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Abstrakt / Abstract
Tato diplomová práce se zabývá kon-

strukcí autonomního závodního modelu
auta. Cílem bylo účastnit se soutěže
F1/10. Práce se zabývá mnoha aspekty
konstrukce od mechanického návrhu,
přípravy elektroniky až po softwaro-
vou architekturu a algoritmy. Software
auta je založen na robotickém operač-
ním systému (ROS), který je stručně
představen v práci a je zhodnocena
vhodnost některých jeho komponent
pro auto. Konečná softwarová archi-
tektura je navržena a vyhodnocena
v experimentech s reálným autem.
Výsledkem je funkční model autíčka
schopný samostatného průjezdu předem
stanovenými kontrolními body. Určitým
omezením návrhu je zastavování na
kontrolních bodech.

Klíčová slova: SLAM, vizuální odo-
metrie, sledování trajektorie, mobilní ro-
botika, autonomní řízení, ROS

Překlad titulu: Model formule pro
soutěž autonomních aut F1/10

This thesis deals with construction
of an autonomous race model car. The
goal was to participate in F1/10 compe-
tition. The thesis covers many aspects
of car construction from mechanical
design, electronics preparation to soft-
ware architecture and algorithms. Car
software is based on the Robot Oper-
ating System (ROS), which is briefly
introduced in the thesis and fitness
of several of its components for the
car is evaluated. The final software
architecture is proposed and evaluated
in real-world experiments. The result
is working model car capable of au-
tonomous passage through predefined
checkpoints. Its limitation is stopping
at the checkpoints.

Keywords: SLAM, visual odometry,
trajectory following, mobile robotics,
autonomous driving, ROS
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Chapter 1
Introduction

Autonomous robotics becomes ever more popular as the processing power of embedded
platforms increases to levels previously seen only in full-fledged desktop computers
while their power consumption only reaches fractions of their desktop counterparts. An
example of such a platform is the affordable NVIDIA Jetson Tegra K1. These platforms
bring new possibilities to the world of mobile robotics as it is now possible to perform
computationally intensive tasks such as Simultaneous Localization and Mapping and
visual odometry directly onboard a mobile robot.

This is especially useful for the autonomous driving in the automotive industry. This
field, however, requires not only high performance, but also high reliability and easy
integration into existing vehicle. An example of automotive oriented platform is the
recently released NVIDIA Drive PX 2 that can, according to the manufacturer [1], per-
form sensor fusion from multiple cameras, LiDAR, RADAR and ultrasonic sensors. It is
also capable of using Deep Neural Networks (DNN) for the detection and classification
of objects as well as mapping “raw pixels from a single front-facing camera directly to
steering commands” [2].

Figure 1.1. Image of the developed platform.

As a consequence of introduction of the mentioned NVIDIA platforms many dif-
ferent autonomous scale model race car competitions and platforms emerged. More
about them is in Section 2.5. These competitions have common topics including car
localization and mapping, trajectory planning, obstacle avoidance, sensor fusion, vi-
sual odometry, etc. In our Department, we have chosen to participate in the F1/10
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
competition, because a scale model and a LIDAR were available at the Department
from previous projects. Unfortunately, the April 2017 round of the competition was
cancelled, because the organizers “did not receive enough team confirmations in time
for organizing, planning, and ensuring an exciting racing event” [3].

The competition preparation project was run by a small team of students. This thesis
documents my contribution to the preparations of our scale model race car platform to
take part in the F1/10 competition. The developed platform is depicted in Figure 1.1.

The thesis is structured as follows. In Chapter 2 the F1/10 competition is described.
Namely its rules and aims as well as a list of materials and ROS source codes provided
by the competition organizers. Additionally, the chapter describes the parts of ROS
ecosystem, that we used during the work, and finally the equipment used to construct
the platform is described.

Chapter 3 describes my contribution to the project: a custom built chassis to mount
the required components, firmware changes to microcontrollers, testing of ROS appli-
cation software (packages), chosen ROS packages and the final ROS architecture.

Chapter 4 describes various experiments performed with the car.
In Chapter 5 we provide recommendations for future improvement.
In Conclusion we summarize the achieved results.
Throughout the thesis we use abbreviations and their explanation is provided in

Appendix A.
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Chapter 2
Background

In this chapter we first describe some important parts of rules of the F1/10 competition,
that affected software design decisions. Next we comment on materials provided by the
competition organizers, why we chose to use ROS to implement the autonomous stack
and basics of ROS operation. Then we focus on the hardware platform of the car. Last,
we list similar competitions and scale car platforms.

2.1 Rules of the F1/10 competition
The complete rules are available in [4]. Here we only cite parts important for the
hardware design and software implementation of the platform.

According to section 4.4 of the rules each competitor has to:

a) Construct a 1/10th scale autonomous vehicle within the constraints described herein.
b) Provide a robust and safe mechanism for bringing an errant vehicle to a stop as

described in the rules.
c) Demonstrate teleoperation of the vehicle in order to verify basic functionality.
d) Persistently complete a mission defined by the safe traversal of ordered series of

checkpoints with the objective of minimizing completion time.
e) Interpret static obstacles within the environment in order to maintain collision free

progress.
f) Exhibit context dependent speed and angular velocity control in a static environment.
g) Interpret dynamic obstacles within the race environment in order to enable predictive

controls and planning, such as is necessary to ensure collision free progress.
h) Exhibit context dependent speed and angular velocity control in a dynamic environ-

ment.
i) Navigate in areas where sensors may not provide map-based localization (ie. LiDAR

range is insufficient).
j) Accomplish these goals using a low power embedded processor specified by the orga-

nizers.

Another important part of the rules is 7.1, which describes safety requirements:

a) Each car must have an emergency disconnect switch (affectionately: the big red
button) that removes all power from the main power system (i.e. the batteries that
supply power to the drive motor) at a point in the circuit as close as practical to the
power supply. This switch must be rated for a breaking current of at least 50 percent
greater than the power limiting fuse rating.

b) Each car must have the ability to switch to Manual Mode directly from Autonomous
Mode at any time using only the Traxxas Remote.

3



2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Section 7.2 deals with autonomy and communication.
The F1/10 competition is for fully autonomous, self-contained vehicles, as such:

a) No transmitters or communication beacons (other than Wi-Fi and race infrastructure
related communication) of any kind are allowed. Everything necessary for the vehi-
cle’s navigation/processing/sensing must be attached and part of the vehicle itself.

b) Cooperation amongst vehicles is strictly prohibited. Two teams cannot collude to
manipulate race outcomes or share computational resources.

c) Competitors may not modify the course in any way. Including but not limited to
covering of reflective surfaces or the addition of markers/beacons.

Section 7.4 describes hardware of the platform:

a) Sensor Configuration: Each team must choose a sensor configuration only from this
subset of sensors. Alternate sensors will not be considered, the purpose of this
competition is the development of driving algorithms. Please see the bill of materials
for part numbers and ordering information.

1. Camera (at most 2): ZED, Structure Sensor, Pointgrey, Minoru, Webcam
2. LIDAR (at most 1): Hokuyo 10LX, RP Lidar, Hokuyo 04LX
3. IMU (at most 1): Memsic IMU440CA-200, Razor
4. WIFI (exactly 1): Ubiquiti Picostation M2

b) Computing: Each car must use only:

1. Planning and Perception (exactly 1): NVIDIA Jetson TK1
2. Control (exactly 1): MBed or Teensy

c) Chassis and Vehicle:

1. Vehicle (exactly 1): Traxxas Rally 1/10
2. Suspension (swappable): Any
3. Axle Conversion (swappable): Stock, ST Racing Concepts ST3654-17S CNC Ma-

chined Aluminum 17mm Hex Conversion
4. Tires (swappable): Stock, Duratrax Bandito Buggy Tire C2 Mounted White (1/8

Scale)

However, the list of allowed components (Bill of Materials) changed during time as
various components such as battery pack, IMU and vehicle went out of stock [5].

Another important part of the rules is 9.1 which describes the race track:

a) The race track will be located at Carnegie Mellon University in Pittsburgh. Although
the final layout has not yet been selected, teams may expect that racing will occur in
hallways roughly 2 – 5 meters wide. Furthermore, teams may expect multiple turns
(in both directions!), uneven walls, varying lighting conditions, and in later rounds
another autonomous competitor.

b) Maximum and minimum width of the course: 4 meters. Minimum centerline radius
turn on the course: 3 meters details will be provided in the RNDF and ROSBAG
data.

The track layout specification was later updated by organizers on the F1/10 forum [6]:

1. The track width will be at-least 4 – 5 car widths,
2. The track will be a loop,
3. The height of the track boundary/walls will be high enough that a LIDAR mounted

on the top of the car can detect the boundaries.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Materials provided by the F1/10 organizers

Section 10.2 of the rules describes the race starting procedure:

1. The participants will be expected to connect to a common wireless network. It is the
responsibility of the team to make sure they have been assigned unique IPs and test
the connection to the wireless network

2. The organizers will send a trigger signal that is meant to start the race. To ensure that
all cars receive the signal at the same time, it is required for all cars to “subscribe” to
the topic “ReadySetGo” that will be “published” on the common wireless network.

3. As soon as a boolean “True” is received on this topic, the competing cars are expected
to begin the race. The dataType that is expected on the the “ReadySetGo” topic is
Boolean. Teams should verify that their starting protocol works as expected in their
run of the Qualifying lap.

2.2 Materials provided by the F1/10 organizers
The F1/10 competition organizers provide numerous materials to make it easier for
newcomers to start work [5, 7]. These are either video tutorials or written tutorials or
source code.

The first batch of tutorials contains build instructions for the chassis used for mount-
ing the used equipment onto the vehicle. These tutorials show how to assemble the
chassis with parts laser cutted according to the provided chassis drawings.

Another batch of tutorials focuses on system bring-up1), installation of Ubuntu OS
and ROS on the NVIDIA TK1 platform and sensor device drivers installation.

Some tutorials also provide basic insight into localization and PID control topics.
There is also some source code provided by the organizers to speed-up the develop-

ment. Namely the Teensy firmware and some basic keyboard teleoperation of the car.
We refer to tutorials used later on (for example in Section 2.4.2 and 3.7]).

2.3 Robot Operating System
The tutorials provided by the organizers make use of the Robot Operating System
(ROS). Specifically the Indigo version is recommended. According to [8] the ROS “is
a flexible framework for writing robot software. It is a collection of tools, libraries,
and conventions that aim to simplify the task of creating complex and robust robot
behavior across a wide variety of robotic platforms.

ROS was built from the ground up to encourage collaborative robotics software de-
velopment. For example, one laboratory might have experts in mapping indoor en-
vironments, and could contribute a world-class system for producing maps. Another
group might have experts at using maps to navigate, and yet another group might have
discovered a computer vision approach that works well for recognizing small objects in
clutter. ROS was designed specifically for groups like these to collaborate and build
upon each other’s work, as is described throughout this site.”

Possibility of ROS integration with other projects and tools is described in [9]. Cur-
rently we use the Gazebo simulator for car simulation. The developed simulator is the
topic of Jiří Kerner’s thesis (see [10]). The core components of ROS are described in
more detail in [11]. Here we only provide short overview of ROS components, that we
used during the development.
1) http://f1tenth.org/lectures

5
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2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 ROS Architecture

The ROS system consists of independent ROS nodes1). The root component of the
ROS system is called “roscore”. Roscore starts up a ROS Master, a ROS Parameter
Server and a “rosout” logging node. For more details see [13].

“The ROS Master provides naming and registration services to the rest of the nodes
in the ROS system. It tracks publishers and subscribers to topics as well as services.
The role of the Master is to enable individual ROS nodes to locate one another. Once
these nodes have located each other they communicate with each other peer-to-peer.
The Master also provides the Parameter Server. The Master is most commonly run
using the roscore command, which loads the ROS Master along with other essential
components” [14].

In order for a node to communicate with others it is necessary to define data type
of the message. The way this is handled in ROS is, according to [15], the following:
“Each topic is strongly typed by the ROS message type used to publish to it and nodes
can only receive messages with a matching type. The Master does not enforce type
consistency among the publishers, but subscribers will not establish message transport
unless the types match. Furthermore, all ROS clients check to make sure that an MD5
computed from the msg files match. This check ensures that the ROS Nodes were
compiled from consistent code bases.”

The transport mechanisms used are either TCP or UDP. “ROS currently supports
TCP/IP-based and UDP-based message transport. The TCP/IP-based transport is
known as TCPROS and streams message data over persistent TCP/IP connections.
TCPROS is the default transport used in ROS and is the only transport that client
libraries are required to support. The UDP-based transport, which is known as UD-
PROS and is currently only supported in roscpp, separates messages into UDP packets.
UDPROS is a low-latency, lossy transport, so is best suited for tasks like teleoperation.

ROS nodes negotiate the desired transport at runtime. For example, if a node prefers
UDPROS transport but the other Node does not support it, it can fallback on TCPROS
transport. This negotiation model enables new transports to be added over time as
compelling use cases arise” [15].

Parameter server allows for configuration and preservation of state of nodes. Accord-
ing to [16]: “A parameter server is a shared, multi-variate dictionary that is accessible
via network APIs. Nodes use this server to store and retrieve parameters at runtime.
As it is not designed for high-performance, it is best used for static, non-binary data
such as configuration parameters. It is meant to be globally viewable so that tools can
easily inspect the configuration state of the system and modify if necessary.

The Parameter Server is implemented using XMLRPC and runs inside of the ROS
Master, which means that its API is accessible via normal XMLRPC libraries.”

The “rosout” topic provides a logging facility, that could be used by all nodes run-
ning on the system. There is a Qt-based application for viewing the published data –
rqt console [17].

Multiple nodes are usually launched at once. The spawning of processes is facilitated
by “roslaunch” file in XML syntax and a developer can, for example, add nodes to be

1) “A node is a process that performs computation. Nodes are combined together into a graph and
communicate with one another using streaming topics, RPC services, and the Parameter Server. These
nodes are meant to operate at a fine-grained scale; a robot control system will usually comprise many
nodes. For example, one node controls a laser range-finder, one Node controls the robot’s wheel motors,
one node performs localization, one node performs path planning, one node provide a graphical view of
the system, and so on” [12].
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launched or provide configuration values published to the parameter server. For more
details see [18]. It is possible to include other launch files and form complex structures
with separated functionality. For example in our configuration we use a separate launch
file to initialize device drivers and setup ROS topic publications for the measured data
and then include this launch file in other files requiring access to the data.

An important part of the ROS system is a build system used to compile user nodes.
We use “catkin make” [19] system. The user application software is divided into pack-
ages. A make file is written for each package specifying which source files to use for
building which nodes and which libraries need to be linked with the nodes.

One drawback of defining configuration options through a launch file is, that it can
be only changed by using “rosparam” command. A more user friendly version is called
“dynamic reconfigure” [20] which provides a graphical tool to change configuration of
nodes. It is necessary to define data types of parameters, describe their purpose and
provide bounds. All this is accomplished through “ParameterGenerator” Python class.
Then in user application one has to instantiate a Server instance and pass it a callback
function, that will be invoked on parameter change and passed the new parameter
values.

Nodes in ROS can be written using C++ [21], Python [22] or Java [23] language.
Rosjava is useful for development of Android applications, that use ROS. One example
of such an application is the ROS Control1), that allows to remotely control a ROS-
based robot and to receive sensor data and visualize them.

2.3.2 ROS Packages
In this section we describe ROS packages, that we used during the development of our
racing car. It consists of two separate types of packages. The first group is formed by
low-level software (device drivers), that publish data through ROS topics and the other
group is high-level application software formed by localization, mapping and planning-
oriented packages.

2.3.2.1 Device drivers

ROS includes device drivers for all components used on the car. The specific packages
are:.“hokuyo node” – package containing drivers for older Hokuyos, such as our 04LX.

It publishes the data through the “sensor msgs/LaserScan” message type [24]. For
more details, see [25]..“sick tim” – provides a driver for the SICK LiDAR. The output is again published
over the “sensor msgs/LaserScan” message type. For more details, see [26]..“rosserial” – provides a ROS wrapper, that is capable of serializing/deserializing data
sent through ROS topic and sending/receiving them over/through a character device.
This is used to communicate with the Teensy MCU. For more details, see [27]..“razor imu 9dof” – provides a driver and a firmware for the Inertial Measurement
Unit (IMU). The firmware needs to be compiled and downloaded to the CPU on the
IMU through Arduino IDE. The data are published through a “sensor msgs/Imu” [28]
topic. For more details see [29]..“zed-ros-wrapper” – is a wrapper [30] around the manufacturer supplied proprietary
ZED SDK [31]. It provides odometry estimates on the “nav msgs/Odometry” [32]
topic, images from left an right camera along with the camera calibration matrices

1) https://play.google.com/store/apps/details?id=com.robotca.ControlApp
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through the “sensor msgs/Image” [33] topic and the “sensor msgs/CameraInfo” [34]
a depth map is also available through the “sensor msgs/Image” topic.

My experience with the proprietary SDK is described in Sections 3.4 and 3.13.3.

2.3.2.2 Application software

In this section we provide overview of various ROS components, that we use on the car..“navigation” – it is relatively complex set of ROS packages [35]. But the most im-
portant one is “move base”, which, according to [36] “links together a global and
local planner to accomplish its global navigation task. It supports any global plan-
ner adhering to the nav core::BaseGlobalPlanner interface specified in the nav core
package and any local planner adhering to the nav core::BaseLocalPlanner interface
specified in the nav core package. The move base node also maintains two costmaps,
one for the global planner, and one for a local planner (see the costmap 2d package)
that are used to accomplish navigation tasks.” As a global planner plugin we use
the “global planner” package. In order to plan a trajectory it uses potential field
constructed from the global costmap and a variant of Dijkstra’s algorithm1). More
details about the “global planner” package can be found in [37]. The local planner
plugin used was developed by me and it’s function is described in Section 3.15. The
“move base” node architecture is depicted in Figure 2.1.

Figure 2.1. Navigation stack setup, source: [36].

.“robot localization” – this package provides robot’s state estimation performed in
either Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF). We use
the UKF variant. For more details about the UKF node, see [38]. Its configuration
and tuning is described in Sections 3.11 and 3.9.. rViz – this is a visualisation tool [39]. It can visualise constructed map, show position
of a robot in the map, it can display robot’s odometry as well as planned trajectory. It
can even visualize LiDAR scans and IMU heading and acceleration vectors. It allows
for interactivity. User can define a pose estimate for localization nodes by selecting
“2D Pose Estimate” tool. “2D Nav Goal” tool allows to set a goal for the robot to
drive to. The goal is passed to global planner plugin of “move base” package.. rqt graph – visualizes topic connections between nodes [40].

1) https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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. rqt tf tree – visualizes the ROS Tf subsystem structure [41]..“map server” – “map server provides the map server ROS Node, which offers map
data as a ROS Service. It also provides the map saver command-line utility, which
allows dynamically generated maps to be saved to file” [42].

2.4 Hardware platform
The rules give guidelines on what parts to purchase and use in the competition. How-
ever, due to the fact, that when we started working on the F1/10 project, there were
already a LiDAR and a vehicle from previous project purchased at the Department, we
deviated from the prescribed platform in order to save time and money. The compo-
nents we used are described in the following subsections. First we describe sensors used
and then the computing units.

2.4.1 Sensors
We have two LiDARs available, a stereo camera and an Inertial Measurement Unit
(IMU)..Hokuyo URG-04LX – is a LiDAR with distance measurement ranging from 60 mm

to 4,000mm in a 240 degrees angle. It has angular resolution of 0.36 degree and
sampling frequency of 10 Hz. It needs 5 V power source and current consumption is
at most 800mA. It has USB and RS-232C communication interfaces. Unfortunately,
we have an older version of this model, that did not support powering through the
USB connector..SICK TiM551-2050001 – is a LiDAR with distance measurement ranging from 50 mm
to 10,000mm in a 270 degrees angle. It has angular resolution of 1 degree and sam-
pling frequency of 15 Hz. It needs 9 – 28V DC power source and power consumption
is typically 4 W. It has USB and Ethernet communication interfaces..ZED stereo camera – according to the manufacturer [43], the camera is capable of
working in the following video modes. However, due to insufficient processing per-
formance of the TK1 the attainable framerate and the available range of resolutions
is limited (see Section 3.4).

Video Mode Frames Frames per second Output Resolution
per second (maximum attainable (side by side)

on TK1)
2.2K 15 0 4416x1242

1080p 30 0 3840x1080
720p 60 15 2560x720

WVGA 100 30 1344x376

Table 2.1. ZED camera video modes. Source:[43] and my experiments on TK1

The camera has a baseline of 120 mm. Lenses have 110 degrees Field of View.
Sensor size is 1/3′′ with backside illumination. It has USB 3.0 interface and draws
380 mA of current from the USB Hub.. IMU Razor 9DOF – it is a Sparkfun made IMU. It incorporates triple-axis digital-
output gyroscope (ITG-3200), triple-axis accelerometer (ADXL345) and triple-axis
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digital magnetometer (HMC5883L). The sensor outputs are processed using the on-
board ATmega328 running firmware specially designed to be compatible with the
ROS driver. The maximum sampling frequency of current firmware implementation
is only 50 Hz. The ATmega communicates with host over the serial interface. In
order to connect it directly to a USB Hub. We use “SparkFun FTDI Basic Breakout
– 3.3V” 1). It includes an FTDI FT232RL integrated circuit.

2.4.2 Computing units
As prescribed by F1/10 rules (see Section 2.1), we have two dedicated computing units
(apart from ATmega onboard the IMU). The first one runs Ubuntu and all ROS nodes
and the other one is used to capture the output PWM duty cycle of a RF transceiver
onboard the vehicle and to generate PWM duty cycle for the servo an the ESC according
to values received through the “rosserial” interface from ROS topic subsystem.

2.4.2.1 NVIDIA Jetson TK1
The NVIDIA Jetson TK1 comes with a Ubuntu 14.04 flashed onto the onboard eMMC
memory chip. It has numerous interfaces. Mainly it has USB 3.0 controller, mini-PCIe
slot, HDMI connector, 1000M Ethernet, SATA port and MOLEX power connector and
SD card slot. It uses the Tegra K1 SOC that is formed by an ARM Cortex-A15 CPU
(NVIDIA 4-Plus-1 Quad-Core) and NVIDIA Kepler GPU with 192 CUDA Cores.

We used some of the tutorials provided by the F1/10 organizers to setup ROS on
the kit. The kit runs and Ubuntu 14.04 and ROS Indigo. Both software components
are run from an SD card to save the internal eMMC storage from excessive reads and
writes due to rosbag recordings (for the description of a rosbag, see [44]).

The platform with software as provided by NVIDIA has some unusual “features”.
The kernel by default puts cores offline if the system load is low. This causes delayed
reactions after periods of inactivity. Another intriguing property of the kernel is that by
default the USB 3.0 controller is downgraded to only USB 2.0 and one has to specifically
enable the USB 3.0 functionality.

Due to the mentioned properties of the default kernel, we replaced it by the Grinch
kernel2) and applied fixes recommended by the F1/10 organizers in the provided written
tutorials (see Section 2.2).

2.4.2.2 Teensy 3.2 MCU
The main component of this development board is the Kinetis K20 CPU featuring an
ARM Cortex-M4 core. It is a 32-bit core, 1.25 DMIPS/MHz3). It is based on the
ARMv7 architecture. The board schematic is in Figure 2.2. It can be connected to
the host through a Micro-USB connector. Linux system on TK1 sees it as a character
device. For more details about the MCU, see [46].

Programming is done via a modified Arduino IDE called Teensyduino 4). The mod-
ifications also include an extensive set of libraries 5).

The Teensy board includes a preflashed bootloader used to program user applications
compiled by the Teensyduino. For usage, see [48].
1) https://www.sparkfun.com/products/9873
2) available here: http://www.jarzebski.pl/files/jetsontk1/grinch-21.3.4, change log is available
in [45]
3) https://en.wikipedia.org/wiki/Dhrystone
4) https://www.pjrc.com/teensy/teensyduino.html
5) https://www.pjrc.com/teensy/td_libs.html
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Figure 2.2. Teensy 3.2 board schematic, source: [47].

2.4.3 Other equipment
This section includes description of the supplementary equipment. In the following list
we provide a short description of it..Netis WF2190 – a WiFi module that has 2 transmit and 2 receive antennas and is

capable of attaining speeds of up to 300 Mbps in 2.4 GHz mode and 867Mbps in
5 GHz mode. It is based on the Realtek rtl8812AU chipset. The required driver is
not part of the upstream Linux kernel. It has to be compiled and installed from
GitHub1). I used the “driver-4.3.22-beta” branch.

From benchmarks performed with the iperf3 2) tool it provided steady throughput
of around 20 MB/s when connected to the Linksys E4200 V1 router on 5GHz band
and 40 MHz wide channel..AmazonBasics 7 Port USB 3.0 Hub – it is a USB 3.0 Hub used to connect equipment
to the TK1. Namely LiDARs, ZED camera, IMU and Teensy board. For details,
see [49]..Energizer XP18000 Battery Pack – is a powerbank used to power all the electronics
onboard the car, except for the ESC and servo. It has a 12 V DC output capable of
supplying 2 A, 5 V USB charge output capable of supplying 1A and 20V DC output
capable of supplying 3.5 A. It can accumulate total energy of 70 Wh.

1) https://github.com/diederikdehaas/rtl8812AU
2) https://iperf.fr/
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2.4.4 Vehicle

The vehicle is a leftover from some previous projects at the Department. It is not listed
as allowed by competition organizers, therefore we cannot participate in the competition
with it.

The car is ECX Revenge 1/8 (P/N: ECX04000), it has been phased out.
The vehicle’s frame is made of alluminium. It has 4WD drive and three locking

differentials. As a drivetrain the Dynamite Fuze 550 2500 RPM/V (P/N: DYN4960)
3-phase sensorless brushless motor is used.

The motor is controlled by the Dynamite Fuze 130A (P/N: DYN4955) ESC. It is
capable of supplying 130 A to the motor and automatically detects the number of cells of
the connected battery pack. It also has a number of user-configurable settings (see [50]).
On the car, we use the “Forward/Reverse with Brake” running mode of the ESC. To
engage reverse while moving forward, in this mode, a user has to apply the brake
until the vehicle has come to a complete stop, release brake, then apply the brake
again. The ESC also supports the more natural mode “Forward/Reverse” without the
required brake, but we do not use it, because the manufacturer discourages its use: “Do
not use this mode with car types other than Rock Crawlers as this mode can overload
and/or damage the ESC” [50]. We use the ESC with 20 % “Drag Brake Force”. This
setting causes the brake to be “automatically applied when the throttle is returned to
the neutral position” [50].

The steering mechanism is controled by Dynamite Servo Car 3905 (P/N: DYN3905)
with 8.5 kg.cm torque and angular speed of 5π

3 s−1 at 6 V power supply.
The RC kit is the Spektrum DX2E with RF transceiver Spektrum SR200.

2.5 Similar competitions
As mentioned in Chapter 1 the concept of autonomous scale models moving around
buildings, corridors and basements or in a scaled mock-ups of a real-world scenarios is
becoming popular. Here we list some of the contests using a similar concept of car:.MIT Rapid Autonomous Complex-Environment Competing Ackermann-steering

Robot (RACECAR)1). This platform uses a very similar hardware setup2) to the
F1/10 competition. Namely the Hokuyo UST-10LX LiDAR, the ZED camera, the
Sparkfun IMU and the Traxxas 1/10-scale chassis. But the organizers chosed a more
powerful development kit (NVIDIA Jetson TX1) and they equip the vehicles with
an open-source ESC – the VESC. The Jetson TX1 provides more computing power
than the TK1 we use and the VESC allows to compute wheel odometry estimates
and control motor speed. This would be useful to have also on our platform as
discussed in Section 5.1..Audi Autonomous Driving Cup 20173) – this competition uses a vehicle and chassis
specifically designed by Audi. The competition is focused on the development of new
ground-breaking algorithms in the field of autonomous driving.

1) http://fast.scripts.mit.edu/racecar
2) http://fast.scripts.mit.edu/racecar/hardware
3) https://www.audi-autonomous-driving-cup.com

12

http://fast.scripts.mit.edu/racecar
http://fast.scripts.mit.edu/racecar/hardware
https://www.audi-autonomous-driving-cup.com


Chapter 3
Racing Vehicle Construction

In this chapter we present a thorough description of my contribution to the preparation
of our scale model race car platform. First we describe the chassis preparation and com-
pletion procedures, then we move on to hardware bring-up and MCU firmware changes,
identification of basic kinematic properties of the car, testing of various Simultaneous
Localization and Mapping ROS packages as well as stereo odometry ROS packages
and describe the components used in the final control architecture. We also present
evaluation of the chosen approach in a similar environment to where the competition
is to be held.

Througout the chapter we use the notation of different ROS-specific reference frames.
For details about the reference frames and their specific axis orientation, please, refer
to [51–52].

The LiDAR scans and IMU measurements are transformed to a single reference
frame called the “base link”. The orientation is as described by [51, Axis Orientation,
In relation to a body].

3.1 Chassis preparations
Since we have a different vehicle than is prescribed for the competition and we were not
able to obtain ABS plastic boards 3 and 6 mm thick [5, Bill of Materials], that were
recommended by the organizers to use the provided mounting chassis drawings. We
had to design our own mounting chassis to attach the required sensors and development
kits to the car.

Since we have so many components, they would not fit onto a single level chassis,
so a two level chassis was designed. The design of the chassis layout was based on the
following requirements:.Heavy components should go to the lower level to keep the center of mass near the

ground to improve handling in sharp turns..The space around LiDAR can be occupied only below the height of the LiDAR dome
to not obstruct the view, because the SICK LiDAR has a wide viewing angle of 270
degrees..The camera needs to be in the front part of the chassis and it’s view should not be
obstructed by parts of the front wheel suspension..The breadboard with Teensy MCU mounted on top needs to be on the upper level
as it has manual switches to bypass the Teensy board and connect RF transceiver
directly to the ESC and servo..Place the emergency stop button on the top level to make it easily accessible..Connectors of the power bank and the USB Hub should be easily accessible..Respect the workplace size restrictions of the CNC machine available at our Depart-
ment (32 cm x 21.5 cm)1)

1) http://rtime.felk.cvut.cz/robot/index.php/Comagrav_MT_Profi
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Two versions of the chassis were made. The first version was made by teammate

Jitka Hodná with my assistance.
After the first version was done I discovered, that unfortunately, the camera can

sometimes see the front wheels suspension and that we will need to house a newly
obtained LiDAR – the SICK. Therefore I prepared a second version of the chassis.

During the drawing phase I used measurements obtained from the specific datasheets
of sensors and development kits used and from my own measurements.

Due to thick and inflexible SICK LiDAR power cable SICK LiDAR, I designed a
pad to put under it, so that the cable could fit into the small space between connector
headers on the TK1 module (see Figure 3.6 and 3.7).

I drew the chassis in AutoDesk’s AutoCAD 2017 and then imported it to AutoDesk’s
ArtCAM 2017 Free to generate a G-code for the CNC machine available at our depart-
ment. The drawings are on the attached CD.

The material used for the milling was the 4mm thick Guttagliss Hobbyglas. It is
similar to a plexiglass, but is made out of polystyrene [53].

3.2 Car assembly
The assembly of car’s chassis consisted of the following steps:.Prepare all the power and communication cablework..Solder switches, connector headers and the Teensy MCU to a breadboard. The

switches enable to enforce manual control mode, that bypasses the Teensy board.
The specific connections can be seen in Figure 3.1. The switching functionality is
described in Section 3.6. The final module is on Figure 3.2. The resulting connections
between components are depicted in Figure 3.1..Attach a Velcro fastener to the Energizer battery pack and the USB Hub to enable
their easy removal from the chassis..Screw all the components in their place..Join the lower and upper level of the chassis by plastic standoffs..Stiffen back and front shock absorbers of the vehicle by inserts..Add front bumper made from acoustic foam to reduce risk of damage in case of an
accident.

The assembled chassis with all components mounted can be seen from different angles
in Figures 3.3, 3.4 and 3.5. Figures 3.6 and 3.7 provide detail of the LiDAR pad and
power cable management.

3.3 NVIDIA Jetson TK1 setup
By following tutorials described in Section 2.2 I installed Ubuntu 14.04 and ROS Indigo
onto an SD card. I also installed all the required driver packages.

I also installed the Grinch Linux kernel (see Section 2.4.2).

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 ZED Camera bring-up

Servo

RF 
Transceiver

ESC

Li-Pol Battery
3-Phase 
Sensorless 
Motor

Teensy MCU
Auto/Man
Mode switching

Servo PWM

Motor PWM

Power switch

Power 
distribution

PWM

PWM
Energizer 
Battery Pack

USB Hub Nvidia TK1

SICK/HOKUYO LiDAR

ZED camera

Netis WiFi module

Razor IMUPWM 
signals

Motor 
control

USB 
connection

Figure 3.1. Connections between hardware components of the car.

Figure 3.2. Picture of the Teensy module.

3.4 ZED Camera bring-up
The manufacturer provides proprietary binary ZED SDK [31] for the camera.

The ZED SDK requires an NVIDIA GPU and a fast CPU in order to work prop-
erly [43]. The ZED SDK initially supported the NVIDIA Jetson TK1 board, that
we use, but since there are considerable problems with using this camera on the TK1
mainly related to insufficient performance of the TK1 (see [54, section “ZED SDK Sup-
ported Modes”] and [55]) the manufacturer recently dropped the support [31] for the
TK1 and only supports the newer TX1 and TX2 boards starting from SDK 2.

Thus in order to use the ZED camera with TK1 an older version of the ZED SDK
is required (version 1.2). The same applies to the “zed ros wrapper” ROS wrapper
package [30].

After ZED SDK installation it is possible to test the camera by running “ZED Ex-
plorer” tool. This tool displays live images from both camera sensors.
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Figure 3.3. Overall view of the car.

Figure 3.4. Picture of the right side of the car.

Figure 3.5. Picture of the left side of the car.
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Figure 3.6. View from top of the SICK LiDAR power cable management.

Figure 3.7. Level view of the SICK LiDAR power cable management.

Afterwards it is necessary to download the “zed ros wrapper” package and extract
it into the catkin workspace and build it. The package contains “zed.launch” file de-
signed to publish everything, the camera and SDK can provide. This includes odometry
estimates, images for the left and right sensor, a depth map and a point cloud. The
reliability of the provided odometry is discussed in Section 3.13.3.

3.5 Recording of rosbag files
During the testing of various ROS packages it was helpful to be able to record data from
the experiments and perform manual tuning of specific configuration parameters with-
out the need to repeat the experiments. Unfortunatelly, the amount of data generated
per time unit is considerable. Especially if we want to record the camera images. The
ROS provides the “compressed image transport” plugin1), that enables JPEG or PNG
compression of the images, but this leads to loss of information in the data. Combined
with the low resolution of the recorded images (see Section 2.4.1) this would degrade
1) http://wiki.ros.org/compressed_image_transport
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the images and thwart any attempts to perform stereo odometry. Thus I had to find a
way to record the data stream. At first I tried to transmit the data through the WiFi
adapter and record the rosbag file on a computer. Unfortunately the WiFi is not that
reliable and the data had to be re-transmitted and got recorded with wrong timestamps
on the computer. The ROS allows to switch to UDP transport (see Section 2.3.1) to
prevent this scenario, but it would lead to data loss, which is also undesirable. In order
to solve this we use a high speed SD card capable of writes at up to 30 MB/s1).

This speed would still be insufficient, because the image data stream alone (con-
sidering 672 x 376 pixels per image resolution and 30 frames per second framerate)
amounts to approximately 44 MB/s of data. To solve this we compress the data stream
on-the-fly using the LZ4 algorithm (for details see2)). This decreased the data stream
to approximately 25MB/s and the speed of the data card used is sufficient to handle
this (peaks are covered by 1300MB large memory buffer) and in order to decrease the
number of disk writes we use 3 MB internal chunk size.

The implementation is the “competition” ROS package on the attached CD in file
“record.launch”.

3.6 Teensy firmware
We use the Teensy MCU to generate PWM signals to steer the servo and to command
the ESC by means of a ROS topic. We also use it to capture the PWM signal re-
ceived from the RF transceiver. We use this information for automatic switch from
autonomous control to manual control mode and we also publish the resulting PWM
duty cycle through a ROS topic.

The organizers provided a sample Teensy MCU firmware that used the “rosserial”
interface in order to subscribe to PWM drive topic to generate the appropriate PWM
signals for the ESC and the servo (see Section2.2). Unfortunately, the provided firmware
did not offer functionality required by the rules. Specifically the ability to take over
control with only the car’s RF remote controller was not implemented. Therefore we
had to change the firmware to allow for that.

In the following subsections we first provide some details about the CPU used on the
Teensy module. Then we describe the firmware implementation.

3.6.1 Details of Kinetis K20 CPU
The Kinetis K20 CPU onboard Teensy features a FlexTimer module. This module is
capable of running in multiple modes. We use only two:.Edge-Aligned PWM mode – this is used to generate the desired PWM signals with

specified frequency and duty cycle to command the servo and the ESC of the car.
The mode is described in [57, sec. 36.4.6, case with ELSnB:ELSnA = 1:0].. Input Capture mode – allows to detect an edge event on an input pin and record
corresponding timestamp of the event and then issue an interrupt request to the
NVIC interrupt controller. The mode is described in [57, sec. 36.4.4]. We use this
mode for capturing the PWM values received from the RF transceiver of the remote
control. The input capture features a channel input filter. This filter is used for
debouncing/deglitching purposes. At present it is not used. It could be useful in

1) This value was determined using the GNU dd tool which is part of the GNU Coreutils [56]. The specific
command used was: “dd if=/dev/zero of=test dd oflag=nocache bs=1M count=1024 conv=fsync”
2) http://wiki.ros.org/rosbag/Commandline#record
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case of increased noise in the captured PWM signals in case a new component was
added to the car, which could induce parasitic voltage on the PWM signal loop and
cause an edge event.

The CPU contains three FlexTimer modules. The PWM generation needs to be done
on a different module than we use for the input capture mode, because the period of
the PWM signal is determined by value in the MOD register. Since each FlexTimer
module constains only a single timer, the MOD register value is shared by all channels
of a single FlexTimer module (see [57, Figure 36-1]). The MOD register’s value defines
the internal counter overflow value. Since the counter has only 16 bits we do not want
to loose any more bits in the input capture mode, which would be the case if we allow
both of the required operations (PWM generation and input capture) on the same
FlexTimer module. PWM generation is done on module FTM1 and input capture on
module FTM0.

3.6.2 Firmware implementation
The implementation consists of a function used for FTM initialization setupFTM().
This function sets proper pinmux, resets the counter value, sets the counter overflow
register, sets the status and control register (enable timer overflow interrupts, set clock
prescaler factor to 1 and select the system clock as a clock source). Next the required
channel interrupts are enabled (one channel for servo PWM and another for ESC PWM
signal) and set to trigger on raising edge. Finally the interrupt is enabled in the NVIC.

The corresponding ISR first detects if the timer had overflown and then detects if
an event actually occured on any of the two channels. If an event has occured, we
first read the timestamp, handle possible overflow and set the channel interrupt to be
triggered on either falling edge, if it previously triggered on rising, or on raising edge,
if it previously triggered on falling edge. We then subtract the falling edge timestamp
from the raising edge timestamp obtaining ∆t and then calculate a scaled duty cycle
using the following formula

scaled duty cycle = fPWM ∆t
fBUS

kPWM GEN ,

where fPWM = 91 Hz is the frequency of the PWM signal, fBUS = 48 MHz is the
frequnecy of the bus clock to which the timer’s counter is connected and kPWM GEN =
65535 is scaling factor that represents the range of values accepted by the analogWrite()
function in order to generate the corresponding PWM signal.

In order to determine the fPWM I measured the period of the respective signal by an
oscilloscope.

If any of the computed duty cycles were out of a predefined tolerance band, we switch
to manual mode and set the calculated PWM duty cycle to apropriate counter value
register used for PWM generation on the other FlexTimer module. The ISR also blinks
the onboard LED when the manual mode is active.

The manual mode can be switched back to ROS controlled mode by pushing blue
button on the Teensy housing breadboard. The button is connected to an input pin,
that is pulled-up by an internal resistor, and to the ground pin of Teensy. The pin is
periodically polled for current state and 10 ms debouncing is used (Bounce class is used
for this1)).

Another functionality that I implemented in the firmware is timeout for PWM ROS
topic reception. In case no ROS message on the topic specifying the required PWM
1) https://www.pjrc.com/teensy/td_libs_Bounce.html
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duty cycles is received within 300 ms of the last message. The ESC is commanded to
neutral effectively causing brake to engage (see Section 2.4.4 describing ESC modes of
operation) and servo to center value.

I also implemented publication of the computed PWM duty cycles captured from the
RF transceiver. This was useful during the identification experiments (see Section 3.10).

Here we list the board pin numbers used (for their respective CPU pins see Fig-
ure 2.2):

.3 – output PWM signal for the servo (FTM1, channel 0).4 – output PWM signal for the ESC (FTM1, channel 1).8 – manual to autonomous mode switch button.13 – onboard LED.20 – input PWM signal (from the RF transceiver) for the servo (FTM0, channel 5).23 – input PWM signal (from the RF transceiver) for the ESC (FTM0, channel 1)

The implementation is in file ”teensy drive.ino“ on the attached CD.

3.7 IMU firmware

The ROS ’razor imu 9dof’ package contains a firmware for the ATmega328 MCU on-
board the IMU. The firmware is used to read data from the sensors onboard the IMU
and to transmit them over the USB to the host.

The tutorial published by the organizers [58] is misleading in that it does not mention
the need to flash a new firmware to the IMU, but the ROS wrapper will not work
properly without doing so.

I had to make some changes to this firmware:

.Use the z gyro reference instead of the internal oscillator as the device clock source.
According to [59, Section 8.7]: ”On power up, the ITG-3200 defaults to the internal
oscillator. It is highly recommended that the device is configured to use one of the
gyros (or an external clock) as the clock reference, due to the improved stability.“
However, in the provided firmware this was not done..Set proper model of our accelerometer. The firmware supports multiple types so we
need to select the correct one (SEN-10736)..Swap axis orientation of the sensors due to the module mounting on the car.

The firmware is written in the form of an Arduino IDE sketch. The Arduino IDE is
used to download compiled firmware to the MCU. The firmware can be found on the
attached CD.

I also calibrated the onboard sensors by following the procedure in [29].
After mounting onto the chassis and recording a few rosbags I noticed the data

had been published with wrong axis orientation. After looking at the ROS wrapper
part I discovered, that it does another transformation of the reference system. In
order to save myself work with re-recording rosbag files I wrote a ROS node to handle
the transformation of the reference system separately and publish the fixed data to a
separate topic ”rotated imu“ instead of the original ”imu“. This could be also useful if
the location of the sensor changed in the future.
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3.8 Testing of publication of the required sensor
data

In order to verify, that all ROS wrappers and drivers for the various sensors work
properly and publish the required data, I wrote ”publish all.launch“ file. This launch
file brings up the ROS driver for the SICK LiDAR, Teensy board (rosserial node) and
the Razor IMU. The launch file is on the attached CD in the “competition” package.

3.9 Unscented Kalman Filter
In order to fuse the resulting pose from the Adaptive Monte-Carlo Localization (AMCL)
node with the IMU measurements, we use the Unscented Kalman Filter from the
“robot localization” ROS pakage (for the package description, see Section 2.3.2). The
filter provides the estimated car’s position in the 2D map (x and y coordinates and
heading) and both angular and linear velocities of the car.

The kinematic model used in the UKF uses constant acceleration model in all three
axes. Thus for the vy component of linear velocity we would get

vy = ayt,

where ay is linear acceleration in the y-axis direction and t is time.
Instead of the y axis component of the linear acceleration we measure the centripetal

acceleration ad caused by the rotational motion of the car. Its equation is given by

ad = ω2r,

where ω is the angular velocity of the car and r is the turning radius. This acceleration,
however, does not relate to translational motion it is only caused by rotational motion,
so we cannot use it to compute linear velocity estimates of the UKF. Thus we only fuse
the x component of the accelerometer measurements.

We use this filter in a so called 2D mode. This mode will cause the filter to ”fuse 0
values for all 3D variables (Z, roll, pitch, and their respective velocities and accelera-
tions). This keeps the covariances for those values from exploding while ensuring that
your robot’s state estimate remains affixed to the X–Y plane“ [38]. The system model
equations used by the UKF can be found in1).

Due to a bug affecting the magnetometer (see Section 3.11.3), we fuse only the
measurements obtained from the gyroscope and accelerometer.

3.10 Car identification
In this section we describe the experiments, that I carried out in order to get a basic
idea of the car’s kinematics. The objectives were to identify the steering mechanism
and powertrain properties.

Identification of the car dynamic properties was not in the scope of this thesis. It
was the topic of another member of the team, but unfortunately it was not done yet.

1) https://github.com/cra-ros-pkg/robot_localization/blob/indigo-devel/src/ukf.cpp
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3.10.1 Steering mechanism identification

In this section we describe the experiment used for the identification of the steering
mechanism which consists of a servo and Ackermann steering geometry. What is of
importance to us is the relationship between the PWM duty cycle sent to the servo and
the resulting turning radius. By turning radius we mean a positive or negative distance
in meters, that represents a circle circumscribed around the vehicle when turning. The
sign of the turning radius represents the direction of a rotation. It could be either
counterclockwise corresponding to positive turning radius or clockwise corresponding
to negative turning radius.

The data for the identification were obtained in two ways. The first way consisted
of driving in a circle with servo being commanded to turn by given PWM duty cycle.
The linear velocity of the car was given by another PWM duty cycle value and the
corresponding linear velocity was low (approximately 1 m.s−1) in order to maintain
rolling motion between the wheels and the floor and to eliminate sliding. Then the
turning radius was measured using a tape measure.

The second way involved obtaining data from the UKF estimates of angular velocity
and linear velocity. Dividing the linear velocity by angular velocity we obtain the
resulting turning radius corresponding to applied PWM duty cycle to the servo. This
method was used to obtain values for larger absolute values of turning radius where the
tape measure was short.

In order to avoid infinite radius during straight motion, in the graphs below we show
the reciprocal value of turning radius – curvature. The resulting graph depicting the
identification results is in Figure 3.8. Final PWM duty cycle can be calculated as
follows

PWM = 13.1375 + 2.8752 1
r
,

where 1
r represents the curvature and PWM represents the corresponding PWM duty

cycle value.
The minimum turning radius is approximately 1m. This value has changed over time

due to various accidents the car has experienced. The maximum measured change was
4 %.
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Figure 3.8. Steering mechanism identification results.
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3.10.2 Powertrain identification
In this section we describe the experiment used for the identification of the powertrain.
Of importance to us is to get a basic understanding of relationship between PWM duty
cycle applied to the ESC and the resulting linear velocity when driving straight. We
used two ways to measure the resulting linear velocity, that we describe in the following
sections.

The linear speed also depends on the charge level of the Li-Pol battery. If the level
drops then the measured speeds no longer match the identified ones for a given PWM
duty cycle value.

The maximum linear velocity of the vehicle was not determined, because the RF
remote control loses connection with the car, when it is further away than 60 m and
when this happens the car, unfortunatelly, does not stop, but continues in motion. This
is a bug in the supplied RF transceiver.

3.10.2.1 Measuring the travelled distance

The first way of powertrain identification consists of measuring the distance travelled
by the car in a fixed amount of time.

To implement this we use a ROS node that publishes fixed PWM duty cycle for the
ESC and also steers the car to follow the wall. The ESC PWM duty cycle is dynamically
configurable (see Section 2.3.1).

When the specified amount of time elapses, the ESC duty cycle is set to neutral value
causing braking (see ESC modes in Section 2.4.4).

When the car stops moving we measure the travelled distance. We repeate this
procedure for a number of ESC PWM duty cycle values.

The implementation of the wall following part consists of determining the car’s dis-
tance to the wall and a PD controller to maintain the distance constant. The distance
from the wall is calculated by line fitting all the LiDAR scan beams in -112.5 – -67.5
degrees, relative to car heading, using the simple linear regression.

The obtained measurements and corresponding velocities are in Table 3.1.
This experiment provides us only rough estimate of the kinematic properties, because

the braking distance increased with the speed as the applied PWM duty cycle increased.
The implementation can be rfound on the attached CD in file “experiment1.py” in

the package “my race”.

PWM Duty Cycle [%] time [s] distance travelled [m] velocity [m.s−1]
14.65 3 12 4
14.50 3 11 3.67
14.34 3 8 2.67
14.19 3 6 2

Table 3.1. Powertrain identification by measuring the travelled distance.

3.10.2.2 Using estimate from the UKF

In order to get better results we again use estimates obtained from the UKF. This time
we use the linear velocity estimate. During the experiment we drive straight and main-
tain constant PWM duty cycle sent to the ESC. We consider only the measurements
taken when the speed allowed pure rolling motion of the wheels. The results of the
identification can be seen in Figure 3.9. Final PWM duty cycle value can be calculated
as follows
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PWM = 13.2267 + 0.5742 v,

where v represents the linear velocity and PWM represents the corresponding PWM
duty cycle value.

There is a deadband around the centre PWM duty cycle value. To cross the deadband
threshold and start a movement of the car it is necessary to apply a higher PWM duty
cycle corresponding to velocity of approximately 0.7 m.s−1.
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Figure 3.9. Powertrain identification results.

3.10.3 Discussion of relevance of obtained results
The identification results are valid only for small speeds at which we perform subsequent
testing of the ROS application software. There are numerous reasons for this:.Limited sampling frequency of our LiDAR. The SICK LiDAR is only capable of pro-

viding measurements at 15 Hz and the described wall following controller computes
steering commands at the same rate. This means, that if we, for example, move at the
velocity 15 m.s−1 we would compute a new steering command only after traversing
the distance of 1 m. This way we could easily hit the wall..The floor of our laboratory is very slippery and when moving at higher velocities, we
cannot guarantee pure rolling motion. Since we have neither the dynamic model of
the car nor do we know the friction coeficient between the tires and the surface, the
obtained data would be useless.

The results for steering mechanism identifiction could be used to directly command
certain turning radius. However, the powertrain identification is valid only with fully
charged batteries and the car moving on a level surface. In order for the car to move
at a predefined linear velocity, it would be necessary to implement a linear velocity
controller, that would use the information about current linear velocity estimate from
the Unscented Kalman Filter (see Section 3.9 for details about the UKF) to close the
feedback loop. This is not done yet.

In order to get a better idea how the car behaves when moving at high linear and
angular velocities it would be necessary to identify also the car dynamics. This was left
for future work as mentioned in Chapter 5.
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3.11 IMU experiments
In this section we describe experiments performed in order to discover how the IMU
readings are affected by motor vibrations during car’s movement and if we need to
update the measurement noise covariance matrix for the Unscented Kalman Filter to
compensate for the vibrations. Next we also discuss the reliability of the magnetometer
in an indoor environment.

3.11.1 Accelerometer measurements and tuning of the
measurement noise covariance matrix

Since we are only moving in a plane, we analyze the role of only the x and y components
of the acceleration vector. The x component represents acceleration of the car caused
by the motor. The y component represents centripetal acceleration related to circular
motion in turns.

The noise variance of the measurements is, unfortunately, increased by vibrations
from the motor as can be seen on Figure 3.10 depicting the measured accelerometer
data (the gravitational acceleration is subtracted). The data are used in the following
experiments in this subsection.

The original measurement noise covariance matrix, that was part of the source code
for “razor imu 9dof” package is the following

R0 =

 0.04 0 0
0 0.04 0
0 0 0.04

 .

. Velocity estimation with this covariance matrix is in Figure 3.13. In order to
improve the UKF behavior we compute a covariance matrix of 50 measurements when
moving straight ahead with constant linear velocity. Then we use this new covariance
matrix in the UKF. The covariance matrix is the following

R1 =

 0.227 0.100 −0.032
0.100 0.250 −0.061
−0.032 −0.061 0.380

 .

. The resulting linear velocity estimates are in Figure 3.12.
For comparison, Figure 3.11 shows linear velocity estimates from UKF fusing only

the robot’s pose obtained from the AMCL and gyroscope measurements. As can be
seen by comparing Figure 3.11 and 3.12 the fusion of measured acceleration in the
UKF improved the velocity estimate during braking maneuver. When not fusing the
measured acceleration, the estimated linear velocity converges to zero very slowly after
the vehicle stops moving.

In order to investigate the improvement further, we zoom in on the braking part
of the velocity estimate (Figure 3.14), acceleration plot (Figure 3.15) and the control
inputs to the car (Figure 3.16).

We want to verify, that the linear velocity estimate of the car in the forward direction
(represented by the x axis) starts dropping when we begin the braking maneuver and
that the velocity estimate reaches zero by the time the car stops moving. We assume
that the car reaches full stop when the measured deceleration reaches zero. The applied
deceleration is constant (see Figure 3.15), therefore we also want to check, that the
estimated velocity drops linearly during the braking maneuver.

In Figure 3.16 we can see, that the car engages brakes at 14.9 s as the ESC input
PWM duty cycle drops to neutral and ceases to be published. Next in Figure 3.15
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we can see, that a constant deceleration is measured at around 15.1 s. This confirms,
that the car started braking. We can also see, that the deceleration reached zero at
approximately 16.3 s.

Next we look at Figure 3.14 depicting the linear velocity estimate. We can see, that
the estimated linear velocity starts to drop linearly at the same time the deceleration
occured. We can also see, that it reaches approximately zero at the same time the
deceleration reached zero. This is in accordance with the expectations.

Next, we also want to verify, that the newly computed measurement noise covari-
ance matrix really improved the linear velocity estimate. We do this by comparing
Figure 3.12 and 3.13. We can see, that the linear velocity estimate obtained by using
the new measurement noise covariance matrix approaches zero more quickly, than the
original covariance matrix.

Thus we conclude that the best estimate of the linear velocity is obtained from the
UKF when we use the newly constructed measurement noise covariance matrix. This
was an important test to verify correct behavior of the Unscented Kalman Filter.
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Figure 3.10. Illustrative accelerometer measurements.
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Figure 3.11. Velocity estimate using only AMCL and gyroscope.
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Figure 3.12. Velocity estimate using AMCL, gyroscope and accelerometer data with cor-
rected measurement noise covariance matrix.
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Figure 3.13. Velocity estimate using AMCL, gyroscope and accelerometer data with the
original measurement noise covariance matrix.
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Figure 3.14. Linear velocity estimate during braking maneuver.

3.11.2 Gyroscope measurements
We want to determine the effect of motor vibrations on the measured angular velocity.
Should the effect be significant, we need to update the measurement noise covariance
matrix accordingly. We also want to determine the behavior of the UKF when we do
not fuse the gyroscope measurements, but we fuse only the position estimate obtained
from the AMCL and the accelerometer measurements.

Since the car is only moving in a plane, we consider only the z component of the
angular velocity vector.
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Figure 3.15. Measured linear acceleration during braking maneuver.
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Figure 3.16. Control input during braking maneuver.

In Figure 3.17 we can see the measured angular velocity. The measured data are from
the same run as the data used in Section 3.11.1 for evaluating the accelerometer. As can
be seen on the figure the variance of the measurements is not drastically increased, so
no additional tuning of measurement noise covariance matrix is necessary in this case.
To verify, that this is indeed so, we compare the measured values and the obtained
estimates from the UKF (see Figure 3.18). We can see, that the covariance of the
obtained estimate is smaller than, the that of the measurements.

Figure 3.18 demonstrates the behavior of Kalman filter with fused gyroscope data
and without them. It can be seen, that even without measuring the angular velocity
the estimate converges to the same value as the measurement, only slower. This was
also an important test to verify correct behavior of the Unscented Kalman Filter.

3.11.3 Magnetometer usability
The magnetometer is not used at all, because a known bug demonstrated itself too
often for the readings to be useful.

“The magnetometer becomes “locked”, resulting in the heading always drift-
ing/converging back to the same angle. Resetting the microcontroller which runs the
Razor AHRS firmware does not help in this case (so it’s not a firmware bug!), but
turning power off and on again should do the trick. I think this must be a bug inside
the magnetometer“ [29].
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Figure 3.17. Angular velocity measurements from the gyroscope.
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Figure 3.18. Angular velocity estimate of the UKF.

3.12 Testing of 2D SLAM ROS packages
The Simultaneous Localization and Mapping is a task where a map of the environment
is constructed simultaneously with determining the car’s position in it.

In this section we first briefly introduce the tested packages and then we look at how
they perform in a specific environment (our laboratory). All the respective figures in
the following sections were created from the same data (the same rosbag file) to allow
for comparison.

3.12.1 CRSM SLAM
The algorithm uses a ray-selection method and Random Restart Hill Climbing to match
the scan to the map. In order for the map to be usable it needs thousands of Hill Climb-
ing iterations and is therefore computationally demanding and working configuration
needs around 80 % of CPU time when executed on the PC (equipped with Intel Core
i5-6200U CPU). The implementation can utilize at most one CPU core only. The used
algorithm is described in [60]. The resulting map of our laboratory is in Figure 3.19. For
the construction of the map we use the “crsm slam real.launch” file from the package
“my race”, that can be found on the attached CD.
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Figure 3.19. Map of a laboratory generated by the CRSM SLAM package.

3.12.2 Hector SLAM
Uses gradient-based method to match scans to the map learnt so far. Unlike the CRSM
SLAM method, it does not perform Hill Climbing by random perturbations of the
current car’s coordinates, but rather uses gradient-based algorithm. For more details,
see [61]. This approach requires an approximation for the map gradient which is also
described in [61]. The resulting map of our laboratory is in Figure 3.20. For the
contruction of the map we use the “demonstrations and mapping.launch” file from the
package “competition”, that can be found on the attached CD.

Figure 3.20. Map of a laboratory generated by the Hector SLAM package.

3.12.3 Gmapping
The algorithm uses a particle filter and known odometry to construct the occupancy grid
map of the environment. Gmapping requires relatively good odometry estimates. Un-
fortunately, the car is not equipped with wheel odometry, so instead we used the odom-
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etry estimate of the “laser scan matcher” node (uses ICP algorithm, for details see Sec-
tion 3.14). This approach leads to failure of Gmapping in long corridors, where the ICP
gets lost. The implementation is described in [62]. The resulting map of our laboratory
is in Figure 3.21. For the construction of the map we use the “demo gmapping.launch”
file from the package “my race”, that can be found on the attached CD.

Figure 3.21. Map of a laboratory generated by the Gmapping package.

3.12.4 Selected package
We select the Hector SLAM to perform the 2D SLAM, because it produces good quality
maps and needs the least computational power. Thus it can also run directly on the
TK1.

3.13 Testing of stereo odometry ROS packages
In this section we first briefly introduce the tested packages and then we look at how
they perform in an indoor environment. Specifically in an office and a corridor. All the
mentioned packages use only images captured by the ZED camera and calibration ma-
trices computed by the ZED SDK. The images used are rectified by the ZED SDK. All
packages are tested against the same data from a single test run. A 2D occupancy grid
map of the environment is put into corresponding figures for better clarity (except for
the ORB SLAM – it does not publish its odometry over the ROS odometry topic). The
starting position of the car in the map was measured by a tape measure. Figures 3.22
and 3.23 show the location, where the testing was performed.

3.13.1 libviso2
“LIBVISO2 (Library for Visual Odometry 2) is a very fast cross-platfrom (Linux, Win-
dows) C++ library with MATLAB wrappers for computing the 6 DOF motion of a
moving mono/stereo camera. The stereo version is based on minimizing the reprojec-
tion error of sparse feature matches and is rather general (no motion model or setup
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Figure 3.22. An illustrative ZED camera image captured on the corridor.

Figure 3.23. An illustrative ZED camera image captured in the office.

restrictions except that the input images must be rectified and calibration parameters
are known)” [63].

More detailed description of the used algorithm can be found in [64]. The used ROS
wrapper is documented in [65].

The resulting odometry estimate can be seen in Figures 3.24, 3.25. The estimate is
unsatisfactory, because most of the time the algorithm estimates the car to be outside
of the environment where it moved. Sometimes it even estimates that the car is a few
meters below the ground.

The respective ROS launch file used for the testing is “demo.launch”, that is part of
the ROS wrapper.

3.13.2 ORB SLAM2
According to its authors [66]: “ORB-SLAM2 is a real-time SLAM library for Monocular,
Stereo and RGB-D cameras that computes the camera trajectory and a sparse 3D
reconstruction (in the stereo and RGB-D case with true scale). It is able to detect
loops and relocalize the camera in real time.”

The ROS package source codes are available in [66]. The algorithm itself is described
in [67].
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Figure 3.24. Top view of the odometry output of the libviso2 library.

Figure 3.25. Horizontal view of the odometry output of the libviso2 library.

In order to obtain odometry estimates we run the “Stereo” node, which is a part of
the ROS package, and use custom provided configuration. The configuration file can
be found on the attached CD (ZED.yaml).

The resulting odometry estimate can be seen in Figures 3.26 and 3.27. The estimate
obtained is unsatisfactory, because the implementation loses track of the position of the
car almost every turn.

Figure 3.27. Horizontal view of the odometry output of the ORB-SLAM2 library.
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Figure 3.26. Top view of the odometry output of the ORB-SLAM2 library.

3.13.3 ZED SDK
The ZED SDK mentioned in Sections 2.3.2, 3.4 includes a proprietary algorithm for
visual odometry. The resulting odometry estimate can be seen in Figures 3.28 and 3.29.

Figure 3.28. Top view of the odometry output of the ZED SDK 1.2.
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Figure 3.29. Horizontal view of the odometry output of the ZED SDK 1.2.

The obtained odometry estimates proved to be the best of all tested stereo odometry
packages and thus it was tested in a more demanding environment representing the
worst-case scenario with very low number of visual markers (see Figure 3.30). The
resulting odometry estimate is in Figure 3.31. As could be seen from the figure even
this package was not able to produce a good odometry estimate.

Figure 3.30. An illustrative picture of the laboratory for ZED odometry testing.

Figure 3.31. Top view of the odometry output of the ZED SDK 1.2 when tested under
more challenging conditions.
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In order to obtain odometry we use the “zed.launch” file, which is part of the ZED

ROS wrapper.

3.13.4 Discussion of the obtained results
As was experimentally confirmed, the environment of the competition is a very de-
manding one for the current stereo odometry algorithms and the odometry is basically
useless. Thus the final architecture (see Section 3.17) does not use the stereo odometry
estimates at all. Instead we rely on LiDAR and map of the environment constructed
using 2D SLAM (see Section 3.12) and Adaptive Monte-Carlo Localization (see Sec-
tion 3.14).

3.14 Localization in a known map
Using the map constructed using the Hector SLAM we would like to be able to produce
a position estimate of the car. In order to accomplish this we use the AMCL ROS
package. According to [68] this node “is a probabilistic localization system for a robot
moving in 2D. It implements the adaptive (or KLD-sampling) Monte Carlo localization
approach (as described by Dieter Fox [69]), which uses a particle filter to track the pose
of a robot against a known map.”

The AMCL node subscribes to LiDAR scans, odometry estimate and to a known
map. It’s output is the estimate of the car’s position and orientation in the map. The
estimated position and orientation is then fused inside the Unscented Kalman Filter
with the IMU measurements as described in Section 3.9.

Since the car is not equipped with a wheel odometry, we have to use the
“laser scan matcher” node which uses the Iterative Closest Point algorithm to es-
timate car’s movement. This node takes the laser scans and the measured angular
velocity of the car and produces estimated position with respect to car’s initial position
when the node was launched. We use the angular velocity to improve detection of
rotation movement of the car. Details about the algorithm can be found in [70].

Trajectory estimate of the car during one of test runs can be seen in Figure 3.32.

Figure 3.32. Trajectory estimation in known map.
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The AMCL is capable of utilizing at most one CPU core. In order to use the AMCL
directly on the TK1, we had to decrease the maximum number of particles in the particle
filter to 1300. The solution works well in our laboratory, but in other environments the
limitation on the maximum number of particles may prove problematic.

3.15 Local Planner
In this section we describe the developed ROS local planner plugin “trgen local planner”
for the ROS “move base” package. The local planner takes as input a global plan pro-
duced by ROS global planner and outputs the required steering and velocity command
through the “cmd vel” topic (see Figure 3.36). The local planner consists of two compo-
nents: the trajectory following part and a motor “starting” controller. The role of the
“starting” controller is to overcome deadband of the ESC (see Figure 3.9). The design
requirement for the “starting” controller is to respect the ActionLib API [71] used in
the race manager (described in [10]) and the “move base” components to manage the
switching of goals. The ActionLib works as a Finite State Machine and reports the
state of the goal (ie. Active, Pending, Succeeded, etc. – see [72]). This means, that
when a goal is reached we do not know in the local planner whether a new goal will be
provided by the race manager through the ActionLib or not, thus we have to stop the
car and wait.

The implementation of both the trajectory following and the “starting” controller is
described in the following paragraphs.

First we describe the implementation of the trajectory following part. Once a goal
is sent to the “move base” node a global plan is devised (for details about the global
planner, see Section 2.3.2). This plan is passed to the local planner plugin. The global
plan contains coordinates of points forming the planned trajectory as well as the car’s
heading at these coordinates. Through the “costmap2DROS” [73] the local planner
plugin can obtain current car’s position and heading in the map from the “move base”
package (see Figure 2.1).

In order to follow trajectory of the global plan, we use a simple PI controller. The
concept will be explained with the help of Figure 3.33.

In each iteration we find the closest point on the global plan to the current position
of the car and compute a difference between these two points. The difference forms
a vector denoted by ~r. In order to use the length of ~r as part of a control input
commanding the steering of the car, we need to determine the direction of rotation. In
order to do this we construct a unit vector in the planned car’s direction at the closest
point on the trajectory. We denote this vector by ~hp. Then we compute a cross product
of ~r and ~hp. The sign s of the cross product determines the direction of rotation of the
car. We then multiply the length of ~r by the obtained sign. The procedure is clarified
by the following equation

p = s ‖~r‖.

A second component of the controller is the integrator (more precisely the summa-
tion). It sums differences between the desired heading angle (denoted by φ) and the
current car’s heading angle (denoted by α). The ROS uses quaternions to express head-
ing [74], so problems with discontinuity at headings ±π do not occur. Angle difference
can thus be obtained by multiplying one heading with the inverse of the other (consid-
ering their ROS representation as quaternions). We denote the obtained difference by
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Figure 3.33. Situation picture for the local planner implementation.

∆k. The integrator is zeroed if the current angle difference is less than 0.2 rad. This
is intended to suppress oscillations. The integrator is also zeroed if the goal is reached
or if a new plan is set by the global planner. The described procedure (except for the
zeroing) can be described using the following equation

i =
n∑
k=1

∆k,

where n is the total number of local planner invocations.
Finally, we produce the output value of the controller as follows

o = Kp p+Ki i,

where Kp is a proportional constant and Ki is the integrator constant. The resulting
value o is published as the desired “angular” velocity on the “/cmd vel” topic. We
put quotes around the angular, because we cannot directly control the angular velocity
of a car using Ackermann steering geometry. The value rather represents the desired
turning radius of the car, provided the wheels are in a pure rolling motion.

The “starting” controller is implemented as follows. When the first goal is set, this
controller sets the desired PWM duty cycle a little above the minimum duty cycle for
the car to start moving ahead and then after 1.5 s the duty cycle value is decreased and
the resulting linear velocity is around 0.5 m.s−1. This procedure is repeated when the
defined goal is reached and a new one is accepted.
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The performance of the implemented controller (in the ROS terminology local plan-
ner) was tested on the car and the behavior can be seen in Figure 3.34. The blue line
represents the global plan, red arrows represent car’s odometry (position and heading),
white segments represent matched LiDAR scans to the underlying map. I used the
Hector SLAM package to provide the odometry estimate. The developed local planner
plugin can be found on the attached CD.

Figure 3.34. Example of trajectory following.

I chose to implement the controller as a local planner plugin to enable easy testing
in the car’s simulator implemented in [10]. This way I was able to run the same code
both on the simulator and on the real car without any modifications, except for the
controller constants. This was useful during the programming phase to debug issues.

3.16 Race starting
In this section we describe how the race starting procedure is handled on our car. Due
to the fact, that ROS does not support transparent multimaster mode I had to come
up with an architecture, that would allow to separate organizer’s ROS master from
ours, because otherwise other competitors would be able to easily intercept data sent
through the ROS topics and in the worst case take over the control of our car. The
architecture is depicted in Figure 3.35.

It consists of two separate processes running on the TK1. First, the race starter node,
is bound to the organizer’s ROS master and waits for a ReadySetGo topic reception.
The other process, the race manager is bound to ROS master launched on the TK1 and
waits for a message from the first process. When the race is started the race manager
sets the internal nav flag variable to true, which in turn causes periodic invocation
of Spin() function of the NavigationManager, that is responsible for trajectory goals
management. The goal management is described in [10].

Communication between the two mentioned processes is managed by POSIX
message queue. First the race manager tries to open the queue with the name
“/f1tenth start race” in read-only mode and creates it, if it does not exist with read
and write permissions granted to the user that executed the process. Then a callback
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Figure 3.35. Race starter architecture

function is registered for this queue. We use the SIGEV THREAD mode [75]. This
callback function is invoked when a new message is received to the queue. The only
problem with this approach is that the callback function will not be invoked if the
queue was not empty at the time of callback registration. We will describe later, how
this problem was solved.

The race starter node tries to open the same message queue, but, unlike the race
manager, opens it in write-only mode and exits if the queue does not exist. This is to
notify the user that nobody actually listens for the race starting message, for example
if the race manager node is not running for some reason. Then the node waits for the
reception of ReadySetGo topic with the value set to true. After the reception of this
value a POSIX message is sent to the queue and the queue is unlinked and descriptor
closed on the race starter node.

Queue unlinkage [76] causes the Linux kernel to remove the queue’s name from the
system table of known message queues, but the queue itself is only deleted when every
process, that has the queue still open terminates or closes the queue.

This way we can be sure, that if the race manager dies for some reason after the
queue’s creation, it will not remain dangling in the kernel, causing problems with no-
tification callback in the race manager not being invoked bacuse the queue could still
contain a message sent by the race starter after the crash of the race manager.

The notifications callback registration will fail with error number EBUSY if there is
another process, that has already registered for the reception of notifications for the
specific message queue [75]. We use this to discover if there is another instance of race
manager running and that we should leave the message queue to that process. The case
with two race managers running concurrently occurs in the work of Jiří Kerner [10]. He
is using two race managers to drive two simulated cars at once on the same race circuit.

The race starter is implemented in the package “f1tenth competition race starter”
and the race manager in the package “f1tenth race mgr” on the attached CD.
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Figure 3.36. Communication between ROS nodes.

3.17 The final software architecture for competition

In this section we describe the resulting software architecture of the system to be used
for the F1/10 competition. In order to get a better understanding of interconnection
between various ROS nodes we provide a directed graph depicting nodes and subscribed
or published topics in Figure 3.36. This figure was initially created by the “rqt graph”
tool and modified by hand for better clarity. In Figure 3.37 we can see the “Tf”
subsystem transforms published by the specific nodes.
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Figure 3.37. ROS Tf frames.

On the bottom of Figure 3.36 we see the “sources” of information in the whole system.
These are:.“/imu node” – publishes the IMU measurements. It is a part of the “razor imu 9dof”

package (see Section 2.3.2). The measurement are then transformed to account for
physical placement of the unit on the car (see Section 3.7)..“/sick” – publishes LiDAR scans. It is a part of the “sick tim” package (see Sec-
tion 2.3.2)..“/map server” – publishes the prepared 2D map of the environment. It is a part of
the “map server” package (see Section 2.3.2).

The map provided by the “map server” is sent to the “move base” (see Section 2.3.2)
node and to the AMCL node (see Section 3.14 for explanation of the AMCL function
and the role of “laser scan matcher” node). The “move base” package uses the map to
construct costmaps for the global planner in order to avoid static obstacles.

Apart from the usage of sensor data described in Section 3.14, we use the IMU
measurements to improve the UKF odometry estimate (see Section 3.11).

The position and heading estimate produced by the AMCL is then processed by the
UKF and sent to the “move base” where it is used by both the global and the local
planner (see Figure 2.1).

The “move base” receives goals to plan trajetory to from the “f1tenth race mgr” (see
Section 3.16). The goals are sent to the “move base” through the ActionLib1) interface
(see Figure 3.35). The “f1tenth race mgr” is described in [10].

The plan produced by the global planner of the “move base” node is followed by
the local planner (see Section 3.15). The local planner produces the “/cmd vel”
topic which contains the requested movement commands and these are passed to
1) http://wiki.ros.org/actionlib
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the “cmd vel to pwm drive” node which acts as a feedforward controller and uses
the results of identification obtained in Section 3.10. The node sends scaled PWM
duty cycle (for the explanation of scaling, see Section 3.6) values to the “/teensy”
node representing the “rosserial” interface to the Teensy MCU. The Teensy MCU
then generates the required PWM signals and sends them to the ESC and servo (see
Figure 3.1).

It is also possible to force the car to stop moving by sending the value “true” on
the “eStop” topic. This is used to react to dynamic obstacles and also static obstacles
during the race. If an obstacle is too close (0.5 m) in the LiDAR range, we stop the
car through the “eStop” topic. The implementation is in file “emergency stop.py” in
package “competition” on the attached CD.

If the car starts behaving strangely it’s control can be manually taken over by using
the RF controller (for details about implementation, see Section 3.6).

The described stack can be launched using the “competition known map.launch”
launch file, that is part of the “competition” package. It can be found on the attached
CD.

Details about how to use the outcomes of this thesis is briefly described in Ap-
pendix C. We provide it for newcomers to our F1/10 team. For more detailed descrip-
tion, see [10].
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Chapter 4
Evaluation of the resulting architecture

In this chapter we describe the experiments used to evaluate the control architecture
described in Section 3.17.

4.1 Teleoperation of the vehicle
In order to test the teleoperation of the vehicle, that is required by competition rules
(see Section 2.1, rule 4.4), we use the ROS Control Android application mentioned
in Section 2.3.1. The application can use the accelerometer of the Android device to
emulate a joystick and transform the measured acceleration vector into a “cmd vel”
topic to control the car.

4.2 Switching to manual control mode
The implementation of automatic switching to manual mode (for implementation see
Section 3.6) as required by the F1/10 rules (see Section 2.1, rule 7.1) was tested on
numerous occasions and it prevented the occurence of many accidents during the testing
phase.

4.3 Wall following
A wall following controller, that uses the LiDAR scans was developed during the power-
train identification experiments (see Section 3.10.2) a modified version was used during
the Faculty’s Door Open Days at the Karlovo Náměstí campus. The implementation is
in the file “scan regression.py” in the ROS package “competition” on the attached CD.
The CD also contains a video from the event – “DoD.mp4”.

4.4 Trajectory following
The implemented trajectory following controller (for details, see Section 3.15) was
tested in our laboratory. Video from the testing is attached on the CD – “trajec-
tory following.mp4”.

4.5 Traversal of ordered series of checkpoints
The traversal of ordered series of checkpoints, that is required by the rules (see Sec-
tion 2.1, rules 4.4) was tested in our laboratory. The test was a success and the resulting
video documenting the experiment is on the attached CD – “checkpoint traversal.mp4”.
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Chapter 5
Future work

In this chapter we explore some of the possibilities for improvement of the developed
platform. These are of two kinds. The first one focuses on the hardware of the platform
and the second one focuses on the software and algorithms.

5.1 Hardware improvements
As stated in Section 2.4. The car is not fit for competition, because it uses a different
LiDAR and vehicle, than what was prescribed by the rules of the F1/10 competition.
Since the April 2017 round of the competition was canceled, the purchase of the com-
ponents was postponed, but for the October 2017 round it needs to be sorted out. In
the following list we present other ideas for improvement:.Use the VESC-X [77] Electronic Speed Controller instead of the one supplied with the

vehicle. It provides current and voltage measurement on all motor phases and thus
is capable of providing a wheel odometry. One limitation of the wheel odometry is,
that it is not accurate when a sliding motion of the car’s wheels occur, but even under
such circumstances it would be possible to control the motor speed. The odometry
estimate could also be used to improve performance of the “laser scan matcher”
package.

The competing venture MIT-RACECAR even (see Section 2.5) provides ROS pack-
ages1) to interface with the VESC-X and provide the odometry estimates. This mod-
ification is, however, subject to the approval of F1/10 organizers, but we mention it
in case we switch to the MIT-RACECAR competition in the future..Put rubber washers between the IMU board and the standoffs to decrease the effect
of motor vibrations on the IMU. This would improve the estimates of the UKF as
the measurement noise would likely decrease..Finish the stop button. The current solution relies only on the power switch of
the ESC, which is not very easily accessible. In order for the button to fit in the
intended position on the upper chassis plate it would be necessary to use longer
plastic standoffs than are currently used.

5.2 Software improvements
In this section we take a closer look at possible improvements of the software stack..Prepare a more rigorous model of the car than what was done in Section 3.10. The

obtained model of car’s dynamics could be easily incroporated into the source code
of the UKF node (see Section 3.9) and the accuracy of the provided estimates could
be enhanced especially when rapid changes of angular or linear velocity should occur.

1) https://github.com/mit-racecar/vesc
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.Another possible improvement is connected with the previous one and consists of

determining the centre of mass of the car and using this as the “base link” reference
frame in ROS. This frame is used for transformation of received data into a common
frame. At present the frame is identical to the frame of the LiDAR..Use the measured centripetal acceleration to help determine the turning radius more
accurately. At present we divide the linear velocity estimate of the UKF by the
measured angular velocity, but this is prone to possible errors in the estimate. A
more accurate solution would be to divide the measured centripetal acceleration by
square of the measured angular velocity..Devise a reliable algorithm for indoor stereo odometry. According to my experiments
(see Section 3.13), it is a difficult algorithmic task, because the environments we are
dealing with lack visual markers and the fact, that the viewing angle of the ZED
camera is only 110 degrees does not help either. Another difficulty is the fact, that
the camera can only provide a somewhat limited framerate compared to using the
ZED on better supported platforms than the NVIDIA TK1 (see Figure 2.1). Some of
the best currently available visual odometry solutions use the measurement of angular
velocity to better deal with fast rotation movement. However these implementations
are not publicly available. One such example would be [78]. The problem with
rotation is, that the algorithms usually are not able to find new markers in the
turning scene and maintain sufficient number of already identified markers and they
get lost quickly..Another possibility to improve the odometry would be to use the VESC-X and a
particle filter localization implemented by the MIT RACECAR authors1). It uses
CUDA to accelerate the required computations and solves the problem experienced
with the AMCL. The AMCL runs only on a single CPU core and this proved to be
a bottleneck (see Section 3.14).

1) https://github.com/mit-racecar/particle_filter
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Chapter 6
Conclusion

The aim of this thesis was to develop a race car to take part in the F1/10 scale model
car competition. The car was successfully constructed and is capable of autonomous
drive. Most of the functionality needed for F1/10 participation is implemented.

Our implementation utilizes many components available in ROS, that were selected
based on the evaluation in this thesis. The trajectory follower and the handling of the
race starting procedure was implemented in this thesis. What is missing is the inter-
pretation of dynamic obstacles and subsequent predictive control, also the odometry
needs to be improved by utilizing the stereo camera.

We described the hardware used on the platform. This included various sensors and
processing units. What system we use on the platform (ROS Indigo and Ubuntu 14.04)
and the device drivers used for interfacing the devices with the ROS topic subsystem.

We designed the chassis and the car completion procedure. Then we moved on to
the hardware-bringup phase and basic testing of sensors (publication of the sensor data
over the ROS topics).

We changed firmwares of the Teensy board and of the IMU.
Later we explored the possibilities for localization in the environment using existing

ROS packages. This consisted of testing the various SLAM and visual odometry pack-
ages in an environment similar to where the competition is to be held and of description
of the outcomes.

A trajectory following controller was implemented and its performance demonstrated.
The trajectory following controller was tested inside the Gazebo simulator. The world
and car model for the simulator were prepared as a part of Master’s Thesis of another
team member [10].

Also a simple kinematics model of the car was found and used to transform com-
manded velocity received from the trajectory following controller to the appropriate
PWM duty cycle.

A solution to the race starting problem and the lack of ROS support for multi-master
mode was also presented.

The final control architecture was presented and its performance assesed.
Finally we proposed some possibilities for future improvement with the respect to

both the hardware and the software of the platform.
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Appendix A
Glossary

ABS . Acrylonitrile butadiene styrene
AMCL . Adaptive Monte-Carlo Localization
API . Application Programming Interface
CNC . Computer numerical control
CPU . Central Processing Unit
DNN . Deep Neural Network
eMMC . embedded Multimedia Card
ESC . Electronic Speed Controller
FTM . FlexTimer module
GPU . Graphics Processing Unit
HDMI . High-Definition Multimedia Interface
ICP . Iterative Closest Point
IDE . Integrated Development Environment
IMU . Inertial Measurement Unit
IP . Internet Protocol
ISR . Interrupt Service Routine
JPEG . Joint Photographic Experts Group
LED . Light-Emitting Diode
LiDAR . Light Detection and Ranging
MCU . Microcontroller Unit
NVIC . Nested Vectored Interrupt Controller
PCIe . Peripheral Component Interconnect Express
PNG . Portable Network Graphics
POSIX . Portable Operating System Interface
PWM . Pulse-Width Modulation
RADAR . Radio Detection and Ranging
RF . Radio Frequency
RNDF . Route Network Definition File
ROS . Robot Operating System
RPC . Remote procedure call
SATA . Serial AT Attachment
SD . Secure Digital
SDK . Software Development Kit
SLAM . Simultaneous Localization and Mapping
TCP . Transmission Control Protocol
UDP . User Datagram Protocol
UKF . Unscented Kalman Filter
USB . Universal Serial Bus
XML . Extensible Markup Language
4WD . Four-wheel drive
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Appendix B
Contents of the attached CD

The CD contains a complete repository of the preparation project with work of all the
teammates. Here we only list parts implemented or modified in this thesis.

/
Chassis drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . AutoCad drawings of the chassis
F1 10 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Main repository of our project

HW
imu calibration . . . . . . . . . . . . . . . . . . . . . . . .Calibration values for the IMU
Razor AHRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IMU firmware
teensy firmware.ino . . . . . . . . . . . . . . . . . . . . . . . . . . . .Teensy MCU firmware
ZED.yaml . . . . . . . . . . . . . . . . . . . . . . . . . . . .Configuration for the ORB SLAM2

catkin ws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ROS Catkin workspace
src

ctu packages
competition

launch
competition known map.launch . . . . . . . . . . . . . . . .Race mode
create waypoints.launch . . . . . . . . . . .Creation of waypoints
demonstrations and mapping.launch . . . .Hector 2D SLAM
pc visualize.launch . . . . .Odometry and map visualization
publish all.launch . . . . . . . . . . . . . . . . . Publishes sensor data
record.launch . . . . . . . . . . . . Records sensor data to a rosbag

src
emergency stop.py . . . . . . . Emergency response to obstacles
scan regression.py . . . . . . .Doors Open Day demonstration

f1tenth packages
f1tenth race

f1tenth competition race starter . . . . . . . . . . Race starter
f1tenth race mgr . . . . . . . . . . . . . . . . . . . . . . . . . . .Race manager

my race
launch

crsm slam real.launch . . . . . . . . . . CRSM SLAM testing file
demo gmapping.launch . . . . . . . . . . . . . . .Gmapping testing file

src
experiment1.py . . . . . . .Powertrain identification experiment

trgen local planner . . . . . . . . . . . . . .Trajectory following controller
Thesis.pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Electronic version of this thesis
Videos

DoD.mp4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Doors Open Day event
checkpoint traversal.mp4 . . . . . . . . . . . . . . . Traversal of ordered checkpoints
trajectory following.mp4 . . . . . . . . . . . . . . . . . . . . . . . . . . . Trajectory following

54



Appendix C
User guide

In order to use the outcomes of this thesis, it is necessary to perform the following
steps.. install all the required ROS and/or Gazebo packages (details can be found in [10]). clone git repository of our project

git clone ssh://git@rtime.felk.cvut.cz/f1tenth. compile the catkin workspace (details can be found in [10]). source the “devel/setup.bash” file

In order to create a map using Hector 2D SLAM, execute on the TK1:

roslaunch competition demonstrations_and_mapping.launch

In order to create waypoints for the race, execute on PC:

roslaunch competition create_waypoints.launch

In order to launch the race infrastructure and use AMCL with the previously con-
structed map, execute on TK1:

roslaunch competition competition_known_map.launch

In order to record data captured by the LiDAR, ZED camera, IMU or the Teensy
board, execute on TK1:

roslaunch competition record.launch
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