- 1 TITLE: Emergence of drug resistant bacteria at the Hajj: a systematic review
- 2 RUNNING TITLE: Emergence of drug resistant bacteria at the Hajj
- 3 Thongpan Leangapichart^a, Jean-Marc Rolain^a, Ziad A Memish^{b,c}, Jaffar A. Al-
- 4 Tawfiq^{d, e}, Philippe Gautret^a*
- 5
- 6 ^a Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE)
- 7 CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de
- 8 Pharmacie, Aix-Marseille-Université, Marseille, France.
- 9 b Ministry of Health, Riyadh, Saudi Arabia, and Alfaisal University, College of
- 10 Medicine, Riyadh, Saudi Arabia.
- 11 ^c Hubert department of Global Health, Rollins School of Public Health, Emory
- 12 University, Atlanta, USA
- 13 d Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- 14 ^e Indiana University School of Medicine, Indianapolis, IN, USA.
- 15
- * Corresponding author: Philippe Gautret
- 17 Phone: (33) 4 91 96 89 35. Fax: (33) 4 91 96 89 38
- 18 Email: philippe.gautret@club-internet.fr
- 19 Abstract words: 269
- 20 Total words: 3,699
- Number of Table: 2
- Number of Figure: 3
- Number of Reference: 72

26	Abstract
27	Background: Hajj is the annual mass gathering of Muslims, and is a reservoir and
28	potential source of bacterial transmission. The emergence of bacterial transmission,
29	including multi-drug resistance (MDR) bacteria, during Hajj has not been
30	systematically assessed.
31	Methods: Articles in Pubmed, Scopus, and Google scholar were identified using
32	controlled words relating to antibiotic resistance (AR) at the Hajj from January 2002
33	to January 2017. Eligible studies were identified by two researchers. AR patterns of
34	bacteria were obtained for each study.
35	Results: We included 31 publications involving pilgrims, Hajj workers or local
36	patients attending hospitals in Mecca, Mina, and the Medina area. Most of these
37	publications provided antibiotic susceptibility results. Ten of them used the PCR
38	approach to identify AR genes. MRSA carriage was reported in pilgrims and food
39	handlers at a rate of 20%. Low rates of vancomycin-resistant gram-positive bacteria
40	were reported in pilgrims and patients. The prevalence of third-generation
41	cephalosporin-resistant bacteria was common in the Hajj region. Across all studies,
42	carbapenem-resistant bacteria were detected in fewer than 10% of <i>E.coli</i> isolates
43	tested but up to 100% in K. pneumoniae and A. baumannii. Colistin-resistant
44	Salmonella enterica, including mcr-1 colistin-resistant E.coli and K.pneumoniae were
45	only detected in the pilgrim cohorts.
46	Conclusion: This study provides an overview of the prevalence of MDR bacteria at
47	the Hajj. Pilgrims are at high risk of AR bacterial transmission and may carry and
48	transfer these bacteria when returning to their home countries. Thus, pilgrims should
49	be instructed by health care practitioners about hygiene practices aiming at reducing

50	traveler's diarrhea and limited use of antibiotics during travel in order to reduce the
51	risk of MDR bacterial transmission.
52	Keywords
53	Hajj; multidrug resistant bacteria; pilgrims; bacterial carriage; bacterial transmission;
54	systematic review; Saudi Arabia
55	1. Introduction
56	Hajj (pilgrimage to Mecca) is the largest annual mass gathering of Muslims with more
57	than two million participants every year from more than 184 countries gathering in
58	Saudi Arabia. During their journey, pilgrims visit the Holy Mosque in Mecca, stay in
59	a tented camp in Mina and usually travel to Medina [1]. This mass gathering has a
60	high potential for an outbreak due to the transmission of infectious diseases among
61	pilgrims via person-to-person contact, contaminated foods or water, and the
62	environment [1]. During the Hajj season, pilgrims are required to follow time-
63	sensitive religious rituals at specific times at different places simultaneously for a
64	week. This intensely crowded situation has the potential for outbreaks of
65	meningococcal disease [2], for the transmission of tuberculosis [3] other bacterial and
66	viral respiratory tract infections [4] and for diarrheal diseases [5]. Additionally, many
67	pilgrims travel to the Hajj in a group, sharing transport and accommodation including
68	airlines and buses, food, tents, and toilets for a week, which constitutes an additional
69	risk for transmission of communicable diseases. Nowadays, the global spread of
70	antibiotic-resistant (AR) bacteria, such as extended spectrum beta-lactamase
71	Enterobacteriaceae (ESBL-E), through international travelers is common [4,5]. The
72	acquisition of carbapenem-resistant bacteria has also been described in travelers,
73	including NDM-1 in travelers returning to the UK from India or KPC-producing
74	bacteria in travelers returning to France from the United States [6]. AR bacteria are

/5	prevalent in Saudi Arabia [/-11]. Hajj pilgrims therefore have the potential to
76	disseminate or acquire AR bacteria during their stay in Saudi Arabia and to spread
77	these bacteria when returning to their home country. Here, we review the available
78	literature on the prevalence of major gram-positive and gram-negative AR bacteria
79	isolated in pilgrims or other populations living in the area where pilgrims stay,
80	including Mecca, Mina, and Medina.
81	2. Methods
82	We performed a systematic review according to the Preferred Reporting Items for
83	Systematic Reviews and Meta-Analyses (PRISMA) guidelines
84	(http://www.prismastatement.org). The electronic literature search was conducted in
85	three electronic databases, Pubmed, Scopus, and Google Scholar, for articles about
86	the emergence of antibiotic resistant bacteria during the Hajj. Searches were specified
87	only in Hajj areas including Mecca, Mina, and Medina. Papers published from
88	January 2002 to January 2017 and written in English were included. MeSH terms
89	included "Gram positive bacteria", "Streptococcus", "Staphylococcus",
90	"Enterococcus", "Gram negative bacteria", "Acinetobacter", "Enterobacteriaceae",
91	"Campylobacter", "Escherichia", "Klebsiella", "Neisseria", "Pseudomonas",
92	"Salmonella", "Shigella", "Yersinia", "methicillin", "MRSA", "vancomycin",
93	"VRSA", "VRE", "carbapenem", "Extended spectrum", "ESBL", "colistin", "drug
94	resistant", "colonization", "susceptibility", "Hajj", "pilgrims", "Makkah", "Mecca",
95	"Mina", "Madinah", and "Medina" (see Appendix). The search results were imported
96	into the Mendeley references manager and de-duplicated. The articles were
97	independently screened based on titles and abstracts by two researchers
98	(Leangapichart and Gautret) and any discord was discussed between the two
99	researchers. In addition, the Saudi epidemiology bulletin

100	(http://fetp.edu.sa/Bulletin.html) was hand searched for additional papers for
101	inclusion. Studies were eligible for inclusion if they reported on phenotypic and/or
102	genetic antibiotic resistance patterns and provided prevalence data. We excluded case
103	reports. Reference lists of selected papers were screened to retrieve additional
104	relevant studies. The following data were extracted from each study: year of study,
105	geographical area, study setting, demographics, bacterial species investigated, and
106	antibiotic resistance patterns. Prevalence of bacteria resistant to a given antibiotic was
107	calculated from the number of AR bacteria divided by the total number of isolates
108	tested.
109	3. Results
110	3.1 Study selection
111	A total of 275 papers resulted from the initial search. After de-duplication, 185 studies
112	were screened based on abstract content and 148 were excluded. Subsequently, 37
113	full-text articles were assessed for eligibility and 31 were included in the qualitative
114	synthesis of the systematic review with the first publication in July 2002 (Figure 1).
115	Most of the publications provided antibiotic susceptibility results. Eleven of them
116	used the PCR approach to identify AR genes. The main findings are presented in
117	Tables 1 and 2.
118	3.2 Studies conducted in pilgrims and Hajj workers (Table 1).
119	A total of 14 publications were retrieved [12–25]. Studies were conducted during the
120	Hajj season from 2000 through 2015. Most studies were conducted in Mecca and
121	Medina, and one study was conducted in the Mina area. Study designs included cross-
122	sectional surveys enrolling ill pilgrims attending health care structures in Saudi
123	Arabia and food handlers and kitchen workers from Mecca. Other studies were
124	prospective-cohort studies and were conducted in group of pilgrims before and after

125	participating in the Hajj or the Umrah. The number of individuals in each study varied
126	from 80 to 374. Participants originated from different continents and countries (the
127	Gulf region, Europe, Asia, Africa, America), with the majority from Saudi Arabia and
128	France. Participants were selected through travel agencies, food facilities in Mecca
129	and various Saudi health care structures. Studies conducted involving ill pilgrims
130	included patients suffering from skin infections [12], respiratory tract infections [23]
131	and urinary tract infections [25]. In two studies, the syndromic classification of
132	infectious diseases was not documented [14,24]. Most samples were collected using
133	nasal swabs (for respiratory pathogens), and rectal swabs (for intestinal pathogens).
134	Clinical infections in ill pilgrims were documented in five studies while nine studies
135	reported on asymptomatic bacterial carriage in pilgrims and Hajj workers (5
136	respiratory carriage studies and 4 digestive carriage studies). Only one study analyzed
137	risk factors for CTX-M acquisition by PCR detection in French pilgrims, during
138	2013-2014 Hajj. Shortness of breath, diarrhea, and β -lactam use were significantly
139	associated with high CTX-M acquisition. By contrast, the use of macrolide was
140	associated with low CTX-M acquisition.
141	3.2.1 Studies investigating MRSA colonization and resistant Streptococcus
142	pneumoniae
143	Several studies addressed oxacillin or methicillin-resistant Staphylococcus aureus
144	(MRSA) carriage, starting from the 2000 Hajj.
145	Ill pilgrims consulting hospitals during the Hajj
146	The proportion of MRSA in positive isolates reported in patients varied according to
147	the type of infection, reaching 2% in pilgrims suffering from pyoderma in 2000 [12],
148	7% in patients suffering from various types of infection in 2004, 28% in pilgrims

149	suffering from sinusitis in 2014 and 63% in pilgrims with community acquired
150	infections in 2015 [14,23,24].
151	Cohorts of pilgrims and food handlers
152	The acquisition of MRSA by pilgrims was also investigated through longitudinal
153	surveys in 2009. The prevalence of MRSA among positive isolates was 15-20% in
154	Hajj pilgrims and 10-11% in Umrah pilgrims with no significant difference before
155	and after participating in the events [15]. Additionally, food handlers working in
156	restaurants in Mecca were screened for MRSA carriage during the Hajj 2001-2002
157	and 2014 resulting, respectively, in 0 and 20% MRSA identification in positive
158	isolates [13,22]. One study addressed the carriage of resistant S. pneumoniae in a
159	multinational cohort of pilgrims and showed that 23% of isolates were resistant to
160	multiple antibiotics (resistant to three or more classes of antibiotics) [17].
161	3.2.2 Studies investigating ESBL colonization
162	Cohorts of pilgrims
163	Five studies were prospectively conducted in cohorts of French pilgrims before,
164	during and after the Hajj with the aim of evaluating the carriage of resistant
165	pathogens[16,18-21]. During the 2013 and 2014 Hajj seasons, studies were conducted
166	using rectal and/or and nasal samples obtained before and after the Hajj. The
167	prevalence of the $bla_{\text{CTX-M}}$ gene in rectal samples was 10% before-Hajj compared to
168	33% after-Hajj in 2013 [18] and 7% before-Hajj compared to 34.83% after-Hajj in
169	2014 [19]. There was also a significant increase in the number of pilgrims harboring
170	E. coli which was resistant to ceftriaxone and ticarcillin-clavulanic acid [18].
171	3.2.3 Studies investigating carbapenem-resistant bacteria colonization
172	Cohorts of pilgrims

173	Screening of carbapenemase genes by qPCR in rectal samples of pilgrims before and
174	after Hajj showed the acquisition of A. baumannii with bla_{OXA-72} and E. $coli$ with
175	$bla_{\text{NDM-5}}$ in a French cohort traveling to the 2014 Hajj [21].
176	Ill pilgrims consulting hospitals during the Hajj
177	During the 2014-2015 Hajj, the $bla_{\text{CTX-M}}$ gene in $E.\ coli$ isolates was reported among
178	47% of pilgrims attending hospitals for urinary tract infections [25]. The 3GC-
179	resistant A. baumannii were observed at 91% during the 2014 Hajj [21] and 77% in ill
180	pilgrims during the 2015 Hajj [24]. Overall, imipenem-resistant bacteria were
181	reported during the 2014-2015 Hajj at a rate ranging from 1 to 90% in A. baumannii,
182	E. coli, K. pneumoniae, and P. aeruginosa [21,23,24].
183	3.2.4 Studies investigating colistin resistant bacteria colonization
184	Cohorts of pilgrims
185	Salmonella enterica which were resistant to ceftriaxone, gentamycin and colistin were
186	isolated from two pilgrims [16]. Screening for the mcr-1 plasmid-mediated colistin
187	resistance gene directly from rectal swabs was conducted in 2013 and 2014, and
188	showed a prevalence of 1-2% before-Hajj and 9% after-Hajj. Rectal swabs from
189	positive individuals allowed culturing mcr-1 producing E. coli and K. pneumoniae
190	[20].
191	3.3 Studies conducted in patients attending hospitals in Mecca and Medina
192	(Table 2).
193	A total of 17 studies presented the prevalence of AR bacteria in local patients as
194	shown in Table 2 [26–42]. Studies were conducted from 2003 through 2015.
195	Fifteen studies were conducted in Mecca, while two studies were conducted in the
196	Medina area. All studies were cross-sectional surveys conducted on patients attending
197	general hospitals in Saudi Arabia and one was conducted on clinical isolates obtained

198	from clinical laboratories. The numbers of patients in each study varied from 43 to
199	1,626 [26-42]. The patients' origin was not documented in 12 studies. In studies with
200	available data, the origin of patients was primarily Saudi Arabia. Studies were
201	conducted on patients suffering from various diseases due to bacterial infection
202	including skin infections [34], blood infections [28,36], digestive tract infections [27],
203	and diarrhea [42]. The type of infection was not documented in most studies [26,29–
204	33,35,37,40,41]. Several types of samples were collected depending on the type of
205	bacterial infection using wound swabs, ear swabs, eye swabs, blood, sputum, urine,
206	and stool samples. Two studies did not document the type of samples used [35,39].
207	Six studies reported the prevalence of MRSA in septicemic patients, diabetic patients
208	and patients with undocumented types of infections which ranged from 38.9-57.7% in
209	2003-2015 [26,28,30,34,35]. Identification of the Panton-Valentine leucocidin (PVL)
210	toxin by PCR was done in two studies, and PVL rose to 19% in 2012 [35] but was 0%
211	in 2016 [40]. However, a later study reported the fnBPA-encoding gene in MRSA
212	isolated from wound swabs at a rate of 8% and no vancomycin-resistant genes were
213	detected in this study [40].
214	One study conducted on patients belonging to 22 nationalities suffering from gram-
215	positive bacterial infections reported a low rate of vancomycin-resistant S. aureus
216	(VRSA) at 2%, vancomycin-resistant Enterococcus faecalis at 3.5% and vancomycin-
217	resistant <i>Enterococci</i> (VRE) at 2%, but a high rate of ampicillin-resistant <i>S</i> .
218	pneumoniae, at 21.1% [30]. Oxacillin-resistant coagulase-negative staphylococci
219	(CoNS) were observed at a rate of 61% during 2004-2005, 82.4% during 2008-2009,
220	and 93.6% during 2012-2013, mainly in patients with sepsis [28,30,36].
221	Some studies reported 3GC-resistant E.coli, K. pneumoniae, and A. baumannii in
222	patients with different bacterial infections during 2005-2015, ranging from 18.8% to

223	94% [29,33,34,41]. ESBL genes, <i>bla</i> _{CTX-M} , <i>bla</i> _{TEM} , and <i>bla</i> _{SHV} , were reported in two
224	studies conducted in ICU patients. The proportion of $bla_{\text{CTX-M}}$ and bla_{TEM} in $E.coli$
225	and K. pneumoniae cases were similar at 18.5-30% but in A. baumannii was 71-81%,
226	while the rate of <i>bla</i> _{SHV} was 7.4% in <i>E. coli</i> , 17.2% in <i>K. pneumoniae</i> , and 0% in <i>A.</i>
227	baumannii [31,38]. Overall, low rates of imipenem-resistant bacteria, E. coli and K.
228	pneumoniae were reported to vary at around 4-11.9% during 2004-2015 [28,29,41]. A
229	high prevalence of imipenem-resistant A. baumannii and P. aeruginosa were detected
230	at varying rates of 4-60.5% and 4-43%, respectively. The prevalence of bla_{OXA-23} was
231	identified in 91% in A. baumannii isolates, causing infection in ICU patients during
232	2012-2013 [31]. The occurrence of metallo-β-lactamase genes among carbapenem-
233	resistant A. baumannii isolates during 2004-2014 was 11.5-27.1% carrying blavim and
234	13.6% carrying bla_{IMP} . For carbapenem-resistant P . $aeruginosa$ isolated from patients,
235	4.1-18.4% carried bla_{VIM} and 4.7-21.0% carried bla_{IMP} [31,32,37]. One study
236	conducted on patients with peptic ulcer disease during 2003-2004 reported 31% of
237	Helicobacter pylori isolates as being resistant to metronidazole and 3% resistant to
238	tetracycline and erythromycin [27]. In addition, shiga toxin-producing <i>E.coli</i> was
239	investigated in patients suffering from diarrhea in the Medina area. The report
240	indicated significant associations between human and sheep isolates, with 70% of
241	human isolates being resistant to trimethoprim/sulfamethoxazole [42].
242	3.4 Assessment of antibiotic resistance patterns among bacterial isolates
243	When data were pooled from the 30 published reports, AR patterns of 28 studies were
244	compared between pilgrims and healthy participants during Hajj seasons and local
245	patients attending hospitals in Mecca, Mina, and Medina. Two studies reported AR
246	genes only using the PCR method. The reported rates of AR bacteria vary between

247	studies and hospitals. The comparisons of AR patterns were arranged by group of
248	species and year of study (Figure 2-4).
249	3.4.1 Antibiotic resistance in Gram-positive bacteria
250	The prevalence and AR pattern of gram-positive bacteria isolated from pilgrims and
251	Hajj workers, including local patients, drawn from 13 studies are presented in Figure
252	2. The prevalence of resistance in patients with <i>S. aureus</i> isolated from Hajj seasons
253	was <30% for oxacillin but up to 100% in general patients. VRSA was identified in
254	six studies, of which one reported a 2% resistance rate in local patients. CoNS and
255	Enterococcus sp. were not studied in pilgrims or Hajj workers but in patients from
256	Hajj areas. Compared to CoNS Enterococcus sp., and Streptococcus sp., vancomycin
257	was the most active agent with a resistance rate of 0-4%. The resistance rate of CoNS
258	increased from 26% to 82% for gentamicin during 2004-2012; >70% for
259	erythromycin; and >50% to 63% for clindamycin. The resistance rate of
260	Streptococcus spp. isolates to amoxicillin/clavulanic acid in pilgrims and patients was
261	1-7% and was 7-26% for penicillin.
262	3.4.2 Antibiotic resistance in Enterobacteriaceae
263	Twelve studies performed antibiotic susceptibility testing on E.coli, Klebsiella sp.,
264	Enterobacter sp., Salmonella sp., and Proteus sp. (Figure 3).
265	Overall, resistance rates of <i>E.coli</i> in pilgrims and local patients were similar, varying
266	from 5-100% for cephalosporins; <10% for imipenem, meropenem, and ertapenem;
267	and 13-75% for gentamicin. Colistin-resistant <i>E.coli</i> was observed in one pilgrim
268	study. Meanwhile, the occurrence of resistant Klebsiella sp. isolates among pilgrims
269	and patients was high, at 16-64% for cephalosporins and 4-82% for imipenem. In
270	addition, the resistance rate of Enterobacter sp. to ciprofloxacin and gentamicin was
271	low at an early stage, but increased substantially during 2004-2015. Susceptibility

272	testing of Salmonella isolates was conducted in three studies. Most isolates were
273	susceptible to many antibiotic groups, including amikacin, imipenem, and
274	ciprofloxacin.
275	3.4.3 Antibiotic resistance in non-Enterobacteriaceae
276	The antibiotic resistance of A. baumannii isolated from pilgrims and local patients
277	showed uniform resistance to cephalosporins with a resistance rate of 45-100%.
278	Resistance patterns of A. baumannii to imipenem in patients or ill pilgrims ranged
279	between 14-100% but were 2% in healthy pilgrims. However, the resistance rate of P .
280	aeruginosa to imipenem decreased in local patients from 43% to 22%, from 42% to
281	20% for amikacin, and from 61% to 27% for gentamicin during 2004-2015 (Figure 4).
282	
283	Discussion
284	The prevalence of AR bacteria has increased significantly worldwide over the past
285	two decades. International travelers have been known for years to experience
286	alterations in gut microbiota due to the change of nutritional factors [43,44] and the
287	acquisition of AR bacteria through the use of antibiotics during travel [4]. By
288	attending the Hajj, millions of pilgrims present a source of infectious disease
289	transmission [1,45,46]. Pilgrims attending Hajj are an important reservoir for the
290	spread and transmission of AR bacteria. Many factors, such as crowded conditions,
291	airborne/droplet transmission, and lack of efficient personal hygiene, diarrhea, and
292	use of antimicrobial medications could be associated with the spread of AR bacteria.
293	Our review indicates the prevalence and increasing rate of AR bacteria in the Hajj
294	area include MRSA, 3GC-Enterobacteriaceae, imipenem-resistant bacteria, and
295	colistin-resistant bacteria. Resistance rates varied between studies, although
296	comparison was difficult due to differences in the antibiotics tested.

297	Community-acquired MRSA has been associated with closed settings involving lots
298	of people and travelers [47]. In Saudi Arabia, the rates of MRSA varied between
299	different regions ranging widely from 0.06% to 94%, in studies conducted during
300	2002-2012 [48,49]. The personal hygiene of food-handlers and the sanitation of
301	restaurants in Mecca were investigated in 2007, demonstrating that 67% of food-
302	handlers do not wear gloves and 45% have dirty fingernails [50]. It is not surprising
303	that MRSA isolated from the food-handlers increased from 0 during 2001-2002 to
304	20% during the 2014 Hajj [13,22] and to 63.2% in pilgrims during the 2015 Hajj.
305	Cross contamination of bacteria from workers may occur between people through
306	skin, hands and food. In addition, the presence of <i>S. aureus</i> in a water tank supplying
307	the drinking water to private households' in Mecca has also been reported. The poor
308	condition of these water stations can result in poor water quality [51].
309	Additionally, common diseases such as airborne transmission or respiratory tract
310	infections are well-documented in pilgrims through the acquisition of respiratory
311	viruses and bacteria [52], including S. pneumoniae, K. pneumoniae [53], and A.
312	baumannii [21]. The possible effect of desert dust and other particles in the spread of
313	airborne bacteria has been documented (24), which might be related to very common
314	symptoms among pilgrims including the "Hajj cough" [54]. Several pilgrims have an
315	increased rate of <i>S. pneumoniae</i> acquisition at the Hajj, rising from 1.2 times to 3.9
316	times during 2011-2013 [17,52,55,56].
317	Diarrhea is one of the most common problems among travelers, and is associated with
318	the acquisition of ESBL bacteria. Twenty-one percent of travelers with ESBL
319	acquisition had diarrhea [57]. ESBL-producing Enterobacteriaceae were detected in a
320	single cohort study of pilgrims traveling to the 2013 Hajj, demonstrating the
321	possibility that several bacterial species may carry CTX-M type ESBL genes [16,18].

322	A similar study was conducted on <i>E.coli</i> isolated from urinary tract infections in
323	pilgrims attending hospital in Mecca during the 2014–2015 Hajj [25]. These two
324	studies had the same circulating sequence type of <i>E.coli</i> , ST131 and ST648. The
325	plasmid-mediated colistin resistance gene, mcr-1 was screened in pilgrims during
326	2013-2014 and revealed the constant acquisition rate of <i>mcr-1</i> at 9% at return [20].
327	This may suggest an identical source of bacterial transmission among pilgrims during
328	the Hajj season. The spread of clones and specific types of AR genes might be related
329	to travel destination and food vehicles contaminated by MDR bacteria [58]. Thus, the
330	detection of AR genes in Mecca residents or environments related to pilgrims may be
331	a useful way of investigating the source of AR bacterial transmission. One limitation
332	of this study is the lack of data about diarrhea prevalence and use of antibiotics in
333	most included studies, which does not allow evaluating their possible impact on the
334	prevalence of AR bacterial related infection or carriage.
335	Recently, our group reported CTX-M genes acquisition during the 2013 and 2014
336	Hajj showing rates of acquisition at 31.0% and 34.8%, respectively [19]. Diarrhea and
337	use of β -lactam antibiotics during the Hajj were demonstrated to be independent risk
338	factors of CTX-M gene acquisition. Moreover, shortness of breath in pilgrims was
339	associated with CTX-M-gene acquisition and macrolide use was shown to be an
340	independent protective factor against CTX-M-gene acquisition [19]. Most of pilgrims
341	traveling to Hajj carry antibiotics from their home country or obtained from over the
342	counter in Saudi Arabia [59,60]. Pilgrims overuse or misuse of antibiotics ranged
343	from 34.9% to 94.7% at the Hajj, which likely contributes to increased resistance
344	[54,59–64].

345	One study reported the negative association between macrolides and CTX-M		
346	acquisition. Thus, restricted use of antibiotics during the Hajj should be highly		
347	recommended.		
348	In such a context, vaccination represents a key component in the fight against		
349	antibiotic resistance. Vaccination against bacterial pathogens or against viral agents		
350	including notably S. pneumoniae and influenza virus directly and indirectly reduces		
351	the need for antibiotics for both the control of primarily bacterial infections and super-		
352	infection of viral diseases [65]. In addition, it has been well demonstrated that the		
353	conjugate vaccine against S. pneumoniae targets the most virulent serotypes		
354	associated with invasive pneumococcal diseases (IPD) that are also associated with		
355	antibiotic resistance [66–68]. These arguments reinforce the need for compliance with		
356	current recommendations for vaccinating at-risk Hajj pilgrims against IPD and		
357	influenza [69].		
358	The date of the Hajj changes from year to year and will fall in the summer season for		
359	the next 10 years [70], which may provide a favorable environment for AR bacteria		
360	and the spread of infectious diseases. In this review, we presented the prevalence of		
361	AR bacterial acquisition in pilgrims, including the prevalence of AR bacteria in food		
362	workers and patients living in the Hajj area, which saw an increase over the 2000-		
363	2015-period. In Hajj season, the number of food poisoning cases ranged from 44 to		
364	132 for the last 12 years [71]. Pilgrims may acquire AR bacteria from contaminated		
365	food during preparation or storage, unpasteurized dairy products, raw unpeeled fruit		
366	and vegetables, or contaminated water. Thus, the personal hygiene of kitchen staff		
367	including sanitary of food preparation area and storage should be improved and		
368	monitored to reduce the rate of the transmission of foodborne infections. Moreover,		
369	pilgrims coming from different countries with different cultures and life style are		

exposed to crowded food outlets, toilets, and other accommodation and transportation	L
facilities with different personal hygiene standards. Implementation of effective	
personal hygiene practices such as wearing a face mask, hand hygiene, can be	
effective approaches for reducing respiratory and digestive illness. Additionally,	
pilgrims should be instructed by travel medicine practitioners for guiding hygienic	
precautions, avoidance of diarrhea and unnecessary use of antibiotics before travels.	
Moreover, our review showed a high rate of resistance among gram-positive and	
negative bacteria including MRSA and 3GC-Enterobacteriaceae in local habitants;	
whereas, VRSA, VRE, carbapenem and colistin-resistant bacteria prevalence is still	
low. However, carbapenem resistance emergence in A. baumannii and P. aeruginosa	
is of concern in Mecca and Medina area. In Saudi Arabia, antibiotics are easily	
obtained from over the counter without legislation or restrictions on their use [72],	
which may lead to increase AR bacteria prevalence. High rates of AR bacterial	
infection in patients hospitalized in Saudi Arabia is worrying and physicians attending)
patients in this area should be aware of the situation and undertake adapted isolation	
measures. Therefore, controlling inappropriate use of antibiotics is the key for	
reducing antibiotic resistance. Moreover, public educational campaigns to discourage	
the use of antibiotics should be promoted. This may include country or global-wide	
surveillance to monitor antibiotic consumption and resistance trends among local	
population and international travelers including Hajj pilgrims.	

395	Funding
396	This work was supported by the Centre National de la Recherche Scientifique
397	(France) and IHU Méditerranée Infection.
398	Conflict of interest
399	None to declare.
400	Appendix A. Supplementary data
401	
402	
403	
404	Table legends
405	Table 1. Prevalence of antibiotic resistance bacteria in 13 studies conducted in
406	pilgrims and Hajj workers
407	Table 2. Prevalence of antibiotic resistance bacteria in 17 studies conducted in
408	patients hospitalized in Mecca and the Medina area.
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	

420	Figure legends
421	Figure 1 Study selection. Flow diagram of identification and selection process
422	included in systematic review.
423	Figure 2 Antibiotic susceptibility patterns of gram-positive bacteria from in-Hajj and
424	out-Hajj periods. Blue highlights indicate the study was conducted during Hajj
425	seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the
426	number of AR bacteria divided by the total number of isolates tested, red, \geq 67%;
427	orange, $<$ 67% and \ge 33%; green, $<$ 33% are highlighted. Different numbers of
428	isolates tested for resistance are marked with asterisk.
429	Figure 3 Antibiotic susceptibility patterns of Enterobacteriaceae from in-Hajj and
430	out-Hajj periods. Blue highlights indicate the study was conducted during Hajj
431	seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the
432	number of AR bacteria divided by the total number of isolates tested, red, \geq 67%;
433	orange, < 67% and ≥ 33%; green, <33% are highlighted. Different numbers of isolates
434	tested for resistance are marked with asterisk.
435	Figure 4 Antibiotic susceptibility patterns of Acinetobacter sp. and Pseudomonas
436	aeruginosa from in-Hajj and out-Hajj periods. Blue highlights indicate the study was
437	conducted during Hajj seasons. Prevalence of bacteria resistant to a given antibiotic
438	were calculated from the number of AR bacteria divided by the total number of
439	isolates tested, red, \geq 67%; orange, $<$ 67% and \geq 33%; green, $<$ 33% are highlighted.
440	Different numbers of isolates tested for resistance are marked with asterisk.

441	Refer	rences
442	[1]	Memish ZA, Zumla A, Alhakeem RF, Assiri A, Turkestani A, Al Harby KD, et
443		al. Hajj: infectious disease surveillance and control. Lancet 2014;383:2073–82.
444		doi:10.1016/S0140-6736(14)60381-0.
445	[2]	Yezli S, Bin Saeed AA, Assiri AM, Alhakeem RF, Yunus MA, Turkistani AM,
446		et al. Prevention of meningococcal disease during the Hajj and Umrah mass
447		gatherings: Past and current measures and future prospects. Int J Infect Dis
448		2016;47:71–8. doi:10.1016/j.ijid.2015.12.010.
449	[3]	Zumla A, Saeed A Bin, Alotaibi B, Yezli S, Dar O, Bieh K, et al. Tuberculosis
450		and mass gatherings-opportunities for defining burden, transmission risk, and
451		the optimal surveillance, prevention, and control measures at the annual Hajj
452		pilgrimage. Int J Infect Dis 2016;47:86–91. doi:10.1016/j.ijid.2016.02.003.
453	[4]	Hassing RJ, Alsma J, Arcilla MS, van Genderen PJ, Stricker BH, Verbon A.
454		International travel and acquisition of multidrug-resistant Enterobacteriaceae: a
455		systematic review. Euro Surveill Bull Eur Sur Les Mal Transm = Eur
456		Commun Dis Bull 2015;20. doi:10.2807/1560-7917.ES.2015.20.47.30074.
457	[5]	Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ,
458		Goorhuis A, et al. Import and spread of extended-spectrum β -lactamase-
459		producing Enterobacteriaceae by international travellers (COMBAT study): a
460		prospective, multicentre cohort study. Lancet Infect Dis 2016;373:1849-60.
461		doi:10.1016/S1473-3099(16)30319-X.
462	[6]	Rogers BA, Aminzadeh Z, Hayashi Y, Paterson DL. Country-to-country
463		transfer of patients and the risk of multi-resistant bacterial infection. Clin Infect
464		Dis 2011;53:49–56. doi:10.1093/cid/cir273.
465	[7]	Yezli S, Shibl AM, Livermore DM, Memish ZA. Antimicrobial resistance

466		among Gram-positive pathogens in Saudi Arabia. J Chemother 2012;24:125–
467		36. doi:10.1179/1973947812Y.0000000010.
468	[8]	Zowawi HM, Balkhy HH, Walsh TR, Paterson DL. β -lactamase production in
469		key gram-negative pathogen isolates from the Arabian Peninsula. Clin
470		Microbiol Rev 2013;26:361–80. doi:10.1128/CMR.00096-12.
471	[9]	Yezli S, Shibl AM, Livermore DM, Memish ZA. Prevalence and antimicrobial
472		resistance among Gram-negative pathogens in Saudi Arabia. J Chemother
473		2014;26:257–72. doi:10.1179/1973947814Y.0000000185.
474	[10]	Yezli S, Shibl AM, Memish ZA. The molecular basis of β -lactamase
475		production in Gram-negative bacteria from Saudi Arabia. J Med Microbiol
476		2015;64:127–36. doi:10.1099/jmm.0.077834-0.
477	[11]	Zowawi HM. Antimicrobial resistance in Saudi Arabia An urgent call for an
478		immediate action. Saudi Med J 2016;379:935-40.
479		doi:10.15537/smj.2016.9.16139.
480	[12]	Fatani MI, Bukhari SZ, Al-Afif KA, Karima TM, Abdulghani MR, Al-Kaltham
481		MI. Pyoderma among Hajj Pilgrims in Makkah. Saudi Med J 2002;23:782–5.
482	[13]	Dablool A, Al-Ghamdi S. Enterotoxigenicity of Staphylococcus aureus isolated
483		from food handlers during Hajj season in Saudi Arabia. Open J Saf Sci
484		2011;1:75–8.
485	[14]	Memish Z, Balkhy H, Almuneef M. Carriage of Staphylococcus aureus among
486		Hajj pilgrims. Saudi Med J 2006;27:1367–72.
487	[15]	Johargy A, Sorour A, Momenah A. Prevalence of Nasal Carriage of
488		Staphylococcus aureus among Umrah visitors and Pilgrims During Umrah and
489		Hajj Seasons. Egypt J Med Microbiol 2011;20:162–6.
490	[16]	Olaitan AO, Dia NM, Gautret P, Benkouiten S, Belhouchat K, Drali T, et al.

491		Acquisition of extended-spectrum cephalosporin- and colistin-resistant
492		Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj.
493		Int J Antimicrob Agents 2015;45:600–4.
494		doi:10.1016/j.ijantimicag.2015.01.010.
495	[17]	Memish ZA, Al-Tawfiq JA, Almasri M, Akkad N, Yezli S, Turkestani A, et al.
496		A cohort study of the impact and acquisition of naspharyngeal carriage of
497		Streptococcus pneumoniae during the Hajj. Travel Med Infect Dis
498		2016;14:242–7. doi:10.1016/j.tmaid.2016.05.001.
499	[18]	Leangapichart T, Dia NM, Olaitan AO, Gautret P, Brouqui P, Rolain J-M.
500		Acquisition of Extended-Spectrum β-Lactamases by <i>Escherichia coli</i> and
501		Klebsiella pneumoniae in Gut Microbiota of Pilgrims during the Hajj
502		Pilgrimage of 2013. Antimicrob Agents Chemother 2016;60:3222-6.
503		doi:10.1128/AAC.02396-15.
504	[19]	Leangapichart T, Tissot-Dupont H, Raoult D, Memish ZA, Rolain J-M, Gautret
505		P. Risk factors for acquisition of CTX-M genes in pilgrims during Hajj 2013
506		and 2014. J Antimicrob Chemother 2017. doi:10.1093/jac/dkx155.
507	[20]	Leangapichart T, Gautret P, Brouqui P, Memish ZA, Raoult D, Rolain J-MJ-
508		MJ-M. Acquisition of mcr-1 plasmid-mediated colistin resistance in
509		Escherichia coli and Klebsiella pneumoniae during Hajj 2013 and 2014.
510		Antimicrob Agents Chemother 2016;60:7537. doi:10.1128/AAC.02298-16.
511	[21]	Leangapichart T, Gautret P, Griffiths K, Belhouchat K, Memish Z, Raoult D, et
512		al. Acquisition of a High Diversity of Bacteria during the Hajj Pilgrimage,
513		Including Acinetobacter baumannii with blaOXA-72 and Escherichia coli with
514		blaNDM-5 Carbapenemase Genes. Antimicrob Agents Chemother
515		2016;60:5942–8. doi:10.1128/AAC.00669-16.

[22]	Ahmed B, Mashat BH. Prevalence of classical enterotoxin genes in
	Staphylococcus aureus isolated from food handlers in Makkah city kitchens.
	Asian J Sci Tech 2014;5:727–31.
[23]	Marglani OA, Alherabi AZ, Herzallah IR, Saati FA, Tantawy EA, Alandejani
	TA, et al. Acute rhinosinusitis during Hajj season 2014: Prevalence of bacterial
	infection and patterns of antimicrobial susceptibility. Travel Med Infect Dis
	2016;14:583–7. doi:10.1016/j.tmaid.2016.11.004.
[24]	Haseeb A, Faidah HS, Bakhsh AR, Malki WH Al, Elrggal ME, Saleem F, et al.
	Antimicrobial resistance among pilgrims: A retrospective study from two
	hospitals in Makkah, Saudi Arabia. Int J Infect Dis 2016;47:92-4.
	doi:10.1016/j.ijid.2016.06.006.
[25]	Alyamani EJ, Khiyami AM, Booq RY, Majrashi MA, Bahwerth FS, Rechkina
	E. The occurrence of ESBL-producing Escherichia coli carrying
	aminoglycoside resistance genes in urinary tract infections in Saudi Arabia.
	Ann Clin Microbiol Antimicrob 2017;16:1. doi:10.1186/s12941-016-0177-6.
[26]	Asghar AH, Momenah AM. Methicillin resistance among Staphylococcus
	aureus isolates from Saudi Hospitals. Med Princ Pract 2006;15:52-5.
	doi:10.1159/000089386.
[27]	Karima TM, Bukhari SZ, Ghais MA, Fatani MI, Hussain WM. Prevalence of
	Helicobacter pylori infection in patients with peptic ulcer diseases. Saudi Med
	Helicobacter pylori infection in patients with peptic ulcer diseases. Saudi Med J 2006;27:621–6.
[28]	
[28]	J 2006;27:621–6.
[28]	J 2006;27:621–6. Asghar AH. Frequency and antimicrobial susceptibility patterns of bacterial
	[24] [25]

541		negative bacteria isolated from 2 hospitals in Makkah, Saudi Arabia. Saudi
542		Med J 2009;30:1017–23.
543	[30]	Asghar AH. Frequency and antibiotic susceptibility of gram-positive bacteria
544		in Makkah hospitals. Ann Saudi Med 2011;31:462-8. doi:10.4103/0256-
545		4947.84622.
546	[31]	Asghar AH. Antimicrobial Resistance of Gram-Negative Bacilli Causing
547		Infections in Intensive Care Units in Makkah Hospitals-Saudi Arabia. J Am Sci
548		2012;8:720–5.
549	[32]	Asghar AH. Antimicrobial susceptibility and metallo-β-lactamase production
550		among Pseudomonas aeruginosa isolated from Makkah hospitals. Pakistan J
551		Med Sci 2012;28:7.
552	[33]	Khan MA, Mahomed MF, Ashshi AM, Faiz A. Drug resistance patterns of
553		Acinetobacter baumannii in Makkah, Saudi Arabia. Pak J Med Res
554		2012;51:127–31.
555	[34]	Johargy AK. Antimicrobial susceptibility of bacterial and fungal infections
556		among infected diabetic patients. J Pak Med Assoc 2016;66:1291-5.
557	[35]	Asghar AH. Molecular characterization of methicillin-resistant <i>Staphylococcus</i>
558		aureus isolated from tertiary care hospitals. Pakistan J Med Sci 2014;30.
559		doi:10.12669/pjms.304.4946.
560	[36]	Khan MMA, Faiz A, Ashshi AM. Clinically significant coagulase negative
561		staphylococci and their antibiotic resistance pattern in a tertiary care hospital. J
562		Pak Med Assoc 2014;64:1171–4.
563	[37]	El-Ageery SM, Al-Hazmi SS. Microbiological and molecular detection of
564		VIM-1 metallo-beta-lactamase-producing Acinetobacter baumannii. Eur Rev
565		Med Pharm Sci 2014;18:965–70.

566	[38]	Alyamani EJ, Khiyami MA, Booq RY, Alnafjan BM, Altammami MA,
567		Bahwerth FS. Molecular characterization of extended-spectrum beta-
568		lactamases (ESBLs) produced by clinical isolates of Acinetobacter baumannii
569		in Saudi Arabia. Ann Clin Microbiol Antimicrob 2015;14:38.
570		doi:10.1186/s12941-015-0098-9.
571	[39]	Khan MA, Faiz A. Antimicrobial resistance patterns of <i>Pseudomonas</i>
572		aeruginosa in tertiary care hospitals of Makkah and Jeddah. Ann Saudi Med
573		2016;36:23–8. doi:10.5144/0256-4947.2016.23.
574	[40]	Abulreesh HH, Organji SR, Osman GEH, Elbanna K, Almalki MHK, Ahmad I.
575		Prevalence of antibiotic resistance and virulence factors encoding genes in
576		clinical Staphylococcus aureus isolates in Saudi Arabia. Clin Epidemiol Glob
577		Heal 2016. doi:http://dx.doi.org/10.1016/j.cegh.2016.08.004.
578	[41]	Khan MMA, Faiz A. Frequency of Carbapenemase Producing Klebsiella
579		pneumoniae in Makkah, Saudi Arabia. J Microbiol Infect Dis 2016;6:121-7.
580		doi:10.5799/ahinjs.02.2016.03.0229.
581	[42]	Sharaf EF, Shabana II. Prevalence and molecular characterization of Shiga
582		toxin-producing Escherichia coli isolates from human and sheep in Al-
583		Madinah Al-Munawarah. Infectio 2016. doi:10.1016/j.infect.2016.05.001.
584	[43]	David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC,
585		Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales.
586		Genome Biol 2014;15:R89. doi:10.1186/gb-2014-15-7-r89.
587	[44]	David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE,
588		et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature
589		2014;505:559–63. doi:10.1038/nature12820.
590	[45]	Al-Tawfiq JA, Memish ZA. Potential risk for drug resistance globalization at

591		the Hajj. Clin Microbiol Infect 2015;21:109–14.
592		doi:10.1016/j.cmi.2014.11.013.
593	[46]	Al-Tawfiq JA, Stephens G, Memish ZA. Inappropriate antimicrobial use and
594		potential solutions: a Middle Eastern perspective. Expert Rev Anti Infect Ther
595		2010;8:765–74. doi:10.1586/eri.10.56.
596	[47]	Zhou YP, Wilder-Smith A, Hsu L-Y. The Role of International Travel in the
597		Spread of Methicillin-Resistant Staphylococcus aureus. J Travel Med
598		2014;21:272–81. doi:10.1111/jtm.12133.
599	[48]	Yousef S, Mahmoud SY, Eihab MT. Prevalence of methicillin-resistant
600		Staphylococcus aureus in Saudi Arabia: systemic review and meta-analysis.
601		African J Clin Exp Micr 2013.
602	[49]	Nazeer A, Al-Tawfiq JA. Methicillin-resistant Staphylococcus aureus metrics
603		for patients in Saudi Arabia. J Infect Dev Ctries 2012;6:223-33.
604	[50]	AI-Honaizil I, Choudhry AJ, AI-Hayani O. Assessment of Hygienic Quality of
605		Food, Food Handlers and Restaurant Environments in Makkah, Hajj 1428 H.
606		Saudi Epidemiol Bull 2008;15:27.
607	[51]	Mihdhdir AA. Evaluation of bateriologial and sanitary quality of drinking
608		water stations and water tankers in Makkah Al-Mokarama. Pakistan J Biol Sci
609		2009;12:401–5. doi:10.3923/pjbs.2009.401.405.
610	[52]	Memish ZA, Assiri A, Turkestani A, Yezli S, Al Masri M, Charrel R, et al.
611		Mass gathering and globalization of respiratory pathogens during the 2013
612		Hajj. Clin Microbiol Infect 2015;21:571.e1-8. doi:10.1016/j.cmi.2015.02.008.
613	[53]	Al-Tawfiq JA, Gautret P, Benkouiten S, Memish ZA. Mass Gatherings and the
614		Spread of Respiratory Infections: Lessons Drawn from the Hajj. Ann Am
615		Thorac Soc 2016;13:759–65. doi:10.1513/AnnalsATS.201511-772FR.

616	[54]	Gautret P, Benkouiten S, Griffiths K, Sridhar S. The inevitable Hajj cough:
617		Surveillance data in French pilgrims, 2012-2014. Travel Med Infect Dis
618		2015;33:485–9. doi:10.1016/j.tmaid.2015.09.008.
619	[55]	Benkouiten S, Gautret P, Belhouchat K, Drali T, Salez N, Memish ZA, et al.
620		Acquisition of Streptococcus pneumoniae carriage in pilgrims during the 2012
621		Hajj. Clin Infect Dis 2014;58:e106–9. doi:10.1093/cid/cit749.
622	[56]	Memish ZA, Assiri A, Almasri M, Alhakeem RF, Turkestani A, Al Rabeeah
623		AA, et al. Impact of the hajj on pneumococcal transmission. Clin Microbiol
624		Infect 2015;21:77.e11-77.e18. doi:10.1016/j.cmi.2014.07.005.
625	[57]	Kantele A, Laaveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, et al.
626		Antimicrobials Increase Travelers' Risk of Colonization by Extended-
627		Spectrum Betalactamase-Producing Enterobacteriaceae. Clin Infect Dis
628		2015;60:837–46. doi:10.1093/cid/ciu957.
629	[58]	Fonteneau L, Silva NJ Da, Fabre L, Ashton P, Torpdahl M, Müller L, et al.
630		Multinational outbreak of travel-related Salmonella Chester infections in
631		Europe , summers 2014 and 2015. Euro Surveill Bull Eur Sur Les Mal Transm
632		= Eur Commun Dis Bull 2017;22:1–11. doi:http://dx.doi.org/10.2807/1560-
633		7917.ES.2017.22.7.30463.
634	[59]	Azeem M, Tashani M, Barasheed O, Heron L, Hill-Cawthorne GA, Haworth E
635		et al. Knowledge, Attitude and Practice (KAP) Survey Concerning
636		Antimicrobial Use among Australian Hajj Pilgrims. Infect Disord Drug Targets
637		2014;14:125–32.
638	[60]	Mustafa AN, Gessner BD, Ismail R, Yusoff AF, Abdullah N, Ishak I, et al. A
639		case-control study of influenza vaccine effectiveness among Malaysian
640		pilgrims attending the Haj in Saudi Arabia. Int J Infect Dis 2003;7:210-4.

641	[61]	Alzahrani AG, Choudhry AJ, Al Mazroa MA, Turkistani AHM, Nouman GS,
642		Memish ZA, et al. Pattern of diseases among visitors to Mina health centers
643		during the Hajj season, 1429 H (2008 G). J Infect Public Health 2012;5:22-34
644		doi:10.1016/j.jiph.2011.10.003.
645	[62]	Alherabi AZ. Impact of pH1N1 influenza A infections on the Otolaryngology,
646		Head and Neck Clinic during Hajj, 2009. Saudi Med J 2011;32:933–8.
647	[63]	Alherabi AZ. Road map of an Ear, Nose, and Throat clinic during the 2008
648		Hajj in Makkah, Saudi Arabia. Saudi Med J 2009;30:1584–9.
649	[64]	Imani R, Karimi A, Habibian R. Acute respiratory viral infections among
650		Tamattu' Hajj pilgrims in Iran. Life Sci J 2013;10:449–53.
651	[65]	Lipsitch M, Siber GR. How Can Vaccines Contribute to Solving the
652		Antimicrobial Resistance Problem? MBio 2016;7:e00428-16.
653		doi:10.1128/mBio.00428-16.
654	[66]	Ladhani SN, Slack MPE, Andrews NJ, Waight PA, Borrow R, Miller E.
655		Invasive Pneumococcal Disease after Routine Pneumococcal Conjugate
656		Vaccination in Children, England and Wales. Emerg Infect Dis 2013;19:61-8.
657		doi:10.3201/eid1901.120741.
658	[67]	Richter SS, Diekema DJ, Heilmann KP, Dohrn CL, Riahi F, Doern G V.
659		Changes in Pneumococcal Serotypes and Antimicrobial Resistance after
660		Introduction of the 13-Valent Conjugate Vaccine in the United States.
661		Antimicrob Agents Chemother 2014;58:6484–9. doi:10.1128/AAC.03344-14.
662	[68]	Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al.
663		Effect of Introduction of the Pneumococcal Conjugate Vaccine on Drug-
664		Resistant Streptococcus pneumoniae. N Engl J Med 2006;354:1455–63.
665		doi:10.1056/NEJMoa051642.

666	[69]	Alharbi N, Al-Barrak A, Al-Moamary M, Zeitouni M, Idrees M, Al-Ghobain
667		M, et al. The Saudi Thoracic Society pneumococcal vaccination guidelines-
668		2016. Ann Thorac Med 2016;0:0. doi:10.4103/1817-1737.177470.
669	[70]	Aleeban M, Mackey TK. Global Health and Visa Policy Reform to Address
670		Dangers of Hajj during Summer Seasons. Front Public Heal 2016;4:2–5.
671		doi:10.3389/fpubh.2016.00280.
672	[71]	Al-Mazrou YY. Food poisoning in Saudi Arabia. Potential for prevention?
673		Saudi Med J 2004;25:11–4.
674	[72]	Alnemri AR, Almaghrabi RH, Alonazi N, Alfrayh AR. Current paediatric
675		research. Curr Pediatr Res 2016;20:169–73.
676		
677		

678	Appendix A. Supplementary data
679	Search strategy for the systematic review of the emergence of drug resistant
680	bacteria at the Hajj
681	Pubmed ((Gram positive[tiab] OR streptococc*[tiab] OR staphylo*[tiab] OR
682	enterococc*[tiab] OR Gram negative[tiab] OR Acinetobact*[tiab] OR
683	Enterobacteri*[tiab] OR Entero bacteria*[tiab] OR Enteric bacteria*[tiab] OR
684	Enterobacter*[tiab] OR Escherichia*[tiab] OR e coli[tiab] OR Klebsiella*[tiab] OR
685	Campylobacter*[tiab] OR Salmonell*[tiab] OR Shigell*[tiab] OR Yersinia*[tiab] OR
686	Neisseria*[tiab] OR Pseudomonas*[tiab] OR methicillin*[tiab] OR MRSA*[tiab] OR
687	vancomycin*[tiab] OR VRSA*[tiab] OR VRE*[tiab] OR carbapenem*[tiab] OR
688	ESBL*[tiab] OR Extended spectrum*[tiab] OR colistin*[tiab])) AND ((resistan*[tiab]
689	OR coloni*[tiab] OR ((antibiotic*[tiab] OR antimicrob*[tiab]) AND sensitivit*[tiab])
690	OR susceptib*[tiab])) AND (hadj*[tiab] OR hajj*[tiab] OR pilgrim*[tiab] OR
691	Makkah[tiab] OR Mecca[tiab] OR Mina[tiab] OR Medina[tiab] OR Madinah[tiab])
692	
693	Scopus TITLE-ABS-KEY ((("Gram positive") OR Streptococcus* OR
694	Staphylococcus* OR Enterococ* OR (("Gram negative" OR Acinetobacter* OR
695	enterobacteri* OR (enter* W/1 bacteria*)) OR enterobacter* OR Escherichia*
696	OR "e coli" OR Klebsiella* OR Campylobacter* OR Salmonell* OR Shigell*
697	OR Yersinia* OR Neisseria* OR Pseudomonas* OR methicillin* OR MRSA* OR
698	vancomycin* OR VRSA* OR VRE* OR carbapenem* OR Extended-spectrum* OR
699	ESBL* OR colistin*)) AND (resistan* OR coloni* OR ((antibiotic* OR antimicrob*)
700	W/3 sensitivit*) OR susceptib*) AND (hadj* OR hajj* OR pilgrim* OR Makkah
701	OR Mecca OR Mina OR Medina OR Madinah))
702	

703	Google Scholar "Gram positive" Streptococcus Staphylococcus Enterococcus "Gram
704	negative `` A cine to bacter Entero bacteria ceae Escherichia Klebsiella Campylobacter Salara and bacteria ceae Escherichia Campylobacter Escherichia Campylobacter Escherichia Campylobacter Escherichia Campylobacter Escherichia Campylobacter Escherichia Campylobacter Escherichia Campylobact
705	monella Shigella Yersinia Neisseria Pseudomonas methicillin MRSA vancomycin VRSA VRSA vancomycin VRSA
706	SA VRE carbapenem "Extended spectrum" ESBL colistin antibiotic
707	resistance resistant colonization colonisation susceptibility Hadj Hadj Hadj Pilgrim Makkah Hadj Hadj
708	Mecca Mina Medina Madinah
709	

Table 1. Prevalence of antibiotic resistance bacteria in 13 studies conducted in pilgrims and Hajj workers

Period/Year	Geographical area	Study design	Samples	Country of origin	Microbiological techniques	Number of individuals with positive culture/number of individual tested (%)	Bacteria or gene investigated	Number of individuals with resistant bacteria/ No. of individuals with positive culture (%)	Number of individuals with resistant bacteria/ number of individual tested (%)	References
Hajj 2000 and 2001	Mecca	Cross-sectional survey conducted in 80 ill pilgrims attending the dermatology clinic for pyoderma at King Faisal Hospital	Skin lesion swabs	Saudi Arabia (46.3%), Asia (26.3%), Arabian Peninsula (non-Saudi Arabia) (26.2%), and Europe (1.2%)	Culture and AST	47/80 (58.8)	Methicillin resistant Staphylococcus aureus (MRSA)	1/47 (2.1)	1/80 (1.3)	Fatani et al., 2002 [12]
Hajj 2001 and 2002	Mecca	Cross-sectional survey conducted on 428 food handlers	Nasal swabs, throat swabs, nail swabs, stool samples, and wound swabs when available	No data	Culture and AST	45/428 (10.5)	Enterotoxins producer MRSA	0/45 (0)	0/428 (0)	Dablool and Al-Ghamdi, 2011 [13]
Најј 2004	Mina	Cross-sectional survey conducted on 411 ill pilgrims attending the National Guard Health Affairs facility for medical reason	Nasal, axilla, groin and open wound swabs when available	Saudi Arabia (59.3%), Egypt (17.3%), Pakistan (6.2%), Yemen (3.7%), Sudan (8.7%), India (2.5%), Chad (2.5%), Others (6.2%)	Culture, AST, PCR	85/411 (20.7)	MRSA	6/85 (7.1)	6/411(1.5)	Memish et al., 2006 [14]
Umrah 2009	Mecca	Longitudinal survey conducted on 979 pilgrims before and after the Umrah	Nasal swabs	Turkey (13.2%), Indonesia (13%), Pakistan (10.4%), Syria (10%), Nigeria (10%), Egypt (8%), Iran (7.9%), UK (5.7%), Iraq (5.7%), Malaysia (4%), Libya (2.8%), Sweden (1.4%), US (0.4%), Jordan (0.1%)	Culture and AST	155/979 (15.8) before and 235/979 (24.0) after	MRSA	16/155 (10.3) before and 25/235 (10.6) after	16/979 (1.6) before and 25/979 (2.6)	Johargy et al., 2011 [15]
Hajj 2009	Mecca	Longitudinal survey conducted on 613 pilgrims before and after the Hajj	Nasal swabs	India (26.3%), Nigeria (16.6%), Indonesia (15.5%), Libya (14.7%), Syria (11%), UK (7.5%), Turkey (5.7%), Australia (1.8%), Sweden	Culture and AST	153/613 (25.0) before and128/613 (20.9) after	MRSA	30/153 (19.6) before and 19/128 (14.8) after	30/613 (4.9) before and 19/613 (3.1) after	Johargy et al., 2011 [15]

				(0.5%) and Iran (0.3%)						
Најј 2013	Mecca, Mina and Medina	Longitudinal survey conducted on 129 pilgrims before and after the Hajj	Rectal samples	France	Culture, AST, PCR screening	0/129 (0.0) before and 5/129 (3.9) after	ESBL and colistin-resistant Salmonella enterica	2/5 (40.0) after	<mark>2/129 (1.6) after</mark>	Olaitan et al., 2015 [16]
Најј 2013	Mecca and Mina	Longitudinal survey conducted on 1,175 pilgrims before and 1,155 pilgrims after the Hajj	Nasal swabs	12 countries in Africa, Asia, USA, and Europe	Culture and AST, MLST	110/1175 (9.4)	Multidrug-resistant S. pneumoniae	25/110 (22.7)	25/1175 (2.1)	Memish et al., 2016 [17]
Најј 2013	Mecca, Mina and Medina	Longitudinal survey conducted on 129 pilgrims, before and after the Hajj	Rectal samples	France	Culture*, AST, MLST, PCR screening in samples	18/129 (14.0) before and 36/129 (27.9) after	CRO-resistant <i>E.coli</i> Ticarcillin-clavulanic- resistant <i>E. coli</i> PCR screening of AR gene -CTX-M	5/18 (27.8) before and 18/36 (50.0) after 5/18 (27.8) before and 13/36 (36.1) after 13/129 (10.1) before and 42/129 (32.1) after	5/129 (3.9) before and 18/129 (14.0) after 5/129 (3.9) before and 13/129 (10.1) after 13/129 (10.1) before and 42/129 (32.1) after	Leangapichart et al., 2016 [18]
Најј 2014	<mark>Mecca, Mina</mark> and Medina	Longitudinal survey conducted on 129 pilgrims (2013); 98 pilgrims (2014) before, during and after the Haji	Rectal samples	France	PCR screening in samples	7/89 (7.87) before and 31/89 (34.83) after	PCR screening of AR gene -CTX-M	7/89 (7.87) before and 31/89 (34.83) after	7/89 (7.87) before and 31/89 (34.83) after	Leangapichart et al., 2016 [19]
Hajj 2013 and Hajj 2014	Mecca, Mina and Medina	Longitudinal survey conducted on 129 pilgrims (2013); 98 pilgrims (2014) before, during and after the Hajj	Rectal samples	France	PCR screening of AR gene in samples, culture, AST, and MLST	-	PCR screening of AR gene -mcr-1 colistin resistance gene	2013: 2/129 (1.6) before and 11/129 (8.53) after, 2014: 1/92 1.0) before and 9/90 (9.2) after	2013: 2/129 (1.6) before and 11/129 (8.53) after, 2014: 1/92 1.0) before and 9/90 (9.2) after	Leangapichart et al., 2016 [20]
Најј 2014	Mecca, Mina and Medina	Longitudinal survey conducted on 98 pilgrims (98 pilgrims before; 90 pilgrims after the Hajj)	Pharyngeal and rectal swabs collected before and after Hajj	France	Culture, PCR screening in samples, AST, and MLST	A.baumannii*0/ 98 before (0) and 43/90 (47.8) after	CRO-resistant A.baumannii PCR screening of AR gene -OXA-72 A.baumannii -NDM-5 E.coli	39/43 (90.6) 1/90 (1.1) 1/90 (1.1)	39/90 (43.3) 1/90 (1.1) 1/90 (1.1)	Leangapichart et al., 2016 [21]
Најј 2014	Mecca	Cross-sectional survey conducted on 200 male workers from 50 kitchens	Nasal and hand skin swabs	No data	Culture and PCR	165/200 (40.3)	MRSA	33/165 (20.0)	33/200 (16.5)	Ahmed and Mashat, 2014 [22]
Најј 2014	Mecca	Cross-sectional survey conducted on 226 pilgrims	Sinus secretion swabs under	GULF (58%), Asian (12.4%), South Asia (11.9%), North Africa	Culture and AST	46/226 (20.4)	MRSA IMP-resistant K.pneumoniae	13/46 (28.3) 3/14 (21.4)	13/226 (5.8) 3/226 (1.3)	Marglani et al., 2016 [23]

		with acute rhinosinusitis attending Alnoor Specialized Hospital	endoscopic guidance	(11.5%), Africa (3.5%), Europe (2.2%), and American (0.5%)			4			
January to June 2015	Mecca	Cross-sectional survey conducted on 374 ill pilgrims with community-acquired infections attending Al-Noor Specialist Hospital and Ajyad Emergency Hospital	Urine, blood, sputum	Saudi Arabia (47.3%), Pakistan (8%), Egypt (6.4%), Bangladesh (4%), Yemen (6.7%), Myanmar (5.3%), Nigeria (2.1%), Indonesia (3.5%), Indian (3.5%), and others (13.1%)	Culture and AST	57/374 (15.2)	MRSA ESBLs-E. coli Ceftazidime-resistant A. baumannii IMP-resistant E.coli IMP-resistant K.pneumoniae IMP-resistant A.baumannii IMP-resistant P.aeruginosa	36/57 (63.2) 4/107 (3.7) 16/21 (76.2) 3/107 (2.8) 5/6 (83.3%) 9/10 (90.0) 5/45 (1.1)	36/374 (9.6) 4/374 (1.1) 16/374 (4.3) 3/374 (0.8) 5/374 (1.3) 9/374 (2.4) 5/374 (1.3)	Haseeb et al., 2016 [24]
Hajj 2014 and 2015	Mecca	Cross-sectional survey conducted on 58 E.coli isolates from pilgrims suffering urinary tract infection attending two different general hospitals, which tried to be consistent and to present all studies in a similar way	Urine	No data	Culture, AST, PCR, and MLST	58	E.coli carrying AR genes -CTX-M -TEM -SHV -OXA-1 -aac6	27/58 (46.5) 22/58 (37.9) 2/58 (3.2) 28/58 (48.3) 26/58 (44.8)	27/58 (46.5) 22/58 (37.9) 2/58 (3.4) 28/58 (48.3) 26/58 (44.8)	Alyamani et al., 2017 [25]

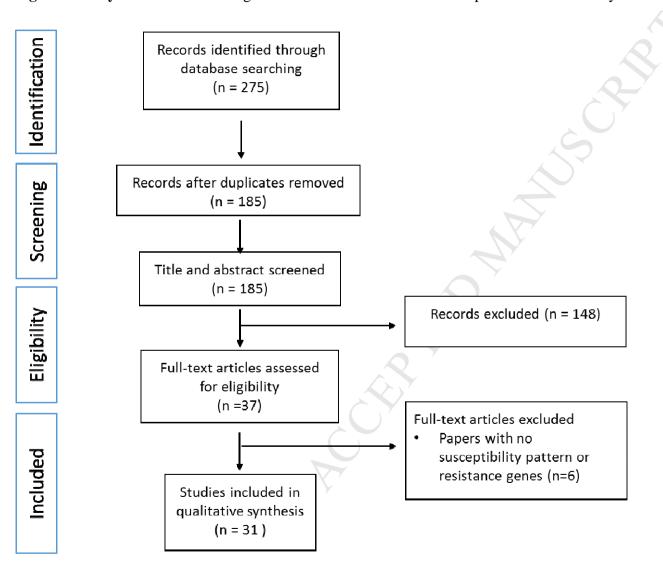
Cefotaxime and Cepacia selective medium

AST; Antibiotic susceptibility test

712

7<u>1</u>3

Table 2. Prevalence of antibiotic resistance bacteria in 17 studies conducted in patients hospitalized in Mecca and the Medina area.


Period/Year	Geographical area	Study design	Samples	Country of origin	Microbiological techniques	Number of individuals with positive culture (or number of positive isolates)/number of individual tested (or total number of isolates) (%)	Bacteria or gene investigated	Number of individuals with resistant bacteria (or number of positive isolates / No. of individuals with positive culture (or total number of isolates) (%)	Number of individuals with resistant bacterial number of individual tested (%)	References
April 2003 to March 2004	Mecca	Cross-sectional survey conducted on 512 S. aureus clinical isolates from hospitalized patients attending Al-Noor, King Abdul-Aziz, Hera and King Faisal hospitals	Wound swabs, ear swabs, eye swabs, blood, urine, respiratory tract	No data	Culture and AST	512/512 (100.0)	MRSA	199/512 (38.9)	199/512 (38.9)	Asghar and Momenah, 2006 [26]
January 2003 to February 2004	Mecca	Cross-sectional survey conducted on 132 patients with peptic ulcer disease attending Hera General Hospital	Multiple biopsies from gastric antrum and fundus, duodenum	Saudi Arabia (97.7%) others (2.3%)	Culture and AST	132/132 (100.0)	Metronidazole-resistant Helicobacter pylori Tetracycline and erythromycin resistant H. pylori	41/132 (31.0) 4/132 (3.0)	41/132 (31.0) 4/132 (3.0)	Karima 2006 [27]
April 2004 to March 2005	Mecca	Cross-sectional survey conducted on 1,626 patients with sepsis attending Al-Noor, King Abdul-Aziz, Hera, and King Faisal hospitals	Blood	Saudi Arabia (62.2%) others (37.8%)	Culture and AST	1530/1626 (94.1)	Oxacillin-resistant CoNS MRSA IMP-resistant <i>E.coli</i> IMP-resistant <i>Klebsiella</i> sp. IMP-resistant <i>Acinetobacter</i> sp. IMP-resistant <i>Pseudomonas</i> sp.	245/402 (61.0) 161/303 (53.0) 7/148 (5.0) 4/109 (4.0) 18/127 (4.0) 61/142 (43.0)	245/1626 (15.1) 161/1626 (9.9) 7/1626 (0.4) 4/1626 (0.2) 18/1626 (1.1) 61/1626 (3.8)	Asghar 2006 [28]
October 2005 to March 2006	Mecca	Cross-sectional survey conducted on 1,137 clinical isolates from 965 patients attending Al-Noor and Hera hospitals	Different sites of infection; urinary tract infection, respiratory tract infection, wound infection, septicemia, female genital infection, and other infections	No data	Culture and AST	1137/1137 (100.0)	CRO-resistant <i>E.coli</i> CRO-resistant <i>K.pneumoniae</i> IMP-resistant <i>E.coli</i> IMP-resistant <i>K.pneumoniae</i>	28/149 (18.8) 11/148 (22.9) 6/74 (8.1) 1/11 (9.1)	28/965 (2.9) 11/965 (1.1) 6/965 (0.6) 1/965 (0.1)	Asghar and Faidah, 2009 [29]
May 2008 to April 2009	Mecca	Cross-sectional survey conducted on 1,087 patients with grampositive bacterial infection attending Al-Noor, Hera, and King Abdul-Aziz Hospitals	Different sites of infection; urinary tract infection, respiratory tract infection, wound infection, septicemia/blood culture, female genital infection, and ear/eye	22 different countries: Saudi Arabia (81%), Pakistan (4.4%), Yemen (2.0%), Nigeria (1.9%), Egypt (1.7%), others (9%)	Culture and AST	1087/1087 (100.0)	Oxacillin-resistant CoNS MRSA VRSA Ampicillin-resistant S. pneumoniae E. faecalis VRE Enterococcus spp. VRE	85/97 (82.4) 271/688 (39.4) 9/441 (2.0) 4/19 (21.1) 1/149 (2.0) 3/86 (3.5)	85/1087 (7.8) 271/1087 (24.9) 9/1087 (0.8) 4/1087 (0.4) 1/1087 (0.09) 3/1087 (0.3)	Asghar 2011 [30]

			infections							
September 2009 to March 2010	Mecca	Cross-sectional survey conducted on 509 clinical isolates from 313 ICU patients attending Al-Noor, Hera, and King Abdul-	Urine, wound swabs, and other sample types	Saudi Arabia (50.9%), Pakistan (8.8%), India (5.9%), Egypt (5.7%) and Yemen (5.1%)	Culture, AST, PCR	509/509 (100.0)	E.coli carrying AR genes -CTX-M -TEM -SHV K.pneumoniae carrying AR genes	10/54 (18.5) 10/54 (18.5) 4/54 (7.4)	10/313 (3.2) 10/313 (3.2) 4/313 (1.3)	Asghar 2012 [31]
		Aziz Hospitals					-CTX-M -TEM -SHV -seruginosa carrying AR genes	35/116 (30.1) 22/116 (19.0) 20/116 (17.2)	35/313 (11.1) 22/313 (7.0) 20/313 (6.4)	
								6/148 (4.1) 7/148 (4.7) 2/148 (1.4)	6/313 (1.9) 7/313 (2.2) 2/313 (0.6)	
							-VIM -IMP -VIM&IMP	22/191 (11.5) 26/191 (13.6) 6/191 (3.1)	22/313 (7.0) 26/313 (8.3) 6/313 (1.9)	
September 2009 to March 2010	Mecca	Cross-sectional survey conducted on 478 clinical isolates from 365 ICU patients attending Al-Noor, Hera, and King Abdul- Aziz hospitals	Sputum, wound swabs, and urine	Saudi Arabia (64%), Pakistan (7.1%), Egypt (5.0%), Yemen (3.3%), India (3.1%), and Nigeria (1.9%)	Culture, AST, PCR	478/478 (100.0)	MBL-producing <i>P. aeruginosa</i> carrying AR genes -IMP -VIM -IMP&VIM	33/76 (43.4) 16/76 (21.0) 14/76 (18.4) 3/76 (3.9)	33/365 (9.0) 16/365 (4.4) 14/365 (3.8) 3/365 (0.8)	Asghar 2012 [32]
February-April 2011	Mecca	Cross-sectional survey conducted on 43 hospitalized patients attending Al-Noor, Hera, Maternity and Children, King Abdul Aziz, and King Faisal hospitals	Sputum, endotracheal tube secretion, tracheal aspiration, wound swabs, urine, and blood	No data	Culture and AST	43/43 (100.0)	IMP-resistant A.baumannii CTX-resistant A. baumannii	26/43 (60.5) 28/43 (65.1)	26/43 (60.5) 28/43 (65.1)	Khan et al., 2012 [33]
June 2011 to June 2012	Mecca	Cross-sectional survey conducted on 138 diabetic patients attending Umm Al-Qura University	Foot infection and urinary tract infection samples	No data	Culture and AST	129/138 (93.5)	CTX-resistant <i>E.coli</i> MRSA	15/27 (55.6) 15/26 (57.7)	15/138 (10.9) 15/138 (10.9)	Johargy 2016 [34]
March to September 2012	Mecca	Cross-sectional survey conducted on 206 S. aureus isolates collected from five major tertiary-care hospitals	No data	No data	Culture and PCR	206/206 (100.0)	MRSA carrying AR genes mecA PVL	100/206 (48.5) 19/100 (19.0)	100/206 (48.5) 19/206 (9.2)	Asghar 2014 [35]
January 2012 to October 2013	Mecca	Cross-sectional survey conducted on 190 Coagulase-negative Staphylococci (CoNS) isolates from neonatal septicemia patients	Blood	No data	Culture and AST	190/190 (100.0)	Oxacillin-resistant CoNS	178/190 (93.6)	178/190 (93.6 <u>)</u>	Khan et al., 2014 [36]

		attending Maternity and Children Hospital								
2014 (4 month- period)	Medina	Cross-sectional survey conducted on 48 patients attending out- patients clinic at King Fahd Hospital	Wound swabs, sputum, urine, blood	No data	AST and PCR	48/48 (100.0)	A.baumannii carrying VIM-1	13/48 (27.1)	13/48 (27.1)	El-Ageery and Al-Hazmi, 2014 [37]
2012 to 2014	Mecca	Cross-sectional survey conducted on 107 clinical isolates from ICU patients attending local general hospitals	Blood, and skin wound infection	No data	Culture, AST, PCR, MLST	107/107 (100.0)	ESBLs-A. baumannii A. baumannii carrying AR genes -CTX-M -TEM -SHV -OXA-51 -OXA-23	100/107 (94.0) 87/107 (81.0) 73/107 (71.0) 0/107 (0.0) 100/107 (94.0) 97/107 (91.0)	100/107 (94.0) 87/107 (81.0) 73/107 (71.0) 0/107 (0.0) 100/107 (94.0) 97/107 (91.0)	Alyamani et al., 2015 [38]
August 2013 to January 2014	Mecca	Cross-sectional survey conducted on 64 <i>P. aeruginosa</i> clinical isolates from patients at Al-Noor and Maternity and Children hospitals	Respiratory surgical, genital samples, urine, blood, ear swabs, eye swabs, burn swabs	No data	Culture and AST	64/64 (100.0)	IMP-resistant P.aeruginosa	14/64 (21.9)	14/64 (21.9)	Khan and Faiz, 2016 [39]
No data	Mecca	Cross-sectional survey conducted on 50 S. aureus clinical isolates from clinical laboratories	Blood cultures, wound swabs, urine, nasal swabs, and sputum	No data	Culture, AST, PCR	50/50 (100.0)	MRSA carrying AR genes mecA fnBPA PVL van gene	11/50 (22.0) 4/50 (8.0) 0/50 (0.0) 0/50 (0.0)	11/50 (22.0) 4/50 (8.0) 0/50 (0.0) 0/50 (0.0)	Abulreesh et al., 2016 [40]
January to July 2015	Mecca	Cross-sectional survey conducted on 260 K. pneumoniae clinical isolates from patients at Al-Noor, King Faisal, King Abdul Aziz, Hera, and Maternity and Children hospitals	No data	No data	Culture and AST	260/260 (100.0)	CRO-resistant <i>K. pneumoniae</i> IMP-resistant <i>K. pneumoniae</i>	111/260 (42.7) 31/260 (11.9)	111/260 (42.7) 31/260 (11.9)	Khan and Faiz, 2016 [41]
June and August 2015	Medina	Cross-sectional survey conducted on 134 patients suffering from diarrhea attending Ouhud Hospital	Stool samples	No data	Culture and AST	30/134 (22.4)	Shiga toxin-producing <i>E.coli</i> resistant to Trimethoprim/Sulfamethoxazole	21/30 (70.0	21/134 (15.7)	Sharaf and Shabana, 2016 [42]

AST; Antibiotic susceptibility test

Figure 1 Study selection. Flow diagram of identification and selection process included in systematic review.

Figure 2 Antibiotic susceptibility patterns of gram-positive bacteria from in-Hajj and out-Hajj periods. Blue highlights indicate the study was conducted during Hajj seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the number of AR bacteria divided by the total number of isolates tested, red, \geq 67%; orange, < 67% and \geq 33%; green, <33% are highlighted. Different numbers of isolates tested for resistance are marked with asterisk.

	screened for resistance		Aminoglycosides			Tetracyclines	Glycylcyclines	Macrolides	Lincosamides	Strentogramins	Steroidal	Phenicols	Oxazolidinones	Pseudomonic acid				Penicillins			Don in Illino (Dodo Joséphon)	in hibitors)		Cephalosporins					Monobactam	Carbapenems	Glycopeptides		Lipopeptides	Phosphonic	Polymyxins	Pyrimidines/Sulfonamides			Quinolones/ Fluoroguinolones				Rifamycin
Study	Total number of isolates scre	Amikacin	Gentamicin	Neo mycin Tobramycin	Tetracycline/	ne	.5		Clindamycin	dalfopristin		phenicol	Linezolid	Mupirocin	Ampicillin	Ampicillin/sulbactam	Benzylpenicillin	Methicillin	Oxacillin	Penicilin/ Penicilin G	Piperacillin Amoxicillin/clavulanic acid	Piperacillin/Tazobactam	Cefalotin	Cefazolin	Cefalexin	Cefoxitin	Cefuroxime	Cerotaxime	Ceffazidime	Ceftizoxime	Cefepime	Aztreonam	Imipenem	Teicoplanin	Vancomycin	Daptomycin		Trimethoprim/	sulfamethoxazole Nalidixic acid	Ciprofloxacin	Gatifloxacin	Levofloxacin	Moxifloxacin	Norfloxacin	/Ciprofloxacin	Nitrofurantoin
Staphylococcus aureus	•																							•																						
Fatani et al., 2002 [12]	47		6		1	3	4	1	4				4		<u> </u>				2 8	31			2				_				4	_			_	_		4	4	4	4	┷			_	4
Dablool and Al-Ghamdi, 2011 [13]	45	-	0	_	4	4	2		0	-	_							7	0 1	00	_	_	4		_	_	_	_	_			_	-		_	_	_		_	—	+	₩	_		_	—
Asghar and Momenah, 2006 (MRSA) [26]	199	-I	85	_	9	0	8		_	-	_		4	-	100			_	100 1	00			100		_	_	_	_	_	-	4	_	-		0	_	_	80)	┿	—	+-	-			+
Asghar and Momenah, 2006 (MSSA) [26]	313		10	$-\!\!\!+\!\!\!\!-$	1	9	14	4	_	_	_		4	_	83		y_	_	0 9	36	_	_	5	_	_	_	_	_	_	_	4		-		0	_	_	9	4	—	+	₩	_		_	+
Memish et al., 2006 [14]	85	\leftarrow		_	_		_				_							7			_	_				7	_	_	_			_	-		_	_	_	_	_	—	+	₩	_		_	—
Asghar, 2006 [28]	303		44	_	_	_	50		48				_		79				53 9	32	38		49			42			_		_				0	_	_	58		٠.						_
Asghar, 2011 [30]	1-688*	60	36	0	5	0	4:		34	8		32	5	_	92	63			39	33	42			64	31	30	24 2	25 5	1 2	2 60)	33	23		2	_	3	8 20	5 10	0 46	6	36			27 1	1 2
Johargy et al., 2011 (Umrah) [15]	235	-	3		1 1) 1		10	_	11		0				88	11	_	_	_	_	\vdash			11	_	_	_	_		_	-	0	0		1	3	4	—	+	4	3			1 2
Johargy et al., 2011 (Makkah) [15]	128		9	10	0 4	9 0) 2		22	_	20		0	0			79		15	_						15		_	_				-	0	0	_	2	13	2	┷	_	20	10			0
Johargy, 2016 [34]	26	54	54	_			5	4	58			_	_						58 1	00 7	77 50		54				(52	10	00	4							_	_	58	4_	_				
Abulreesh et al., 2016 [40]	50	\perp	6	_	1	6	10) 12	10	_	18		0	У.	100				22 1	00	16					22	_						18		0	0	0	_	_	0	4	0	0		(4
Marglani et al., 2016 (MRSA) [23]	13		46	_	3	9		7 92		_		4	_)	100					_		100				100			00 10	00	10		100		0	_		54	4	62		69				-
Marglani et al., 2016 (MSSA) [23]	33	\perp	3	_	1	8	18	3 21	9	_	_				39	_		_			21	0				0	_) 3		0		15		0	_	_		4	12		12				+
Haseeb et al., 2016 (MRSA) [24]	5-24*		42	_	_		_	_	_						78				,	91	75		87	84		30	80 6	60 6	7 5	0	60	72	50		_	_	_	-	+	63		0	42		_	—
Haseeb et al., 2016 (MSSA) [24]	7-17*	Щ	_							14					91	_			24 8	39	29		0	U		0	0	U				0	43	Ш				_		40		0	40	0		_
Coagulase-negative staphylococci	1	-		_	_	_			-			17	_	_														_			_	_	1	_		_	_			—	_	_	_			_
Asghar, 2006 [28]	402		26	_	_	_	7	2	50				_	_	72				61 9	31	34		49			26			_						0	_			5	_						_
Asghar, 2011 [30]	1-86*	91	63 1	100	3	Ь	8.	3 70	63			50	_	_	87	95			82 9	30	60	_		92	56	6/	71 7	71 8	9 8	0 50	,	100	50		3			47	/ 50	80	411	60	_		64 2	7 0
Khan et al., 2014 [36]	190		82	_	ㅗ		/	8 78	60	2			0		99	_			94 1	00	93	_	ш												0	2		_	_	_	ㅗ	_				_
Enterococcus spp.	1	_	05.	_	_	_			- 00			_	_	_		_		_	00 1				00	_		05	_		_	_	_		_			_	_			-	-	_	_			-
Asghar, 2006 [28]	78		95	_	_	10	8.	3	98	-			٠.,	_	23				96 8		11		98		0.4	95	50 0		0 0	0.00	_	50			0	-		9)	8 54	- 00	100	0.00	_		74 0	
Asghar, 2011 [30] Asghar, 2011 (<i>E.faecalis</i>) [30]	1-99*		48 83	0	1	8	6	+	60		_	0	14		15 27	0		_		12	79		\vdash	0	64	50	50 6	67 6		3 33)	50	20	\vdash	4	+		9	3 50				-		7 3	3 4 0 0
	1-56*		63	U	9	14	6	0	83	1/5	2	0	0		2/	50			0 3	53	25			U	U	6/	0 1	00 5	U	, 0		0	100		2	_		8	0 6/	7 56		61			50 5	<u> </u>
Streptococcus spp.			_	—	_	_	_	_	_	_	_	_	_	_	_	_					_	_		_	_	_	_	_	_	_	_		_		_	_	_	—	—	—	—	_	_			—
Fatani et al., 2002 (Streptococcus pyrogenes) [12] Asghar, 2006 (Streptococcus spp) [28]		-	90	$-\!\!\!\!+\!\!\!\!-$	+		_		24	+-	_	-	+	+	10				27 2	26	_	_	22		_	22			+	-	+	-	+	H	0	-		-		+	+	+	+			+
Asghar, 2006 (Streptococcus spp.) [28] Asghar, 2006 (Streptococcus pneumoniae) [28]	70	+	09	$-\!\!\!+$	+	+	20	2	9		+	+	+	+-	13	-	\vdash	_	_	7			23		_	33	-	+	+	-	+	+-	+	\vdash	0	+	+	-4	9	+	+	—	+	\vdash	-	+
	44		69				_10	0			_	_	4		1				16 67 2	7	5	-	14	400	25	18	13 1			10		_		\vdash	0	+	_	6	0 0	-	0 50	_	_		0 40	00 10
	4 400		70																																											
Asghar, 2011 (Streptococcus pneumoniae) [30]	1-19*		70	0	3	3	1	7	39	10	10	0	0		21	100		_	0/ 2	-0		_	-	100	40	0		17 1		3 10	U	U	U		20	-	_		U U	10	0 50	67		-	0 10	JO 11
Asghar, 2011 (Streptococcus pneumoniae) [30] Asghar, 2011 (Streptococcus pyrogenes) [30]	1-12*		70 56	0	6	0	1:	7	39 17	10	10	0	0		21	100			01 2					100	13	0		33 1		0	U		U		20			7	8	10.	0 50	67			0 10	- 1
Asghar, 2011 (Streptococcus pneumoniae) [30]				0	3 6 5	i3 i0 i6	2	5	_	10	10	6	0		21	100			67	8	0		36	100	13	0				0	U		0		0			78	8 8	10	50	1	1	400	U	

Figure 3 Antibiotic susceptibility patterns of Enterobacteriaceae from in-Hajj and out-Hajj periods. Blue highlights indicate the study was conducted during Hajj seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the number of AR bacteria divided by the total number of isolates tested, red, \geq 67%; orange, < 67% and \geq 33%; green, <33% are highlighted. Different numbers of isolates tested for resistance are marked with asterisk.

	o o			ides										4						su						'0						nes					Τ
	d for resistanc			Aminoglycosides			Tetracyclines	Macrolides	Phenicols		Penicillins			Penicillin/ Beta-	lactamase inhibitors				:	Cephalosporins			,	Monobactam		Carbapenems		Phosphonic	Polymyxins			Quinolones/ Fluoroguinolones	F			Pyrimidines/ Sulfonamides	Nitrofurans
Study	Total number of isolates screened for resistance	Amikacin	Gentamicin	Kanamycin	Streptomycin	Tobramycin	Tetracycline	Erythromycin	Chloramphenicol	Amoxicillin	Ampicillin	Mezlocillin	Piperacillin	Şig		Ticarcillin/clavulanic acid	Cephalothin	Cefoxitin	Cefuroxime	Cefotaxime	Ceftazidime	Ceftriaxone	Cefepime	Aztreonam	Imipenem	Meropenem	Ertapenem	Fosfomycin	Colistin	Ciprofloxacin	Norfloxacin	Norfloxacin/Ciprofloxacin	Ofloxacin	Levofloxacin	Moxifloxacin	Trimethoprim/sulfamethoxazole	
Escherichia coli Asghar, 2006 [28]	148	17	43							_	89		55	70	9	7	6	38			43		20	45	5	$\overline{}$		$\overline{}$	$\overline{}$	35		-				65	$\overline{}$
	40-316*		26			22	56			_	84				9	5		12		15		10	20	30	8	1			4:			39	\vdash	53	\vdash	59	12
Asghar, 2012 [31]	22-52*		47			22	70				83				47	9		28				46	55	52	6	4				58			+	55	 	72	32
Johargy, 2016 [34]	9-27*	0	30			50	70	100	11		00			59	7	6		20	30	56		70	33	32	-	-			10		67	_	+-		\vdash	56	_
Sharaf and Shabana, 2016 [42]	30	-		57	47	30	77	100	33		23		70	39		0	_			30	30		-						- 10	U	17	_	+-		\vdash	70	
Marglani et al., 2016 [23]	8		0	31	71				33		75			0	0	-		0			0	0	0		0			-	-	0	- ''	-	+-	0	_	13	+
Leangapichart et al., 2016 (a) (ESBL) [18]	18	_	28								, 0				_	72	_			+	U	100			0	-	_		n	_		+	${}$		 		+-
Leangapichart et al., 2016 (b) (mcr-1) [20]	10		40							100				100	0	_	_	-	+	+		40	10	20		-	2	0 10	00 3) 10	_	+	${}$		+	60	+-
Haseeb et al., 2016 [24]	3-100*	7	28			57				100	84	100		59	-	9	7 4	0 24	45	31	34	70	41	49	3	-		.0	7		_		${}$	100	63	-00	+-
Haseeb et al., 2016 (ESBL) [24]	4		75			31						100		33		3	7	0	73	31	J-T		71	70		0	0	-		75		4	+-	100	00	-	+-
Alyamani et al., 2017 [25]	58	75	75								97	7		-				5		76	81		75	٩n	0	0	_		+	80		+	+-		\vdash	-	+-
K. pneumoniae	30										31		_					J		70	U		75	30	0	U		_	_	00							
Asghar, 2006 (Klebsiella sp.) [28]	109	42	54							_	96		68	62	8	7	6	32	_		61		18	60	4	$\overline{}$	$\overline{}$	т	一	26		$\overline{}$	$\overline{}$			67	$\overline{}$
Asghar and Faidah, 2009 (Klebsiella sp.) [29]	2-65*		32			36	67				99				7	3		19		33		42	10	37	9			-	4			57	\vdash	50		52	32
Asghar and Faidah, 2009 [29]	4-85*		25			20	86			\rightarrow	95				10	3		16			32	23		34	9				4:				\vdash	50	\vdash	37	27
	30-106*		51			20	61				100				47	7	_	44			64	56	60	73	13	17	-	\dashv	-	53			\vdash	-00	\vdash	64	75
Khan and Faiz., 2016 [41]	260		J.				01				.00	_			•			-/-	02	- 00	29	43	31		_	12	-	+	+	00	70	+	\vdash	 	\vdash		
Leangapichart et al., 2016 (ESBL) [18]	5		40									\dashv	\dashv		0 6	60				†	100	.0			0				0	+	+	+	t^{-}	t	\vdash		+-
Leangapichart et al., 2016 (<i>mcr-1</i>) [20]	1									100		\dashv		100					1	 			-							+	1	+	\vdash		\vdash	100	+-
Marglani et al., 2016 [23]	14		0					7			100	_		40	40	\neg		0		1	0	0	0		20	-		\dashv	_	0	+	+	t	0		0	+-
Haseeb et al., 2016 [24]	6-63*	5	38			46		V			94				17	6	7 4	3 20	35	23	24	0		23		10 ′	13			41	0			44	55		+
Enterobacter spp.																																					
Asghar, 2006 [28]	19	5	16								84		26	89	11	9	5	84		T	26		0	26	0	T		Т	T	0		T				32	
Asghar and Faidah, 2009 [29]	1-19*		39			67					95				20	10		90			46	56		47				T	5	7 9	33	67		İ		24	29
Haseeb et al., 2016 (E.clocae) [24]	4-9*		50			0					75			84	0	10		100				0				0	0		C								
Salmonella enterica																																		١			
Asghar, 2006 (Salmonella spp.) [28]	11	0	9								55		36	36	0	2	7	0			0		0	0	0					0		T				64	
Olaitan et al., 2015 [16]	5	0	40	0		0				60				40							40	40		40	0			4	10	0		1	0			0	
Haseeb et al., 2016 [24]	4													0					0	0	0		0		0	0	0			0		1		0	0		
Proteus spp.																																					
Asghar, 2006 [28]	12	25	17								83		42	58	0	7	5	67			8		0	17	8					25		T	T			33	
Asyriar, 2000 [20]																																					
Asghar and Faidah, 2009 [29]	3-36*		43			86					53		19		33	3	3	16	29	33	7			12	6				8) 17	4		†	50		67	

Figure 4 Antibiotic susceptibility patterns of *Acinetobacter sp.* and *Pseudomonas aeruginosa* from in-Hajj and out-Hajj periods. Blue highlights indicate the study was conducted during Hajj seasons. Prevalence of bacteria resistant to a given antibiotic were calculated from the number of AR bacteria divided by the total number of isolates tested, red, \geq 67%; orange, < 67% and \geq 33%; green, <33% are highlighted. Different numbers of isolates tested for resistance are marked with asterisk.

Study	d for resistance		v v	- Aminogiycosides		Tetracyclines			Penicillins			Penicillins / Beta-		inhibitors				Cephalosporins)			Monobactams		Carbapenems		Polymyxins				Quinolones/ Fluoroquinolones				Pyrimidines/ Sulfonamides	Rifamycins	Nitrofurans
	Total number of isolates screened for	Amikacin	Gentamicin	Neomycin	Tobramycin	Tetracycline	Amoxicillin	Ampicillin	Mezlocillin	Piperacillin	Ticarcillin	Amoxicillin/clavulanic acid	Piperacillin∕Tazobactam	Ticarcillin/clavulanic acid	Cephalothin	Cefoxitin	Cefuroxime	Cefotaxime	Ceftazidime	Ceftriaxone	Cefepime	Aztreonam	Imipenem	Meropenem	Ertapenem	Colistin	Nalidixic acid	Ciprofloxacin	Norfloxacin	Norfloxacin/Ciprofloxacin	Ofloxacin	Levofloxacin	Moxifloxacin	Trimethoprim/sulfamethoxazole	Rifampicin	Nitrofurantoin
Acinetobacter baumannii		75	70					07		70		07				Loo			70		45	00	4.4											70		
Asghar, 2006 (Acinetobacter sp.) [28]	127	75			57			97		73	\rightarrow	87 93	8 43		98		100	00	79 87	97	45	90 95	14 46	20			33	77	71			64	-	76 75		83
Asghar and Faidah, 2009 [29] Asghar, 2012 [31]	1-106* 107-183*	93		_	5/			97		99		93	95		100	98	100	83	97	97	93	95	87	28 93			33	96	7.1			04		75		83
Khan et al., 2012 [33]	43	54				65		65		95	74		90			1		65	58		58	72	61	90				61						63	_	-
El-Ageery and Al-Hazmi, 2014 [37]	48	90		100		00		100		71	74	94		-	100	100		00	100		30		100					100						03		
Leangapichart et al., 2016 [21]	43	0	2	.00	2		37	100				74		40	100	100		49	100	91		93	2			0		5			7			5	0	-
Haseeb et al., 2016 [24]	3-24*	67	46		50			100	100				0	-				100	77		77		90	64	0			83				67				_
Pseudomonas aeruginosa	-																														_		-			
Fatani et al., 2002 [12]	5	0	0		0					0					Π	T	П		0				0					0								\neg
Asghar, 2006 [28]	142	42	61				Y	89		34		82	10		87	76			44		22	56	43					24						73		
Asghar and Faidah, 2009 [29]	16-339*	48			54	73	Y	70		49		77	34		76	73			53	83		58	39	20			96	51	58	44		75		77		96
Asghar, 2012 [31]	62-139*	47	55							44			57						63		69		44	53				60								
Asghar, 2012 [32]	90-464*	32	42			32		97		47		94	41		97	94	94	78	51	70	52	50	29	36				43						92		
Khan and Faiz, 2016 [39]	64	20	27							28	30		8						20		11	23	22	42				22				27				
Haseeb et al., 2016 [24]	3-45*	12	21		0			75	100		59		33			0		95	36		34		11	17				49	0			0	100			