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Abstract 

The present study investigated de- and remineralization in enamel lesions under plaque fluid 

(PF)-like conditions using quantitative light-induced fluorescence (QLF). Pre-formed lesions 

were exposed to partially saturated lactic acid solutions, varying in pH and fluoride concentration 

([F]) based on a 5×3 factorial study design (0/0.1/0.5/1.5/4ppm F;pH 4.9/5.2/5.5). Average 

fluorescence loss (ΔF) was monitored for 11 days. Subsequently, lesions were demineralized in a 

partially saturated acetic acid solution for two 24h periods. Data were analyzed using repeated 

measures analysis of covariance. Lesions exposed to PF at 4ppm F and pH 5.5 showed not only 

the most remineralization (ΔΔF=28.2±14.0%) for all groups after 11d, but also the most 

demineralization (ΔΔF=-19.3±13.5%) after subsequent acetic acid exposure. Increased [F] 

resulted in more remineralization regardless of pH. Higher pH values resulted in more 

remineralization. No remineralization was observed in lesions exposed to F-free solutions, 

regardless of pH. Remineralization was noticeable under the following conditions: pH 4.9 – 

[F]=4ppm, pH 5.2 – [F]≥1.5ppm, pH 5.5 – [F]≥0.5ppm. Overall, [F] had a stronger effect on 

remineralization than pH. Subsequent demineralization showed that little protection was offered 

by PF-like solutions, and further demineralization compared to baseline was observed on lesions 

not remineralized initially. [F] had a stronger effect on net mineral change than pH. The present 

study has shown that QLF is a valuable tool in studying lesion de- and remineralization under 

PF-like conditions, where [F] was shown to be more important than pH.. 



Introduction 

In vitro de- and remineralization of enamel caries lesions in the presence or absence of fluoride 

have been studied using a broad range of approaches, which were subject to comprehensive 

reviews in the past [Featherstone, 1996; ten Cate, 1990]. In general, these studies can be divided 

into two groups – studies using pH cycling models with samples being subjected to alternate 

treatments with de- and remineralization solutions [ten Cate and Duijsters, 1982], which have 

been developed further to study the comparative effectiveness of (fluoride) treatments in 

preventing demineralization and/or enhancing remineralization of caries lesions [White, 1987, 

1988] or, studies using constant composition conditions to study the inherent de- or 

remineralization effectiveness of a solution [ten Cate and Arends, 1977]. Typically, 

remineralizing solutions either mimicking human saliva in its chemical composition or 

resembling hydroxyapatite stoichiometry and demineralizing solutions resembling high 

cariogenic challenges are employed in these studies, and especially in pH cycling protocols. 

However, conditions at the sites of caries occurrence; i.e. at the plaque enamel interface, are 

somewhat different. Studies on the composition of plaque-fluid (PF) (i.e. the aqueous, 

extracellular phase of plaque) have found marked differences between the chemical composition 

of PF and that of human saliva [Carey et al., 1986; Gao et al., 2001]. In particular, pH, Ca, F and 

Pi concentrations as well as the Ca/Pi ratio in PF were shown to be dissimilar to human saliva. 

Little research has been conducted investigating the effect of PF-like systems on lesion de- and 

remineralization, which, essentially, are de- and remineralization systems close to saturation with 

respect to enamel and hydroxyapatite. Previous, relevant studies [Lynch et al., 2006; Yamazaki 

et al., 2007] have shown that these systems are very sensitive to small changes in pH and 

especially fluoride in terms of the net outcome – further de- or remineralization of the lesion. 

Despite being a relatively new interrogation technique, quantitative light-induced fluorescence 

(QLF) has been employed in caries research in a broad range of applications: pH cycling studies 

[Hafstrombjorkman et al., 1992], studies on very early demineralization [Ando et al., 1997], in 

monitoring in vivo remineralization of white spot lesions in orthodontics patients [Al-Khateeb et 

al., 1998] and in studies on lesion activity [Ando et al., 2006] to name only a few. Comparative 



studies in relation to the “gold standard” technique transverse microradiography (TMR) have 

been conducted, and good correlations were shown by various investigators [Ando et al., 2001; 

Fujikawa et al., 2008; Hafstrombjorkman et al., 1992]. One of the major advantages of QLF over 

TMR is the ability to nondestructively and longitudinally monitor progression and reversal of 

caries lesions without having to compromise on the “window width” of the lesion, which has 

been shown to be a very important factor in, at least, the demineralization of the dental hard 

tissues [Ruben et al., 1999]. Repeated TMR analysis on the same specimen is only possible using 

“single section” [Tanaka et al., 1993] or “sandwich” [Mellberg et al., 1986] models, both 

compromising on the optimum lesion “window width”. 

Therefore, the aim of the present study was to build on the findings of a previous, relevant study 

[Lynch et al., 2006], by longitudinally monitoring of de- and remineralization of artificial carious 

lesions under PF-like conditions in vitro using QLF. 

Materials and Methods 

Enamel Specimen Preparation 

Enamel blocks, approx. 5×5mm in size, were prepared from sound, bovine incisors and 

embedded in epoxy resin (‘EpoxyCure’; Buehler, Coventry, UK). The labial surfaces were 

abraded to a depth of approx. 0.5mm to expose bulk enamel, and specimens were then polished 

using P800 silicon carbide abrasive discs on a water-cooled grinder-polisher (‘AutoMet’; 

Buehler, Coventry, UK). Two pieces of clear, solvent resistant, self-adhesive tape (‘853’; 3M, 

Manchester, UK) were placed across two opposite sides of the specimens, thus exposing an 

experimental window of approx. 5×2mm in size. Prepared specimens were stored at 100% 

relative humidity until use. 

Lesion Preparation 

Subsurface caries lesions were created in specimens using a modified acid gel method 

based on that used by Laboratory D as described elsewhere [ten Cate et al., 1996]. Specimens 

were placed in containers and covered with approx. 2.5cm of an 8% methyl cellulose (‘M0387’; 



Sigma-Aldrich, Dorset, UK) gel which was left to set at 4°C overnight. The gel was then covered 

with an equal volume of 0.1M lactic acid, pH adjusted to 4.6 with KOH. The containers were 

sealed and placed in an incubator at 37°C for 12 days. After the demineralization period, 

specimens were removed from the gels, rinsed using deionized water and stored at 100% relative 

humidity until further use. 

QLF Measurements 

All specimens were air-dried for at least 30min at room temperature before QLF 

measurements were performed using the ‘QLF In Vitro’ system (Inspektor Research Systems 

BV, Amsterdam, the Netherlands), which is described elsewhere [Gmur et al., 2006]. As the 

lesion window was identical in size for all specimens, only average fluorescence loss (ΔF) values 

were recorded and at a threshold level of 5%, i.e. a minimum of 5% fluorescence loss between 

sound and demineralized enamel. The distance between the camera and the surface of the enamel 

block was kept constant throughout the experiment to facilitate repeat measurements. Specimens 

were randomized into 15 treatment groups (n=9 per group) based on ΔF after lesion creation. 

Repeat Measurements on specimens were performed after 2, 4, 7, 9 and 11 days of exposure to 

PF-like solutions, and after 24 and 48 hours of exposure to the partially saturated acetic acid 

solution. QLF images were superimposed to accurately calculate ΔΔF values for each specimen. 

ΔΔF values were calculated using the following equations: 

ΔΔFPF = ΔFPF(11d) – ΔFBase

(describes extent of de- or remineralization of lesions after PF-exposure in relation to 

lesion baseline) 

ΔΔFPSAc = ΔFPSAc(48h) – ΔFPF(11d) 

(describes extent of demineralization of lesions after acetic acid exposure in relation to 

lesions after PF-exposure) 

ΔΔFnet = ΔΔFPF + ΔΔFPSAc = ΔFPSAc(48h) – ΔFBase 

(describes extent of de- or remineralization of lesions after PF- and acetic acid exposure 

in relation to lesion baseline) 

Thus, positive ΔΔF values indicate remineralization, whereas negative ΔΔF values indicate 

(further) demineralization.  



Plaque Fluid (PF)-like Solutions 

A total of 15 different solutions, based on a 5×3 factorial study design, and simulating PF 

in its chemical composition were prepared. All solutions contained 30mM lactic acid, 5.5mM 

calcium chloride dihydrate, 9.4mM potassium dihydrogen phosphate and 63mM potassium 

chloride, but varied in fluoride concentration (0/0.1/0.5/1.5/4ppm F as NaF) and pH (4.9/5.2/5.5 

– adjusted using KOH). Fluoride to hydrogen ion molar ratios were calculated for all solutions

and are shown in table 1. Solutions and groups of specimens treated with these solutions 

were coded in the present study based on [F] and pH; e.g. “0.5F/pH4.9” would describe a 

solution containing 0.5ppm F and having a pH of 4.9 and also a group of nine specimens treated 

with this solution. Specimens were exposed to these solutions at 37°C for 11 days with the 

solutions being renewed after 2, 4, 7 and 9 days; i.e. after QLF measurements were performed. 

Partially Saturated Acetic Acid Solution (PSAc) 

A partially saturated acetic acid solution [Lynch and ten Cate, 2006] containing 50mM 

acetic acid, 2.25mM calcium chloride dihydrate, 1.35mM potassium dihydrogen phosphate and 

130mM potassium chloride, pH adjusted to 5.0 with KOH was prepared. After 11 days of 

exposure to PF-like solutions, all specimens were exposed to the acetic acid solution at 37°C for 

two consecutive 24 h periods on a group by group basis. 

Calculation of Saturation with Respect to Calcium Phosphate and Fluoride Phases 

The solutions’ respective degrees of saturation with respect to hydroxyapatite (DSHA), 

octacalcium phosphate (DSOCP), brushite (DSBR), fluorapatite (DSFA) and calcium fluoride 

(DSCaF2) were calculated using a computer program [Shellis, 1988] and are shown in table 1. 

Statistical Analysis 

Comparisons between different pH values and fluoride concentration combinations were 

compared using a repeated measures analysis of covariance. The repeated ANCOVA model 

included ΔF as the response variable and factors for pH, fluoride concentration [F], time and 

ΔFBase as a covariate. Interaction terms were also included for pH×[F] and pH×[F]×time. These 

interaction terms provided the comparisons between the 15 different combinations of pH with 

[F]. The model was broken out into a remineralization phase and a demineralization phase. The 



remineralization phase was over days 2 to 11 (with day 0 as a baseline covariate). The 

demineralization phase was over days 11 to 13 (with day 0 as a baseline covariate). The software 

SAS v8.2 (SAS Institute Inc., Cary, N.N., USA) was used to analyse the data. 

Results 

Statistical analysis of QLF data revealed statistically significant interactions between pH×[F] 

and pH×[F]×time (p < 0.001). The results of all QLF measurements and calculated ΔΔF values 

are shown in figure 1. The average ΔF (± SD) for all specimens at lesion baseline was -55.6 ± 

6.2%. Numerically, group “4F/pH5.5” showed not only the highest ΔΔFPF (28.2 ± 14.0 %) for all 

groups, but also the highest ΔΔFPSAc (– 19.3 ± 13.5 %). ΔΔFnet values were negative for all 

fluoride-free groups, those containing 0.1ppm F and group “0.5F/pH4.9”. All other groups 

showed positive ΔΔFnet values. For specimens of all groups, no relationship between ΔFBase and 

ΔFPF was observed (r = – 0.16). However, there was a strong relationship between ΔFPF(11d) and 

ΔFPSAc(24h) (r = – 0.72). 

Relatively small changes in ΔΔF were observed on all specimens during the first four days of 

exposure to PF-like solutions. Then, an almost exponential increase in ΔΔF values was noted in 

0.5F, 1.5F and 4F groups, before plateauing in the 4F group. The first 24h PSAc exposure led to 

a sharp decrease in ΔΔF values, and especially for specimens showing increased ΔFPF(11d) values 

(i.e. specimens that showed considerable remineralization after 11 days of PF exposure). 

However, comparatively little difference in ΔΔF between 24 h and 48 h PSAc was observed for 

all specimens. 

The results of the statistical analyses of the PF data are presented in table 23. For better 

visualization of treatment differences, figure 2 shows the overall pH and F effects during PF and 

combined PF and PSAc exposures on ΔΔF. For the different F concentrations and pH ranges 

tested, F had a stronger effect on ΔΔFPF than pH; a difference in [F] of 1ppm had the same effect 

as a difference in 0.6 pH units. Linear pH (r = 1.00) and [F] (r = 0.99) ΔΔFPF relationships were 

found. Furthermore, strong relationships were found for DSFA and ΔΔFPF (r = 0.70) for groups 



treated with F-containing solutions, and for DSHA and ΔΔFPF (r = 0.79) for groups treated with 

F-free solutions. 

The results of the statistical analyses of the PSAc data are presented in table 34. The statistical 

analysis of ΔFPSAc data at 13d are equivalent to the statistical analysis of the ΔΔFnet data. Again, 

[F] had a stronger effect than pH (on ΔΔFnet). A linear pH ΔΔFnet relationship (r = 0.99) was 

found, whereas the [F] ΔΔFnet relationship followed an exponential pattern (r = 1.00). 

Variability in ΔF measurements for groups showing remineralization increased with exposure 

time. As an example for all these groups, ΔF values for each specimen of group “4F/pH5.5” vs. 

time are presented in figure 3. 

Discussion 

The design of the present study was based on previous investigations [Lynch et al., 2006; 

Yamazaki et al., 2007] with the aim to further build on F and pH effects in PF-like solutions on 

the de- and remineralization of caries lesions by investigating F effects over a smaller range, and 

pH effects over a broader range, than reported previously, thus increasing the physiological 

relevance. Furthermore, the acid resistance of the lesions post-PF exposure was investigated. The 

compositions of the PF-like solutions used in the present study were loosely based on the 

aforementioned studies and were similar to the chemical composition and pH range reported for 

plaque fluid (4.97 – 5.45) [Carey et al., 1986; Gao et al., 2001]. To facilitate repeated QLF 

measurements, “simple” solutions rather than a gel system [Blake-Haskins et al., 1992; Lynch et 

al., 2006] were used for the PF treatments, thus resembling more smooth surface caries. Baseline 

lesion severity (ΔFBase was among the lowest reported in the literature), taking into account the 

solutions’ DS values (table 1), as well as lesion mineral distribution (methyl cellulose acid gels 

yield high-R lesions) were chosen to allow for better treatment discrimination [Lynch et al., 

2007; Lynch and ten Cate, 2006]. So, although the physiological relevance of the study would 

have been enhanced by the presence of a plaque-mimetic, in terms of both modified mineral 

diffusion and reduction in ionic activity, the chosen study design was optimized for a better 



mechanistic understanding of the impact of [F] and pH on de- and remineralization of caries 

lesions under PF-like conditions over time. 

No net demineralization post PF-treatments occurred in any of the experimental groups, which 

was not surprising, considering DSHA > 1 for all PF-like solutions. Some marked differences in 

DSHA, DSOCP and DSBR between the different solution pH values, as well as the relatively small 

differences in DSFA between the different [F] compared to DSFA differences between pH values 

tested, would have suggested a stronger pH than F effect on ΔΔFPF; however, the opposite was 

the case as [F] had a considerably stronger effect than pH in the present study (figure 2). These 

findings are in agreement with a previous study [Lynch et al., 2006], both highlighting that [F] is 

a more important driving factor than pH for net remineralization under conditions resembling 

plaque fluid, and that even small elevations in [F] (0.5 to 1.5 ppm) can compensate for relatively 

large pH differences (5.5 to 4.9) as seen in the present study. In other words and extrapolating 

this to the clinical situation, successful remineralization strategies should be predominantly based 

on delivering effective amounts of fluoride – regardless of the application pH. Furthermore, 

strategies based on pH buffering agents are less likely to be successful, but may provide an 

alternative where fluoride cannot be employed. However, further studies employing lower and 

higher pH values than those employed in the present studies are warranted to fully understand 

the pH × [F] interaction. 

After 11 days of exposure to PF-like solutions, remineralization was only noted under the 

following conditions: pH 4.9 – [F] = 4 ppm, pH 5.2 – [F] ≥ 1.5 ppm, pH 5.5 – [F] ≥ 0.5 ppm (see 

statistical analysis in table 2). All other groups showed no significant changes from lesion 

baseline.  

The lack of appreciable remineralization in most groups within the first 4 days of PF-exposure 

and the sudden increase in ΔΔFPF between days 4 and 7, especially for some F groups, was 

somewhat surprising (figure 13). However, considering the entire 11 day period, almost linear 

relationships in ΔF vs. PF exposure time were noted in most groups showing net remineralization 

(figure 1). This is at least partially in agreement with comparable studies [Yamazaki et al., 2007; 

Yamazaki and Margolis, 2008], both investigating [F] effects on remineralization under acidic, 



PF-like conditions and observing almost linear relationships between remineralization time and 

reduction in lesion volume. The reasons for this discrepancy within the first days of PF exposure 

and the general variability in lesion response – perceived or not – are not clear. It can only be 

speculated that either lack of sensitivity of the QLF technique in comparison to TMR at these 

early stages, or, and perhaps more likely, the general lack of knowledge about the QLF technique 

in relation to lesion parameters (e.g. surface zone mineralization, “R” value, presence of 

lamination etc.) and changes thereof may explain this discrepancy. However, for longitudinal 

studies, it does highlight the value of techniques which complement TMR, which by virtue of its 

destructive nature currently gives information at a limited number of time-points [Lynch et al., 

2007]. To the authors’ knowledge, no comparative QLF/TMR studies have been conducted on 

lesions de- and or remineralized using PF-like systems, but relevant TMR studies [Lynch et al., 

2006; Yamazaki et al., 2007; Yamazaki and Margolis, 2008] have shown considerable changes 

in mineral distribution within the lesions as well as lamination under these conditions. Although 

QLF has been shown to be fairly robust to changes in surface zone mineralization [Fujikawa et 

al., 2008], further, comparative studies are required to fully understand the potential of this still 

relatively new technique. 

The comparison of [F] and pH effects on ΔΔFnet vs. ΔΔFPF is not straightforward and perhaps 

impossible (figure 2). Overall pH effects did not appear to differ between the two “effectiveness” 

measures, but F effects followed a different pattern for ΔΔFnet in comparison to ΔΔFPF. It must 

be considered that significant differences existed in ΔF values of lesions prior to PSAc exposure, 

thus further complicating the interpretation of the data. Lesion baseline characteristics have been 

shown to have an impact on subsequent de- and remineralization behavior of lesions – lesion 

baseline demineralization is inversely related to subsequent demineralization; i.e. smaller lesions 

(by means of lesion severity at baseline) tend to demineralize faster than deeper lesions [Lynch 

and ten Cate, 2006]. Thus, it was not surprising that lesions showing the highest ΔΔFPF also 

showed the highest ΔΔFPSAc. However, no such relationship was observed between ΔFBase and 

ΔΔFPF, although considerable differences in the responsiveness of lesions to PF treatments, 

especially those with [F] > 0.1 ppm, were seen (figure 1). Differences in mineral distribution at 

baseline, and especially differences in the degree of surface zone mineralization, may be an 

explanation for the varied response to F under these conditions. 



Based on the ΔΔFnet data, “acquired acid resistance” [Koulourides and Cameron, 1980] of the 

lesions was observed in relationship to [F] during PF exposure in the present study. Interestingly, 

a sharp decrease in ΔF after 24 h of PSAc exposure was noted, but very little difference in ΔF 

was observed between 24 h and 48 h PSAc. Newly deposited mineral may have been rapidly lost 

during the first 24 h of the post-PF exposure acetic acid challenge, but further demineralization 

was prevented, suggesting that only a “minor arrest” of the lesions occurred during the PF 

exposure. Lesion baseline characteristics (the chosen methyl cellulose acid gel methodology 

yields high-R lesions) may have been a contributing factor as high-R lesions can be considered 

more difficult to arrest than naturally occurring white spot lesions (which were shown to exhibit 

low-R values [Lynch et al., 2007]). The comparatively lower degree of surface zone 

mineralization of high-R lesions complicates the establishment of a surface zone diffusion 

barrier, and this may at least partially explain the present findings. 

Further studies are required employing the (current) gold standard technique TMR and more 

physiologically relevant study protocols (e.g. use of low-R lesions and lesions with different 

degrees of mineral loss at baseline, use of experimental setups mimicking plaque better in its 

physical and chemical properties) to validate the findings of the present study. 

In conclusion, the present study has shown that QLF is a valuable tool in studying lesion de- and 

remineralization under PF-like conditions. Under the conditions of the study, [F] was shown to 

be more important than pH in lesion remineralization and protection against subsequent 

demineralization.  
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Table 1. Fluoride to hydrogen ion molar ratios and degree of saturation of solutions used in the 

present study with respect to calcium phosphate and fluoride phases (HA – hydroxyapatite; OCP 

– octacalcium phosphate; BR – brushite; FA – fluorapatite; CaF2 – calcium fluoride).

Table 2. Statistical analysis of ΔFPF data. Separate results are shown for each pH - [F] 

combination, at days 2, 4, 7, 9, and 11. Statistically significant differences within pH or F groups 

are underlined and highlighted in bold. 

Capital letters represent treatment means comparison within pH group (i.e. comparison within 

rows), whereas lower case letters represent treatment means comparisons with F group (i.e. 

comparison within columns). 

Table 3. Statistical analysis of ΔFPSAc data. Separate results are shown for each pH - [F] 

combination, at days 11, 12, and 13. The statistical analysis of ΔFPSAc data at 13d are equivalent 

to the statistical analysis of the ΔΔFnet data. Statistically significant differences within pH or F 

groups are underlined and highlighted in bold. 

Capital letters represent treatment means comparison within pH group (i.e. comparison within 

rows), whereas lower case letters represent treatment means comparisons with F group (i.e. 

comparison within columns). 

Figure 1. Results of QLF measurements for all 15 experimental groups as a function of 

treatment period and time. Lesions were exposed to plaque fluid-like solutions (PF) for 11d, 

followed by 2x24h treatments with a partially saturated acetic acid solution (PSAc). NET change 

vs. lesion baseline after conclusion of experiment was calculated. ΔΔF values were calculated 



with respect to ΔF at lesion baseline (-55.6%). Positive values indicate remineralization, whereas 

negative values are indicative of further demineralization. Error bars were omitted for better 

clarity.

Figure 2. Overall pH (right axis, unfilled symbols) and F (left axis, filled symbols) effects on 

ΔΔFnet (circle) and ΔΔFPF (square).  

Figure 3. ΔF vs. exposure time for all nine specimens treated with the plaque fluid-like solution 

containing 4ppm F at pH 5.5 (baseline – 0d; treatment with plaque fluid-like solution – 0 to 11d; 

exposure to partially saturated acetic acid solution – 11 to 13d). 



Table 1. Fluoride to hydrogen ion molar ratios and degree of saturation of solutions used in the 

present study with respect to calcium phosphate and fluoride phases (HA – hydroxyapatite; OCP 

octacalcium phosphate; BR – brushite; FA – fluorapatite; CaF2 – calcium fluoride).

Solution F/H molar 

ratio 

DSHA DSOCP DSBR DSFA DSCaF2 

0F/pH4.9 0 1.24 0.49 0.50 0.00 0.00 

0.1F/pH4.9 0.42 1.24 0.49 0.50 4.65 0.08 

0.5F/pH4.9 2.09 1.24 0.49 0.50 5.55 0.23 

1.5F/pH4.9 6.27 1.24 0.49 0.50 6.27 0.48 

4F/pH4.9 16.72 1.24 0.49 0.50 6.99 0.91 

0F/pH5.2 0 2.09 0.74 0.70 0.00 0.00 

0.1F/pH5.2 0.83 2.09 0.74 0.70 7.29 0.08 

0.5F/pH5.2 4.17 2.09 0.74 0.70 8.70 0.23 

1.5F/pH5.2 12.51 2.09 0.74 0.70 9.83 0.48 

4F/pH5.2 33.37 2.09 0.74 0.70 10.96 0.92 

0F/pH5.5 0 3.53 1.13 0.97 0.00 0.00 

0.1F/pH5.5 1.66 3.53 1.13 0.97 11.37 0.08 

0.5F/pH5.5 8.32 3.53 1.13 0.97 13.58 0.23 

1.5F/pH5.5 24.97 3.53 1.13 0.97 15.34 0.47 

4F/pH5.5 66.57 3.53 1.13 0.97 17.11 0.91 

Acetic acid 0 0.46 0.17 0.13 0.00 0.00 



Table 2. Statistical analysis of ΔFPF data. Separate results are shown for each pH - [F] 

combination, at days 2, 4, 7, 9, and 11. Statistically significant differences within pH or F groups 

are underlined and highlighted in bold. 

F [ppm] 

Time [d] pH 0 0.1 0.5 1.5 4 

2 

4.9 A - a A - a A - a A - a A - a 

5.2 A - a A - a A - a A - a A - a 

5.5 A - a A - a A - a A - a A - a 

4 

4.9 A - a A - a A - a A - a A - a 

5.2 AB - a A - a AB - a AB - a B - a 

5.5 A - a A - a A - a A - a A - a 

7 

4.9 A - a A - a A - a AB - a B - a 

5.2 A - a A - a A - a AB - a B - a 

5.5 A - a A - a A - a AB - a B - a 

9 

4.9 A - a A - a A - a A - a B - a 

5.2 A - a A - a A - a A - a B - ab 

5.5 A - a A - a AB - a B - a C - b 

11 

4.9 A - a A - a A - a A - a C - a 

5.2 A - a A - a A - a BC - a C - a 

5.5 A - a AB - a BC - b C - a D - a 

Capital letters represent treatment means comparison within pH group (i.e. comparison within 

rows), whereas lower case letters represent treatment means comparisons with F group (i.e. 

comparison within columns). 



Table 3. Statistical analysis of ΔFPSAc data. Separate results are shown for each pH - [F] 

combination, at days 11, 12, and 13. The statistical analysis of ΔFPSAc data at 13d are equivalent 

to the statistical analysis of the ΔΔFnet data. Statistically significant differences within pH or F 

groups are underlined and highlighted in bold. 

F [ppm] 

Time [d] pH 0 0.1 0.5 1.5 4 

11 

4.9 A - a A - a A - a A - a B - a 

5.2 A - a A - a A - a BC - ab C - a 

5.5 A - a A - a BC - b C - b D - a 

12 

4.9 A - a A - a AB - a BC - a C - a 

5.2 A - a A - a AB - ab BC - a C - a 

5.5 A - a A - a ABC - b BC - a C - a 

13 

4.9 A - a A - a AB - a BC - a C - a 

5.2 A - a A - a AB - ab BC - a C - a 

5.5 A - a A - a ABC - b BC - a C - a 

Capital letters represent treatment means comparison within pH group (i.e. comparison within 

rows), whereas lower case letters represent treatment means comparisons with F group (i.e. 

comparison within columns). 
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