesis (𝐻)
such that:

𝐵 ∧ 𝐻 ⊨ 𝐸+

𝐵 ∧ 𝐻 ∧ 𝐸− ⊭ 𝑓𝑎𝑙𝑠𝑒

If we restrict ourselves to the horn clauses, then the positive examples are given as facts
and negative examples as headless rules.

ILP can be used to extend the neuro-logical templates with new rules (except for the
weights that have to be optimized with different methods), or can be used to create the
whole template from scratch.

5.3 Common Sense Reasoning Patterns
Both statistical and symbolic patterns lack the core advantages the other approach is
offering. Statistical patterns lack the rich representation formalism and abstract reason-
ing from the domain of symbolic patterns. Symbolic patterns, on the other hand, lack
the ability to capture uncertainty, robustness against noise, and strong generalization
properties. Common sense reasoning patterns are patterns that, similarly to natural
human reasoning, try to take the advantages of both approaches.
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5.3.1 Fuzzy reasoning pattern

In section 5.1 - Statistical Reasoning Patterns we looked at neuro-logic programming as a
statistical tool, where the presented rules did not have any interpretable meaning and we
restricted ourselves to non-relational setting (all the used predicates were already ground,
resulting into regular neural networks’ functionality). On the contrary, in section 5.2
- Symbolic Reasoning Patterns we used the framework as a theorem prover and thus
there was no generalization (i.e. learning). The rules had their meaning, but they were
all of the same strength. In classical logic, a rule or a fact either holds true or does not.
Therefore in the theorem proving setting, all the weights were kept to either 1 or 0.

If we allow the facts to have fuzzy truth values (i.e. to take on any value between 0
and 1), use max function as aggregation and max function also for disjunction, we obtain
a standard fuzzy theorem prover. The output for any query is then a lower bound of its
truth value.

Moreover, we can further relax the restrictions, and allow even the weights of the
rules to be between 0 and 1. The rules will be fuzzy and their weight will act as a lower
bound for their fuzziness.7 Then we still obtain, now a more general, fuzzy theorem
prover. Output for a query will be again a lower bound for its truth value.

Finally, if we remove all restrictions on the weights, we can encode both statistical
and symbolic patterns and all their combinations.

5.3.2 Object similarity pattern

If we have a large number of objects (a fine description of the environment 𝑆), we may find
that the variety and abundance of their parameters hides the underlying characteristics
of 𝑆. If we do not restrict ourselves in some way, there can be a problem with overfitting
(because the model will have too many learnable parameters compared to the number
of input observations of 𝑆 and we will fit to noise rather than to general characteristics
of 𝑆).

One way to deal with this problem is to embed the objects into a much smaller set
by extracting only the important characteristics that are useful for further reasoning.
Object similarity pattern tries to group the objects into clusters, so that even when
the objects are different, but for further reasoning have similar characteristics, they
are treated similarly w.r.t. their correspondence to the clusters. As opposed to normal
clustering, the characteristics that induce the clusters are often hidden, i.e. the similarity
metric has yet to be learned. In common sense reasoning, this similarity pattern induces
soft clustering which also differs from normal (crisp) clustering in that an object can
belong to more than one cluster, and that the object has a soft (or fuzzy) membership
to each of those.

7To understand the weight of a rule, one can view it as a strength of the rule. If the weight of the rule
is small (below one), even a true body will not influence the head much, because the rule is unreliable.
On the other hand if rule has a large weight (above one), proving only a bit of possibility for the tail
will result in almost true head.
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5.3.2.1 Soft clustering example

Suppose that we have a database of people with food they ate and whether they had
(and how severe was) their allergic reaction. Obviously, we will want to predict whether
some new people will have allergic reaction from each food and how severe it will be.

The training set in our framework will look like:
0.9 allergicReaction(pepa) :- ate(ratatouille,pepa).
0.1 allergicReaction(franta) :- ate(hamburger,franta).
...

This is the case where soft clustering is useful because we can group the foods (and
therefore people as well) based on the unobserved allergic ingredients. The allergic
ingredient is a hidden characteristic of each food and is not mentioned anywhere, but
hopefully it will be extracted (learned) from the examples by the means of soft clustering.
The grouping (if we have 𝑚 different groups of meals and 𝑛 different meals) will be
encoded into a template as follows.
w_1 ateFromGroup1(Person) :- ate(ratatouille,Person).
...
w_n ateFromGroup1(Person) :- ate(hamburger,Person).
...
w_(n*m) ateFromGroupM(Person) :- ate(hamburger,Person).

If we knew more information about the situation (such as whether a person was ill or
whether he/she was stressed) we could further reason about the allergic reactions, but
for the simplicity of this example, we will only consider the person being allergic to the
specific types of food (those that have an ingredient the person is allergic to). The rest
of the template will then be (if we have 𝑜 people) as follows.
u_1 allergicReaction(pepa) :- ateFromGroup1(pepa).
...
u_m allergicReaction(pepa) :- ateFromGroupM(pepa).
...
u_(m*o) allergicReaction(franta) :- ateFromGroupM(franta).

The benefit of using this soft clustering pattern is that a meal can have more allergic
ingredients and so be part of more clusters, and also a (hidden) quantity of that ingredi-
ent may define the allergic reaction. These nuances cannot be captured with normal
clustering.

5.3.3 Structure similarity pattern
All of the similarity patterns share the same idea that similar inputs (under a given
metric of similarity) should produce similar outputs (in a model based on that metric of
similarity).

The incorporation of symbolic approaches allows us to also exploit the inner structure
of examples, so that we can meaningfully measure similarity of objects in a much more
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complex setting, e.g. based on their relations to other objects. A scientific field where
this pattern is particularly useful is, for instance, molecular chemistry, where not only the
contained atoms but mainly their structural conformations determine the final behavior
of a molecule.

In common sense reasoning, the structural patterns that determine the similarity are
again not crisp, generalizing regular pattern matching abilities of existing systems to soft
matching where a pattern may be matched with different levels of confidence. Following
example showcases this pattern with a learnable confidence level.

5.3.3.1 Soft matching example

Suppose that we have a company with lots of departments that is interested in knowing
what makes their employees satisfied. We have an average satisfaction of every depart-
ment. We think that in addition to various metrics, also relations between the employees
affect their satisfaction. If they work with each other then their relationships are good,
which should result in overall high satisfaction. On the other hand, if they have no
relations between themselves, they may be dissatisfied with the colleagues and also with
the working conditions. Here is how we may encode the mentioned situation:

<1.0> workTogether(Someone,Otherone) :- worksWith(Someone,Otherone).
<1.0> workTogether(Someone,Otherone) :- worksWith(Otherone,Someone).
w_0 workTogether(Someone,Otherone).

<1.0> knowsEverybody(Someone) :- workTogether(Someone,Otherone).
w_1 overallSatisfaction() :- knowsEverybody(Person).
w_2 overallSatisfaction() :- ... .

...

The soft matching occurs in the knowsEverybody rule8. We think that there should
be a difference between not knowing any single person and knowing all (except one).
The weight w_0 varies the similarity between not knowing 0,1,2,… people. The lower
the weight, the lower the similarity and faster the decay of satisfaction. The weight w_1
represents the significance of the relationship between employees on the overall satis-
faction. If the relationship assumption was false and the satisfaction does not correlate
with their relationships, we would see the weight being learned (close to) zero value.

5.3.4 Incorporation of background knowledge
As we were writing the templates for the described examples, we were incorporating
some form of background knowledge into the template to help the optimizer find the
best representation of the model.

In the neuro-logic programming, we can incorporate variety of types of background
knowledge and also control its strength. We can reason about the input, derive meaning-
ful characteristics and use them further for more generic reasoning in the higher levels of
abstraction. If we want to rather encode some vague intuition, we can keep the weights

8its aggregation activation is chosen to be the average function
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learnable so that the optimizer decides on how to deal with our proposals to derive the
output.

We do not need to reason straight on the input level of abstraction, but we can
transform the data (e.g. group them as in the allergy example in subsubsection 5.3.2.1)
and reason on top of that transformed representation. Also the transformation does not
need to be done in a single step as we can, e.g., use a multi-layered (lifted) convolutional
network to extract some important characteristics (lets denote it 𝐶ℎ𝑎𝑟) and reason on
the top of the classical neural network instead. Moreover, if we can additionally label the
training examples with the right value of the 𝐶ℎ𝑎𝑟, we can append them to the training
set and learn the representation for 𝐶ℎ𝑎𝑟 and the desired outputs simultaneously.
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Chapter 6
Experiments

In the previous chapter, we have theoretically discussed key patterns used in purely stat-
istical, purely symbolic and mixed approaches in AI. In this chapter, we will demonstrate
in detail how these patterns may actually be learned with the proposed framework. For
the demonstration, we chose simple, interpretable game environments of Scrabble, Tic-
Tac-Toe and Poker. For mainly the statistical part, we chose a simple Scrabble score
evaluator. For mainly the symbolic part, we chose Tic-Tac-Toe evaluator. Finally for the
common sense patterns, we present a simple Poker cards figure score evaluator. In their
basic form, both the Scrabble and Poker card scores present a regression task. However,
we can either model the score itself or transform the problem into to a classification
setting, which will correspond to a task of predicting the winner of a two player game.

The examples and their evaluation shown in this section are, by no means, meant
to compete with state-of-the-art methods in terms of performance, but they are rather
meant to practically demonstrate how the diverse concepts described in the previous
Chapter 5 may be captured with our unified, neuro-logic programming framework.

At its core, the framework translates the template combined with an example to a
Feed Forward NN and optimizes the weights using SGD, which is a standard technique
taking place in almost all types of neural learning. From this follows that we could choose
any common problem solvable with standard neural networks (including convolutional
NNs) and achieve the same accuracy because in principle there is no difference between
our architecture and these regular NNs for these problems, both in terms of network
structure and learning9. As this would clearly not present any interesting insight, we
rather focus of problems requiring solutions from the common sense reasoning category
(Section 5.3) that cannot be captured with regular NNs10.

9The grounding phase introduces some overhead but the overall complexity is still the same as
building a normal NN

10With the exception of the Scrabble evaluator, which serves as a continuation of the introductory
example to describe the very basics of the framework.
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6.1 Scrabble
In this example, we continue the brief introduction of neuro-logic programming started
in section 4.1 - Proposed formalism, to illustrate the first complete example of the whole
neuro-logic learning workflow.

Each weighted rule in the template reflects the flow of information from the body of
the rule to its head. In case of scrabble, every letter in a word modifies the score of the
whole word. Because each letter has a different effect on the final score, each one also
has a different rule in the template, too.

Next thing we need to describe are the activation functions used for each of the
rules and each of the contained predicates. The activation functions for the rules reflect
how the body truth value affects the head’s value. Activation functions for predicates
represent how the different rules that prove the same grounded predicate are being
combined.

Because in this example all of the rules differ only in the particular letter they capture,
we use the same activation function for all of the rules. As a conjunctive activation 𝑔𝜆,
we choose Łukasiewicz conjunction11. For the aggregative activation 𝑔∗ we use the sum
function, as we want to add the scores of each particular letter, even if it is used more
than once. Finally for the disjunction 𝑔∨, we are again adding individual contributions
of every letter so the sum activation function is used again.

6.1.1 Learning phase
First step of the learning phase is the construction of neural networks. In traditional
neural network models, every example has fixed length input and output, and a single
network is used to evaluate each example. In our neuro-logic (NL) programming frame-
work, the example consists of a desired output value and a rule that is partitioned into
head, representing the query we are asking to have the desired output value, and the
body, representing the evidence we are given for it. The constructed NN in NL program-
ming is defined as the merge of all the proof trees for the query query given the evidence,
that may naturally differ for different examples. Therefore, instead of one main network,
every example has its own neural network. See the Figure 6.1 - A ground neural network
created from the word “enjoy” and Figure 6.2 - A ground neural network created from
the word “career” for the example of two different neural networks (automatically) built
from two different examples.

To be able to generalize from the training set, all the networks share the same set of
weights. If the neural networks built from examples share some part of their proof path,
they will also share all the weights on that path. In the words “career” (Figure 6.2) and
“enjoy” (Figure 6.1), the “e” letter is shared which results in sharing the same weights
in the path from the predicate letterE to the to root.

After the construction of networks, the optimization phase starts. Similarly to regular
NNs, the algorithm starts with forward propagation in each of the networks to determine

11In this particular example, any function that goes through zero and is non-zero otherwise works,
because we can compensate the difference from Łukasiewicz with the weight of the rule
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activation: id
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letterJ(third)
out: 1.0

scoreV15(a)#0
out: 1.0
in: 1.0

offset: 0.0
activation: id

letterO(fourth)
out: 1.0
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out: 1.0

Figure 6.1: A ground neural network created from the word “enjoy”
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Figure 6.2: A ground neural network created from the word “career”
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the truth value of every atom. In the back-propagation phase, the weight handling is
slightly different as not all the weights that are used in the network are updated. This
includes all edges that form inputs of the rule instance neurons (in Figure 6.2 the blue
neuron), because change of these weights would change the interpretation of the rules.
These neurons act as (Lukasiewicz) fuzzy conjunctions and therefore their activation
should be a simple (non-weighted) sum. Just as in regular NNs, the weight update in a
certain network corresponding to one example is automatically reflected throughout all
examples via the shared template.

This procedure is repeated for learningSteps times and the learned weights will
then fully determine the template which is the output model of learning. The learned
template for the scrabble task looks as follows12.

1.000 score() :- letterA(X).
3.000 score() :- letterB(X).
3.000 score() :- letterC(X).
2.000 score() :- letterD(X).
1.000 score() :- letterE(X).
4.000 score() :- letterF(X).
...

From the template it can be seen that the rule weights are learned to the correct values
as expected and thus the model will respond to every word with the right answer. This
is not surprising because the cost function of this problem is convex and the gradient
descent will always reach global optimum (if the learning rate is low enough not to cause
oscillation or divergence from the optimum).

6.2 Tic-Tac-Toe
This example is designed to demonstrate the symbolic reasoning part of our neuro-logic
framework. As each template is a logic program written in terms of predicate logic
(using Horn clauses), in principle every program representable in Prolog13 can be used
as an example of our symbolic reasoning capabilities.

We chose a simple Tic-Tac-Toe scenario to illustrate the relational reasoning as ex-
hibited by the (learnable) neuro-logic programs. Tic-Tac-Toe is a simple two player game
played on a 3x3 grid. The board has 9 spaces and every space is either empty, crossed
or circled. In encoding of the game states, each cross on the board will be defined as:

cross(RockId),column(RockId,ColumnIndex),row(RockId,RowIndex).

and each circle as:

circle(RockId),column(RockId,ColumnIndex),row(RockId,RowIndex).

12The whole template can be found at Appendix C - Scrabble - learned template
13Out interpreter does not handle functors but, these are not important here and there in no principal

problem in adding this feature.
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6.2. Tic-Tac-Toe

The reasoning in the network can be seen from two opposing points of view. The first
one is reasoning from the leaves to the root and the second one is from the root to
the leaves. The leaves represents facts, or the evidence from the example. The root
represents the knowledge we would like to induce.

In Tic-Tac-Toe, we can, for instance, represent whether two circles or crosses form a
line anywhere in the grid14, because that is a threat for the opponent. To demonstrate
this reasoning in the proposed formalism we would use the following template15.

0.0 patternTwoLine(cross) :- cross(RockI),
cross(RockJ),
column(RockI,ColumnI),
row(RockI,RowI),
column(RockJ,ColumnJ),
row(RockJ,RowJ),
neighbours(RowI,ColumnI,RowJ,ColumnJ).

<1.0> neighbours(Row,XCol,Row,YCol) :- successor(XCol,YCol).
<1.0> neighbours(XRow,Col,YRow,Col) :- successor(XRow,YRow).
<1.0> neighbours(XRow,XCol,YRow,YCol) :- successor(XRow,YRow),

successor(XCol,YCol).
<1.0> neighbours(XRow,XCol,YRow,YCol) :- successor(YRow,XRow),

successor(XCol,YCol).
<1.0> successor(1,2).
<1.0> successor(2,3).

To get the truth value of the corresponding patternTwoLine (abbr. pTL), the reasoning
part of the neuro-logic engine would need to create a proof path from the example, where
the truth value is known, through all the rules that describe the related literals, all the
way to the root which, in this case, is represented by the pTL literal. We know from
the template that the pTL can be derived from the first rule. All of the rules in the
template are in the form of implication. To get the truth value of a rule’s head, we need
to prove and obtain the truth value of all the atoms in the body. Following the backward
chaining strategy from Prolog [3], we will try to satisfy the first predicate. Because we
do not have any rules that can be used to prove this predicate, this predicate needs to be
satisfied right in the example, otherwise we know that patternTwoLine can’t be proven
and we finish.

In case of an empty grid, the neural network built will also be empty as we do not
have any evidence to reason from. Let us suppose that this is not the case and after
unification of the first 6 predicates from the body of the first rule we try to prove that
the crosses are neigbours. Until now, we have found all the support right in the example
data, but here we can use the background knowledge to reason about the position of the
crosses. We have the 4 rules in the template that describe whether positions at some

14This is a distinguishing feature from encoding with any standard ground model, including neural
networks.

15for the whole template see Appendix D - Tic-Tac-Toe - template
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Figure 6.3: 8 different ground conformations of the “same” situation in Tic-Tac-Toe that
are jointly captured by the corresponding lifted template.

indexes are neighbours. By applying the same backward chaining strategy we used to
prove the pTL, we search for a proof to neighbours.

If the predicate body has some free variables (as in the case of pTL), we can find not
only one proof, but several. To decide how the particular proofs (and their truth values)
are combined to the single output corresponding to the head, every predicate has its
aggregation function that aggregates the multiple proofs.

Generally, if we trace the described backward chaining strategy to prove any predicate
in a (non-recursive) template and we merge all the resulting proof paths, we obtain
an acyclic graph that we may further transform to a feed-forward neural network as
described in Section 3.3.

This reasoning allows to extract the knowledge about the example from it relevant
part without any restriction to the locality of particular feature. This is vital for reason-
ing on top of Tic-Tac-Toe board because the board itself is symmetrical in 8 directions.
Different looking situations as the ones illustrated in the Figure 6.3 are identical. Be-
cause we defined our template accordingly the reasoning for the situations presented in
Figure 6.3 will be identical.

6.3 Poker
This example demonstrates a complex common sense reasoning pattern combining in-
tuition encoded into a background knowledge that is used to reason on top of an object
similarity pattern, both of which are being simultaneously learned to generalize onto
unseen relational patterns.

The task is as follows. We are given a figure made of 𝑛 cards and we should say
whether the figure is straight or not. If the figure is straight, we should further output
the value of the highest card in it. The problem is that the cards are heavily illustrated
in an unpredictable manner so we cannot decode neither cards’ rank nor their suit. We
can only distinguish when the cards are the same (have the same suit and the same
rank) because they have the same illustration.

The training set consists of all figures that can be made, labeled with the value of
the highest card if the figure is straight and zero otherwise. This is of how an example
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of card pairs looks like:

4.0 score() :- threes(),fourd().

The names of the predicates in the body of the rule (the observation) are just ids for
identification of different cards for the illustration purpose. We chose the rank and suit
as the name just to be easily interpreted for the reader16, this information is not used
in learning (otherwise the problem is trivial).

Next part is the design of the template. We do not know the card value nor its suit
but we know that we are finding the straights. A straight depends only on the card
value so we will cluster the card ids to 𝑚 clusters where 𝑚 is the number of different
card values (which can be deduced, e.g., from labels in the training set). We know that a
straight is built from 𝑛 consecutive integers so we order them in any way and add a rule
for every 𝑛 consecutive clusters. These rules will determine the output. The neuro-logic
template is then as follows17.

0.0 group2(X) :- twoh(X).
...
0.0 group2(X) :- sixc(X).

...
0.0 group6(X) :- sixc(X).

<1.0> straight3() :- group2(C0),group3(C1).
...
<1.0> straight6() :- group5(C0),group6(C1).

<3.0> figureStrength() :- straight3().
...
<6.0> figureStrength() :- straight6().

6.3.1 Evaluation
Accuracy of the learned solution depends on the ability of our framework to correctly
learn how to cluster the cards and combine them to obtain the right answer. Because
the figure score doesn’t depend on the card suit, the (soft) clustering pattern should
therefore learn to ignore this information and merge cards together based only on their
(unobserved) score. To see how the clusters emerge in the process of learning we display
the membership of each of the cards to each of the groups. Because the membership to
every group is a five dimensional vector we use Principle Component analysis (PCA) to
reduce the dimensionality to 2 for the memberships to be plotted. The result can be
seen in Figure 6.4 - Three phases of forming (soft) clusters during learning of the poker
template..

16s = spades, d = diamonds, h = hearts, c = clubs
17A full template for 5 cards and figure doubles can be found in Appendix E - Poker - template
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From the figures, it can be seen that the cards with the same rank but different suit
indeed start to cluster together and in the final phase, there are five different clusters,
which is the desired behaviour.

6.4 Comparison with Related Work
As well as our neuro-logical framework, both ProbLog and MLN are based on first order
logic. MLN does not impose any restriction for the formulas so it can reason and encode
rules with wider variety than our framework. To reason about uncertain knowledge, our
framework chooses relaxed fuzzy logic as opposed to both ProBlog and MLN that use
a well defined probability measures. The difference in terms of speed of reasoning as
opposed to our framework is significant as both MLN and ProBlog methods for reasoning
are NP-hard and they have to use the approximation methods.

Even though the probability measures in the related frameworks are well defined,
each formula is either true or false as in boolean logic, and the methods only define the
probability on top of this two valued logic. Therefore, they do not allow to directly
capture regression tasks as they are not aimed to express real numbers, since every
predicate is either true or false. On the other hand, our formalism, that is built on a
relaxed version of fuzzy logic, is able to handle numerical data and allow modelling both
classification and regression tasks as demonstrated in the experiments.
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Figure 6.4: Three phases of forming (soft) clusters during learning of the poker template.
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Chapter 7
Conclusion

This thesis illustrates a variety of diverse learning and reasoning patterns that can be
captured within a unified framework of neuro-logic programming. For practical demon-
stration of the proposed concepts, we implemented an enhanced engine that builds on
top of existing SRL method called Lifted Relational Neural Networks.

As a core part of the thesis, we abstracted key patterns from both statistical and
symbolic approaches to AI and showed how they can be incorporated in the proposed
formalism. Using neuro-logic programming allowed us to target common sense reasoning
patterns, which combine both statistical and symbolic methods, and show their benefits.
In the end, we demonstrated the use of these patterns with experiments in simple and
interpretable game environments.

With demonstration of capabilities of the enhanced neuro-logic programming frame-
work to capture diverse artificial intelligence tasks based on different reasoning patterns,
we conclude that the neuro-logic programming has a potential to successfully model and
reason about the world.
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Appendix A
Parameters for the learning

Parameter Type Default Value Description
learning steps positive integer 1000 Number of learning steps for

the model
learning rate positive real 0.05 Learning rate for back-

propagation
restart count positive integer 10 Number of restarts
stochastic
gradient des-
cent

boolean true Whether to use SGD (update
weight after each example)
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Appendix B
Scrabble - template

0.0 score() :- letterA(X).
0.0 score() :- letterB(X).
0.0 score() :- letterC(X).
0.0 score() :- letterD(X).
0.0 score() :- letterE(X).
0.0 score() :- letterF(X).
0.0 score() :- letterG(X).
0.0 score() :- letterH(X).
0.0 score() :- letterI(X).
0.0 score() :- letterJ(X).
0.0 score() :- letterK(X).
0.0 score() :- letterL(X).
0.0 score() :- letterM(X).
0.0 score() :- letterN(X).
0.0 score() :- letterO(X).
0.0 score() :- letterP(X).
0.0 score() :- letterQ(X).
0.0 score() :- letterR(X).
0.0 score() :- letterS(X).
0.0 score() :- letterT(X).
0.0 score() :- letterU(X).
0.0 score() :- letterV(X).
0.0 score() :- letterW(X).
0.0 score() :- letterX(X).
0.0 score() :- letterY(X).
0.0 score() :- letterZ(X).
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Appendix C
Scrabble - learned template

10.000000000000000 score() :- letterZ(X).
3.999999999999999 score() :- letterY(X).
8.000000000000002 score() :- letterX(X).
4.000000000000000 score() :- letterW(X).
3.999999999999998 score() :- letterV(X).
1.000000000000003 score() :- letterU(X).
1.000000000000000 score() :- letterT(X).
0.999999999999999 score() :- letterS(X).
0.999999999999999 score() :- letterR(X).
9.999999999999991 score() :- letterQ(X).
3.000000000000001 score() :- letterP(X).
0.999999999999999 score() :- letterO(X).
1.000000000000000 score() :- letterN(X).
2.999999999999999 score() :- letterM(X).
1.000000000000000 score() :- letterL(X).
4.999999999999999 score() :- letterK(X).
7.999999999999999 score() :- letterJ(X).
1.000000000000000 score() :- letterI(X).
3.999999999999999 score() :- letterH(X).
2.000000000000000 score() :- letterG(X).
4.000000000000001 score() :- letterF(X).
1.000000000000000 score() :- letterE(X).
2.000000000000000 score() :- letterD(X).
3.000000000000002 score() :- letterC(X).
2.999999999999999 score() :- letterB(X).
1.000000000000000 score() :- letterA(X).
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Appendix D
Tic-Tac-Toe - template

0.0 patternTwoLine(cross) :- cross(RockI),
cross(RockJ),
column(RockI,ColumnI),
row(RockI,RowI),
column(RockJ,ColumnJ),
row(RockJ,RowJ),
neighbours(RowI,ColumnI,RowJ,ColumnJ).

0.0 patternTwoLine(circle) :- circle(RockI),
circle(RockJ),
column(RockI,ColumnI),
row(RockI,RowI),
column(RockJ,ColumnJ),
row(RockJ,RowJ),
neighbours(RowI,ColumnI,RowJ,ColumnJ).

0.0 patternTail(cross) :- cross(RockID).
0.0 patternTail(circle) :- circle(RockID).
<1.0> neighbours(Row,XCol,Row,YCol) :- successor(XCol,YCol).
<1.0> neighbours(XRow,Col,YRow,Col) :- successor(XRow,YRow).
<1.0> neighbours(XRow,XCol,YRow,YCol) :- successor(XRow,YRow),

successor(XCol,YCol).
<1.0> neighbours(XRow,XCol,YRow,YCol) :- successor(YRow,XRow),

successor(XCol,YCol).
0.0 score() :- patternTail(cross).
0.0 score() :- patternTail(circle).
0.0 score() :- patternTwoLine(cross).
0.0 score() :- patternTwoLine(circle).
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Appendix E
Poker - template

0.0 group2(X) :- twoh(X).
0.0 group2(X) :- twod(X).
0.0 group2(X) :- twos(X).
0.0 group2(X) :- twoc(X).
0.0 group2(X) :- threeh(X).
0.0 group2(X) :- threed(X).
0.0 group2(X) :- threes(X).
0.0 group2(X) :- threec(X).
0.0 group2(X) :- fourh(X).
0.0 group2(X) :- fourd(X).
0.0 group2(X) :- fours(X).
0.0 group2(X) :- fourc(X).
0.0 group2(X) :- fiveh(X).
0.0 group2(X) :- fived(X).
0.0 group2(X) :- fives(X).
0.0 group2(X) :- fivec(X).
0.0 group2(X) :- sixh(X).
0.0 group2(X) :- sixd(X).
0.0 group2(X) :- sixs(X).
0.0 group2(X) :- sixc(X).
0.0 group3(X) :- twoh(X).
0.0 group3(X) :- twod(X).
0.0 group3(X) :- twos(X).
0.0 group3(X) :- twoc(X).
0.0 group3(X) :- threeh(X).
0.0 group3(X) :- threed(X).
0.0 group3(X) :- threes(X).
0.0 group3(X) :- threec(X).
0.0 group3(X) :- fourh(X).

0.0 group3(X) :- fourd(X).
0.0 group3(X) :- fours(X).
0.0 group3(X) :- fourc(X).
0.0 group3(X) :- fiveh(X).
0.0 group3(X) :- fived(X).
0.0 group3(X) :- fives(X).
0.0 group3(X) :- fivec(X).
0.0 group3(X) :- sixh(X).
0.0 group3(X) :- sixd(X).
0.0 group3(X) :- sixs(X).
0.0 group3(X) :- sixc(X).
0.0 group4(X) :- twoh(X).
0.0 group4(X) :- twod(X).
0.0 group4(X) :- twos(X).
0.0 group4(X) :- twoc(X).
0.0 group4(X) :- threeh(X).
0.0 group4(X) :- threed(X).
0.0 group4(X) :- threes(X).
0.0 group4(X) :- threec(X).
0.0 group4(X) :- fourh(X).
0.0 group4(X) :- fourd(X).
0.0 group4(X) :- fours(X).
0.0 group4(X) :- fourc(X).
0.0 group4(X) :- fiveh(X).
0.0 group4(X) :- fived(X).
0.0 group4(X) :- fives(X).
0.0 group4(X) :- fivec(X).
0.0 group4(X) :- sixh(X).
0.0 group4(X) :- sixd(X).
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E. Poker - template

0.0 group4(X) :- sixs(X).
0.0 group4(X) :- sixc(X).
0.0 group5(X) :- twoh(X).
0.0 group5(X) :- twod(X).
0.0 group5(X) :- twos(X).
0.0 group5(X) :- twoc(X).
0.0 group5(X) :- threeh(X).
0.0 group5(X) :- threed(X).
0.0 group5(X) :- threes(X).
0.0 group5(X) :- threec(X).
0.0 group5(X) :- fourh(X).
0.0 group5(X) :- fourd(X).
0.0 group5(X) :- fours(X).
0.0 group5(X) :- fourc(X).
0.0 group5(X) :- fiveh(X).
0.0 group5(X) :- fived(X).
0.0 group5(X) :- fives(X).
0.0 group5(X) :- fivec(X).
0.0 group5(X) :- sixh(X).
0.0 group5(X) :- sixd(X).
0.0 group5(X) :- sixs(X).
0.0 group5(X) :- sixc(X).
0.0 group6(X) :- twoh(X).
0.0 group6(X) :- twod(X).
0.0 group6(X) :- twos(X).
0.0 group6(X) :- twoc(X).
0.0 group6(X) :- threeh(X).
0.0 group6(X) :- threed(X).
0.0 group6(X) :- threes(X).
0.0 group6(X) :- threec(X).
0.0 group6(X) :- fourh(X).
0.0 group6(X) :- fourd(X).
0.0 group6(X) :- fours(X).
0.0 group6(X) :- fourc(X).
0.0 group6(X) :- fiveh(X).
0.0 group6(X) :- fived(X).
0.0 group6(X) :- fives(X).
0.0 group6(X) :- fivec(X).
0.0 group6(X) :- sixh(X).
0.0 group6(X) :- sixd(X).
0.0 group6(X) :- sixs(X).
0.0 group6(X) :- sixc(X).
group2/1 [lukasiewicz]

group3/1 [lukasiewicz]
group4/1 [lukasiewicz]
group5/1 [lukasiewicz]
group6/1 [lukasiewicz]
<1.0> straight3() :- group2(X0),

group3(X1).
<1.0> straight4() :- group3(X0),

group4(X1).
<1.0> straight5() :- group4(X0),

group5(X1).
<1.0> straight6() :- group5(X0),

group6(X1).
<3.0> score() :- straight3().
<4.0> score() :- straight4().
<5.0> score() :- straight5().
<6.0> score() :- straight6().
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Appendix F
Contents of enclosed CD

src.........................................................implementation sources
examples ................................................... evaluated experiments
thesis....................................................the thesis text directory

main.pdf............................................. the thesis in PDF format
main.tex........................................... the thesis in LaTeX format
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Appendix G
Glossary

PGM Probabilistic Graphical Model - Graph that expresses conditional probabilities
between random variables.

SRL Statistical Relational Learning
CRF Conditional Random Fields
PRM Probabilistic Relational Models
RMN Relational Markov Network
MRF Markov Random Field
MLN Markov Logic Network
PER Probabilistic Entity-Relationship Models
RDN Relational Dependency Network
CPD Conditional Probability Distribution
Horn clause clause with at most one positive literal
Definitive clause clause with exactly one positive literal
DNN Deep Neural Network
ANN, NN Artificial Neural Network
FF NN Feed Forward Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
SLD resolution Selective Linear Definite clause resolution
EM Expectation maximization
PSL Probabilistic Soft Logic
Factor graph bipartite graph representing the factorization of a function
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