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ABSTRACT 

Investigations into the role of strontium (Sr) in caries prevention have attracted great interest in 

the research community in the past, with its peak in the 1970- and 80ies. To this date, no clear 

indication of the relative importance of Sr in caries prevention has been provided. A vast number 

of animal caries, epidemiological and mechanistic studies have been conducted. Albeit Although 

a great level ofthere is much discrepancyexists in the literature, the majority of studies suggest 

that Sr exhibits some cariostatic properties and, predominantly in the presence of fluoride (F). An 

optimum Sr concentration of 5 to 10 ppm in drinking water has been proposed as a direct result 

of several epidemiological caries studies. Despite these results, no direct link can be established 

between Sr and caries prevention as, to date, no relevant, randomized control trials have been 

reported. The extrapolation of potential cariostatic properties of Sr from epidemiological studies 

is difficult due to the co-presence of several other trace elements in the water of the study areas, 

with many of these elements being attributed cariostatic properties in their own right. 

Furthermore, the role of caries risk factors was not taken into consideration. There is a clear need 

for further research, especially on the mineral phases in the dental hard tissues, plaque and 

plaque fluid associated with Sr as these may give rise to a better understanding of this subject 

matter. Based on the current data, the, at least by some authors, proposed  cariostatic properties 

of Sr, or at least those proposed by some authors, cannot be supported. 
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INTRODUCTION 

The caries-preventative effects of fluoride (F), and especially its sodium salt, have long been 

established and are beyond any reasonable doubt. However, despite F’s proven track record, 

caries is still endemic in parts of the world populations globally and its elimination will remain 

the main challenge for dental researchers for decades to come. Its main negative side effect, 

fluorosis, has led investigators to conduct research on other, preferably non-toxic, (trace) 

elements, ideally exhibiting synergy with F, and their relative anti-caries effects – one being 

strontium (Sr). 

 Due to its similarity with to calcium (Ca), Sr has attracted considerable amounts of 

interest in the caries and caries-related research community, with its peak in the 1970ies and 

1980ies. Despite a vast number of animal caries, epidemiological and mechanistic studies 

conducted by various investigators, to this date, no clear indication of the role of Sr in caries 

prevention has been provided. Previous reviews on the relationship of between trace elements in 

general and caries [e.g. Büttner, 1969; Losee and Ludwig, 1970; Navia, 1972; Curzon and 

Crocker, 1978; (anonymous), 1978; Beaton, 1983; Olson, 1987] highlighted the complexity of 

the matter, but were also somewhat limited in scope. Therefore, the aim of the present paper was 

to critically and comprehensively review the literature concerned with the role of Sr in the caries 

process. 

 

 

CRITICAL REVIEW 

 

Search Strategy and Structure 

 

A search strategy was developed for articles indexed in MEDLINE, Web of Science® and 

PubMed databases written in English up to August 30, 2011. Several hand searches were 

required to obtain articles which could not be retrieved via the aforementioned databases. The 

following key words were used in the searches in combination with ‘strontium’ or ‘sr’: ‘caries’, 

‘tooth’, ‘teeth’, ‘enamel’, ‘dentin*’, ‘demin*’, ‘remin*’, ‘apatite’, ‘hydroxyapatite’, ‘calcium 

phosphate’, ‘fluoride’. 
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 Articles were then divided into the following groups based on the topics investigated 

topics, which will also form the order of the present review: 

1. Animal studies – Sr effects on enamel and dentin, caries studies 

2. Caries eEpidemiological caries studies 

3. Sr in oral care products 

4. Sr in the oral cavity – presence in teeth, plaque and saliva 

5. Sr and calcium phosphates (CaPi) 

6. Discussion 

7. Conclusions 

Articles concerned with multiple topics were considered in all relevant groups. 

 

 

1. Sr Studies in Animals 

 

Sr Effects on Dentin and Enamel 

There is a discrimination against Sr in CaPi mineralization when Ca is present (see also chapter 

5.), which was shown by Likins et al. [1959] in weanling rats. Later studies [Likins et al., 1961; 

Menczel et al., 1962] were able to support these findings, and a higher Sr discrimination was 

found in dentin in relation to enamel [Likins et al., 1961].  

Studies in weanling rats [Likins et al., 1959] have shown that when both Ca and Sr were present 

during tooth formation, Ca was incorporated into the apatitic lattice preferentially, resulting in a 

higher Ca:Sr ratio in the subsequent mineral than might be expected. Later studies [Likins et al., 

1961; Menczel et al., 1962] were able to support these findings, with the effect more pronounced 

in dentin than in enamel [Likins et al., 1961]. 

 Sr injections were shown to cause dentin hypomineralisation in rats, resulting in the 

formation of a hypomineralized layer of dentin, comparable to that seen after F injection 

[Weinmann, 1942; Irving and Weinmann, 1948; Yaeger, 1963]. These effects were almost 

entirely confined to dentin as enamel was not affected [Weinmann, 1942]. Yaeger and 

Eisenmann [1963] showed that the degree of dentin hypomineralisation was positively correlated 

to [Sr] (i.e. Sr concentrations). Although a similar correlation was found for [F], the wider zones 

of hypomineralized dentin observed for Sr and the lack of a thinner hypermineralized layer of 
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dentin as observed for F suggested differences in their etiology. A later study [Yaeger et al., 

1964] suggested that Sr (or F) inhibit or reverse the matrix aggregation normally occurring at the 

dentin-predentin junction, thus inhibiting mineralization. Grady and Yaeger [1965] reported that, 

while in normal dentin collagen fibrils are orientated perpendicular to the dentinal tubules, in 

hypomineralized layers caused by Sr (or F), fibrils are arranged at 45° to the fibrils of the normal 

dentin. The possibility for that hypomineralized dentin canto recover after Sr injection seizes 

ceases was shown by Yager [1966]. Regions of hypomineralized rat dentine induced by Sr (or F) 

were reported to show greater ability to mineralize than adjacent normal untreated dentine in 

vitro [Eisenmann and Yaeger, 1972]. Johnson et al. [1970] demonstrated that Sr was not lost 

preferentially lost from high-Sr dentin and suggested that Sr was not predominantly surface 

located at the surface. In addition, many studies reported that Sr injection causes the formation of 

more than one hypomineralized layer in dentin [Yaeger and Eisenmann, 1963; Yaeger et al., 

1964; Eisenmann and Yaeger, 1969; Ogawa et al., 1981]; however, while two hypomineralized 

layers were reported in labial dentin, only a single layer was found in lateral, medial and lingual 

walls [Ogawa et al., 1981; Appleton, 1993]. Ogawa et al. [1981] postulated that Sr may exert its 

effect on dentin hypomineralisation not only because of its ability to retard crystal growth, but 

also because of a direct effect on odontoblasts and collagen synthesis. 

 Castillo Mercado and Bibby [1973] studied the effects of Sr injections on molar 

morphology and found wider fissures and thicker dentin. A subsequent study [Curzon et al., 

1982] investigating Sr effects when given in drinking water found an increase in horizontal and 

vertical dentin thickness at a [Sr] of 50 ppm, but not at 150 ppm which was indistinguishable in 

its effect to the water control. 

 While Sr effects on dentin were studied almost solely as a result of Sr injections with 

Sri.e. systemically, its effects on enamel were predominantly studied as a result of dietary Sr 

administration. Johnson et al. [1966] and Johnson [1967] demonstrated that isomorphous 

substitution of Sr for Ca occurs in the enamel-HAp and postulated that Sr may form Sr6H3(PO4) 

∙ 2 H2O, which was shown to be a precursor of SrHAp [Collin, 1966]. Furthermore, Johnson and 

Singer [1967] found a gradient of increasing [Sr] from the incisal to apical areas in enamel of 

rats raised on a Sr-rich diet. 

 Similar to its effects on dentin, Sr has been shown to cause disturbances in ameloblast 

morphology and amelogenesis [Weinmann, 1943; Neiman and Eisenmann, 1975] in rats when 
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injected. White et al. [1980] demonstrated that the enamel organ limits Sr uptake in both the 

secretory and maturation phases of enamel formation. A further study by Suga et al. [1987] 

supported these findings and reported that Sr, unlike F, inhibits the early stage of enamel 

maturation and that mineralization ceases earlier in the inner layers of Sr-treated rats than in 

control groups. 

 Sr uptake byin surface enamel of rats given water with different [Sr] (0 – 100ppm) was 

studied by Spector et al. [1978]. The authors found a dose-response relationship between [Sr] 

administered and [Sr] in surface enamel, but only when Sr was given pre- and post-eruptively. 

When given pre-eruptively only, a [Sr] of 50 ppm yielded the highest Sr uptake. Comparing the 

relative pre- and post-eruptive contributions to [Sr] in surface enamel, the present authors 

calculated that at [Sr] ≤ 50 ppm, 70 to 74% of [Sr] in surface enamel of rats was due to Sr given 

pre-eruptively, while at [Sr] = 100 ppm, only 29% could be attributed to Sr given pre-eruptively. 

A subsequent study [Curzon and Spector, 1980] showed some variations between different Sr 

salts in Sr uptake by enamel, especially when administered pre-eruptively. A dose-response 

relationship between [Sr] administered through the diet and [Sr] in surface and near-surface 

enamel was also observed by Ashrafi et al. [1980]. 

 

Animal Caries Studies 

Before relevant Sr animal caries will be are discussed, some light must be shed on differences in 

the etiology of caries in animals and humans must be shed. Ericsson [1962] and Tatevossian and 

Wright [1974] have shown that rat in comparison to human saliva exhibits larger higher pH 

values, lower [P] but higher [Ca] and a considerably higher buffering capacity, presumably due 

to higher [CO3]. In addition, Haldi et al. [1960] have demonstrated that the pH at the tooth 

surface of rats ‘rarely fell as low as 7.0’ after the administration of a cariogenic diet or sugar 

alone. In a review, White [1992] concluded that while animal models have tremendous value in 

studying the caries process they are by no means perfect profile tools and that results of animal 

caries studies on new anti-caries agents and formulations do not necessarily mirror clinical 

results (differences in anti-caries effectiveness and efficacy observed in animal caries studies and 

RCTs between amine fluoride, MFP and NaF are worth noting in this context). Furthermore, the 

duration and frequency of administration, salivary clearance of actives and the effect of diet on 
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retention of actives are not well understood in animals, making comparisons to caries in humans 

difficult and highlighting that further research is warranted in this area. 

 Animal studies on the effects Sr in preventing caries have been equivocal as no effects 

[Johnson and Hein, 1953; Olson et al., 1978], an increase [Hunt and Navia, 1972, 1975; Joseph 

et al., 1977] or a decrease [Losee and Adkins, 1968; Gedalia et al., 1975; Meyerowitz et al., 

1979; Ashrafi et al., 1980; Curzon and Spector, 1981; Curzon, 1988] in caries incidence were 

have been reported. Generalization of overall Sr effects, however, is unjustified as differences 

depending on the dose and time of administration (pre- and/or post-eruptively) or the combined 

administration of Sr and F need to be analyzed for separately. In addition, scoring of animal 

caries was not uniform between these studies, thus further complicating the matter. Accordingly, 

tThe present authors decided to conduct further analyzes only on studies using the caries scoring 

method according to Keyes [1958]. Individual ‘E’ scores (enamel units) for bucco-lingual, sulcal 

and proximal lesions were combined to yield a total caries score in line with the ‘Indiana rat 

caries model’, and subsequently, percentage values of caries reduction were calculated in relation 

to appropriate controls [Stookey et al., 1995]. The results of the rat caries studies conducted by 

Meyerowitz et al. [1979], Ashrafi et al. [1980] and Curzon [1988] are presented in table 5. 

Studies are somewhat comparable to some extent due the same diet (MIT 200) being fed, 

although rats were inoculated with S. mutans only in the study by Curzon [1988]. Comparing 

these data it can be noted that there is a curvilinear relationship between [Sr] administered and 

caries reduction, regardless of whetherif Sr was administered pre- and/or post-eruptively. 

However, caution must be issued as no statistical analysis is possible to the unavailability of the 

raw data. The reason for this curvilinear behavior is not clear and cannot be sufficiently 

explained based on what is currently known. However, Driessens [1982, 1986] provided 

proposed some hypotheses which , however, will be discussed at a later stage. In this context, it 

is wWorth mentioning in this context is that data can be over- or even mis-interpreted if only 

caries scores on from only one particular site, or if the wrong comparisons, are considered. 

Meyerowitz et al. [1979] concluded that a combination of 50 ppm Sr and 10 ppm F resulted in 

the greatest reduction in bucco-lingual rat caries scores. The authors, however, ignored sulcal 

and proximal caries scores where Sr + F was less effective in reducing caries than F alone. The 

present authors combined all three scores and found a 7.6 % increase in rat caries in comparison 

to F alone (table 5), thus the opposite result (this may or may not be of statistical significance). 
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 Other animal caries studies will now be considered. Johnson and Hein [1953] found no 

cariostatic effect for Sr when administered to hamsters at 50 ppm (as SrCl2) in the drinking 

water. Shaw and Griffiths [1961] studied the effects of dietary Sr supplementation on rat caries 

(using the sparingly soluble SrCO3). A positive effect, i.e. a on caries reduction, was noted when 

administered post-eruptively; however, this was paired with a decrease in weight gain by the 

animals (at 2 % SrCO3). When given pre-eruptively, an increase in caries occurrence was noted, 

and this could not be offset by giving Sr post-eruptively to the same rats. Losee and Adkins 

[1968] studied the effects of a dietary supplementation with the ash of green beans cooked in 

water containing different amounts of trace elements. The lowest overall caries scores could be 

related to the water sourced from Ohio, rich in Li, Mo, Sr, B and F. As multiple trace elements 

were present, no direct relationship for Sr in reducing caries could be established. A later study 

[Losee et al., 1976], investigating the effect of the ‘Ohio water’ when given to rats in comparison 

to deionized water, concluded that these trace minerals may act synergistically with fluoride in 

reducing caries prevalence in rats. 

When Sr (as SrCl2) was administered pre-eruptively at concentrations of 1000 or 2000 µg 

per 10 g body weight (100x or 200x the maximum [Sr] as compared to the study by Meyerowitz 

et al. [1979] and therefore of questionable physiological relevance), an increase in rat caries was 

noted [Hunt and Navia, 1972]. However, at 100× or 200× the maximum [Sr] as compared to the 

study by Meyerowitz et al. [1979] the physiological relevance is questionable. A later study by 

the same authors [Hunt and Navia, 1975] found similar effects at [Sr] = 500 µg in the presence or 

absence of [F] = 100 µg per 10 g body weight, thus indicating no additive or synergistic Sr + F 

effects. However, both studies reported incomplete rat caries scores which does not allow for 

decisive conclusions to be drawn. Gedalia et al. [1975] found a somewhat similar curvilinear 

relationship as noted above when studying the effects of Sr in water on caries in hamsters when 

given post-eruptively. [Sr] = 25 ppm resulted in overall increase, whereas [Sr] = 75 ppm resulted 

in a decrease of caries occurrence. Considerably stronger Sr effects were noted when Sr was 

administered pre-eruptively, and both [Sr] resulted in a marked decrease in caries in a dose-

response manner. These results mirror later observations by Meyerowitz et al. [1979] and it was 

concluded that Sr exhibits its cariostatic effect mainly because it is laid down in enamel and 

dentin before eruption, therefore somewhat excluding topical effects to some extent. 
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 Joseph et al. [1977] found a marginal increase in caries in hamsters when Sr was given 

pre- and post-eruptively as part of the drinking water at 10 and 25 ppm. F was found to offset the 

negative Sr effects. Similar results effects were obtained reported on rats exposed to Sr post-

eruptively by Olson et al. [1978]. Curzon and Spector [1981] studied the effects of different Sr 

salts at [Sr] = 50 ppm on rat caries reduction and concluded that SrF2 was most effective, mainly 

because of its [F] = 22 ppm. Other salts varied in their effectiveness based on their 

bioavailability. In addition, Sr effects were somewhat greater when given post- than pre-

eruptively. 

 Seppä et al. [1988] reported that a total of two treatments with 500 ppm Sr with or 

without NaF varnish application had no effect in reducing on rat caries in comparison to the 

appropriate controls. Luoma et al. [1984] studied the effects of chlorhexidine (CHX)-F-Sr ([Sr] = 

1000 ppm) and found a reduction in fissure caries and approximal lesions, but an increase in 

plaque scores in relation to CHX-F. In a subsequent study, Spets-Happonen et al. [1996] found a 

similar curvilinear Sr caries relationship as reported before, as a CHX-F gel supplemented with 

50 ppm Sr did show some marginal benefits in reducing rat caries, whereas 250 ppm Sr appeared 

to markedly weaken the CHX-F effect. 

 

 

2. Epidemiological Caries Studies 

 

Several major questions are pertinent when analyzing data from epidemiological studies: a) iIs 

the relationship between Sr and caries reduction causative or simply incidental?, and b) iIs the 

reduction in caries related to the sole contribution of Sr, or is it due to the additive or synergistic 

action of two or more trace elements present at the same time? Furthermore, as both topical and 

systemic effects are thought to play roles in the caries-preventative action of Sr (see ‘Animal 

Caries Studies’), it must also beis necessary to considered whether subjects were lifelong 

residents of, or if they immigrated to, the study area (i.e. the area from which water or soil 

samples were taken and analyzed for [Sr]). In case they immigrated, when (i.e. pre- or post-

eruptively in relation to their permanent dentition), and what were environmental [Sr] in their 

previous area. And fFinally, what were the oral care habits of the study subjects, their age, 

socioeconomic status and sugar intake/dietary habits; i.e. have caries risk factors been 
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considered? To the author’s’ knowledge, not a single study was concerned with all these aspects, 

thus making it almost impossible to perform an unbiased review of the available studies, which, 

sadly, are therefore only of very limited value. Nonetheless, epidemiological studies will be 

discussed in chronological order and based on the extent in the context of the information 

provided. 

 Anderson [1966] studied a relatively small group of 12-year old children (n = 51) from an 

area in Gloucestershire (UK) which’ whose soil is rich in SrSO4. [Sr] in water in this area was 

estimated at 0.33 ppm and therefore extremely low in comparison to later studies (see below), 

whereas [F] was 0.15 ppm. No differences in children’s DMF scores (6.03 vs. 5.63) between the 

study area and a control area (n = 537; [Sr] = nil; [F] = 0.13 – 0.15 ppm) were observed, but 

considerably lower DMF scores (4.36 and 4.38) were noted in ‘F’ (n = 74; [F] = 0.9 ppm) and 

‘Mo areas’ (n = 270; [Mo] = 0.0036 ppm; [F] = 0.09 ppm).  

During a sA study on caries-resistant navy recruits [Losee and Adkins, 1969], which was 

perhaps was the key study that sparked the interest in Sr in the caries research community in the 

1970ies, it was able possible to correlate the high number of caries-resistant recruits from NW 

Ohio (USA) with the simultaneous occurrence of elevated [B], [Li], [Mo], [Sr] in NW Ohio 

water in combination with F. A median [Sr] of 6100 ppm was found in the water of the study 

area and the transfer of F, Li, Mo and Sr from water to green beans during cooking was shown. 

A subsequent rat caries study [see above; Losee et al., 1976] was able to support the findings of 

this epidemiological study. Losee and Bibby [1970] were able to negatively correlate [Sr], [B] 

and [F] in water with DMFT scores (r < – 0.8 for Sr, B and F) based on the data from six cities in 

Illinois (USA). A more comprehensive study by Adkins and Losee [1970] compared trace 

elements in water between low and high caries statues (in the USA) and found significant 

differences between the two for Ba, B, Li, Mo and Sr with higher concentrations observed in 

states with lower caries incidence. Strong, positive co-variations were found between these trace 

elements, and Sr was found to exhibit the lowest correlation coefficient with caries prevalence (r 

= – 0.59), thus indicating the strongest effect. F, however, was not considered. 

 A study [Curzon et al., 1970] on 251 children aged 12 to 14 from two towns in Ohio 

(USA) with different [Sr] (5.37 vs. 0.2 ppm) and [B] (0.35 vs. 0.04 ppm) and similar [F] (1.2 vs. 

1 ppm) showed mean DMFS scores of 3.56 vs. 5.54 and mean DMFT scores of 2.25 vs. 3.04, 

and it was concluded that differences in [B] and [Sr] in water were attributable to the reduction 
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in caries rather than the 0.2 ppm difference in [F]. It must be noted that only subjects with fully 

erupted canines, premolars and second molars were included in the study. A ten-year follow-up 

study [Curzon, 1983] found essentially the same caries distribution pattern between these 

communities and the changes in DMFS scores were attributed to changes in [Sr] in water. 

Ludwig et al. [1970] also studied children aged 12 to 14 (who were lifelong residents) from 19 

town in various states (in the USA) with very low [F] in water (0 – 0.30 ppm) but different 

DMFT scores (3.8 – 9). [Sr] in water ranged from 12 to 2200 ppm, but only a weak negative 

correlation between [Sr] and DMFT was established (r = – 0.29). Again, Sr and B (r = – 0.3) 

showed similar effects. However, the present authors calculated that the exclusion of the two 

towns with the highest [Sr] of 1300 and 2200 ppm (leaving [Sr] = 280 ppm the next highest) 

would have yielded r = 0.03 and therefore no correlation at all. An investigation into differences 

in caries activity between two semi-isolated communities in Colombia with [F] < 0.2 ppm in 

water by Bowen et al. [1977] did not find a relationship between [Sr] in water (8 – 120 ppm in 

low- and 14 ppm in high-caries activity communities) and caries activity. However, water [B] 

were substantially different (21 – 85 ppm vs. 1.5 ppm). 

 Perhaps the most compelling set of data was reported by Curzon et al. [1978] who 

conducted caries examinations on 1313 children aged 12 to 14 years, lifelong residents and 

immigrants, living in seven communities in Wisconsin (USA). [F] in drinking water was 

comparable between communities with 1 to 1.29 ppm; however, [Sr] varied between 0.022 and 

33.94 ppm. Figure 1 shows the results of this study in combination with the results of two 

comparable studies by Curzon et al. [1970] and Curzon [1985]. As water [F] were almost 

identical and as the caries evaluation was performed similarly, all three studies were combined. 

Considering lifelong residents only, some sort of an optimum [Sr] in water in relation to caries 

prevention can be seenis suggested. It is worth mentioning that as concentrations of other trace 

elements in water were also provided, the present authors found a very similar relationship for 

[Fe] and a linear relationship for [B]. In relation to these findings about with regard to Fe and B 

it must be mentioned that a follow-up study by Curzon [1983] found essentially the same [B] but 

considerably lower [Fe] in water in the areas studied. Somewhat surprising were the results of 

the immigrants, showing an almost inverse relationship compared to lifelong residents. No 

information regarding their previous Sr exposure was presented and, regrettably, the authors did 

not discuss these data, making it difficult to provide any comments now. The final study by 
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Curzon [1985] was also able to also reported an inversely correlation betweene caries prevalence 

with and [Sr] in water in communities with water [F] of 0.9 to 1.2 ppm. It must should also be 

mentioned that the method for determining carious surfaces was somewhat inappropriate as ‘any 

fissure or enamel surface in which the explorer stuck and penetrated into dentine was regarded as 

carious’ [Curzon et al. 1978]. 

 In contradiction to earlier studies [Ludwig et al., 1970; Bowen et al., 1977], showing no 

or only marginal anti-caries benefits for Sr in the presence of low [F], Athanassouli et al. [1983] 

was able to correlate lower DMFT scores (5.26 vs. 6.95) in 582 children aged 11 to 14 years with 

an area of higher [Sr] in water (2.9 – 7 ppm vs. 0.2 – 1.3 ppm). [F] in water was very low (< 0.06 

ppm) in both districts. Furthermore, Vrbic and Stupar [1980] were also able tofound a  

negatively  correlationte between [Sr] in water with DMFT scores in areas with low [F] (< 0.15 

ppm). 

In addition to the studies trying to establishinvestigating a possible link between caries 

reduction and [Sr] in drinking water, several studies were also concerned withattempted to 

establish ing athis similar link for Sr in surface enamel and/or in plaque. Little and Barrett 

conducted two studies [1976a,b] investigateding possible relationships between [Sr] and [F] in 

surface and near-surface enamel and caries prevalence. Studies were conducted on teeth obtained 

from lifelong residents of either east or west coast in the USA. Contradicting results were found 

when teeth were grouped according to DMFT scores of < 3 or > 7. In east coast samples from the 

east coast, both [Sr] and [F] were higher in surface and near-surface enamel in low caries teeth, 

whereas in west coast samples from the west coast, this was only true for [F], with [Sr] being 

higher in high caries samples. It must be noted that, in general, [Sr] and [F] were somewhat 

higher in west compared to east coast samples, although [Sr] were virtually identical in low 

caries teeth on east and west coast. The authors explained the east coast-west coast discrepancy 

with the above-proposed optimum [Sr] as an excess in Sr or lack thereof may increase the tooth’s 

susceptibility to caries. Two comparable studies by Curzon and Losee [1977b, 1978] were able 

to provide similar results, showing a stronger relationship between [Sr] in whole enamel and 

lower caries incidence in east than in west coast enamel samples.  

Furthermore, Curzon and Losee [1977a] were able to demonstrate that high [Sr] in 

enamel were associated with low caries prevalence by studying 147 samples obtained from 59 

communities in 19 states in the USA. Other elements, such as F, were not studied. A subsequent 
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study by Spector and Curzon [1979] did involve [Sr] and [F] analyszes. However, the authors 

were not able to demonstrate a relationship between [Sr] in surface enamel and DMFT scores. A 

weak correlation between [F] and DMFT was found (r = – 0.16) and also between [Sr] and [F] (r 

= 0.48). In contradiction, Vrbic and Stupar [1980] were able to demonstrate a negative 

correlation between [Sr] in enamel and caries incidence, which was supported by athe later 

studies ofby Athanassouli et al. [1983] and Curzon [1985]. 

 Only very few studies were concerned withinvestigated the possible correlation between 

Sr in plaque and caries prevalence. Schamschula et al. [1977b] reported a negative correlation 

between [Sr] and DMFT (r = – 0.15) in a primitive population in Papua New Guinea (n = 301; 

12 – 24 years of age), which, however, was weaker than those correlations for [Ca] and [F]. 

Similar results (r = – 0.23) were obtained by the same group [Schamschula et al., 1978a] when 

studying 72 children aged 9.7 to 13 years. Curzon [1985] was also able to demonstrate this 

relationship (r = – 0.83) in addition to the earlier reported negative correlations between [Sr] in 

water, and in enamel and DMFS scores, reported earlier.  

 Only two studies on salivary Sr and caries prevalence could be retrievedfound. Curzon 

[1984] was able to demonstrate a weak, negative relationship between [Sr] in saliva andon caries 

prevalence (r = – 0.13) in 105 children aged 14 years. In contradiction, during one very recent 

study [Shigemi et al., 2008] on 521 children aged 6 to 12 years was able to demonstrate a 

positive correlation between [Sr] in saliva and using the author’s terminology ‘caries experience’ 

(no DMFT/S scores were recorded) was reported. In addition, the authors showed that in groups 

with high ‘fluoride experience rates’ (due to F mouth rinsing at school), [Sr] in saliva tended to 

be lower.  

 In the context of epidemiological studies, it must alsoshould be mentioned that Curzon 

and Spector [1977] reported on enamel mottling when examining 1313 12 to 14-year old 

children in seven towns in Wisconsin (USA). As water [F] were very similar in the study area (1 

– 1.29 ppm), only a correlation between [Sr] in water (0.02 – 33.9 ppm) and mottling scores (r = 

0.85) could be established, and, interestingly, only in lifelong residents.  

 Finally, Riyat and Sharma [2010] reported , although only in a relatively small group of 

subjects, that [Sr] in blood was higher in a group (n = 15) who had no history of caries in 

comparison to a group (n = 15) with previous caries experience, although only in a relatively 

small group of subjects. A similar relationship was found for [F] and [Se]. 
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3. Sr in Oral Care Products 

 

Considering the interest in Sr within the caries research community, it was not surprising that 

awareness of Sr was also raised awareness in the oral care industry. 

 Zero et al. [1982] conducted a series of investigations,  which are perhaps better termed 

described as ‘product safety studies’ as a dentifrice containing not only Sr but also EDTA was 

evaluated  for changes in surface enamel morphology, [Sr] in enamel and enamel solubility. The 

test dentifrice was compared to a commercially available control dentifrice. No significant 

changes in surface morphology were noted; however, both products rendered the enamel surface 

less soluble and [Sr] in enamel increased in the test but not in the control dentifrice. 

 It appears that several manufacturers of oral care products were pursuing Sr as a novel 

anti-caries agent in the late 1980ies. A total of three in situ studies, two enamel fluoride uptake 

(EFU) studies [Bowman et al., 1988a,b] and one de-/remineralization caries study [Wefel et al., 

1995] were reported. All studies evaluated NaF formulations containing a so-called 

‘polyampholyte delivery system’ (PAA-Sr), which was essentially a combination of a soluble Sr 

salt (not specified) and a polyacrylic acid (MW = 4500 Da). Substantially enhanced EFU values 

were reported for PAA-Sr, for both the mouth rinse [Bowman et al., 1988a] and dentifrice 

[Bowman et al., 1988b] delivery formats, in comparison to controls with the same [F]. The study 

by Wefel et al. [1995] was able to demonstrate anti-caries effectiveness of PAA-Sr which was 

comparable to a 2800 ppm F (as NaF) control dentifrice. Two studies [Mellberg and Fletcher, 

1990; Afflitto et al., 1992] conducted by a direct competitor and comparing PAA-Sr with a 

different control dentifrice were also reported. The study by Mellberg and Fletcher [1990] found 

comparatively lower EFU in vitro for PAA-Sr. The more comprehensive study by Afflitto et al. 

[1992] reported comparatively lower salivary fluoride bioavailability and less cariostatic activity 

in the rat caries model for PAA-Sr. 

 A Polish group conducted two in situ studies on experimental dentifrices containing Sr + 

F [Kaczmarek et al., 2005] and Sr-HAp [Surdacka et al., 2007]. Both studies were primarily 

concerned with investigating the deposition of Sr into artificial white spot lesions, and both 
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studies were able to demonstrate an increase in [Sr] in enamel after 3 and 6 months of study 

duration. 

 Two further studies are worth mentioning here. Nishino [1981] investigated the effect of 

a Zn-acetate/Sr-acetate/tannic acid mouth rinse on caries reduction in 24 children aged 3 to 10.3 

years and using the Cariostat test. A reduction in ‘caries activity’ was achieved by this rinse, but 

due to the study design no Sr effect can be extrapolated. Klinger and Wiedemann [1986] studied 

the effect of a mineralizing solution containing Ca, Sr, Pi and tartrate in comparison to an amine 

F solution on the remineralization of approximal lesions in vivo. The mineral rinse did not 

induce measureable remineralization, whereas the F solution did. 

 No reports on potential cariostatic properties of products containing SrCl2 × 6 H2O 

(SCH), designed for the relief of dentin hypersensitivity, could be retrieved. 

 

 

4. Sr in the Oral Cavity 

 

Sr in Teeth 

A summary of results from various investigators can be found in supplementary data tables 1 

(enamel) and 2 (dentin), with similar Sr concentrations reported for both tissues. Regardless of 

the investigator, study site or analytical technique employed, considerable variations in Sr 

concentration were found, and especially in enamel. 

Not taking into accountWith the exception of the osteoporosis drug Sr ranelate [for 

review see Marie et al., 2001], the dentine hypersensitivity treatment agent SCH [for review see 

Addy and Dowell, 1983] or Sr-containing glass ionomers cements (Sr-GIC) [Kim et al., 2010]; 

the diet is the only Sr source for the human body (approx. 2.1-2.4 mg/day) [Schroeder et al., 

1972]. 

Comparatively higher [Sr] were found in enamel of permanent than in deciduous teeth 

[Cutress, 1972a; Nixon and Helsby, 1976; Shashikiran et al., 2007], whereas Zaichick and 

Ovchjarenko [1996] found no differences. To the author’s’ knowledge, only two studies 

[Steadman et al., 1958; Lundberg et al., 1965] were concerned with theconducted Sr analysis 

ofin enamel from unerupted, permanent teeth, thus limitingassuring that  any  Sr present 

incorporation into the dental hard tissues via systemic means would have been incorporated 



16 
 

systemically. Both studies reported similar [Sr] in relation to the enamel of erupted teeth, 

suggesting that most of the Sr is incorporated before eruption and that little change in [Sr] in 

enamel occurs with age. Later studies either proved supported [Little and Steadman, 1966] or 

disproved contradicted [Derise and Ritchey, 1974] these findings. 

 Several studies were concerned withinvestigated the depth distribution of Sr  in enamel 

with respect to depth, in enamel, and, again, considerable variation was noted. Steadman et al. 

[1958] found an almost uniform Sr distribution in enamel which was supported by other studies 

[Vrbic and Stupar, 1980; Noren et al., 1983; Frank et al., 1989], whereas Cutress [1972a] 

reported either higher surface or higher bulk [Sr] depending on the sample’s origin. The concept 

of a Sr gradient in teeth was also supported by Little and Barrett [1976a,b], who reported higher 

[Sr] in surface than in bulk enamel. 

 Strong, positive linear relationships were found a) between a)[Sr] in water and deciduous 

as well as permanent (bulk) enamel and b) between [Sr] and [F] in water; but only a weak, 

positive relationship were was found between [Sr] and [Ca] in water [Nixon and Helsby, 1976]. 

However, lLater studies [Spector and Curzon, 1978; Curzon, 1985] conducted in the USA, 

however, found only weak, positive correlations between [Sr] in water and [Sr] in surface 

enamel. Cutress [1972a] reported positive correlations between Sr and Ca and Sr and F in surface 

and near-surface enamel, which was supported for Sr-Ca in general [Noren et al., 1983; Brown et 

al., 2004] and for Sr-F in surface enamel [Spector and Curzon, 1979]. 

 

Sr in the Oral Fluids –Plaque and Saliva 

[Sr] in plaque (supplementary data table 3) and saliva (supplementary data table 4) 

exhibited similar variability compared to values reported in teeth, presumably due to 

environmental and dietary influences. Schamschula et al. [1977b] found strong, positive 

correlations in plaque for Sr-Ca and Sr-P, which was confirmed by further studies [Schamschula 

et al., 1978a,b]. However, weaker Sr-F and Sr-Mg correlations and no correlation between [Sr] 

and the dry weight of plaque were found. Curzon [1984, 1985] reported considerable differences 

depending on the geographical origin of the donor with plaque and saliva [Sr] being positively 

correlated with the water [Sr]. Comparatively high Sr plaque values were reported by a more 

recent study [Spets-Happonen et al., 1998], presumably due to dietary Sr [Rytömaa et al., 1975]. 

In saliva, positive correlations were found for Sr-Ca and Sr-Mg, but not for Sr-F [Schamschula et 
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al., 1978b]. By far the highest plaque and the only plaque-fluid [Sr] were reported by Shields et 

al. [1984] who found plaque fluid [Sr] of up to 1570 ppm. Study subjects were from an area 

known for its high drinking water [Sr] of up to 12.3 ppm, clearly demonstrating environmental 

effects of Sr accumulation in the oral cavity. 

 

 

5. Sr and CaPi 

 Sr has been shown to be adsorbed by enamel and to a greater extent by dentin and HAp 

[Hodge et al., 1946]. It is generally assumed that Sr is incorporated into the crystal lattice of HAp 

due to the similarity in ionic radii between Sr (1.12 Å) and Ca (0.99 Å) [Elliott, 1973]. Studies 

on HAp [Collin, 1959; Likins et al., 1960; Schoenberg, 1963; Koutsoukos and Nancollas, 1981; 

Markovic and Brecevic, 1992], and monetite [Likins et al., 1959] have shown that precipitates 

formed in the presence of Ca and Sr had Ca:Sr ratios which were higher than the Ca:Sr ratio in 

solution, suggesting a marked discrimination againstpreferential incorporation in favor of 

calcium  strontium. Collin [1959] also demonstrated that a0 and c0 lattice constants increase 

linearly with Sr substitution, which was supported by other studies [Lagergren and Carlström, 

1957; Schoenberg, 1963; LeGeros et al., 1977; Okayama et al., 1991; Markovic and Brecevic, 

1992]. Pan et al. [2009b] studied HAp nucleation from simulated body fluid in the presence of 

various [Sr] and found that only [Sr]s ≥ 0.3 mM (at [Ca] = 2.5mM) induce the formation of Sr-

HAp, whereas no Sr was detected in the formed HAp formed at [Sr] ≤ 0.1 mM, highlighting 

some sort of a threshold [Sr], or perhaps more importantly a threshold Sr:Ca ratio. While Sr 

incorporation into HAp is limited to a few mol %, Sr is more favorably substituted in OCP than 

in HAp, thus stabilizing this HAp precursor phase [Matsunaga and Murata, 2009]. 

 In addition to the incorporation of Sr into the crystal lattice, several studies [Dedhiya et 

al., 1973; Dedhiya et al., 1974] reported the formation of surface Sr complexes, approximately 

one unit-cell thick, with the formulae of Ca6Sr4(PO4)6(OH)2 in the absence of F, and 

Ca6Sr4(PO4)6F2 in the presence of F. These complexes were shown to form in the presence of Sr 

(and F) and under conditions resembling cariogenic attacks. A later study by Stranick and Root 

[1991] suggested the formation of a surface apatitic phase with a Sr:Ca ratio of 3.4:6.6 and an 

increase in surface SrFAp formation with increasing [Sr]. Investigations into the metastable 

equilibrium solubility (MES) behavior of carbonated HAp by Heslop et al. [2004, 2005] 
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supported earlier investigations by Dedhiya et al. [1973], but only for solution Sr:Ca ratios > 1.5. 

At Sr:Ca ratios < 2/3, however, the stoichiometry yielding MES data superpositioning was found 

to be that of HAp. 

 Bachra and Fischer [1969] reported that Sr can slow down HAp crystal growth, which 

was supported by other studies for HAp [Koutsoukos and Nancollas, 1981; Christoffersen et al. 

1997; Verberckmoes et al., 2004], for ACP [Root, 1990; Hidaka et al., 1991], for ACP to OCP to 

HAp conversions [Markovic and Brecevic, 1992], and for the α-tricalcium phosphate to HAp 

conversion [Boanini et al., 2010]. Bigi et al. [1988] suggested that Sr does not ‘greatly affect’ the 

conversion of OCP and BR into HAp, but stilland to a lesser extent than Mg. Sr can, however, 

also be seen to stabilize HAp precursor phases [Matsunaga and Murata, 2009] and therefore to 

increase the number of biological nucleation sites [Drouet et al., 2008]. Pan et al. [2009b] also 

postulated that nucleation of SrHAp is easier than HAp, and that this may act as a template for 

HAp growth. This would explain the results of Thuy et al. [2009], who demonstrated enhanced 

in vitro remineralization of caries lesions in the presence of Sr and F compared to F alone. 

 Since the incorporation of Sr into the lattice somewhat distorts the crystallinity and leads 

to an expansion of the crystallite, the incorporation of elements with smaller ionic radii is 

therefore possible [Lappalainen and Knuuttila, 1982]. Li et al. [2007] studied Sr-HAp prepared 

with different [Sr] and found considerably higher [CO3] with increasing [Sr] in Sr-HAp. Vice 

versa, a greater ability of carbonated in comparison to non-carbonated HAp to ‘fix’ Sr was found 

by Drouet et al. [2008]. In addition, Featherstone and Nelson [1980] as well as Nelson et al. 

[1982] reported that Sr can at least partially offset the paracrystalline disorder in HAp induced by 

carbonate, and Sr and F in combination were shown to improve the crystallinity of carbonated 

HAp to a greater extent than by Sr or F alone, suggesting synergistic effects between Sr and F in 

low-carbonated HAp, which is very similar to enamel [Featherstone et al., 1983]. Earlier 

investigations by Featherstone et al. [1981] postulated that Sr (or Zn) is incorporated into Ca-

deficient areas of enamel, which were related to carbonate inclusion. LeGeros et al. [1988] 

showed that the simultaneous presence of F and Sr will negate the otherwise negative impact of 

Sr on the formation and stability of HAp, presumably due to simultaneous substitution of Sr for 

Ca and of F for OH [LeGeros et al., 1977; Stranick and Root, 1991]. It has also been reported 

that greater Sr HAp incorporation is possible in the presence of F [LeGeros et al., 1988] or 

monofluorophosphate [Stranick and Root, 1991]. 
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 Considering the aforementioned effects of Sr incorporation into the crystal lattice, it is 

not surprising that SrHAp [Saleeb and DeBruyn, 1972] or partially-substituted Sr-HAp [LeGeros 

et al., 1988; LeGeros, 1990; Okayama et al., 1991; Christoffersen et al., 1997; Verberckmoes et 

al., 2004; Pan et al., 2009a] have been shown to be more soluble than HAp, and that even a Sr 

for Ca substitution at 1 mol% drastically increased HAp dissolution rates [Pan et al., 2009a]. 

Similar results were obtained for Sr- substituted carbonated HAp and fluoridated HAp by 

LeGeros [1990]; however, Featherstone et al. [1983] reported synergistic effects between Sr and 

F in reducing the dissolution of low and high carbonated HAp when incorporated into the HAp 

crystals. 

 

 

6. Discussion 

 

When studying the (primarily dental) literature concerned with Sr and caries or caries-related 

areas, two facts are apparent – the lack of RCTs and the level of discrepancy in the literature in 

general. To understand potential Sr effects on decreasing caries prevalence, several questions 

must and will be answered: 

 How and where does Sr accumulate in the oral cavity? 

 What are the effects of Sr incorporation into the dental hard tissues? 

 How does solution Sr affect CaPi dissolution, formation or transformation? 

 Does Sr exhibit antimicrobial activity? 

It has been established by many investigators that Sr is present in enamel, dentin, saliva 

and plaque. [Sr] have been found to vary considerably (supplementary data tables 1 to 4), and it 

is safe to assume that both the geographical origin of the sample (i.e. the direct result of the [Sr] 

in soil and water) and the donor’s diet are accountable for these differences. Sampling 

techniques, sample preparation and analyszes can add further error [e.g. Curzon, 1984]. In 

enamel, not only overall [Sr] but also its distribution was found to vary considerably [Rytömaa et 

al., 1975] and several reports exist on Sr gradients in enamel have been reported by several 

researchers, with higher [Sr] found in surface than in bulk enamel [Little and Barrett, 1976a,b]. 

Again, it is safe to assume that both topical and systemic effects are involved in Sr accumulation 

in the dental hard tissues, and especially in enamel. Animal studies have shown that Sr causes at 
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least disturbances in ameloblast morphology and amelogenesis [Weinmann, 1943; Neiman and 

Eisenmann, 1975], whereas several reports exist on Sr-mediated dentin hypomineralisation [e.g. 

Yaeger and Eisenmann, 1963]. In humans, information is limited to one epidemiological study 

[Curzon and Spector, 1977] which established a link between [Sr] in water and enamel mottling, 

but only for lifelong residents, thus indicating that Sr can cause disturbances duringaffect 

amelogenesis and is actually incorporated into the dental hard tissues during their formation. 

Several laboratory studies [e.g. Neumann et al., 1963] have shown that Sr can be incorporated 

into the (carbonated) HAp crystal lattice, substituting for Ca. In addition, Sr surface complexes 

were proposed to form during HAp dissolution in the presence of Sr, suggesting a different form 

of Sr accumulation [Dedhiya et al., 1973, 1974]. At present, however, only one report exists on 

the mineral phase associated with Sr in enamel in vivo. Although LeGeros et al. [1977] only 

found apatitic phases only in enamel with varying [Sr], the relationship between lattice 

parameters did not vary clearly with and [Sr] was not strong, suggesting that Sr was associated 

with enamel in another form. Furthermore, as Sr was shown to stabilize HAp precursor phases 

[Matsunaga and Murata, 2009] and to slow down HAp conversion [e.g. Markovic and Brecevic, 

1992], it cannot be excluded that Sr is present in enamel or dentin, and possibly exclusively, 

(also or solely) in a non-apatitic CaPi phase. This is further supported by the Sr discrimination 

during HAp formation [e.g. Collin, 1959], which , however, is not, however,  the case for other 

CaPi phases, such as OCP [Matsunaga and Murata, 2009]. Driessens [1982, 1986] suggested that 

Sr is associated with whitlockite (WH) [Ca10(HPO4)(PO4)6] a CaPi phase not normally found in 

enamel. As no direct proof can be provided for apatitic or non-apatitic Sr phases in enamel and 

dentin, further research is clearly needed in this area. 

 While tIf the accumulation of Sr in enamel during amelogenesis leaves several questions 

unanswered, post-eruptive Sr  accumulation in (surface) enamel post-eruptively is equally 

poorlyill understood,; especially when the mineral phase with which Sr is associated with Sr is 

considered. Several epidemiological studies [e.g. Spector and Curzon, 1978] have undoubtedly 

proven the clearly shown a positive correlation between [Sr] in water and surface enamel. Based 

on the aforementioned laboratory experiments, It whether or not Sr replaces Ca in the HAp 

lattice can only be speculated nowupon, based on the aforementioned laboratory experiments, 

that Sr substitutes for Ca in the enamel-HAp lattice, as other forms of accumulation or 

adsorption, as shown for F [White et al., 1994], have not (yet) been reported (yet). The fact that 
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Sr can easily substitute for Ca in enamel can be explained as carbonate (one of the major 

impurities in enamel) expands the HAp crystal lattice and therefore allows ions with bigger ionic 

radii than Ca (such as Sr) to enter and substitute for Ca [Nelson et al., 1982]. At the same time, 

Sr incorporation into the lattice allows for better F-OH substitution [Featherstone et al., 1983]. 

Does this mean there is a synergistic accumulation of Sr and F? Although plausible, tThis theory 

cannot currently not be supported, primarily based onbecause previous studies [e.g. Steadman et 

al., 1958] which have failed to show associations between Sr and F. The potential consequences 

of these lattice substitutions have been studied by many investigators. Although there is some 

discrepancy, the majority of the literature supports the proposition that Sr incorporation into 

(carbonated) HAp increases its solubility, and that F greatly minimizes but not fully mitigates the 

negative effect of Sr [e.g. LeGeros, 1990]. 

 Few reports exist on potential antimicrobial effects of Sr, and based on the current 

literature, it can be concluded that Sr does not exhibit antimicrobial properties at the [Sr]s found 

in saliva and, more importantly, plaque (hence, the relevant literature was not discussed). 

Considering what has been discussed so far, it appears that Sr is more likely to show 

caries-potentiating rather than –preventing effects. How can the results of the numerous animal 

caries and epidemiological studies, which, according to the authors, show caries-preventative 

effects,( even although strongly [Sr] dependent), be explained? As pointed out earlier (see 

‘Animal Caries Studies’), animal caries studies are a closegood, but by no means a complete, 

surrogate for caries studies in humans. Therefore, these studiestheir findings should be seen 

regarded with some caution. Nonetheless, the results of several studies do somewhat mirror the  

findings of epidemiological studies, at least to some extent. Sr effects were observed in the 

presence or absence of F, and ‘optimum’ [Sr] were seen in most studies. In this context, it must 

be mentioned that animal caries studies often give rise to mis- or at least over-interpretation as 

caries scores are rarely combined (no DMFS/DMFT etc. equivalent exists), leaving the authors 

the no other option than to concentrate only on one particular site of occurrence where observed 

caries reductions wereas observed in line with what the authors may have hoped for. The present 

authors found at least one study where this biased practice of ‘cherry picking’ led to 

misinterpretation of data. Nonetheless, the observed reduction in caries is compelling, and even 

more so as an ‘optimum’ [Sr] was proposed. 
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 The results of several epidemiological studies are presented in Figure 1. In agreement 

with the rat caries studies, a [Sr]- dependent reduction in caries was observed with an optimum 

[Sr] of approximately 5 to 10 ppm in water. However, three four facts must be mentioned in this 

context: a) [F] in water in all study areas was approximately 1 ppm; b) no correlations with other 

trace elements were conducted by the authors; c) the results of immigrants do show a completely 

different [Sr] caries prevalence pattern compared to lifelong residents, and d) sadly, none of the 

studies were concerned with caries risk factors, such as socioeconomic status and dietary habits. 

With regards to c) it is difficult to judge whether these effects were causative or co-incidental as 

the study population was relatively small (as low as 22 subjects in one of the towns),; not to 

mention that no information wasere provided about the caries historiesy of the subjects, their oral 

care or dietary habits. This, however, can also be seen made as a general comment about the 

presented epidemiological studies, making it difficult and perhaps impossible to extract any 

meaningful conclusions from them. Considering b), this is perhaps the greatest weakness of most 

epidemiological studies concerned with Sr. Early studies [e.g. Losee and Adkins, 1968, 1969] 

suggested that perhaps not Sr alone is associated with the observed caries reduction, whereas 

later studies were solely concerned with Sr. In one more than one study, the present authors 

would have been able to ‘make a case’ for B or Fe as similar relationships compared to Sr were 

found for these trace elements and caries reduction. In relation to this thought suggestion it is 

perhaps time to review the role of trace elements in general (and not just Sr) in relation to caries 

prevention – again, as the latest review (published in English) that could be retrieved dates back 

to 1987. In more than one previous review [e.g. Curzon and Crocker, 1978], it was concluded 

that apart from F and Sr, other trace elements, such as Al, Fe and Se, also exhibit negative 

correlations with caries prevalence. In relation to a) it must be noted that two epidemiological 

studies [Athanassouli et al., 1983; Vrbic and Stupar, 1980] were reported, correlating [Sr] with a 

decrease in caries in areas with negligible [F] in water. The voiced criticism by LeGeros [1990], 

that the ‘possible ‘cariostatic’ effect of Sr…may be due principally to the effect of F which was 

simultaneously present’, is therefore not entirely justified. 

 Overall, it must be noted that the available literature on Sr and its role in caries 

prevention, despite its many flaws, discrepancies and the lack of RCT’s, is compelling to say the 

least. One particular aspect, the more than once noted ‘optimum’ [Sr], noted more than once, is 

particularly especially interesting. So far, only Driessens [1982, 1986] has provided a hypothesis 
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for this phenomenon, which will now be discussed. It is worth mentioning that his hypothesis is, 

strangely, ignored by the research community, as the present authors were not able to retrieve a 

single article even presenting his reasoning. Driessens [1982, 1986] proposed that Sr is 

incorporated into whitlockite (WH) rather than an apatitic phase during tooth formation. As Sr 

stabilizes WH it renders it therefore less susceptible to acid attack. Mg, one of the major 

impurities in enamel-HAp and present at [Mg] between 0.21 and 0.44 %, is also strongly 

associated with WH. The introduction of Sr decreases the solubility of Mg-WH, without 

increasing the amount of that phase in relation to enamel-HAp. This would only explain the 

generally noted reduction in susceptibility to caries in rat caries studies. Considering the 

‘optimum’ [Sr], Driessens [1982] hypothesized that in when SR is in excess Sr, the WH phase 

would then be extended at the expense of the less soluble enamel-HAp phase, therefore 

rendering the enamel more susceptible to caries at elevated [Sr]. Although only a hypothesis, it is 

the soleonly explanation proposed for the ‘optimum’ [Sr] observed in many studies so far. 

Whereas Driessens suggested that Sr exhibits its cariostatic properties only pre-eruptively, the 

here data presented heredata do not support this, although stronger pre- than post-eruptive effects 

were noted in rat caries studies (table 5). 

 For the moment, the thought that a [Sr] in water of 5 to 10 ppm in the presence of 1 ppm 

F would present an optimum concentration of both trace elements in caries prevention is 

entertained. How could this be implemented and what are the practicalities? Water fluoridation is 

considered ‘a relevant and valid choice as a population measure for the prevention of dental 

caries’ [Parnell et al., 2009], although this is only practiced in some countries, and then only after 

lengthy debates, mainly due to concerns about fluorosis. The opposition to Sr- enrichment of 

drinking water is therefore unthinkable as, unlike for F, no clear indication about itsevidence 

exists for its possible caries preventative efficacy have been provided; and the present data on Sr 

simply do not allow for any ‘final’ conclusions to be drawn. 

 Sr can also be found in dentifrices designed for the relief of dentin hypersensitivity. 

However, no information about the relative anti-caries benefits of these products, which often 

contain F at approximately 1000 ppm, could be retrieved. These products typically contain 10 % 

(w/w) SCH, which, at a twice daily application of 1.5 g, would result in a total Sr dose of 100 mg 

per day. Although this a somewhat flawed comparison is somewhat flawed, thisit is similar to the 

proposed ‘optimum’ [Sr] as a consumption of 2 l of water at a [Sr] of 10 ppm would result in a 
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daily Sr dose of 20 mg alone, not taking into account other Sr sources. Information on these 

products would therefore be beneficial, as some anti-caries benefits of Sr-containing dentifrices 

and mouthwashes, although not commercially available anymore, were have been reported 

[Bowman et al., 1988a,b; Wefel et al., 1995]. Furthermore, the addition of Sr to oral care 

products would perhaps provide an opportunity to increase oral F retention. Unlike Ca, Sr can be 

formulated in the presence of F without greatly reducing F bioavailability, as SrF2 is 77 times 

more soluble than CaF2 (KSPSrF2 = 3 × 10-9; KSPCaF2 = 3 × 10-11) [Cameron et al., 1961]. The 

overall benefits of Ca pre-rinses on increasing oral F retention have been shown in many studies 

[e.g. Vogel et al., 2006], and Sr + F rinses would be expected to show a similar potential due to 

the similarity between Ca and Sr and the earlier reported possibility to accumulate Sr in plaque 

through environmental means, thus reducing the number of rinses to one and therefore increasing 

compliance (providing commercialization of these products). However, further research is 

necessary to prove these hypotheses and the suggestion that an increase in [Sr] in plaque (fluid) 

is directly correlated with the ability of plaque to acquire more F. 

 Finally, the present authors were somewhat surprised by the current lack of interest in Sr 

and caries in the dental research community as the related caries research has come to an almost 

standstill over the last ten years. Considering the many unanswered questions and the 

phenomenon that an ‘optimum’ [Sr] for caries prevention may exist, the lack of interest is 

somewhat rather puzzling. In view of the long and complicated relationship between Sr and 

caries, is it now time to ‘file for divorce’? To put it simplye, no, not yet. 

 

 

7. Conclusions 

 

Sr has been shown to exhibited some cariostatic properties in the majority of animal caries and 

epidemiological studies reported to date. The results of several epidemiological studies (Figure 

1) led investigators to suggest (and almost believe in) an ‘optimum’ [Sr] in water. However, no 

definite proof of the role of Sr in caries prevention or about the existence of an ‘optimum’ [Sr] 

can be provided based on the current data, mainly due to the lack of RCTs and the insufficient 

information provided in the epidemiological studies. A thorough understanding of the role of Sr 

in caries prevention is therefore required, especially regarding its association with the dental hard 
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tissues, plaque and plaque fluid and the mineral phases involved. Furthermore, associations 

between F, Ca and Sr in the oral cavity need to be investigated. 
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Table 1. Concentrations of Sr found in EEnamel (in chronological, then alphabetical order; permanent teeth unless noted otherwise) 

 

Reference Tooth type Age of teeth Analysis depth n 

ppm 

(SD) 

Range 

(ppm) 

Method of 

Analysis 

Steadman et al. 

[1958] 

  

whole enamel in layers >12 

 

24-583a AES 

Söremark and 

Samsahl [1961] Premolars 14-16 yrs. whole enamel 15 

91 

(22)a 

 

GRS 

Calonius and Visapää 

[1965] 

  

whole enamel 16 

 

10-100 WDXRF 

Lundberg et al. 

[1965] 

unerupted 

premolars 14-25 yrs.  10 

81 

(32)ab 

 

GRS 

Little and Steadman 

[1966] 

 

<30 yrs. 

near-surface and bulk 

enamel 328 

 

60-110 AES 

  

>30 yrs. 

near-surface and bulk 

enamel 332 

 

60-110 AES 

Hardwick and Martin 

[1967] 

   

2 

 

100-

1000 MS 

Retief et al. [1971] 

  

whole enamel 7 

111 

(10) 

 

INAA 

Cutress [1972a] Premolars 

 

surface and near-surface 

enamel 

  

97-633 ES 
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deciduous canines 

 

surface and near-surface 

enamel 

  

18-165 ES 

Derise and Ritchey 

[1974] 

 

10-12 yrs. whole enamel 39 

33 

(27) 

 

AAS 

  

13-16 yrs. whole enamel 47 

308 

(24) 

 

AAS 

  

17-24 yrs. whole enamel 43 

231 

(25) 

 

AAS 

  

≥25 yrs. whole enamel 44 

283 

(25) 

 

AAS 

Helsby [1974] 

  

whole enamel 1 116a 

 

AAS 

Losee et al. [1974a] first premolar <20 yrs. 

coronal 2/3 of buccal 

cusp 93 76 (8) 14-450 AAS 

Losee et al. [1974b] first premolar <20 yrs. 

coronal 2/3 of buccal 

cusp 28 

79 

(11)a 25-272a MS 

Brudevold et al. 

[1975] Incisors 9-15 yrs. surface enamel 35 

67 

(20) 26-132 AAS 

Curzon et al. [1975] Premolars 11 yrs. whole enamel 36 93 (5) 39-170 MS 

Rytömaa et al. [1975] (deciduous) 

 

whole enamel 2327 

 

28-157 AAS 

Ahlberg and 

Akselsson [1976] 

  

‘external’ and ‘internal’ 

enamel 1 

 

120-170 PIXE 

Little and Barrett premolars 12-14 yrs. surface, near-surface and 87 

 

30-1200b MS 
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[1976a] bulk enamel 

Little and Barrett 

[1976b] Premolars <20 yrs. 

surface, near-surface and 

bulk enamel 84 

 

115-600b MS 

Nixon and Helsby 

[1976] 

 

deciduous whole enamel 114 

 

56-203a AAS 

   

whole enamel 181 

 

70-232a AAS 

Curzon and Losee 

[1977a] Premolars 11-19 yrs. 

coronal 2/3 of buccal 

cusp 147 

183 

(15) 21-1200 MS 

Curzon and Losee 

[1977b] Premolars <20 yrs. whole enamel 208 

 

60-210b AAS 

Frostell et al. [1977] Premolar 

 

whole enamel as depth 

profile 1 

 

150-250c SIMS 

Helsby [1977] 

  

whole enamel 1 100a 

 

AAS 

Curzon and Losee 

[1978] Premolars <20 yrs. whole enamel 83 

 

50-170b AAS 

Schamschula et al. 

[1978a] 

 

12-14 yrs. surface enamel 299 

101 

(29) 83-116 ES 

Spector and Curzon 

[1978] Premolars 10-20 yrs. surface enamel 223 

 

50-540b AAS 

Spector and Curzon 

[1979] premolars 10-70 yrs. surface enamel 439 

366 

(435) 

 

AAS 

Vrbic and Stupar premolars 8-15 yrs. surface and near-surface 100 

 

68-122 AAS 
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[1980] enamel 

Athanassouli et al. 

[1983] premolars 

 

surface enamel 27 

 

39-152 AAS 

  

deciduous surface enamel 13 

 

38-150 AAS 

Curzon [1985] premolars 14 yrs. surface enamel 80 

421 

(31) 

ndd-

1270c AAS 

Antilla [1986] incisors, canines 

deciduous, 6-

9 yrs.  77 

 

40-110ab PIXE 

Frank et al. [1989] premolars, molars 9-64 yrs. 

near-surface and bulk 

enamel 22 

 

40-270b EDXRF 

Zaichick and 

Ovchjarenko [1996] 

incisors, canines, 

premolars 

 

whole enamel 10 

352 

(101) 

 

EDXRF 

 

incisors, canines deciduous whole enamel 10 

354 

(95) 

 

EDXRF 

Zaichick et al. [1999] 

incisors, canines, 

premolars 12-60 yrs. surface enamel 35 

 

50-800b EDXRF 

Shashikiran et al. 

[2007] incisors 

deciduous, 7-

12 yrs. whole enamel 10 

131 

(1) 129-133 AAS 

 

premolars 14-20 yrs. whole enamel 10 

209 

(1) 209-210 AAS 

 
a corrected for enamel water content of 2.8% 
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b estimated values based on reported mean and standard error/deviation for multiple sampling depths and/or populations 
c estimated value based on profile data 
d not detectable 

* acronyms used: AES – arc emission spectrometry; GRS – gamma-ray spectroscopy; WDXRF – wavelength dispersive X-ray 

fluorescence; MS – mass spectrometry; INAA – instrumental neutron activation analysis; ES – emission spectography; AAS – 

atomic absorption spectrometry; PIXE – proton-induced X-ray emission; SIMS – secondary ion mass spectrometry; EDXRF – 

energy dispersive X-ray fluorescence (EDXRF) 
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Table 2. Concentrations of Sr found in Dentin of Permanent Teeth (in chronological, then alphabetical order) 

 

Reference 

Tooth 

type 

Age of 

teeth Analysis depth n ppm (SD) 

Range 

(ppm) 

Method of 

Analysis 

Steadman et al. [1958] 

  

whole root dentin in layers >12 

 

90-558a AES 

Söremark and Samsahl 

[1962] premolars 14-16 yrs. whole dentin 15 63 (18)a 

 

GRS 

Calonius and Visapää [1965] 

  

whole dentin 16 

 

10-100 WDXRF 

Hardwick and Martin [1967] 

   

2 

 

100-1000 MS 

Retief et al. [1971] 

  

whole dentin including 

cementum 6 94 (12) 

 

INAA 

Derise and Ritchey [1974] 

 

10-12 yrs. whole dentin 39 179 (17) 

 

AAS 

  

13-16 yrs. whole dentin 47 219 (16) 

 

AAS 

  

17-24 yrs. whole dentin 43 183 (16) 

 

AAS 

  

≥25 yrs. whole dentin 44 139 (16) 

 

AAS 

Ahlberg and Akselsson 

[1976] 

  

whole dentin 1 200 

 

PIXE 

Frostell et al. [1977] premolar 

 

whole dentin as depth 

profile 1 

 

220-250b SIMS 

Lappalainen and Knuutyila 

[1982] 

 

10-76 yrs. whole dentin 123 73 (24)a 

 

AAS 

Möller and Carlsson [1984] premolars 

 

coronal circumpulpal 11 

 

24-251 PIXE 
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dentin 

 
a corrected for dentin water content of 10% 
b estimated value based on profile data 
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Table 3. Concentrations of Sr found in Plaque (in chronological order) 

 

Reference n Age Geographical area ppm (SD) Comments 

Schamschula et al. [1977a] 72 

9.7-13.0 

yrs. New South Wales, Australia 2.6 (2.2) in dry weight 

Schamschula et al. 

[1978a,b] 293 12-24 yrs. 

several small, neighboring villages in 

Papua New Guinea 20.4 (17.4) in dry weight 

Shields et al. [1984] 32 14 yrs. Ohio, USA 140 (106) in solids 

Shields et al. [1984] 19 14 yrs. Ohio, USA 338 (449) in fluid 

Curzon [1985] 80 14 yrs. Ohio, USA 12.3 (14.6) in dry weight 

Curzon [1985] 80 14 yrs. Ohio, USA 1.4 (1.6) in wet weight 

Pearce and Sissons [1987] 4 

 

Wellington, New Zealand 58.7 (14.9)a in dry weight 

Spets-Happonen et al. 

[1998] 19 30-55 yrs. Kuopio, Finland 17.8 in dry weight 

 
a measured after the use of a Sr-free mouthrinse 
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Table 4. Concentrations of Sr found in Saliva (in chronological order) 

 

Reference n Age Geographical area ppb (SD) 

Range 

(ppb) Comments 

Arwill et al. [1967] 6 

22-24 

yrs. Umea, Sweden 11.3 (3.5) 7.7-16 resting 

 

6 

22-24 

yrs. Umea, Sweden 21.7 (20.8) 8-63 stimulated (paraffin) 

Dreizen et al. [1970] 15 adults Texas, USA 5 (6) <5-24 

stimulated 

(pilocarpine) 

 

11 adults Texas, USA 13 (23) <5-89 stimulated (paraffin) 

Cutress [1972b] 31 

6-23 

yrs. Wellington, New Zealand 20 (20) 0-? 

stimulated, mixed 

saliva 

 

31 

6-23 

yrs. Wellington, New Zealand 20 (20) 0-? 

stimulated, parotid 

saliva 

Schamschula et al. 

[1978b] 283 

12-24 

yrs. 

several small, neighboring villages in 

Papua New Guinea 89 (122) 

 

stimulated 

Curzon [1984] 91 14 yrs. Wisonsin, USA 35 (30) 20-2930 resting 

Shigemi et al. [2008] 521 

6-12 

yrs. Kitakyushu, Japan 7.7 (3.6) 1.7-20.6 resting 
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Table 5. Rat Caries Reduction as a Function of Sr Dose Pre- and Post-eruptively in the Presence or Absence of F 

 

Reference Pre-/Post-a n Srb Fb E (total)c % change 

vs. waterd 

% change 

vs. 

fluorided 

Meyerowitz et al. [1979] Pre- 10 0 0 29.6 - - 

  10 2.5 0 23.2 -21.6 - 

  9 5 0 21.5 -27.4 - 

  10 10 0 25.4 -14.2 - 

  10 0 1 28.5 -3.7 - 

  9 2.5 1 26.5 -10.5 -7.0 

  10 5 1 24.4 -17.6 -14.4 

  10 10 1 26.7 -9.8 -6.3 

 Post- 10 0 0 21.4 - - 

  9 50 0 18.2 -15.0 - 

  10 100 0 23.4 +9.3 - 

  10 150 0 21.3 -0.5 - 

  10 0 10 13.2 -38.3 - 

  8 50 10 14.2 -33.6 +7.6 

  10 100 10 15.4 -28.0 +16.7 

Ashrafi et al. [1980] Pre- + 

Post- 

5 0 0 35.4 - - 
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  5 0.5 + 5 0 29.3 -17.2 - 

  5 1.0 + 10 0 24.8 -29.9 - 

  4 2.5 + 25 0 28.3 -20.2 - 

  8 5.0 + 50 0 29.9 -15.6 - 

  6 7.5 + 75 0 21.5 -39.3 - 

Curzon [1988]  10 0 0 34.9 - - 

  10 0 10 + 10 21.7 -37.8 - 

  10 0.5 + 5 10 + 10 24.1 -30.9 11.1 

  10 5 + 50 10 + 10 17.0 -51.3 -21.7 

  10 10 + 100 10 + 10 19.2 -45.0 -11.5 

  10 15 + 150 10 + 10 17.8 -49.0 -18.0 

  8 20 + 200 10 + 10 19.1 -45.3 -12.0 

  10 30 + 300 10 + 10 20.0 -42.7 -7.8 

 
a Sr and/or F given pre- or post-eruptively 
b concentration in µg/10 g body weight if given pre-eruptively, or in mg/l if given post-eruptively (water) 
c sum of buccolingual, sulcal and proximal enamel caries scores 
d negative values are indicative of a caries reduction, positive values indicate increase 
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Figure 1. Summary of three epidemiological studies on effects of Sr in water on caries 

occurrence (measured as DMFS scores): ■□ data from Curzon et al. [1978]; ● data from Curzon 

et al. [1970]; ♦ data from Curzon [1985]. 
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