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ABSTRACT 

Synonymous single nucleotide variants (SNVs), although they do not alter the encoded protein 

sequences, have been implicated in many genetic diseases. Experimental studies indicate that 

synonymous SNVs can lead to changes in the secondary and tertiary structures of DNA and RNA, 

thereby impacting translational efficiency, co-translational protein folding as well as the binding of 

DNA/RNA-binding proteins. However, the importance of these various features in disease phenotypes 

is not clearly understood. Here we have built a support vector machine model (termed DDIG-SN) as a 

means to discriminate disease-causing synonymous variants. The model was trained and evaluated on 

nearly 900 disease-causing variants. The method achieves robust performance with the area under the 
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validation and independent testing, respectively. We were able to show that the disease-causing 

effects in the immediate proximity to exon-intron junctions (1–3 bp) are driven by the loss of splicing 

motif strength, whereas the gain of splicing motif strength is the primary cause in regions further 

away from the splice site (4–69 bp). The method is available as a part of the DDIG server at 

http://sparks-lab.org/ddig. 
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INTRODUCTION 

Synonymous (SN) variants (also called silent or same-sense mutations) are single nucleotide variants 

(SNVs) which result in synonymous codon substitutions (a codon encoding a specific amino acid 

residue is replaced by another codon encoding the same amino acid). Despite not altering the 

translated protein product, more and more studies have suggested that both germline and somatic SN 

variants may be deleterious and can lead to a number of genetic diseases (Hunt, et al., 2014; Niroula 

and Vihinen, 2016; Sauna and Kimchi-Sarfaty, 2011; Shabalina, et al., 2013) including cancer (Supek, 

et al., 2014), autism spectrum disorders (Neale, et al., 2012; Samocha, et al., 2014), asthma, and 

osteoporosis (Macaya, et al., 2009), as well as increasing disease susceptibility to idiopathic dilated 

cardiomyopathy (Stark, et al., 2010), altering disease outcome in paediatric acute myeloid leukaemia 

(Ho, et al., 2011), and creating individualised responses to drugs by affecting the function of drug 

transporters (Kimchi-Sarfaty, et al., 2007). The number of known disease-causing SN variants has 

been steadily increasing in recent years, as is evidenced by a 16% increase in the number of 

pathogenic SN variants recorded in the Human Gene Mutation Database (HGMD) (Stenson, et al., 

2017) over the last 15 months (from 1,181 to 1,368 in the HGMD versions 2015.3 and 2016.4, 

respectively). 
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SN variants alter the sequences of DNA and their corresponding messenger RNA (mRNA) 

transcripts. One direct consequence of the sequence change is the altered codon. Codon usage (termed 

‘codon bias’) has long been known to affect gene expression, translation velocity, and folding 

efficiency (Hershberg and Petrov, 2008; Plotkin and Kudla, 2011) although whether or not such 

codon bias in mammals is caused by evolutionary selection or large variation in GC content 

(isochores) remains an active subject of debate (Kirchner and Ignatova, 2015; Rudolph, et al., 2016). 

Sequence change could also modify cytosine-phosphate-guanine (CpG) sites thereby influencing local 

chromatin structure and DNA methylation patterns (Deaton and Bird, 2011). Moreover, coding 

regions have been found to directly interact with microRNA (Bentwich, et al., 2005; Brest, et al., 

2011; Gartner, et al., 2013; Hurst, 2006) as well as with DNA and RNA-binding proteins (Dreyfuss, et 

al., 2002; Stergachis, et al., 2013). Altering these interactions through sequence variation will affect 

the regulatory control and outcome of transcription and translation. For example, exonic splicing 

elements (enhancers and silencers) regulate splicing by interacting with SR-proteins and 

heterogeneous ribonucleoprotein particles, respectively (Zhu, et al., 2001). At least 4% of SN variants 

have been shown to be deleterious to splicing enhancers (Cáceres and Hurst, 2013; Carlini and Genut, 

2006; Fairbrother, et al., 2004; Parmley, et al., 2006; Savisaar and Hurst, 2017; Wu and Hurst, 2016). 

Variant-induced changes to mRNA secondary structure have been found to alter mRNA stability 

(Chamary and Hurst, 2005; Duan, et al., 2013), hamper protein expression [at least in bacteria (Kudla, 

et al., 2009)], and affect mRNA splicing (Buratti and Baralle, 2004), whereas analysis of the solvent-

accessible surface area of RNA indicates that rare alleles are more likely to occur in the buried, 

structured regions of coding RNA (Yang, et al., 2017). In addition, changing the nucleotide sequence 

may lead to the formation or disruption of a square-planar structure formed by guanine (G-

quadruplex), which has been implicated in both positive and negative transcriptional regulation 

(Rhodes and Lipps, 2015; Simone, et al., 2015). 

 

Thus, it is clear that an SN variant can lead to changes in the structure and function of both the DNA 

sequence and the mRNA transcript. Consequently, this disrupts regulatory controls and affects the 
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structure and function of the final protein product. Although mRNA splicing accounts for a large 

proportion (20–40%) of disease-associated SNVs (Wu and Hurst, 2016), what is not yet clear is the 

role that other factors might play in mediating the pathogenic influence of disease-causing SN 

variants. SilVA (Buske, et al., 2013), the first method dedicated to the discrimination of disease-

causing SN variants, employed a range of features including evolutionary conservation at the DNA 

level, codon usage, CpG sites, splicing site motifs, and mRNA folding energy. However, it was 

trained and tested using a dataset of only 41 disease-causing SN variants. Alternatively, methods for 

the prediction of defects in RNA splicing, including SPANR or SPIDEX (a pre-computed index of 

SPANR scores for the human genome) (Xiong, et al., 2015), MutPred Splice (Mort, et al., 2014) and 

ExonImpact (Li, et al., 2017), can also be used to study SN variants. Other techniques, such as CADD 

(Kircher, et al., 2014), MutationTaster (Schwarz, et al., 2014), and FATHMM-MKL (Shihab, et al., 

2015), provide general frameworks for predicting all types of pathogenic genetic variation (missense, 

nonsense, synonymous, microinsertions and microdeletions – ‘indels’) in both coding and non-coding 

regions. However, owing to their generality, it is difficult to dissect the relative importance of various 

features specifically for SN variants. 

 

In this work, we investigated the ability of DNA, RNA and protein-based features to discriminate 

pathogenic from putatively benign SN variants, with or without filtering variants with low minor 

allele frequencies. We employed a non-redundant training dataset of 318 genes with at least one 

disease-causing and one putatively benign variant per gene from the HGMD (Stenson, et al., 2017) 

and 1000 Genomes Projects (1000 Genomes Project Consortium, 2015), respectively. Analysis at a 

single feature level as well as cross-validation and independent testing using a support vector machine 

model indicated that the impact on RNA splicing is the dominant factor for disease-causing SN 

variants, even if evolutionary conservation had been excluded from feature selection.  

 

MATERIALS AND METHODS 
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Datasets 

We compiled two SN variants datasets: one for design, cross-validation, and training of our method 

and one for independent testing. The putatively benign variants were derived from the 1000 Genomes 

Project (1kGP), phase 3, version 5b, 20130502 (1000 Genomes Project Consortium, 2015). The 

disease-causing variants were retrieved from the Human Gene Mutation Database (HGMD) 

Professional, version 2015.3 (Stenson, et al., 2017), utilising only the variants labelled as disease-

causing (‘DM’ and ‘DM?’ labels). As a reference transcript set, we used the Consensus CoDing 

Sequence (CCDS) project, version 20131129 (Pruitt, et al., 2009). 

 

We first compiled the disease-causing datasets in a mutually independent fashion. To this end, we 

split the HGMD variants with a ratio of 2:1 for training and testing. We ensured that the split was 

protein-stratified with a sequence identity threshold of 30%. That is, we ensured low sequence 

similarity between the genes from the training and test sets. Finally, for every gene, we added the 

putatively benign 1kGP variants. If there were no benign variants for a given gene, we discarded all 

disease-causing variants from this gene. Ensuring that every gene had at least one disease-causing and 

one benign variant has been suggested in order to allow correct learning of variant-specific features 

rather than gene-related properties (Grimm, et al., 2015). 

 

In a comparison with related work, we found that one of the methods (SilVA) yielded no predictions 

for two variants (located on the Y chromosome) from our design/training dataset. To facilitate a fair 

comparison of related work, we removed these two variants from our dataset. Another method 

(SPIDEX) yielded 2,604 missing predictions for our datasets, mostly because of its limitation to predict 

splicing effects for variants located only up to 300 nucleotides from splice junctions. We decided to 

retain these variants in our datasets after checking that the overall ranking of the compared methods 

was not affected. 
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As a result of the described procedure, we obtained two mutually independent and protein-stratified 

datasets. The design/training dataset containing 318 genes with 592 disease-causing and 10,925 

putatively benign SN variants. This dataset was utilised for design, training, and 10-fold cross-

validation of our method. The test set comprised 143 genes with 279 disease-causing and 4,945 

benign variants. Finally, we also compiled fully balanced subsets of these datasets where for every 

disease-causing variant, one benign variant was selected so that the genomic distance between the two 

was as small as possible. We refer to these datasets as to ‘close-by’ datasets since the subsampling 

procedure ensured that every selected benign variant was located as close as possible to some disease-

causing variant. Table 1 summarises the four different datasets. 

 

Predictive features 

We investigated 54 features for discriminating disease-causing and benign SN variants at three 

different levels: DNA, RNA, and protein levels. Out of these 54 features, 26 features were also 

employed for developing SilVA (Buske, et al., 2013). Supp. Table S1 briefly summarises all 

predictive features. 

 

 

DNA-based features 

We derived six new DNA-based features. The feature phyloPcons46way was derived from phylogenetic 

p-values of the multiple sequence alignment of 45 vertebrates to the human genome (cons46way) as 

calculated with the phyloP program (Pollard, et al., 2010). Similarly, using an alignment of 99 

vertebrates to the human genome (cons100way) (Karolchik, et al., 2004; Miller, et al., 2007), we 

calculated the allele frequency (AF) of the reference allele (rAFcons100way) and the difference in the 

frequencies of the alternative and reference alleles (ΔAFcons100way). Next, we used DeepBind 

(Alipanahi, et al., 2015) to predict variant-induced binding affinity changes of 515 DNA-binding 

proteins. To this end, DeepBind was trained using 137 ChIP-seq and 378 SELEX human models 
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downloaded from the DeepBind website. From DeepBind predictions, we derived two features 

calculated as the maximum (DeepBindmax) and mean (DeepBindmean) of the 515 binding affinity 

changes. Another DNA-based feature (referred to as G4) tests whether the variant lies within a G-

quadruplex sequence pattern (Todd, et al., 2005). In addition, we employed another five features from 

SilVA including DNA conservation score GERP++cons34 (Davydov, et al., 2010), relative synonymous 

codon usage (RSCU), variant-induced change in codon usage (|ΔRSCU|) (Sharp and Li, 1987), 

variant-induced change in CpG (CpG?), and the ratio of the observed and expected CpG content of 

the exon (CpGexon). 

 

RNA-based features 

We implemented 11 new RNA-based features. We predicted RNA solvent-accessible surface area 

(ASARNA) of the variant site using RNAsnap trained on experimentally determined protein-RNA 

complex structures (Yang, et al., 2017). We predicted the change between the binding affinities 

(ΔRBPaff) of the reference and alternative sequences for a set of 53 RNA-binding proteins (RBPs) 

(Zhang, et al., 2014). Another feature, SPIDEXΔΨ, was extracted from the SPIDEX database (Xiong, 

et al., 2015) and is based on the maximum ΔΨ scores across all predicted tissues. ΔΨ expresses the 

difference between the predicted exon-inclusion probabilities of the reference and alternative 

sequences. As suggested in (Wu and Hurst, 2016), we also examined the location of the exon within 

the given gene, implemented as the relative exon number feature (the exon number in the 5’-3’ 

direction divided by the number of exons), and the distance to the nearest 5’, 3’ or closest splice site 

(exon-intron junction). Further, we defined a feature termed fraction of unaffected transcripts where 

an unaffected transcript (splice isoform) is one for which the variant is located within an intron 

(whereas the variant is located in an exon for some other splice isoforms of the same gene). Finally, 

we implemented three features based on the consensus dataset of 84 exonic splicing enhancer (ESE) 

motifs, INT3 (Cáceres and Hurst, 2013). These three binary features were the loss (ESEloss), gain 

(ESEgain), and loss or gain (ESEloss/gain) of an INT3 ESE motif due to the introduced variant. 
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In addition to the features listed above, we implemented 21 features utilized in SilVA. These features 

include the changes in the secondary structure folding energy of pre-mRNA and mature mRNA 

calculated with UNAFold (Markham and Zuker, 2008), changes in the diversity of the structural 

ensemble of pre-mRNA and mature mRNA obtained using ViennaRNA (Lorenz, et al., 2011), relative 

distances to the end of pre-mRNA and mature mRNA, various features pertaining to the splice site 

motif strength calculated with MaxEntScan (Yeo and Burge, 2004), and gain and loss of ESE and 

exonic splicing silencer (ESS) motifs based on ESE Finder (Smith, et al., 2006), PESX (Zhang and 

Chasin, 2004), and FAS-hex3 (Wang, et al., 2004) datasets. 

 

Protein-based features 

We implemented 11 protein-based features that were found to be useful for predicting disease-causing 

indels (Folkman, et al., 2015; Zhao, et al., 2013) and stability changes induced by single amino acid 

substitutions (Folkman, et al., 2016). Among those, three were related to protein conservation, five to 

protein structure, and three to global sequence properties. We examined protein conservation scores 

calculated as Jensen-Shannon divergence (JScons) using the available implementation (Capra and 

Singh, 2007). We calculated these conservation scores from the multiple sequence alignment (MSA) 

generated with PSI-BLAST (NCBI non-redundant database, three iterations, e-value threshold 0.001) 

(Altschul, et al., 1997). Another protein conservation feature, HHblitscons, was calculated using 

HHblits (Remmert, et al., 2012), which searches for similar sequences from the UniProt database 

(UniProt Consortium, 2015) using hidden Markov model sequence profiles. In addition, we 

considered the HHblitsneff feature, which expresses the number of sequences aligned to the variant site 

in the HHblits’ MSA. Other protein-based features described the relative variant location as a distance 

to the N-terminal (N-termdist), C-terminal (C-termdist), and the centre of the sequence (centredist), 

divided by the length of the protein sequence. Finally, we considered five protein-level structural 

features predicted from the protein sequence: relative accessible surface area and helix, sheet, coil and 

disorder probabilities. The accessible surface area and secondary structure probabilities were 
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predicted with SPIDER2 (Heffernan, et al., 2015), and the disorder probability was calculated using 

SPINE-D (Zhang, et al., 2012). 

 

Single feature analysis 

To analyse the potency of a single feature to discriminate disease-causing SN variants, we randomly 

sub-sampled the design/training dataset into 100 balanced samples so that there were exactly the same 

number of disease-causing and putatively benign variants for each gene (2 × 591 variants in total). 

Then, we performed protein-stratified 10-fold cross-validation using a single feature. This procedure 

ensured that the single feature analysis would not be adversely affected by gene-level global 

properties. 

 

 

Support vector machines 

We implemented our method with the support vector machine (SVM) algorithm (Cortes and Vapnik, 

1995), which classify examples (variants) as positive (disease-causing) or negative (putatively benign) 

based on the optimal separating hyperline, which is learned from the training data. We used the radial 

basis function (RBF) kernel to perform a non-linear transformation of the feature space. To set 

optimal values of hyper-parameters (namely, the regularisation parameter C and RBF width parameter 

γ), we performed a grid search which spanned across all combinations of C   {2
-5

, 2
-3

, …, 2
11

} and γ 

  {2
-11

, 2
-9

, …, 2
-1

}. Because our training dataset was extremely unbalanced with a ratio of 1:18, we 

set the SVM weight penalty (w) for misclassifying a positive (disease-causing) example to w = 18. 

 

Feature selection 

We used the stability selection algorithm (Meinshausen and Buhlmann, 2010) to select a robust 

combination of predictive features. In our implementation, we exploited the unbalanced nature of our 
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training dataset. We randomly sub-sampled the dataset 100-times so that there were exactly the same 

number of disease-causing and putatively benign variants per gene (2 × 591 variants in total). Next, 

we applied the sequential forward selection (SFS) algorithm (Whitney, 1971) to select a feature set for 

each of the data samples. Finally, the stability selection creates a stable set of features by selecting 

those features which SFS repeatedly selected (≥ 25 times) across the 100 samples. 

 

The SFS proceeds as follows. For each sample, the SFS starts with an empty set of features S0 and 

iteratively selects a new feature f such that Si = Si−1   { f } yields the best prediction performance. We 

adopted the area under the receiver operating characteristic curve (AUC, see the next section for 

definition) to assess prediction performance during feature selection. We let the SFS run until the 

AUC improvement yielded by increasing the number of features was < 0.005 (so called early-stop 

criterion which helps to avoid overtraining). 

 

Evaluation 

We employed protein-stratified 10-fold cross-validation to design our method and approximate the 

prediction performance on the design/training dataset. The 10-fold cross-validation procedure works 

by dividing the dataset into ten roughly equally-sized folds. Then, nine folds are merged and used for 

training, whilst the remaining fold is used for testing. This is repeated ten times, each time with a 

different test fold. Finally, the ten predictions are pooled together. In a protein-stratified cross-

validation, it is ensured that the sequence identity of any two proteins from two distinct folds is 

< 30%. This in turn ensures that a test fold will never comprise a protein similar to the proteins from 

the folds used for training. 

 

We adopted the receiver operating characteristic (ROC) curve as the primary evaluation measure in 

this work. From the ROC curve, we calculated the area under the curve (AUC). A ROC curve plots 

the true positive rate (sensitivity) as a function of the false positive rate (1−specificity) at different 
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prediction thresholds. The AUC value was used to select the best performing features during feature 

selection, optimise the SVM hyper-parameters C and γ, as well as for a comparison with related work. 

We used DeLong’s test to compare AUC scores and calculate statistically sound p-values (DeLong, et 

al., 1988). 

 

For the sake of completeness (Vihinen, 2013), we also evaluated prediction performance in terms of 

Matthews correlation coefficient (MCC), classification accuracy (Q2), sensitivity (Se, also referred to 

as recall), specificity (Sp), positive predictive value (PPV, also referred to as precision), and negative 

predictive value (NPV). Because these metrics, unlike AUC, are threshold-dependent, we set the 

prediction threshold for each method so that the MCC of the given method was maximised. The 

definitions of these metrics can be found in the Supporting Material. 

 

RESULTS 

Discriminating using a single feature 

Our design/training dataset contained 318 unique genes with 592 disease-causing (HGMD) and 

10,925 putatively benign (1kGP) variants. Such a highly unbalanced dataset simply reflects the real-

world situation where a few possible disease-causing variants have to be prioritised for experimental 

validation among many neutral variants. The 318 genes were carefully selected so that the dataset 

comprised at least one disease-causing and one benign variant per gene. Having positive and negative 

variants from the same gene is necessary to avoid the potential bias for specific genes (Grimm, et al., 

2015). This in turn allows us to search for features and develop methods for discriminating disease-

causing variants rather than disease-associated genes. 

 

Using this design/training dataset, we evaluated 54 diverse features at DNA, RNA and protein levels 

as shown in Supp. Table S1. The utility of each feature for SN variant discrimination was measured 
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using the AUC (area under the ROC curve). The AUC is 1 for perfect discrimination and 0.5 for 

random discrimination. As shown in Supp. Table S1, many of the investigated features had a very 

weak, statistically non-significant, discrimination capability with 0.50 ≤ AUC < 0.55 [DeLong’s test 

(DeLong, et al., 1988), significance level 0.05, power 0.80]. These features were DNA structural 

features [G-quadruplex pattern prediction (Todd, et al., 2005)], DNA functional features [variant-

induced changes to protein-DNA binding affinities by DeepBind (Alipanahi, et al., 2015)], RNA 

structural features [RNA secondary structure folding by UNAFold (Markham and Zuker, 2008), 

structural ensemble diversity by ViennaRNA (Lorenz, et al., 2011), and predicted RNA solvent 

accessibility by RNAsnap (Yang, et al., 2017)], RNA functional features [variant-induced changes to 

protein-RNA binding affinities (Zhang, et al., 2014)], protein conservation features [protein sequence 

conservation by PSI-BLAST (Altschul, et al., 1997) and HHblits (Remmert, et al., 2012)], and protein 

structural features [protein intrinsic disorder by SPINE-D (Zhang, et al., 2012), and protein secondary 

structure and solvent accessibility by SPIDER2 (Heffernan, et al., 2015)]. Given that SN variants do 

not alter protein sequences, the lack of strong discriminatory power was expected for the protein-

based features but not for some of the DNA and RNA-based features.  

 

Table 2 lists the top ten predictive features ranked by their AUC values. Of the top ten, six 

are related to splicing, including various encodings of splice site motif strength (MES, 

|∆MES|, and MES-KM) calculated with MaxEntScan (Yeo and Burge, 2004), the difference 

in the predicted exon-inclusion probabilities of the reference and alternative sequences using 

SPIDEX (Xiong, et al., 2015), and distances from the 3’ and nearest splicing sites (exon-

intron junctions). The other four features are related to DNA conservation calculated from 

different multiple-species genomes alignments (Miller, et al., 2007): the AF of the reference 

allele (rAFcons100), difference in the AFs of the variant and that of the reference (ΔAFcons100), 

DNA conservation score (phyloPcons46) derived from phylogenetic p-values calculated with 
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the phyloP program (Pollard, et al., 2010), and evolutionary rates estimated with a maximum 

likelihood algorithm (GERP++cons34) (Davydov, et al., 2010). 

 

Figures 1A and 1B depict the distributions of the disease-causing and benign variants for the best 

RNA-based (MES) and DNA-based (ΔAFcons100) features, respectively. Disease-causing variants 

occurred more frequently when the predicted splice site motif strength (MES) was high, implying that 

the variant falls within a splicing motif with a high probability. Regarding ΔAFcons100, disease-causing 

variants were characterised by negative values (close to –1), denoting a high AF for the reference 

allele and a low AF for the variant. Finally, Figure 1C shows the distributions of disease-causing and 

benign variants in the immediate proximity of the exon-intron junction (1–3 bp), in the larger region 

commonly considered to be implicated in RNA splicing (4–69 bp), and in the exon core (≥70 bp from 

the exon-intron junction). The clear separation shown in this plot explains the high predictive power 

of naïve features such as the distance to the closest exon-intron junction, which ranked as the third 

best RNA-based feature with the AUC of 0.705 (Table 2). The results summarised in Table 2 and 

Figure 1 demonstrate that features related to RNA splicing and DNA conservation provide the most 

discriminative information about the nature of the disease-causing SN variants in our dataset. 

 

Combining multiple features with feature selection 

Most strongly discriminative single features were related to either DNA conservation or RNA 

splicing. It is of interest to know if the weakly discriminative features (when evaluated as single 

features) can potentially complement the strongly discriminative features when combined into a 

predictive non-linear SVM model (Cortes and Vapnik, 1995). We employed the stability selection 

algorithm (Meinshausen and Buhlmann, 2010) to select the most relevant and stable feature 

combination, avoiding the redundant and most-correlated features. To this end, we created 100 

samples from our design/training dataset so that each sample had an equal number of disease-causing 

and benign variants (thereby ensuring that variant-specific, rather than gene-specific, features would 

be selected) and performed sequential forward selection (SFS) (Whitney, 1971) on each of the 100 
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samples. The stability metric of a feature was then measured as the fraction of times the feature was 

selected amongst the 100 feature combinations. 

 

The feature selection resulted in a combination of six features with stability ≥ 0.25, yielding an AUC 

of 0.84 based on protein-stratified 10-fold cross-validation. For brevity, we refer to this model as 

DDIG-SN, which stands for ‘Detecting DIsease-causing Genetic variations with a SyNonymous 

model’. Figure 2 shows how the performance varied across the 100 samples depending upon the 

number of features selected using the SFS algorithm. The plot demonstrates that the prediction 

performance improvements became smaller as more features were added; the median AUC 

improvement was < 0.005 after six features had been combined. Thus, the saturation of the number of 

features for the internal SFS algorithm was in agreement with the number of features with stability ≥ 

0.25, suggesting that a combination of six features was indeed optimal.  

 

Figure 3 shows the most stable ten features. The top three features, phyloPcons46, |ΔMES|, and 

SPIDEXΔΨ, were selected 99, 87, and 73 out of 100 times, respectively. The figure also indicates that 

five of the six most ‘stable’ features also yielded an AUC around 0.7 in the single feature analysis. 

That is, they are among the top nine features ranked in Table 2: MES, |ΔMES|, phyloPcons46, rAFcons100, 

and SPIDEXΔΨ. The remaining feature with stability > 0.5 but with low AUC of 0.52 was MES-CS, 

which signifies whether the variant causes a cryptic splice site to become a site with the strongest 

splicing motif according to MaxEntScan. Thus, while this feature is discriminative only for a subset of 

all variants (hence the low overall AUC), the feature selection was able to identify its contribution 

when combined with other predictive features (it was selected 42 out of 100 times). In summary, all 

selected features were related to either DNA conservation or RNA splicing, in agreement with our 

single feature analysis. 

 

Comparison with other methods and independent test performance 
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The ROC curves in Figure 4 show the performance comparison of DDIG-SN with other available 

methods: a synonymous-specific model – SilVA (Buske, et al., 2013), conservation score – phyloP 

(Pollard, et al., 2010), general approaches for all types of SNVs – CADD (Kircher, et al., 2014), 

MutationTaster (Schwarz, et al., 2014), and FATHMM-MKL (Shihab, et al., 2015), and an approach 

to predict how variants affect splicing – SPIDEX (Xiong, et al., 2015). 

 

To further confirm the generality of the DDIG-SN model, we compiled an independent test dataset. 

This test set comprised a hold-out portion of the 279 disease-causing (HGMD) and 4,945 putatively 

benign (1kGP) variants located in 143 genes whose protein sequence similarity was < 30% compared 

to any protein in our design/training dataset. On this independent test set, DDIG-SN achieved the 

highest AUC of 0.85 (Table 3, Figure 4B), which represents a relative improvement of 2% (p = 0.229, 

DeLong’s test) over the second best method, SilVA, which yielded the AUC of 0.83. Importantly, this 

independent test performance was close to the DDIG-SN’s cross-validation performance (Figure 4A, 

AUC of 0.84, a 4% relative improvement as compared to SilVA, p = 5.7×10
-5

) on the dataset used to 

design our method and optimise all parameters. Hence, DDIG-SN performed robustly and this 

evidence suggests that overtraining was avoided. The AUC scores of the other five methods were in 

the range of 0.74–0.57 and 0.76–0.59 for the design/training and test datasets, respectively. Supp. 

Table S2 lists also the Q2, Se, Sp, PPV, and NPV scores yielded by all compared methods for both 

design/training and test datasets. 

 

Both the design/training and test datasets were highly imbalanced with many more benign than 

disease-causing variants per gene (the overall ratio of 18:1). We were interested in whether DDIG-SN 

could retain its performance when tested on a fully balanced, more challenging, dataset where for 

every disease-causing variant, one benign variant was selected so that the genomic distance between 

the two was as small as possible. We refer to these datasets as to ‘close-by’ datasets. As shown in 

Supp. Figure S1 and Figure 4C, DDIG-SN retained most of its prediction performance with the AUC 

of 0.83 and 0.84 in cross-validation and independent testing, respectively. Compared to the second 
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best method, SilVA, DDIG-SN yielded larger relative (as well as absolute) improvements (5%, 

p = 1.3×10
-4

, for cross-validation and 5%, p = 0.008, for the test) than for the general case using the 

full datasets. 

 

Another way of reducing the imbalance in our datasets is by filtering based on the AF for the common 

(AF ≥ 1%) or rare (AF < 1%) putatively benign variants. While the first helps to reduce the potential 

false negatives (non-benign 1kGP variants), the latter shows how accurate the method is for rare 

variants which cannot be prioritised by comparing with variants from the general healthy population. 

DDIG-SN retained its prediction performance and relative improvements compared to SilVA for 

discriminating both common and rare benign variants (Supp. Table S3). 

 

Finally, we evaluated how robustly DDIG-SN performed upon randomly masking 30% of the test 

data. Figure 5 shows the distributions of DDIG-SN’s and SilVA’s AUC scores for the cross-

validation, independent test, and ‘close-by’ test datasets. Both DDIG-SN and SilVA performed 

reasonably robustly with standard deviations ranging 0.007–0.009 and 0.008–0.010, respectively. The 

slightly smaller standard deviations yielded by DDIG-SN show that its performance was somewhat 

more robust. 

 

Evaluating predictions based on variant’s distance to the exon-intron splice junction 

Four of the six features in DDIG-SN are related to alternative splicing. Could this be caused by 

possible dominance of diseases caused by splicing-related events in our dataset? To examine this 

possibility, we defined three distinct exonic regions based on the distance to the nearest exon-intron 

junction: 1) the immediate proximity to the exon-intron junction (1–3 bp), 2) the larger region 

commonly considered as being implicated in splicing (4–69 bp), and 3) the exon core (≥70 bp from 

the junction). We selected these three regions as they had been used previously for the analysis of the 

distribution of human pathogenic variants (Wu and Hurst, 2016). 
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Table 4 shows the performance of DDIG-SN and the six compared methods for the three different 

regions (1–3, 4–69, and ≥70 bp away from an exon-intron junction). All methods yielded comparable 

or improved prediction performance for the 1–3 bp region when compared to the full dataset. For 

instance, on the cross-validation dataset, DDIG-SN and SilVA yielded AUC scores of 0.85 and 0.89 

(compared to 0.84 and 0.81 for the full dataset). Thus, SilVA outperformed DDIG-SN in the 

immediate neighbourhood of the splice site junction with a relative improvement of 5% (p = 0.003). 

SilVA yielded the same improvement (5%) to DDIG-SN also on the independent test set (p = 0.009). 

Regarding the two regions further away from the exon-intron junction (4–69 and ≥70 bp), prediction 

accuracy dropped considerably for all compared methods as opposed to the full dataset. For instance, 

DDIG-SN and SilVA yielded the AUC of 0.76 and 0.69 for the 4–69 bp region, respectively, and 0.64 

and 0.62, respectively, for the ≥70 bp region (cross-validation dataset). Thus, DDIG-SN yielded a 

relative improvement of 10% to SilVA for the 4–69 bp region (p = 1.3×10
-5

). Even though DDIG-SN 

retained most of its prediction performance also for the independent test (AUC of 0.75), its 

improvement to SilVA (AUC of 0.73) was not significant (p = 0.333). 

 

Apart from comparing DDIG-SN with related work, we wanted to explore if it was possible to build a 

more accurate method, dedicated to each of the three exonic regions. Hence, we developed another 

method, called ‘Region-Specific Model’ (RSM), which comprised three SVM models (RSM1–3, 

RSM4–69, and RSM≥70), each optimised for the different region of an exon (1–3, 4–69, and ≥70 bp, 

respectively). The optimisation was performed in terms of splitting the design/training dataset based 

on the variant’s distance the exon-intron junction and then running the stability feature selection and 

grid search for optimal SVM hyper-parameters on each subset individually. When predicting a test set 

variant using the RSM method, exactly one of the three models was selected depending upon the 

distance of the test variant to the exon-intron junction. As shown in Figure 1, more than 40% of all 

disease-causing variants in our design/training dataset were found within 3 bp of an exon-intron 

junction, indicating that the disease-causing SN variants rarely occur further away or in an exon core.  
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Figures 6A and 6B show the comparison of DDIG-SN and RSM (in terms of AUC) for the training 

and test datasets, respectively. The region-specific design of RSM resulted in a significantly improved 

performance as compared to DDIG-SN for the 1–3 bp region (p = 1.3×10
-5

 and 0.023 for cross-

validation and test set, respectively). However, RSM yielded only comparable performance for the 4–

69 bp region (p = 0.689
 
and 0.622) and its performance was worse than random (AUC < 0.5) for the 

≥70 bp region. The latter can be attributed to 1) the small size of the dataset (only 75 disease-causing 

variants present as opposed to 261 and 256 disease-causing variants in the 1–3 and 4–69 bp regions, 

respectively); and 2) lack of relevant features (the stability metric of the most often selected feature 

was only 0.24 as opposed to 1.00 and 0.92 for the top features selected for the 1–3 and 4–69 bp 

regions, respectively). From RSM’s performance, we concluded that employing several individually-

trained models may increase the risk of overtraining, yet it does not offer considerable performance 

improvements over DDIG-SN. 

 

It is of interest to know if the region-specific approach (RSM) selected some interesting features that 

were specific for the three distinct regions. Table 5 lists the features selected for RSM1–3, RSM4–69, 

and RSM≥70, alongside the six features of DDIG-SN, ranked by the stability metric. As mentioned in 

the previous paragraph, there were no features with stability ≥ 0.25 for RSM≥70. The selected features 

(stability ≥ 0.25) for either of the two other models (RSM1–3 and RSM4–69) were all related to RNA 

splicing and evolutionary conservation. Specifically, the features with the highest stability were 

ΔMES– and ΔMES+ for RSM1–3 and RSM4–69, respectively. Thus, the disease-causing effects in the 

immediate proximity to exon-intron junctions are driven by the loss of splicing motif strength, 

whereas the gain of splicing motif strength is the primary cause in regions adjacent to the splice site. 
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DISCUSSION 

We have developed a new method, termed DDIG-SN, for discriminating disease-causing synonymous 

variants. The method was trained and evaluated using two different datasets with protein sequence 

identity < 30%. At the same time, each gene had at least one disease-causing and one neutral variant 

present. This allows for protein-stratified cross-validation and independent testing while ensuring that 

DDIG-SN was trained for discriminating variants rather than genes, meaning that its performance is a 

realistic estimate for variants in previously unseen genes. We also minimised overtraining by 

selecting the most stable six features using the stability selection algorithm (Meinshausen and 

Buhlmann, 2010). To this end, we performed 100 sequential forward selections (Whitney, 1971) using 

100 randomly created data samples that had an equal number of disease-causing and benign variants 

per gene, compared to 1:18 ratio of disease-causing to benign variants in the full ‘real-world’ training 

dataset. The robustness of DDIG-SN is evident from the similar performance between 10-fold cross-

validation and the independent test (Table 3), stable performance upon randomly masking 30% of the 

test data (Figure 5) as well as using only the common (AF ≥ 1%), rare (AF < 1%), or ‘close-by’ 

putatively benign 1kGP variants (Supp. Table S3 and Figure 4C). More importantly, DDIG-SN had 

the best performance among all the methods compared across different datasets. 

 

SN variants have a direct effect only on the DNA and RNA sequences. Thus, it is expected that the 

protein-based features would not be useful for discrimination of SN variants. However, it has been 

observed that SN variants can impact both structure and function of the protein (Kimchi-Sarfaty, et 

al., 2007; Montera, et al., 2001; Zhou, et al., 2013). Thus, it is necessary to examine some of the 

protein-based features that have been found to be important in discriminating non-synonymous 

variants that result in single amino acid substitutions (Adzhubei, et al., 2010; Folkman, et al., 2016), 

nonsense variants that introduce premature termination codons (Folkman, et al., 2015), and indels that 

lead to the addition or removal of a short segment of amino acid residues (non-frameshifting indels) 

(Bermejo-Das-Neves, et al., 2014; Zhao, et al., 2013) or randomization of the protein sequence 

(frameshifting indels) (Douville, et al., 2016; Folkman, et al., 2015; Hu and Ng, 2012). To this end, 
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we analysed the sequence and structural features related to protein sequence conservation derived 

from PSI-BLAST (Altschul, et al., 1997) and HHblits (Remmert, et al., 2012), protein intrinsic 

disorder predicted with SPINE-D (Zhang, et al., 2012), and protein secondary structure and solvent 

accessibility predicted with SPIDER2 (Heffernan, et al., 2015). All these features yielded a marginal 

discriminative power (AUC < 0.54) when evaluated individually. Moreover, they were not selected 

during the feature selection for the final SVM model. This result supports the notion that changes in 

the protein structure and function are likely the secondary effects of the changes in the RNA/DNA 

sequence. 

 

When analysing the selected DNA and RNA-level features, we found that DDIG-SN model was 

dominated by features related to RNA splicing (four out of six features in total). This confirms the 

damaging role of SN variants in RNA splicing found in many studies (Buske, et al., 2013; Li, et al., 

2017; Xiong, et al., 2015; Yeo and Burge, 2004). Here, we were able to show that whilst the loss of 

splicing motif strength is the most robust predictive feature in the immediate neighbourhood of the 

exon-intron junction (1–3 bp), it is the gain of splicing motif strength that is important for the region 

adjacent to the splice site (4–69 bp). 

 

The key features other than splicing relate to DNA sequence conservation. The evolutionary 

conservation of DNA sequence can be due to a structural or functional requirement at either the DNA 

or RNA level. To clear up the ambiguity, we removed all features related to evolutionary conservation 

and performed the feature selection again. Then, all selected features were related to splicing (Supp. 

Table S4). 

 

The lack of mRNA structure-related features [secondary structure folding energy (Markham and 

Zuker, 2008), ensemble diversity (Lorenz, et al., 2011), and solvent-accessible surface area (Yang, et 

al., 2017)], despite ample experimental evidence for their role in translation and transcription 
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(Mortimer, et al., 2014; Wan, et al., 2014), could reflect the challenge in predicting RNA structural 

properties accurately, in particular, in the absence of their interacting partners, irrespective of whether 

it is at the secondary or tertiary level (Hajdin, et al., 2013; Miao, et al., 2015; Seetin and Mathews, 

2012). Another feature that was not selected was the possible formation or disruption of G-

quadruplexes due to SN variants. It had a near random AUC score as a single feature (AUC = 0.502) 

despite the occurrence of G-quadruplexes that have been implicated in neurodegenerative diseases 

and the non-coding transcriptome (Rhodes and Lipps, 2015; Simone, et al., 2015). In addition, 

variant-induced changes in binding affinities of DNA and RNA-binding proteins were not selected, 

despite ample evidence of their regulatory roles (Dreyfuss, et al., 2002; Stergachis, et al., 2013). 

Possible reasons for this could be: firstly, inaccuracy of the employed (state-of-the-art) prediction 

methods, secondly, limited size of the disease-causing SN variants dataset from the HGMD, and 

thirdly, binding disrupted at one site may be compensated for at another site.  

 

The limited prediction performance of all evaluated methods for SN variants in exon cores (≥70 bp 

away from exon-intron junction) suggests that there are unknown features, not considered by any of 

the methods. Possibly, a more sensitive prediction of RNA and protein structural features, which 

could predict not only the wild-type but also the structural changes induced by genetic variations, 

could help improve predictions in these regions. Additionally, more accurate models of the functional 

impact of genetic variants, such as ‘compensation-aware’ models of RNA and DNA-binding proteins 

affinity changes, are needed. 
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FIGURE LEGENDS 

Figure 1. The distributions of the disease-causing and benign SN variants for (A) the top RNA-based 

feature MES
 
(the splicing motif strength predicted with MaxEntScan); (B) the top DNA-based feature 

ΔAFcons100 [the difference between the alternative (alt.) and reference (ref.) allele frequencies]; and (C) 

three exonic regions defined based on the distance to the nearest exon-intron junction [immediate 

proximity of the splice junction (1–3 bp), larger region commonly considered as implicated in splicing 

(4–69 bp), and exon core (≥70 bp)]. 
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Figure 2.  The area under the ROC curve (AUC) as a function of the number of features selected with 

the sequential floating selection (SFS) algorithm. The boxplots show the distributions of AUC values 

for the 100 random balanced sampled datasets used for feature selection. 
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Figure 3. The stability metric (reported by stability selection) is compared to the single feature area 

under the ROC curve (AUC) for the ten most stable features. The first six features were above the 

stability threshold of 0.25 and were therefore selected for the DDIG-SN model. 

 

 

 

 

 

Figure 4. The receiver operating characteristic (ROC) curves of DDIG-SN compared to other 

available methods: a synonymous-specific model – SilVA, conservation score – phyloP, general 

approaches for all types of SNVs – FATHMM-MKL, CADD and MutationTaster, and an approach to 

predict how a variant affects splicing – SPIDEX. (A) DDIG-SN was evaluated using protein-stratified 

10-fold cross-validation (CV) on the same dataset as used for its design. (B) A comparison using an 

independent test set with < 30% sequence similarity to the design/training dataset. (C) A balanced 

subset of the independent test set in which the closest benign (1kGP) variant was selected for every 

disease-causing (HGMD) variant (the ‘close-by’ dataset). 
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Figure 5. Distributions of AUC scores for DDIG-SN and SilVA after randomly masking 30% of the 

test data. Although both methods show relatively robust performance, DDIG-SN is somewhat more 

robust as shown by the smaller size of the boxes (each box represents the interquartile of the AUC 

distribution). 
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Figure 6. Area under the ROC curve (AUC) of DDIG-SN and RSM (Region-Specific Model) for the 

three distinct exonic regions defined based on the distance to the nearest exon-intron junction. RSM’s 

AUC scores which were significantly different (p < 0.05, DeLong’s test) from DDIG-SN are 

highlighted using diagonal stripes. The plot demonstrates that the prediction ability of both methods 

drops with the increased distance to the exon-intron junction. 
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Table 1. Synonymous (SN) variants datasets used 

for the design and evaluation of DDIG-SN. 

Dataset Sampling 
Gene

s 

Variants 

HGMD  1kGP  

design/ 

training 

full 

318 

592 10,925 

close-by 591 591 

test 

full 

143 

279 4,945 

close-by 278 278 

 

 
Table 2. Ten most discriminative single features 

sorted by their areas under the ROC curve (AUC). 

Feature name AUC
a
 MCC

b
 

MES 0.746 [+] 0.494 

|ΔMES| 0.740 [+] 0.526 

ΔAFcons100 0.732 [–] 0.390 

phyloPcons46 0.727 [+] 0.381 

GERP++cons34 0.724 [+] 0.379 

rAFcons100 0.718 [+] 0.384 

spliceclosest 0.705 [–] 0.426 

splice3’ 0.697 [–] 0.367 

SPIDEXΔΨ 0.685 [–] 0.300 

MES-KM 0.670 [+] 0.464 

a
 Area under the ROC curve; the [+]/[–] symbol determines positive/negative correlation (i.e. [+] 

means that the disease causality is positively correlated with the particular feature). 

b 
Matthews correlation coefficient 
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Table 3. Comparison of DDIG-SN’s prediction performance with six other available methods using 

cross-validation and independent test datasets. 

Method 

10-fold CV (HGMD+1kGP) Test (HGMD+1kGP) 

full dataset
a
 close-by

b
 full dataset

a
 close-by

b
 

AUC
c
 MCC

c
 AUC

c
 MCC

c
 AUC

c
 MCC

c
 AUC

c
 MCC

c
 

MutationTaster 2 0.57 0.07 0.57 0.18 0.59 0.09 0.57 0.19 

CADD 1.3 0.67 0.13 0.65 0.25 0.65 0.14 0.65 0.29 

SPIDEX 1.0 0.73 0.22 0.69 0.32 0.72 0.22 0.71 0.34 

FATHMM-MKL 2.3 0.73 0.29 0.70 0.34 0.76 0.33 0.73 0.41 

phyloP (cons46way) 0.74 0.30 0.71 0.35 0.76 0.31 0.74 0.38 

SilVA 1.1.1 0.81 0.54 0.79 0.52 0.83 0.55 0.80 0.57 

DDIG-SN 0.84 0.51 0.83 0.58 0.85 0.56 0.84 0.62 

a
 The full unbalanced dataset with a ratio of 1:18 of disease-causing (HGMD) to putatively benign 

(1kGP) variants. 

b
 A balanced subset of the full dataset in which the closest benign variant was selected for each disease-

causing variant.
 

c
 AUC, area under the ROC curve; MCC, Matthews correlation coefficient 
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Table 4. Comparison of DDIG-SN’s prediction performance with six other available methods with 

the dataset partitioned based on variant’s distance to the exon-intron junction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 

AUC
a
 

10-fold CV (HGMD+1kGP) Test (HGMD+1kGP) 

1–3
b
 4–69

b
 ≥ 70

b
 1–3

b
 4–69

b
 ≥ 70

b
 

MutationTaster 2 0.54 0.53 0.52 0.54 0.54 0.55 

CADD 1.3 0.76 0.56 0.60 0.77 0.53 0.48 

SPIDEX 1.0 0.79 0.61 0.42 0.80 0.62 0.49 

FATHMM-MKL 2.3 0.83 0.62 0.56 0.85 0.62 0.64 

phyloP (cons46way) 0.85 0.62 0.59 0.86 0.62 0.65 

SilVA 1.1.1 0.89 0.69 0.62 0.90 0.73 0.65 

DDIG-SN 0.85 0.76 0.64 0.86 0.75 0.67 

a
 AUC, area under the ROC curve. 

b
 Dataset subset comprising variants in the given range of base pairs to the nearest exon-intron 

junction. 
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Table 5. Comparison of different features selected (stability ≥ 0.25) for DDIG-SN and the three 

models of the RSM method. 

DDIG-SN 
Region specific model (RSM) 

1–3
a
 4–69

a
 ≥ 70

a
 

feature stability
b
 feature stability

b
 feature stability

b
 feature stability

b
 

phyloPcons46 0.99 ΔMES– 1.00 ΔMES+ 0.92 C-termdist 0.24
c
 

|ΔMES| 0.87 phyloPcons46 0.89 ΔAFcons100 0.56 PESE– 0.19
c
 

SPIDEXΔΨ 0.73 FAS6+ 0.30 SPIDEXΔΨ 0.47 ASAprot 0.17
c
 

MES 0.61 ESEloss/gain 0.28 rAFcons100 0.41 centredist 0.17
c
 

MES-CS 0.42  phyloPcons46 0.34 RSCU 0.16
c
 

rAFcons100 0.35 MES 0.34 DeepBindmax 0.15
c
 

a
 Nearest exon-intron junction distance of variants used for training the given model of the RSM 

b
 The stability metric equals to the fraction of times the particular feature was selected using sequential 

feature selection (SFS) out of 100 runs on random balanced samples of the training/design dataset. 

c
 Stability selection for RSM model comprising variants ≥ 70 bp from an exon-intron junction resulted in no 

features with stability ≥ 0.25. Thus, we employed a threshold of 0.15 to be able to train a model for these 

variants. 




