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Abstract

Bupropion metabolites formed via oxidation and reduction exhibit pharmacological activity, but 

little is known regarding their stereoselective disposition. A novel stereoselective liquid 

chromatography–tandem mass spectrometry (LC-MS/MS) method was developed to separate and 

quantify enantiomers of bupropion, 4-hydroxybupropion, and erythro- and threo-

dihydrobupropion. Liquid-liquid extraction was implemented to extract all analytes from 50µL 

human plasma. Acetaminophen (APAP) was used as an internal standard. The analytes were 

separated on a Lux 3µ Cellulose-3 250×4.6 mm column by methanol: acetonitrile: ammonium 

bicarbonate: ammonium hydroxide gradient elution and monitored using an ABSciex 5500 

QTRAP triple-quadrupole mass spectrometer equipped with electrospray ionization probe in 

positive mode. Extraction efficiency for all analytes was ≥70%. The stability at a single non-

extracted concentration for over 48 hours at ambient temperature resulted in less than 9.8% 

variability for all analytes. The limit of quantification (LOQ) for enantiomers of bupropion and 4-

hydroxybupropion was 0.3ng/mL, while the LOQ for enantiomers of erythro- and threo-

hydrobupropion was 0.15ng/mL. The intra-day precision and accuracy estimates for enantiomers 

of bupropion and its metabolites ranged from 3.4% to 15.4% and from 80.6% to 97.8%, 

respectively, while the inter-day precision and accuracy ranged from 6.1% to 19.9% and from 

88.5% to 99.9%, respectively. The current method was successfully implemented to determine the 
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stereoselective pharmacokinetics of bupropion and its metabolites in a healthy volunteer 

administered a single 100 mg oral dose of racemic bupropion. This novel, accurate, and precise 

HPLC-MS/MS method should enhance further research into bupropion stereoselective metabolism 

and drug interactions.
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1. Introduction

Bupropion ([(±)-1-(3-chlorophenyl)-2-[(1,1-dimethylethyl) amino]-1-propanone], a dual 

dopamine-norepinephrine uptake inhibitor and a nicotine receptor antagonist, is widely used 

in the management of depression and as a smoking cessation aid. More recently, bupropion, 

in combination with naltrexone, was approved by the FDA for the management of weight. It 

is also being assessed, in clinical trials, as a candidate for the treatment of drug abuse and 

attention-deficit hyperactivity disorder [1– 3, 21]. Human studies conducted at the end of 

1970 and beginning of 1980’s have reported that bupropion undergoes extensive hepatic 

metabolism, with <1% of the administered dose excreted as unchanged in urine over 48 

hours after bupropion dosing, and identified three primary metabolites: 4-hydroxybupropion 

(a morpholinol) formed via hydroxylation of the t-butyl moiety; and two amino alcohols 

(erythro- and threo-dihydrobupropion) formed via reduction of the aminoketone group of 

bupropion [22–27]. These metabolites exhibit pharmacological and toxicological activities 

in different preclinical depression, behavioral and biochemical models as well as in humans 

[4–11, 28]. The plasma exposure of 4-hydroxybupropion and threo-dihydrobupropion at 

steady-state is much higher (~17- and 7-fold respectively) than that of the parent drug 

bupropion [15, 25, 26, 29]. Thus, it has been suggested that bupropion metabolites 

contribute significantly to the beneficial and/or adverse effects of bupropion.

Bupropion 4-hydroxylation is exclusively catalyzed by CYP2B6 [17, 18] and this reaction 

has been widely used as a marker of CYP2B6 activity in vitro [30–31] and in vivo [13, 15, 

29, 32]. In addition, recent studies have focused on whether reduced plasma exposure to 4-

hydroxybupropion as a result of CYP2B6 genetic variations or non-genetic factors results in 

altered clinical outcomes following administration of bupropion [11]. As shown in Figure 1, 

bupropion has one chiral center and clinically it is administered as racemic mixture. The 

hydroxylation of bupropion creates an additional chiral center, potentially generating four 

diastereomers (RR-, SS-, RS- and SR-4-hydroxybupropion), but only (2R,3R)- and (2S,

3S)-4-hydroxybupropion have been quantified in human plasma [12–14]. The plasma 

exposure of (2R,3R)-4-hydroxybupropion is over 20-fold higher than that of (2S,3S)-4-

hydroxybupropion [29], but there is evidence to support that most of the pharmacological 

activities of bupropion reside in (2S,3S)-4-hydroxybupropion [4, 8, 10].

Despite the identification of threo- and erythro-dihydrobupropion for more than three 

decades, the disposition and pharmacological effect of these metabolites is less investigated 

when compared with 4-hydroxybupropion. Reduction of the aminoketone group of 
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bupropion by carbonyl reductases [16, 19] creates an additional chiral center adjacent to that 

of the bupropion chiral center (Figure 1). 11β-hydroxysteroid dehydrogenase 1 appears to be 

the main enzyme catalyzing the formation of threo-dihydrobupropion [16], while other 

carbonyl reductases seem to catalyze the formation of erythro-dihydrobupropion [19]. The 

steady-state plasma exposure of racemic threo-dihydrobupropion is much higher than that of 

racemic erythro-dihydrobupropion [15], probably due to enantioselective reduction by 

microsomal 11β-hydroxysteroid dehydrogenase type 1 [16]. However, threo- and erythro-

dihydrobupropion have been reported only as racemic mixtures. It is possible, as with 4-

hydroxybupropion, that these metabolites show marked stereoselective disposition and 

effect, but detailed studies on their stereoselective metabolism and disposition are 

particularly hampered by the lack of a chiral assay. These metabolites are of interest 

because: 1) they exhibit pharmacological activity [7] and threo-dihydrobupropion’ s plasma 

exposure is ~7-fold higher than that of bupropion [15]; and 2) in vitro and in vivo evidence 

suggests that reduction of bupropion to threo-dihydrobupropion is a major clearance 

mechanism of bupropion [15].

The aims of the present study were to: a) develop a novel chiral LC-MS/MS assay that 

allows simultaneous separation and quantification of enantiomers of bupropion, 4-

hydroxybupropion, threo- dihydrobupropion, and erythro-dihydrobupropion in human 

plasma; and b) test the application of this method to enantioselective pharmacokinetics of 

bupropion and its metabolites in healthy volunteers administered a single 100 mg oral dose 

of racemic bupropion.

2. Method

2.1. Chemicals and reagents

R-Bupropion (R-BUP) (Lot# 7-DHL-47-1), S-bupropion (S-BUP) (Lot# 7-DHL-52-1), (2R,

3R)-4-hydroxy bupropion (R,R-OH BUP) (Lot# 7-DHL-32-6), (2S,3S)-4-hydroxy 

bupropion (S,S-OH BUP) (Lot# 7-DHL-43-1), rac-erythro-dihydrobupropion (Lot# 1-

SHG-40-1), rac-threo-dihydrobupropion (Lot# 1-SHG-39-2) were purchased from Toronto 

Research Chemicals (Toronto, Ontario). Nomenclature of the enantiomers for erythro- and 

threo-dihydrobupropion was based on the chromatography of the first eluting peak as “A” 

and the second eluting peak as “B”. Thus enantiomers of erythro-dihydrobupropion (Ery) 

were denoted as Ery A and Ery B and enantiomers of threo-dihydrobupropion (Threo) are 

denoted as Threo A and Threo B. The configurations of these enantiomers are provided in 

Figure 1, the lack of synthetic standards precludes accurate identification of enantiomers of 

Ery and Threo. The internal standard acetaminophen (APAP) (Lot# 122K0021), β-

nicotinamide adenine dinucleotide 2’-phosphate reduced tetra sodium salt hydrate (NADPH) 

(HPLC >97%, Lot# SLBL4046V), magnesium chloride (Lot# SLBJ5509V), and ammonium 

bicarbonate (Bioultra, Lot# BCBL6295V) were purchased from Sigma Aldrich Chemical 

Co. (St. Louis, MO). Ammonium hydroxide (certified ACS, Lot# 131698), methanol 

(Optima LC/MS, Lot# 153322), acetonitrile (Optima LC/MS, Lot# 134035), sodium 

phosphate monobasic certified dehydrate (Lot# 007029), and ethyl acetate (HPLC grade, 

Lot# 153702) were purchased from Fisher Scientific (Fairlawn, NJ). Mixed gender pooled 

20-donor human liver microsomes (HLM) S9 fractions (20mg/mL protein concentration) 
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(Lot# 4041007) were purchased from Corning (Woburn, MA). Deionized water was purified 

using a Barnstead Nanopure Infinity ultrapure water system (Boston, Massachusetts). 

Plasma from human whole blood (tri-K EDTA, male, drug free, nonsmoker) for standard 

and quality control preparations was purchased from Biological Specialty Corp. (Colmar, 

PA)

2.2. Standard Curve and Quality Control Samples

Standard stock solutions (1mg/mL each) of R-bupropion, S-bupropion, (2R,3R)-4-

hydroxybupropion, (2S,3S)-4-hydroxybupropion, and acetaminophen (the internal standard), 

were prepared separately in polypropylene tubes by adding methanol. Erythro- and threo-

dihydrobupropion are commercially available only as 50:50 racemic mixtures. Therefore, the 

adjusted concentration of the stock solution was 0.5 mg/mL each for Ery A, Ery B, Threo A, 

and Threo B. Separate stock solutions were created for all analytes for quality control (QC) 

samples. All solutions were stored at −20°C. Working standard solutions were prepped from 

the standard stock solutions daily by performing 1:10 serial dilutions in methanol into 12×75 

polypropylene tubes. An aliquot from the working solutions was added to human plasma 

(total volume of 200 µL) and 50 µL was transferred to clean 12×75 polypropylene tubes. The 

standard curves for R-BUP, S-BUP, RR-OH BUP, and SS-OH BUP had the following 

concentrations: 0.3, 1, 3, 10, 30, 100, and 300 ng/mL. The standard curves for Ery A, Ery B, 

Threo A, and Threo B had the following concentrations: 0.15, 0.5, 1.5, 5, 15, 50, and 150 

ng/mL. Quality control samples were prepared in duplicate. The QC samples had the 

following concentrations for R-BUP, S-BUP, RR-OH BUP, SS-OH BUP: 1 ng/mL (low QC), 

30 ng/mL (medium QC), and 200 ng/mL (high QC). The QC samples had the following 

concentrations for Ery A, Ery B, Threo A, and Threo B: 0.5 ng/mL (low QC), 15 ng/mL 

(medium QC), and 100 ng/mL (high QC).

2.3. Sample Preparation

Frozen plasma samples (stored in a −80° freezer) were thawed to ambient temperature and 

50 µL were transferred to 12 × 75 polypropylene tubes. Then, 20 µL of 0.1 ng/µL of APAP 

(internal standard) and 2 mL of ethyl acetate were added to the tube, and the sample was 

vortex mixed for 30 seconds. After centrifugation at 3000rpm at ambient temperature for 

three minutes, the upper organic phase was transferred to a clean 12×75 polypropylene tube 

and evaporated to dryness. A 50 µL volume of methanol was added to each tube and the tube 

was mixed for 20 seconds on a vortex mixer. A 10 µL aliquot of each sample was injected 

into the HPLC.

2.4. Conditions for HPLC-MS/MS

Chromatographic separation was achieved using an Agilent 1290 series HPLC coupled with 

a PAL HTC-XT Leap autosampler using reverse phase chromatography, at 40°C, with a Lux 

3µ Cellulose-3 250×4.6 mm chiral column. The buffer for mobile phase consisted of: 5mM 

ammonium bicarbonate and 0.1% ammonium hydroxide prepared as one solution in HPLC 

grade water (pH=8.5). Mobile phase A was methanol: acetonitrile: 5mM ammonium 

bicarbonate plus 0.1% ammonium hydroxide (25:15:60, v/v/v). Mobile phase B was 

methanol: acetonitrile: 5mM ammonium bicarbonate plus 0.1% ammonium hydroxide 

(60:30:10, v/v/v). The mobile phase was delivered as a gradient with a constant flow rate of 
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400 µL/min. The gradient began after 6 minutes at 100% of mobile phase A. From 6–12 min 

mobile phase A was decreased to 95% in a linear fashion. From 12–30 min mobile phase A 

was decreased from 95% to 40% in a linear fashion. Next, mobile phase A was decreased 

from 40% to 0% in a linear fashion from 30–37 min. At 37.1 min the gradient was stepped 

to 100% A until 40 min, which was the end of the run. The column effluent was monitored 

using an ABSciex 5500 QTRAP triple-quadrupole mass spectrometer (Foster City, CA) 

equipped with an electrospray ionization probe in positive mode. The mass spectrometer was 

controlled by Analyst software (version 1.6.2) in conjunction with Windows 7®. A flow 

injection analysis was performed on each analyte to maximize sensitivity. The responses of 

the analytes were optimized at a source temperature of 650° C, under unit resolution for 

quadrupole 1 and 3. In addition, the analytes were given a dwell time of 200 msec and a 

settling time of 10 msec. The ion spray voltage was 5500 V and the interface heater was on. 

Optimal gas pressures for all of the analytes were: collision gas medium, curtain gas 10, ion 

source gas (1) 25, ion source gas (2) 25. Multiple reaction monitoring was used to measure 

Q1/Q3 transitions for: R-BUP and S-BUP at 240.1/184.0; R,R-OH BUP and S,S-OH BUP at 

255.9/139.0; ERY A, ERY B, Threo A, and Threo B at 241.9/116.0; and APAP at 

152.0/109.9. Mass spectrometry settings for the voltages are listed in Table 1.

2.5. Method Validation

2.5.1. Intra-day variability—Standards (in singular) and QC samples (in duplicate) were 

prepared with additional samples at the following concentrations (n=6 for each): the limit of 

quantification (LOQ) at 0.3 ng/mL for R-BUP, S-BUP, RR-OH BUP, SS-OH BUP and 

0.15ng/mL for Ery A, Ery B, Threo A, and Threo B, low QC, medium QC, and high QC 

concentrations. The mean and standard deviation were calculated for each concentration 

from the six samples. Precision was assessed using percent coefficient of variation (% C.V.) 

and accuracy was calculated in term of percent recovery. A single measurement was 

excluded from the analysis if that measurement was greater than three standard deviations 

from the mean of the remaining samples per published FDA Guidelines [20].

2.5.2. Inter-day variability—Standards (in singular) and QC samples (in duplicate) at the 

low QC, medium QC and high QC concentrations were prepared each day for 5 days. The 

duplicates for each QC sample of each day were averaged. The mean and standard deviation 

were estimated for each average of the 5 days. Accuracy and precision were assessed from 

the mean and standard deviation.

2.5.3. Extraction Efficiency—The efficiency of the extraction procedure was calculated 

by comparing the peak area response of an extracted analyte (in duplicate) from plasma to 

the peak area response of a non-extracted analyte dissolved in mobile phase.

2.5.4. Stability—Stability of the analytes, at ambient temperature, over 48 hours was 

assessed. A non-extracted standard was diluted in methanol and injected into the HPLC 

approximately every 2 hours for over 48 hours. Precision was then assessed. Acceptable 

precision was less than 10%.
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2.5.5. Specificity—Samples, containing internal standard only, were prepared with five 

different non-supplemented plasma samples (Lot numbers 81784, 65406, 76480, 38331, 

78030) following the sample preparation previously stated. Acceptable specificity occurred 

when all five samples exhibited an undetectable (below LOQ) concentration of the anaylte.

2.5.6. Identification of enantiomers of bupropion metabolites—Synthetic 

standards of 4-hydroxybupropion diastereomers (RR-OH BUP, SS-OH BUP) were available 

commercially and thus positively confirmed (Figure 1). However, no authentic standards of 

diastereomers of erythro- and threo-hydrobupropion were available. In addition, the 

formation of erythro- and threo-hydrobupropion metabolites is catalyzed by carbonyl 

reductases [16, 19], but no information is available regarding their stereoselective formation. 

To gain preliminary structural insight into the formation of these diastereomers, R- and S-

bupropion (10 µM) were incubated with human liver S-9 fraction in the presence and 

absence of NADPH. The S-9 fraction containing cytosol and microsomes was studied 

because bupropion undergoes oxidation and reduction in microsomes and reduction in 

cytosol; thus the cellular fraction was used to capture oxidation to 4-hydroxybuproion and 

reduction to dihydrobupropion”. R- or S-bupropion (10 µM), in methanol, was added to 

polypropylene tubes and evaporated to dryness. Then, 1 mg of the S9 mixture were added to 

the tubes along with incubation buffer (0.1M Na2HPO4 plus 5 mM MgCl2, pH 7.4).The 

reaction was initiated with 1 mM NADPH and incubated at 37°C for 30 minutes. The 

reaction was terminated by adding 3mL of ice-cold ethyl acetate. Next, the samples were 

centrifuged at 3000 rpm for 5 minutes, the organic layer was transferred to clean 

polypropylene tubes, and evaporated to dryness. The dried samples were reconstituted with 

100µL of methanol, and a 10µL aliquot was injected to the 5500 Q-TRAP. Metabolite peaks 

were detected using the LC-MS/MS method described above.

2.6. Pharmacokinetics studies

2.6.1. Study subjects—Healthy non-smoking male and female volunteers (18 to 49 years 

old), who were within 32% of their ideal body weight, and who agreed to refrain from 

taking any prescription medications, over-the counter medications, hormonal agents, and 

herbal, dietary, and alternative supplements at least 2 weeks prior to the start of the study 

and during the conduct of the study, were enrolled into a trial at the Indiana University 

School of Medicine Clinical Research Center. The Indiana University School of Medicine 

Institutional Review Board (IRB) approved the study protocol and all participants signed an 

IRB-approved informed consent prior to enrollment. The trial is registered at the 

ClinicalTrials.gov (Identified # NCT02401256).

2.6.2. Study design—After obtaining pre-dose blood (~10 mL) samples, subjects 

received a single 100 mg dose of bupropion in a tablet form (Sandoz NDC 0781-1064-01 

Lot EM0855) by mouth on empty stomach together with ~250 mL water. A standard meal 

was served 3 hours after drug dosing. Blood samples (~10 mL) were collected from the 

intravenous catheter at 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 16, 24, 48 and 72 hours after 

bupropion dosing. Plasma was separated by centrifugation at 3000 rpm for 20 minutes and 

immediately stored at −80°C until analysis by the LC-MS/MS.
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2.6.3. Pharmacokinetic analysis—Plasma pharmacokinetic parameters of bupropion 

and its metabolites were estimated by standard non-compartmental pharmacokinetic analysis 

using PK solver software (33).

3. Results and discussion

A chromatogram at the LLOQ of R-BUP, S-BUP, RR-OH BUP, SS-OH BUP Ery A, Ery B, 

Threo A, Threo B, and APAP (internal standard) show successful separation of enantiomers 

of bupropion and metabolites (Figure 2). Intra-day and inter-day accuracy and precision for 

BUP and metabolites are listed in Table 2. The intra-day precision ranged from 3.4% to 

15.4% and the intra-day accuracy ranged from 80.6% to 97.8%. The inter-day precision 

ranged from 6.1% to 19.9% and the inter-day accuracy ranged from 88.5% to 99.9%. The 

extraction efficiency was calculated by comparing peak areas of non-extracted analyte to the 

peak areas of extracted analyte. The extraction efficiency of all analytes was 70% or greater. 

The stability at a single non-extracted concentration for over 48 hours at ambient 

temperature resulted in less than 9.8% variability for all analytes. The method exhibited 

acceptable specificity because five plasma samples had undetectable (below LOQ) 

concentrations of all analytes (figures 5–9 in supplementary materials).

The advantages of the current method include simple liquid-liquid extraction, small sample 

volume, and good chromatographic separation of enantiomers of bupropion, 4-

hydroxybupropion, threo-dihydrobupropion, and erythro-dihydrobupropion. 

Chromatographic separation of the enantiomers was optimized for injection volume, column 

temperature, mobile phase, and buffers, as slight deviations from these conditions resulted in 

co-elution of the enantiomers. In addition, the HPLC column was washed for 1 hour with 

methanol: water; (90:10 v/v), then equilibrated with mobile phase A, overnight at a flow rate 

of 400µL/min. The main disadvantages of this method are the long run time and a short 

column life span. The HPLC column was changed after approximately 500 sample 

injections because of loss of baseline resolution of analytes.

The current method was successfully implemented to determine the stereoselective 

pharmacokinetics of bupropion and its metabolites in a subject administered a single 100 mg 

oral dose of racemic bupropion. A chromatogram from a subject sample 1.5 hours after drug 

administration is shown in Figure 3. The pharmacokinetic profiles of BUP and metabolites 

of this subject are depicted in Figure 4, and the pharmacokinetic parameters are listed in 

Table 3. These pharmacokinetic data show highly stereoselective disposition of bupropion 

and its metabolites. While the patterns of stereoselectivity were reported for bupropion and 

4-hydroxybupropion previously [12, 13, 14, 29], ours is the first to demonstrate: 

chromatographic separation of erythro- and threo-dihydrobupropion enantiomers; and 

demonstrate unique stereoselective disposition of erythro- and threo-dihydrobupropion in 

humans. The marked differences in the elimination half-life of threo-dihydrobupropion and 

to extent erythro-dihydrobupropion suggest differential accumulation of these metabolites 

during chronic dosing with racemic bupropion. For example, Ery A and Threo A, which 

show relatively longer half-lives, are expected to accumulate during multiple dosing 

compared to Ery B and Threo B.
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The metabolism of R- and S-bupropion in human liver S9-fractions and NADPH is shown in 

Table 4. As expected, R- and S-bupropion were metabolized predominantly to RR-OH BUP 

and SS-OH BUP, respectively, and served as a positive control. In addition, our data show 

that Ery A and Threo A are mainly formed from R-bupropion, while Ery B and Threo B are 

mainly formed from S-bupropion. However, our data also suggest potential chiral inversion 

of the substrates or the metabolites during the incubation as there was no 100 percent 

selectivity, even though “pure” enantiomers were used during the incubation (see the ratios 

in Table 4). When R- and S-bupropion were incubated with human liver S9-fractions without 

NADPH, no RR-OH BUP or SS-OH BUP metabolite peak was detected and this finding was 

expected because CYP-mediated reactions do not occur in the absence of a co-factor (data 

not shown). On the other hand, the reductive metabolites of bupropion were generated in 

similar patterns as described above for S9-fraction + NADPH. Based on these preliminary in 
vitro data and the possible structural configuration, we propose that R-bupropion was 

reduced mainly to (1S, 2R)-dihydrobupropion (Ery A) and (1R, 2R)-dihydrobupropion 

(Threo A), while S-bupropion was reduced mainly to (1R, 2S)-dihydrobupropion (Ery B) 

and (1S, 2S)-dihydrobupropion (Threo B) (Figure 1).

In summary, a novel reversed phase chiral-HPLC-MS/MS assay method involving a simple 

liquid-liquid extraction procedure and a small plasma sample volume (50µL) was developed 

that allowed simultaneous separation and quantification of enantiomers of bupropion, 4-

hydroxybupropion, and, for the first time, those of threo- and erythro-dihydrobupropion in 

human plasma. This method was successfully implemented to determine the unique 

stereoselective pharmacokinetics of bupropion and its metabolites in one research human 

volunteer administered a single 100 mg oral dose of racemic bupropion. To our knowledge, 

this is the first evidence showing stereoselective reduction of bupropion in vitro and in vivo. 

Although needs further confirmation, we also provide plausible structural features of threo- 

and Erythro-dihydrobupropion (Figure 1). This new quantification method should now 

enhance further research into bupropion stereoselective metabolism, drug interactions, and 

effect.
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

R-BUP R-Bupropion

S-BUP S-Bupropion

R,R-OH BUP (2R,3R)-4hydroxy bupropion
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S,S-OH BUP (2S,3S)-4hydroxy bupropion

Ery A and Ery B rac-erythro-dihydrobupropion, nomenclature A and B is for the 

chromatographic first eluting peak as “A” and the second eluting 

peak as “B”

Threo A and Threo 
B

rac-threo-dihydrobupropion, nomenclature A and B is for the 

chromatographic first eluting peak as “A” and the second eluting 

peak as “B”

PK pharmacokinetics

QC quality control

OH hydroxyl

Bup bupropion

T1/2 terminal elimination half-life

Tmax time to maximum concentration (Cmax)

Auc area under the plasma concentration versus time up to infinity 

(∞)

Cl/F apparent oral clearance
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Highlights

• Analytical methods for the separation and quantification of enantiomers of 

bupropion and 4-hydroxybupropion are very limited. Despite the identification 

of threo- and erythro-dihydrobupropion for more than three decades, 

information on their stereoselective disposition is nonexistent.

• A novel, accurate and precise HPLC-MS/MS method was developed to quantify 

enantiomers of bupropion and 4-hydroxybupropion and for the first time of 

threo- and erythro-dihydrobupropion in human plasma samples.

• This method was successfully implemented to determine the unique 

stereoselective pharmacokinetics of bupropion and its metabolites in human.

• This new quantification method should enhance further research into bupropion 

stereoselective metabolism.
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Figure 1. 
Proposed metabolic pathway of R-bupropion, S-bupropion. The main pathways are 

expressed with the bold arrows, while the minor pathways are shown with the dotted arrows.
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Figure 2. 
Chromatograms of bupropion and metabolites at the lowest limit of quantification: 0.3ng/mL 

for R-bupropion (A), S-bupropion (B), (2R,3R)-4-hydroxybupropion (C), (2S,3S)-4-

hydroxybupropion (D); and 0.15ng/mL for erythrodihydrobupropion A (E), erythro-

dihydrobupropion B (F), threo-dihydrobupropion A(G), threo-dihydrobupropion B (H), and 

the internal standard acetaminophen (I). The filled peak is the analyte of interest.
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Figure 3. 
Chromatogram of a subject sample after 1.5 hours of a single 100 mg oral dose of racemic 

of bupropion. The filled chromatogram peak shows R-bupropion (A), S-bupropion (B), 2R,

3R-4-hydroxybupropion (C), 2S,3S-4-hydroxybupropion (D), erythro-dihydrobupropion A 

(E), erythro-dihydrobupropion B (F), threo-dihydrobupropion A(G), threo-dihydrobupropion 

B (H) and acetaminophen (I).
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Figure 4. 
Plasma concentration vs. time plot of enantiomers of bupropion and diastreomers of its 

metabolites in healthy volunteers (N=3; 1 white male, 1 Asian female, and 1 white female) 

administered a single 100 mg oral dose of racemic bupropion.
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