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Abstract

Background—Drug-drug interactions causing severe hypoglycemia due to antidiabetic drugs is 

a major clinical and public health problem. We assessed whether sulfonylurea use with a statin or 

fibrate was associated with severe hypoglycemia.
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Methods—We conducted cohort studies of users of glyburide, glipizide, and glimepiride plus a 

statin or fibrate within a Medicaid population. The outcome was a validated, diagnosis-based 

algorithm for severe hypoglycemia.

Results—Among 592,872 persons newly-exposed to a sulfonylurea+antihyperlipidemic, the 

incidence of severe hypoglycemia was 5.8/100 person-years. Adjusted hazard ratios (HRs) for 

sulfonylurea+statins were consistent with no association. Most overall HRs for sulfonylurea

+fibrate were elevated, with sulfonylurea-specific adjusted HRs as large as 1.50 (95% confidence 

interval (CI): 1.24–1.81) for glyburide+gemfibrozil, 1.37 (95% CI: 1.11–1.69) for glipizide

+gemfibrozil, and 1.63 (95% CI: 1.29–2.06) for glimepiride+fenofibrate.

Conclusions—Concomitant therapy with a sulfonylurea and fibrate is associated with an often 

delayed increased rate of severe hypoglycemia.
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INTRODUCTION

By the year 2050, approximately one-third of the United States (US) population is predicted 

to have diabetes mellitus.(1) While pharmacologic approaches to normalize blood glucose 

can delay diabetes onset and minimize micro- and macrovascular complications, 

hypoglycemia from antidiabetic drug regimens is a major barrier to glycemic control.(2) 

Severe hypoglycemia can result in dementia, seizures, coma, major adverse cardiovascular 

events and death,(3–5) and is feared by persons with diabetes and their relatives.(6) 

Therefore, it is not surprising that the US Department of Health & Human Services named 

antidiabetic drug-induced hypoglycemia as one of three high-priority targets in reducing 

adverse drug events, and called for research to close knowledge gaps to facilitate its 

prevention.(7)

The American Diabetes Association currently recommends a sulfonylurea (SU) as one of 

three classes of highly efficacious add-on treatments to metformin in persons with type 2 

diabetes, if metformin monotherapy fails to achieve the glycosylated hemoglobin target by 

three months.(8) In persons intolerant or with a contraindication to metformin, SUs may be 

used as monotherapy. Given these guidelines and the drug class’ historic use as a first-line 

agent, SU use remains very common.(9) Hypoglycemia is an expected, dose-related adverse 

effect of SU therapy, occurring in up to 20% of users over six months of treatment.(10) 

While severe hypoglycemia accounts for a small proportion of these events, it can result in 

death in up to 7.5% who experience it.(11) For those surviving, hospitalization tends to be 

prolonged.(12)

Drug interactions with SUs may potentiate hypoglycemia risk via inhibition of hepatic 

cytochrome P450 (CYP) enzymes responsible for their metabolism. In particular, 

antihyperlipidemic drugs—frequently co-prescribed with antidiabetic agents—may inhibit 

CYP3A and CYP2C9, both of which are responsible for the inactivation of glyburide(13) 

and the latter of which for glipizide(14) and glimepiride(15). Further, antihyperlipidemic 
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fibrates and statins themselves may affect glucose homeostasis.(16,17) Such mechanisms 

might result in enhanced glucose lowering effects in concomitant users of SUs and certain 

antihyperlipidemics. While these effects may be desirable for some patients, such effects 

might also increase the risk of severe hypoglycemia.

We therefore quantified the rates of severe hypoglycemia among concomitant users of SUs 

and individual antihyperlipidemics.

RESULTS

Cohort characteristics and outcome frequency

We identified 224,821, 239,151 and 128,900 concomitant users of antihyperlipidemics with 

glyburide, glipizide and glimepiride, respectively. Characteristics of glyburide users, 

stratified by antihyperlipidemic exposure are presented in Table 1. Users of glipizide 

(Appendix Table 1) and glimepiride (Appendix Table 2) had characteristics similar to 

glyburide users. Users of antihyperlipidemics with glyburide, glipizide and glimepiride 

contributed 52,180, 57,013 and 30,824 person-years (p-y) of concomitant exposure, during 

which we identified 3,201, 2,898 and 1,953 severe hypoglycemia events (unadjusted 

incidence rates = 6.1 [95% confidence interval (CI): 5.9–6.4], 5.1 [4.9–5.3] and 6.3 [6.1–6.6] 

per 100 p-y). In subcohorts of persons treated with a SU as antidiabetic monotherapy, the 

unadjusted rates of severe hypoglycemia were 5.7 (5.3–6.1), 3.7 (3.4–4.0) and 5.4 (4.8–5.9) 

per 100 p-y, respectively. By comparison, the unadjusted rate in users of metformin as 

antidiabetic monotherapy was 0.8 (0.7–0.9) per 100 p-y.

Measures of association: primary and secondary analyses

The high-dimensional propensity score (hdPS) algorithm identified 614, 586 and 632 

covariates for inclusion in the multinomial propensity score (PS) models for glyburide, 

glipizide and glimepiride, respectively (Appendix Table 3). Among these, 23, 13 and 42 

variables occurred very infrequently (N < 10 for ≥1 of the antihyperlipidemic exposure 

groups) and were excluded to avoid model instability. Therefore, the multinomial PS models 

included 591, 573 and 590 empirically-identified covariates, respectively; each model also 

included as many as 35 predefined covariates (Appendix Table 4). Crude hazard ratios (HRs) 

are presented in Appendix Figure 1; PS-adjusted HRs are presented in Figure 1. Time-

specific association measures for concomitant use of each SU are presented for fenofibrate 

in Figure 2 and for gemfibrozil in Figure 3. No time-course effects were evident for 

concomitant use with statins (data not shown).

Measures of association: sensitivity analyses

PS-adjusted HRs for concomitant users of antidiabetic monotherapy and antihyperlipidemics 

are presented in Table 2. These results generally reflected the same pattern as analyses not 

restricted to antidiabetic monotherapy (except for metformin) presented in Figure 1, 

although the estimates are less precise because of fewer subjects. Among 

antihyperlipidemic-triggered persons in the overall cohorts, we identified 3.9%, 5.2% and 

5.2% of users with an increase in glyburide, glipizide and glimepiride dose, respectively, 

during follow-up. After their exclusion, our findings remained unchanged. PS-adjusted HRs 
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for glyburide, glipizide and glimepiride with fenofibrate were 1.33 (1.06–1.67), 1.23 (0.95–

1.59) and 1.62 (1.28–2.05), respectively. PS-adjusted HRs for glyburide, glipizide and 

glimepiride with gemfibrozil were 1.48 (1.22–1.79), 1.37 (1.10–1.70) and 1.57 (1.21–2.03), 

respectively. PS-adjusted HRs of an analysis limited to new SU users concomitantly exposed 

to an antihyperlipidemic are presented in Appendix Figure 2; these findings are similar to 

our overall findings presented in Figure 1, although the estimates are less precise because of 

fewer subjects.. Results from the sensitivity analysis that excluded covariates from the PS 

strongly related to exposure, but not outcome, were similar to our overall findings (data not 

shown).

DISCUSSION

We examined severe hypoglycemia associated with potential drug-drug interactions between 

SUs and antihyperlipidemics. The incidence of severe hypoglycemia among concomitant SU 

and antihyperlipidemic users was about 5–6 per 100 p-y. The rate was lowest among 

glipizide users, consistent with prior findings that glipizide causes less hypoglycemia than 

glyburide.(18,19) Interestingly, the rate was highest among glimepiride users, contrary to 

predictions that this third generation SU with a lower affinity for the pancreatic β-cell 

receptor may carry a lower risk of hypoglycemia.(20) As approximately 3% of each of 

glyburide, glipizide, and glimepiride users had a severe hypoglycemia event during the 

baseline period (Table 1, Appendix Table 1, Appendix Table 2), this seems unlikely to be 

responsible for this difference. To further contextualize our findings, rates among users of an 

SU as antidiabetic monotherapy were about seven times as large as those among metformin 

antidiabetic monotherapy users.

We found an increased rate of severe hypoglycemia during the first six months of 

concomitant use of a SU and either fenofibrate or gemfibrozil. There was no corresponding 

increased rate among concomitant users of SUs and a statin. SU + fenofibrate was associated 

with a 20%–60% increased rate of severe hypoglycemia overall, with rate increasing as 

much as 2.5-fold in users of glimepiride during the third and fourth months of concomitant 

use. SU + gemfibrozil was associated with a 40%–60% increased rate of severe 

hypoglycemia overall, with rate increasing as much as 2.4-fold in users of glipizide during 

the fifth and sixth months of concomitant use. Unexpectedly, metformin + fenofibrate was 

associated with a 60% increased rate of severe hypoglycemia overall, with rate increasing as 

much as 90% during the third and fourth months of concomitant use, although the 

metformin findings did not meet the conventional threshold for statistical significance.

The potential role of hepatic CYP inhibition in this drug interaction has been examined 

previously, but studies examining clinical relevance are scant. Niemi et al reported that 

gemfibrozil increases glimepiride’s plasma concentrations by 23%, presumably via CYP2C9 

inhibition.(15) Appel et al reported that fluvastatin and simvastatin (examined separately) 

increased glyburide’s plasma concentrations by about 20%, yet concluded that such a 

change was not clinically relevant.(21) Prior models found that predicted CYP2C9- and 

CYP3A4-based area under the curve ratios (a measure of the change in systemic exposure to 

a drug in the presence of an inhibitor) for SUs with fibrates or statins were near 1.0, 

suggesting that a CYP-based interaction is unlikely.(22)
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Our findings of an increased rate of severe hypoglycemia among concomitant users of 

glyburide and fibrates are consistent with our prior work in this area, the only previous study 

to examine the health effects of this potential interaction.(22) Our current studies build upon 

this prior work by: 1) overcoming the previously underpowered findings for glipizide, by 

including nearly 60% more data; 2) including persons entering the cohort as antidiabetic-

triggered (Figure 4); 3) including glimepiride and metformin users; 4) reducing residual 

confounding by use of hdPS methods; and 5) examining time-specific associations measures 

soon after and more distant from cohort entry.

Taken together, our prior and current findings suggest that the apparent drug interaction 

between SUs and fibrates is unlikely mediated primarily by CYP2C9 inhibition. Evidence 

for this conclusion is as follows. First, concomitant use of rosuvastatin, an inhibitor of 

CYP2C9, was not associated with an increased rate of severe hypoglycemia. Second, the 

increases in hypoglycemia rate with concomitant use of fibrates were delayed, and 

interactions involving enzymatic inhibition are usually rapid-onset interactions.(23) Finally, 

there was a suggestion of an increased rate of severe hypoglycemia among users of 

metformin + fenofibrate, and metformin is not hepatically metabolized and only rarely 

causes hypoglycemia. Future work should elucidate the mechanism(s) underlying this 

apparent drug interaction. Inhibition by fibrates of organic anion transporter polypeptides 

(OATPs) involved in the hepatic uptake and resultant reduced clearance of SUs may 

contribute to this potential interaction. Arguing against this mechanism is the observation 

that OATP inhibition has been attributed to both statins and fibrates, and concomitant use of 

SUs and statins was not associated with an increased rate of severe hypoglycemia. Another 

potential mechanism involves peroxisome proliferator-activated receptor (PPAR) α agonist 

effects of fibrates, which can beneficially impact lipid and lipoprotein metabolism. Lipid and 

glucose homeostasis is interrelated and lowering free fatty acids ameliorates insulin 

resistance via protection of pancreatic islets.(24) Alternatively, or in addition, fibrates may 

induce fatty acid-binding protein and stimulate β-oxidation in skeletal muscles.(25) 

Regardless of potential mechanism, improvements in insulin resistance and glycemic control 

have been reported in users of gemfibrozil(26) and fenofibrate.(27) Further, some fibrates 

also act at PPAR γ,(28) the site of action of TZDs. In fact, bezafibrate―a pan-PPAR fibrate 

available outside of the US―has been shown to delay type 2 diabetes onset (and 

progression) in persons with impaired fasting glucose.(29,30)

Our studies have important strengths. They are the largest to date to examine the association 

between second generation SUs and severe hypoglycemia, the first to examine the 

association in users of a third generation SU, and the first to quantify the rate of severe 

hypoglycemia among metformin users. Our use of an active comparator, hdPS methods, and 

sensitivity analyses serves to mitigate confounding. Further, our large sample sizes allow for 

the examination of the time-course of the interactions. Finally, our algorithm to identify 

severe hypoglycemia has a very good positive predictive value.

These studies also have limitations. First, we did not have access to biosamples and were 

therefore unable to examine CYP polymorphisms. Second, we lacked data on adherence to 

prescribed antidiabetic and antihyperlipidemic therapies. Third, administrative databases 

may poorly capture some lifestyle behaviors and nonprescription therapies that may modify 

Leonard et al. Page 5

Clin Pharmacol Ther. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hypoglycemia risk. Regardless, such factors seem unlikely to differ substantially by 

antihyperlipidemic exposure. Fourth, despite the high positive predictive value of our 

outcome definition, some events may be misclassified. Such misclassification is likely non-

differential by antihyperlipidemic exposure and therefore effect estimates may biased toward 

the null. Finally, our results may not be generalizable beyond a US Medicaid population. 

Nevertheless, this population was specifically chosen because of its inherent vulnerability 

and inclusion of large numbers of women and minorities—groups typically understudied. 

Biological associations identified in Medicaid populations are often replicated in 

commercially insured populations and vice versa.(31)

Managing drug-drug interactions is regarded as a cornerstone of antidiabetic therapy.(23) By 

far the most important consequence of such interactions is severe hypoglycemia, an outcome 

of significant clinical and public health concern that is feared by patients and their relatives.

(6) We found that concomitant therapy with a SU and fibrate is associated with an increased 

rate of emergency department presentation or hospitalization for hypoglycemia. The 

mechanism underlying this apparent drug-drug interaction needs further elucidation, but is 

unlikely to solely involve a pharmacokinetic interaction mediated by CYP2C9 inhibition. 

Clinicians should be attuned to both immediate- and delayed-onset hypoglycemia in their 

patients on this drug combination.

METHODS

Overview and study population

We conducted three hdPS-adjusted retrospective cohort studies of adult users of glyburide, 

glipizide and glimepiride. Each cohort consisted exclusively of person-time concomitantly-

exposed to the SU plus one of the following antihyperlipidemics: atorvastatin; fenofibrate; 

gemfibrozil; lovastatin; pravastatin; rosuvastatin; or simvastatin. Study data included that of 

the Medicaid programs of California, Florida, New York, Ohio, and Pennsylvania from 

1999–2009.(32) Findings from 1999–2003 for a subset of the pairs examined herein using 

different methods have been reported earlier.(22) These states comprise about 38% of the 

US Medicaid population, with the 11-year dataset recording the experience of over 59 

million cumulative enrollees and nearly 180 million p-y of observation. Because a 

proportion of Medicaid beneficiaries are co-enrolled in Medicare, we also obtained 

Medicare claims to ascertain a more complete picture of enrollees’ healthcare.(33) To 

contextualize our SU findings, we conducted a fourth hdPS-adjusted cohort study among 

concomitant users of metformin (which causes hypoglycemia only rarely) and an 

antihyperlipidemic.

Defining the study cohorts

We defined new users as those with ≥12 months of Medicaid enrollment before their 

concomitant antidiabetic + antihyperlipidemic use. The day on which users were first co-

exposed defined cohort entry. The 12-month period immediately preceding cohort entry 

served as the baseline period. Use of a fixed baseline period is standard in studies utilizing 

hdPS methods. Persons entered the cohort as combination triggered, antidiabetic triggered, 

or antihyperlipidemic triggered (Figure 4).
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Persons were excluded if <18 or ≥100 years of age. Persons with exposure to a non-SU 

antidiabetic drug during the baseline period were not excluded from the SU cohorts, as SUs 

are often used as second-line therapy; however, prior use of non-SU antidiabetic drug classes 

were pre-specified covariates in the PS. Persons with exposure to a non-metformin 

antidiabetic drug during the baseline period were excluded from the metformin cohort, as it 

was intended to be an antidiabetic monotherapy cohort with a low rate of antidiabetic-

induced hypoglycemia. Severe hypoglycemia during the baseline period was not an 

exclusion criterion, as hypoglycemia is often recurrent, but was a pre-specified variable in 

the PS.

Follow-up began upon cohort entry and continued until the first occurrence of the following: 

a) outcome of interest (defined below); b) death, as ascertained from linkage to the Social 

Security Administration Death Master File (National Technical Information Service: 

Alexandria, VA); c) the 181st day of follow-up; d) >15-day gap in either antidiabetic or 

antihyperlipidemic therapy; e) prescription for a sulfonylurea or antihyperlipidemic different 

than that upon cohort entry (i.e., indicative of switching to an alternate therapy); f) 

prescription for any non-metformin antidiabetic agent or antihyperlipidemic different than 

that upon cohort entry (for the metformin antidiabetic monotherapy cohort alone); g) loss of 

Medicaid eligibility; or h) the end of the dataset. Follow-up time occurring during a period 

of hospitalization was excluded, although hospitalization did not serve as a censoring event. 

This exclusion served to minimize immeasurable time bias.

Exposure and covariate ascertainment

Exposure was defined by the antihyperlipidemic active on the day of cohort entry. The 

following antihyperlipidemics were excluded because of minimal use: cerivastatin; 

clofibrate; fluvastatin; and pitavastatin. Pravastatin served as the reference exposure, as it is a 

negligible inhibitor of CYP isozymes(34) which are involved in the metabolism of SUs.(35) 

Therefore, pravastatin would not be expected to interact pharmacokinetically with SUs. 

Further, pravastatin has minimal-to-no effect on fasting plasma glucose(36–39) or daylong 

plasma glucose.(40) Therefore, it alone would not be expected to have an inherent 

hypoglycemic effect.

Potential confounders included pre-specified variables and those identified via empiric 

methods, both of which informed the PS. Pre-specified variables included demographics, 

baseline measures of intensity of healthcare utilization, baseline drug exposures, and 

baseline comorbidities (Table 1). Empiric covariates included those identified during 

baseline via a high-dimensional approach(41,42) which ranks and selects potential 

confounders (or proxies thereof) based on their empirical associations with exposure and 

outcome (see specifications in Appendix Table 5).

Outcome ascertainment

The outcome was severe hypoglycemia (i.e., resulting in emergency department treatment or 

hospitalization) within 181 days of cohort entry—operationally defined by one of the 

following International Classification of Diseases 9th Revision Clinical Modification 

discharge diagnosis codes in any position on an emergency department claim or the principal 
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position on an inpatient claim: a) 251.0 (hypoglycemic coma); b) 251.1 (other specific 

hypoglycemia); c) 251.2 (hypoglycemia, unspecified); or d) 250.8X (diabetes with other 

specified manifestations), as long as it did not co-occur with ≥1 exclusionary diagnosis 

suggesting manifestations other than hypoglycemia (Appendix Table 6). The emergency 

department and inpatient components of this algorithm have positive predictive values of 

89%(43) and 78%,(44) respectively.

Statistical analysis

We calculated descriptive statistics for baseline variables and calculated incidence and 

unadjusted association measures, the latter via Cox proportional-hazards models. We utilized 

the hdPS approach to reduce the impact of potential confounders. However, as we wished to 

compare multiple antihyperlipidemic drugs to a common pravastatin comparison group, 

matching on PS was not an option, and the hdPS algorithm has so far been developed only 

for pairwise comparisons.(42,45) As described below, we therefore used pairwise hdPS to 

identify potential confounders for each antihyperlipidemic drug versus pravastatin and 

included all such empirically-identified variables (plus pre-specified variables) in a 

multinomial PS model. We first used the hdPS program(42,45) to identify the 200 most 

prevalent diagnosis, procedure and drug codes (excluding drug codes indicative of SU or 

antihyperlipidemic prescribing) in each of nine data dimensions, to assess their associations 

with the antihyperlipidemic of interest versus pravastatin, and to assess their associations 

with the outcome. We then used these associations to select the top 500 codes with the 

largest potential for causing confounding. Because of the large number of variables in the 

final multinomial PS model, empirically-identified covariates did not include measures of 

frequency (i.e., sporadic, frequent) as generated by the hdPS program. Then, the union of all 

confounders arising from the seven sets of 500 hdPS-identified variables (one for each 

antihyperlipidemic versus pravastatin) were included in the multinomial PS. The following 

pre-specified covariates were also included in the multinomial PS model: age; sex; race; 

state of residence; calendar year of cohort entry; Medicaid-Medicare dual-enrollment status; 

nursing home residence status; prior severe hypoglycemia; measures of the intensity of 

healthcare utilization; and prior use of other antidiabetic drugs, by pharmacologic class. The 

multinomial PSs were modeled using multinomial logistic regression,(46) generating for 

each subject the predicted probability of receiving each antihyperlipidemic drug. These PSs 

were then included in the outcome model as continuous covariates;(47) this adjustment 

approach (compared to the use of matching or weighting) would likely result in minimal 

bias.(48,49) PS-adjusted HRs and 95% CIs were calculated via Cox proportional-hazards 

regression. Refer to the Appendix Methods Addendum for more detail on PS methodology. 

Association measures were examined overall within the first 181 days of follow-up and also 

stratified as four pre-specified, mutually exclusive time periods. A polynomial trend line was 

generated to graphically depict trends across time periods.

A pre-specified secondary analysis examined persons treated with a SU as antidiabetic 

monotherapy (i.e., no other antidiabetic drug dispensed in the 60 days prior to cohort entry 

and censored upon dispensing of any other antidiabetic therapy). Pre-specified sensitivity 

analyses: a) excluded persons with an increase in SU dose from pre-to-post cohort entry, 

among those entering the cohort as antihyperlipidemic triggered (Figure 4); and b) excluded 
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empirical covariates from the PS thought to be strong correlates of exposure but not 

associated with the outcome,(41) as their inclusion in the PS can increase standard error and 

bias.(50) A post hoc sensitivity analysis examined persons devoid of baseline SU use, i.e., 

new SU users concomitantly exposed to an antihyperlipidemic. PSs were re-estimated for all 

secondary and sensitivity analyses. Statistical analyses were conducted using SAS v9.4 

(SAS Institute Inc.: Cary, NC). This research was approved by the institutional review board 

of the University of Pennsylvania.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STUDY HIGHLIGHTS

What is the current knowledge on this topic?

Drug interactions with sulfonylureas may potentiate hypoglycemia risk via inhibition of 

hepatic cytochrome P450 (CYP) enzymes responsible for their metabolism.

What question did this study address?

Given that dyslipidemia is common in persons with diabetes mellitus, we examined the 

rates of severe hypoglycemia among concomitant users of sulfonylureas and individual 

antihyperlipidemics.

What does this study add to our knowledge?

Concomitant use of a sulfonylurea plus either fenofibrate or gemfibrozil is associated 

with severe hypoglycemia. The increase in rate among users of either fenofibrate or 

gemfibrozil is most notable beginning after the first month of concomitant use, but in 

some instances also elevated within the first month. The pattern of this apparent 

interaction is generally similar to that seen among concomitant users of metformin and a 

fibrate. The apparent sulfonylurea-fibrate drug interaction seems unlikely mediated by 

CYP2C9 inhibition.

How might this change clinical pharmacology and therapeutics?

Clinicians should be attuned to both immediate- and delayed-onset hypoglycemia in their 

patients on this drug combination.
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Figure 1. 
Propensity score-adjusted hazard ratios (HRs) for association between antidiabetic + 

antihyperlipidemic drug (vs. pravastatin) and severe hypoglycemia within 181 days of cohort 

entry

● atorvastatin ▲ lovastatin ▋ rosuvastatin ▮ simvastatin ♦ fenofibrate ▬ gemfibrozil

Red coloring indicates that antihyperlipidemic precipitant drug inhibits hepatic metabolism 

of antidiabetic object drug (Neuvonen et al. CPT 2006;80., Wen et al. Drug Metab Dispos 
2001;29., and Schelleman et al BJCP 2014;78).

* monotherapy cohort
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Figure 2. 
Propensity score-adjusted hazard ratios (HRs) for association between antidiabetic + 

FENOFIBRATE (vs. pravastatin) and severe hypoglycemia―by antidiabetic, by time since 

cohort entry

● glyburide ▲ glipizide ▋ glimepiride ▮ metformin*

Red coloring indicates that antihyperlipidemic precipitant drug inhibits hepatic metabolism 

of antidiabetic object drug (Neuvonen et al. CPT 2006;80., Wen et al. Drug Metab Dispos 
2001;29., and Schelleman et al BJCP 2014;78).

* monotherapy cohort
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Figure 3. 
Propensity score-adjusted hazard ratios (HRs) for association between antidiabetic + 

GEMFIBROZIL (vs. pravastatin) and severe hypoglycemia―by antidiabetic, by time since 

cohort entry

● glyburide ▲ glipizide ▋ glimepiride ▮ metformin*

Red coloring indicates that antihyperlipidemic precipitant drug inhibits hepatic metabolism 

of antidiabetic object drug (Neuvonen et al. CPT 2006;80., Wen et al. Drug Metab Dispos 
2001;29., and Schelleman et al BJCP 2014;78).

* monotherapy cohort
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Figure 4. 
Methods by which concomitant antidiabetic (AD) and antihyperlipidemic (AH) users could 

enter a study cohort

 cohort entry begins

 antihyperlipidemic prescription dispensing

 antidiabetic prescription dispensing
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Table 2

Propensity-score adjusted hazard ratios for severe hypoglycemia within 181 days of cohort entry among 

concomitant users of antidiabetic monotherapy and an antihyperlipidemic

Antidiabetic agent
(N = severe hypoglycemia events among antidiabetic monotherapy users)

glyburide
(N = 685)

glipizide
(N = 629)

glimepiride
(N = 354)

metformin
(N = 359)

Antihyperlipidemic Hazard ratio
(95% confidence interval)

atorvastatin 1.07
(0.80–1.43)

0.91
(0.68–1.21)

0.66
(0.46–0.96)

1.00
(0.66–1.52)

lovastatin 0.92
(0.59–1.43)

0.91
(0.60–1.39)

0.80
(0.42–1.50)

0.92
(0.51–1.68)

pravastatin 1.00
(reference)

1.00
(reference)

1.00
(reference)

1.00
(reference)

rosuvastatin 0.97
(0.53–1.78)

0.61
(0.32–1.15)

0.86
(0.49–1.50)

1.25
(0.68–2.32)

simvastatin 1.13
(0.84–1.53)

0.92
(0.68–1.24)

0.76
(0.52–1.10)

0.96
(0.62–1.48)

fenofibrate 1.69
(1.02–2.82)

0.69
(0.35–1.35)

1.75
(1.05–2.89)

1.60
(0.91–2.81)

gemfibrozil 1.52
(1.01–2.29)

1.63
(1.08–2.47)

1.58
(0.89–2.80)

1.13
(0.65–1.99)
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