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Abstract

Microstructural changes in human brain white matter of young to middle-aged adults were studied 

using advanced diffusion Magnetic Resonance Imaging (dMRI). Multiple shell diffusion-weighted 

data were acquired using the Hybrid Diffusion Imaging (HYDI). The HYDI method is extremely 

versatile and data were analyzed using Diffusion Tensor Imaging (DTI), Neurite Orientation 

Dispersion and Density Imaging (NODDI), and q-space imaging approaches. Twenty-four females 

and 23 males between 18 and 55 years of age were included in this study. The impact of age and 

sex on diffusion metrics were tested using least squares linear regressions in 48 white matter 

regions of interest (ROIs) across the whole brain and adjusted for multiple comparisons across 

ROIs. In this study, white matter projections to either the hippocampus or the cerebral cortices 

were the brain regions most sensitive to aging. Specifically, in this young to middle-aged cohort, 

aging effects were associated with more dispersion of white matter fibers while the tissue 

restriction and intra-axonal volume fraction remained relatively stable. The fiber dispersion index 

of NODDI exhibited the most pronounced sensitivity to aging. In addition, changes of the DTI 

indices in this aging cohort were correlated mostly with the fiber dispersion index rather than the 

intracellular volume fraction of NODDI or the q-space measurements. While men and women did 
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not differ in the aging rate, men tend to have higher intra-axonal volume fraction than women. 

This study demonstrates that advanced dMRI using a HDYI acquisition and compartmental 

modeling of NODDI can elucidate microstructural alterations that are sensitive to age and sex. 

Finally, this study provides insight into the relationships between DTI diffusion metrics and 

advanced diffusion metrics of NODDI model and q-space imaging.
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Introduction

The normal adult brain undergoes substantial morphologic changes as it ages. As shown in 

postmortem studies, the brain parenchyma shrinks as the ventricles enlarge (Blinkov et al. 

1968). The age-related structural changes of the brain may be quantified by magnetic 

resonance imaging (MRI), a safe, non-invasive, and non-radiating imaging technique 

(Jernigan et al. 1991, Pfefferbaum et al. 1994, Mueller et al. 1998). Specifically, Voxel-

Based Morphometry (VBM) of T1-weighted images (Ashburner and Friston 2000) is used 

extensively to study structural changes in normally aging brains (Walhovd et al. 2005, Fjell 

and Walhovd 2010, Westlye et al. 2010, Walhovd et al. 2011). Significant atrophy in grey 

matter have been reported using T1-weighted images (Walhovd et al. 2005, Fjell and 

Walhovd 2010, Walhovd et al. 2011). There has been less focus on white matter, although as 

neurons are lost, white matter integrity may be jeopardized due to both myelin degeneration 

and axonal loss (Feldman and Peters 1998, Sandell and Peters 2001, Marner et al. 2003, 

Sandell and Peters 2003).

In the present study, instead of volumetric measurements, we assessed microstructural 

changes of white matter in the human brain associate with normal aging using water 

diffusion as a probe. Diffusion MRI (dMRI) probes microstructures of the human brain by 

measuring water diffusion properties at the cellular level in vivo and non-invasively. The 

microarchitecture of the brain tissues creates restricted environments that shape the diffusion 

probability function of water molecules. Therefore, the properties of the diffusion function 

measured by dMRI allow investigators to quantitatively assess tissue microstructures 

(Callaghan and Codd 1998). Changes in microstructures are often the precursors of 

volumetric changes; thus, microstructural imaging biomarkers are potentially more sensitive 

and altered earlier than the conventional technique of volumetric assessment using T1-

weighted volume-based morphometry.

Most, but not all, dMRI studies of aging and age-related disorders, such as Alzheimer’s 

disease have used diffusion tensor imaging (DTI). DTI metrics, fractional anisotropy (FA), 

mean diffusivity (MD), and axial and radial diffusivities (AD, RD), have been used to 

evaluate white matter alterations in many aging related studies (Sullivan et al. 2001, 

Pfefferbaum et al. 2005, Sullivan and Pfefferbaum 2006, Westlye et al. 2010, Wu et al. 2011, 

Lamar et al. 2014). While DTI metrics are widely used as an indicator for white matter 

integrity in various brain diseases, their specific microstructural mechanisms remain unclear. 
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The DTI model has two fundamental limitations (Wu 2006, Assaf and Pasternak 2008, Jones 

2008, Tournier et al. 2011). First, the DTI diffusion indices from single diffusion-weighting 

b-value shell and simple three-dimensional Gaussian model are average measurements of 

water diffusion from multiple compartments (e.g., extracellular and intracellular spaces). 

These compartments are likely to have fast or slow diffusivities, shapes, and orientations. 

Second, DTI cannot sufficiently describe water diffusion in areas of crossing, kissing, and 

fanning fibers (Alexander et al. 2001, Alexander et al. 2002, Wu 2006, Jones 2008, Tournier 

et al. 2011). Underestimation of fiber numbers/directions affects DTI scalar metrics: FA 

values may decrease to values similar to those of gray matter. The AD and RD are no longer 

valid because the single cylindrical model of white matter fibers is violated in cases of 

crossing fibers (Alexander et al. 2001, Wheeler-Kingshott and Cercignani 2009). Further, a 

recent study showed that the prevalence of crossing fibers in the brain white matter is ~90%, 

which may explain the lower than expected pathologic specificity of DTI metrics in complex 

white matter areas of the brain (Sullivan and Pfefferbaum 2006, Jones and Cercignani 2010, 

Tournier et al. 2011, Jeurissen et al. 2013, Jones et al. 2013).

In a more realistic consideration, within any given imaging voxel, white matter may 

comprise various diffusion compartments. Researchers have modeled diffusion compartment 

as: fast and slow diffusion components (Clark and Le Bihan 2000); anisotropic hindered and 

restricted compartments (Jespersen et al. 2010, Fieremans et al. 2011, De Santis et al. 2013); 

fast isotropic free water and anisotropic tissue compartments (Pasternak et al. 2009); three 

compartments of fast isotropic diffusion, restricted isotropic diffusion, and restrict 

anisotropic diffusion (Chiang et al. 2014); or three compartments of fast isotropic diffusion 

(e.g., cerebrospinal fluid (CSF)), anisotropic hindered diffusion (e.g., extracellular water), 

and highly restricted anisotropic diffusion (e.g., intra-axonal compartments) (Zhang et al. 

2012). More complex models with more than three compartments have been proposed, 

however they come at the cost of prolonged imaging time. Two examples of such models 

include: (1) composite hindered and restricted model of diffusion (CHARMED) with one 

anisotropic hindered diffusion compartment and multiple anisotropic restricted 

compartments for crossing fibers (Assaf and Basser 2005), and (2) restriction spectrum 

imaging (RSI) with axons modeled by a spectrum of rigid sticks of various sizes (White et 

al. 2013). Neurite Orientation Dispersion and Density imaging (NODDI) models the 

diffusion-weighted signal as a combination of three basic compartments of CSF, 

extracellular, and intracellular described above. The NODDI model produces diffusion 

metrics representing tissue characteristics, including the orientation dispersion index (ODI) 

describing the degree of fanning/crossing of fibers and the intracellular volume fraction 

(ICVF) describing the axonal density under the rigid stick assumption. In a recent study, the 

ICVF of NODDI was in high agreement with the neurite compartment density measured by 

histology in an ex vivo mouse brain (Sepehrband et al. 2015). Thus, NODDI indices are 

potentially less ambiguous than DTI in the interpretation of diffusion-weighted 

microstructural characterization with increased specificity in clinical studies of the human 

brain. The NODDI model has been applied in studies of white matter changes in aging 

relative studies (Kunz et al. 2014, Billiet et al. 2015, Chang et al. 2015, Nazeri et al. 2015), 

and other neurologic disorders (Adluru et al. 2014, Billiet et al. 2014, Winston et al. 2014, 

Timmers et al. 2015).
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An alternative approach to study microstructural changes in white matter is q-space imaging. 

The q-space approach uses a Fourier relationship between the diffusion-weighted q-space 

signals and the diffusion displacement distribution (propagator) space. This is analogous to 

the relationship between k-space and image space in MRI. The water diffusion function, the 

probability density function (PDF) (Callaghan 1991) also called Mean Apparent Propagator 

(MAP) (Ozarslan et al. 2013) or Ensemble Average Propagator (EAP) (Descoteaux et al. 

2011, Hosseinbor et al. 2013)), may be estimated through a q-space imaging formula. The 

PDF and the q-space diffusion signal have a Fourier Transform relationship: 

, where P is PDF;  is the displacement vector; Δ is the diffusion 

time; E is the normalized q-space signal; and  is the q-space wavevector determined by the 

diffusion gradient strength  and the duration  Callaghan 1991). The zero 

displacement probability, P0, is the return to origin probability , and 

presents the probability of those water molecules having no net diffusion within a diffusion 

time Δ. P0 is often interpreted as a measure of restricted diffusion and cellularity (Assaf et 

al. 2000, Wu and Alexander 2007, Ozarslan et al. 2013). In an animal study of 

dysmyelination, P0 has been found highly sensitive to the myelination and brain maturation 

(Wu et al. 2011) consistent with other studies of P0 in demyelination of the human brain 

(Assaf et al. 2005).

In this study, we investigated the age-related changes and sex differences of microstructure-

specific diffusion metrics in the brain of young to middle-aged adults. To distinguish 

multiple diffusion compartments with different diffusivities, we used Hybrid diffusion 

imaging (HYDI) with multiple b-values (i.e., multiple shells) and multiple diffusion 

weighting directions in each shell to capture the directionalities of the diffusion 

compartments (Wu and Alexander 2007). HYDI data is versatile and can be analyzed using 

DTI, multi-compartmental modeling (e.g., NODDI model), and the q-space approach. 

Therefore, HYDI enables a comprehensive investigation of the relationship between DTI 

metrics, NODDI indices, and q-space imaging metrics.

Materials and Methods

Participants

Forty-seven (24 women and 23 men) right-handed healthy volunteers between 18–55 years 

of age were recruited for this study. All participants gave informed consent approved by the 

guidelines of the institutional review board at University of Wisconsin-Madison. Exclusion 

criteria included significant medical, neurological or psychiatric illness as determined by the 

in-house Brain Health Checklist and the Holden Psychological Screening Inventory (HPSI) 

(Holden 1996). T1-weighted images of all subjects were reviewed by a neuroradiologist for 

incidental findings.

Imaging protocol

HYDI was performed on a 3.0-T GE-SIGNA scanner with an 8-channel head coil and 

ASSET parallel imaging (R=2). The HYDI encoding scheme contained 5 concentric 

diffusion-weighting shells (b-values = 0, 375, 1500, 3375, 6000, 9375 s/mm2) and 126 
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diffusion-weighting gradient directions (Wu and Alexander 2007, Table 1). The diffusion-

weighted pulse sequence was a single-shot, spin-echo, echo-planar imaging (SS-SE-EPI) 

with pulse oximeter gating. The MRI parameters used were as follows: TR=10–15 

heartbeats (effective TR~12–15 s), TE=122 ms, FOV=256 mm, matrix= 128×128, voxel 

size=2×2 mm2 interpolated (by zero filling in the k-space) to 1×1 mm2, 30 slices with slice 

thickness=3 mm, and a total scan time of ~30 min. Diffusion parameters comprised a 

maximum b value of 9375 s/mm2, a diffusion gradient duration δ of 45 ms, and a diffusion 

gradient separation Δ of 56ms. These corresponded to a q space sampling interval Δqr = 

15.2mm−1, a maximum length of the q-space wavevector qmax = 76.0 mm−1, a field of view 

of the diffusion displacement space FOVR=(1/Δqr) = 65µm, and resolution of the diffusion 

displacement space ΔR = (1/2qmax) = 6.6 µm (Callaghan, 1991). The FOVR describes the 

width of the reconstructed displacement spectrum and the ΔR describes the resolution in the 

displacement space.

Image preprocessing

The diffusion-weighted images were corrected for motion and eddy current distortion 

artifacts using the eddy_correct (i.e., linear registration) tool from the diffusion processing 

toolbox in the FMRIB Software Library (FSL) (Jenkinson et al. 2002). Fieldmap correction 

was not performed. The HYDI data were used to compute diffusion metrics of DTI, NODDI 

and q-space imaging.

DTI metrics

DTI metrics were derived using the CAMINO diffusion image analysis software library 

(Cook 2006) on the first (b-value = 375 s/mm2) and second shells (b-value = 1500 s/mm2) of 

the HYDI data (Wu and Alexander 2007). DTI metrics were computed according to the 

formulas in (Basser et al. 1994):

[1]

[2]

[3]

[4]

λ1, λ2, and λ3 are eigenvalues of the diffusion tensor. FA describes the coherence of the 

water diffusion; MD describes the mean water diffusion within an imaging voxel; AD 

describes the diffusion parallel to the axonal direction; and RD describes the diffusion 

perpendicular to the axons.
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NODDI metrics

All five HYDI shell data were used in the NODDI analysis using the toolbox (https://

www.nitrc.org/projects/noddi_toolbox/). The NODDI model generates tissue-specific 

indices including ODI and ICVF by considering three basic diffusion compartments, as 

shown in Equation [5]:

[5]

where A is the measured diffusion signal, which is a summation of signals arising from three 

compartments: CSF (Aiso), intracellular spaces (Aic), and extracellular space (Aec). The data 

fitting in the NODDI model imposes hierarchical computation to separate the CSF and 

parenchyma first and subsequently separate the intracellular and extracellular compartment 

within the parenchyma. FISO denotes the volume fraction of fast isotropic diffusion 

compartment; (1-FISO) denotes the parenchymal volume fraction; the ICVF denotes the 

volume fraction of intracellular compartment (i.e., intra-axonal in white matter) within the 

parenchyma; and the volume fraction of the extracellular compartment within the 

parenchyma is (1-ICVF). The intra-axonal compartment was mathematically modeled with 

Watson distribution using cylindrical geometry. The cylindrical model assumes each axon to 

be made of sticks with zero radii (i.e., zero radial diffusivity) with axial diffusivity of 1.7 

*10−3 mm2 s−1. Therefore, in NODDI, axons is conceptualized as rigid sticks with fixed 

radial and longitudinal diffusivities. Such rigid sticks represent the “normal” axons, and the 

volume fraction of the sticks describes the volume fraction of normal axons. Under the 

assumption of a stick model with a zero radius, the volume fraction of the sticks (ICVF) 

represents “axonal density”. In addition to ICVF, the stick-like axon model also yields ODI 

from the Watson distribution describing the coherence of the sticks.

q-Space imaging metrics

All five HYDI shell data were used for q-space imaging analyses (Wu and Alexander 2007). 

Given the Fourier relationship of the q-space diffusion signals and the diffusion probability 

density function, P0 is estimated by the volume integration of the q-space signals (central 

ordinate theorem) (Wu et al. 2008):

[6]

where E is the normalized q-space (i.e., diffusion) signal; Δ is the diffusion time; and  is 

the q-space wavevector determined by the diffusion gradient strength  and the duration 

 (Callaghan 1991).

ROIs

Forty-eight regions of interest (ROIs) in white matter, including bilateral regions of the same 

anatomy, were considered in this study (Figure 1). ROIs were defined in the standard MNI 

space and all the maps of diffusion metrics were non-linearly transformed to the standard 

space for statistical analysis. The FA map of the individual subject was non-linearly 

registered to the standard space FA image (FMRIB58_FA_1mm) using FSL registration 
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tools FLIRT and FNIRT (Jenkinson et al. 2002, Andersson et al. 2007). The same 

transformation matrix was applied to the other diffusion metrics. To avoid partial voluming 

effects from grey matter and CSF, white matter ROIs were highly selective by intersecting 

the white matter atlas, Johns Hopkins University (JHU) ICBM-DTI-81 (Oishi et al., 2008) 

with the common white matter skeleton created from all of the subjects (Figure 1). The JHU 

white matter atlas is provided in FSL and the white matter skeleton was created using 

commands provided by the FSL in its Tract-Based Spatial Statistics (TBSS) toolbox (Smith 

et al. 2006). The definitions of the ROIs and voxel numbers are shown in Table 1.

Data analyses

The mean diffusion metrics in the ROIs for each subject were obtained to investigate age- 

and sex- related changes. The diffusion metrics were linearly regressed against age and sex 

using three regression models:

model 1- [7]

model 2- [8]

model 3- [9]

The β0, β1, β2, and β3 are regression parameters. In the regression model 1 (Equation 7), we 

test for significant age and sex interactions. In the regression model 2 (Equation 8), we test 

for significant sex differences in the intercept assuming that the slopes are common for both 

sexes. In the regression model 3 (Equation 9), we test for the age effects assuming that 

females and males have common age slope and common intercepts.

Selection of the regression model

Instead of imposing one model for all ROIs and all diffusion metrics, herein, we tested three 

possible linear models starting with Model 1, to address the diversity among ROIs and 

diffusion metrics. We ran a model selection procedure that follows the common practice of 

keeping regression factors when they are significant and removing non-significant regression 

factors to avoid overfitting (Draper and Smith 1998). The basic rule follows a hierarchical 

workflow: if β3 of model 1 is significant, model 1 is used; if β2 of model 2 is significant, 

model 2 is used; otherwise, model 3 is used.

Model 1 with a higher level of complexity was first used to examine for sex differences in 

the rate of change in the diffusion measurements vs. age. If β3 of model 1 is significant, it 

indicates males and females have a different slope. Thus, model 1 is used for that diffusion 

metric in that particular ROI. Note that when β3 is significant, β2 may be either significant or 

not significant. A significant β3 and β2 indicates that the diffusion metric in that particular 

ROI has simultaneous sex differences in the rate of aging as well as a vertical shift 

difference. A significant β3, but not β2, indicates only sex differences in the aging rate. If β3 

of model 1 is not significant, model 1 can be degenerated to model 2. Model 2 was used to 

examine for “absolute” sex differences as in a vertical shift of the diffusion measurements. If 
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β2 of model 2 is significant, it indicates females and males have different intercepts (i.e., a 

vertical shift). Thus, model 2 is used. If β2 of model 2 is not significant, model 2 degenerates 

to model 3. Model 3 is the basic model assuming females and males have the same rate of 

change and the same intercept. In summary, β3 of model 1 describes the sex difference in the 

rate of aging, β2 of model 1 and 2 describes the “absolute” sex difference, and β 1 of model 2 

and 3 describes the common aging rate.

The goodness of the fit was evaluated using a residual analysis. An example of residual 

analysis is shown in supplementary Figure S1 where (a) shows the residuals are randomly 

distributed around horizontal zero line, and (b) shows a linear quantile-quantile plot (Q-Q 

plot) indicating normal distribution of the residuals (Wilk and Gnanadesikan 1968). Note 

that the diffusion metrics and age variable were not demeaned before fitting to the linear 

models. Correction for multiple comparisons was performed for the regression parameters 

(β0, β1, β2, and β3) of each regression and across 48 ROIs using the false discovery rate 

(FDR) method. In addition, we also used a stricter multiple comparison correction utilizing 

the FDR method on 48 ROIs simultaneously on 7 diffusion metrics (i.e., 336 comparisons) 

to validate the high-prevalence significance of ODI. We report the results with the minimum 

FDR of less than 5% (i.e., q-value < 0.05). Statistical analysis was performed using the R 

statistical software version R-3.2.2 (R Development Core Team 2015).

TBSS analysis

Tract-Based Spatial Statistics (TBSS) was performed on the diffusion metrics in the white 

matter skeleton of 47 subjects in the standard MNI space. To test the age effects and sex 

differences, the design and contrast matrix in Table S1 was used to test positive/negative 

correlations. The FSL randomise command with 5000 permutation was used to generate the 

statistic maps. A threshold-free cluster enhancement with 2D optimization was used (Smith 

and Nichols 2009). The corrected p-value maps adjusted for multiple comparisons across 

voxels in the white matter skeleton were produced for each row in the contrast matrix and 

for each diffusion metric.

Results

Among the 47 subjects (36 ± 11 (mean ± SD) years old), women had a mean age of 38 ± 11 

years old and men had a mean age of 34 ± 11 years old. The distribution of ages between 

women and men was not significantly different (ANOVA; all ps > 0.05). All the residual 

plots and Q-Q plots were consistent with random normal distributions.

Maps of AD, RD, MD, FA, P0, ODI, and ICVF of one representative participant are shown 

in Figure 2. AD and RD have high white matter contrast only in compact fiber tracts with 

known single fiber bundles, such as the corpus callosum, and the internal capsule. FA maps 

show high intensity in the white matter, indicating high tissue coherence, and low intensity 

in grey matter and CSF, indicating more isotropic diffusion (Figure 2(d)). Consistently, 

white matter has a lower intensity in the ODI maps (Figure 2(e)), indicating lower dispersion 

(i.e., high coherence). The P0 map (Figure 2(h)) shows higher intensity in more restricted 

areas (i.e., white matter), as expected. White matter also has a higher intensity than grey 

matter in the ICVF map (Figure 2(f)), which represents higher intra-axonal volume fraction.
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Sex differences

Sex differences in aging rate—Significant β3 of the regression model 1 indicates that 

the rate of changes in the diffusion metrics were different in the brains of men and women. 

However, we did not find any ROI that had significant sex differences in aging rate.

Sex differences after adjusting for age—Significant β2 of the regression model 2 

(Equation 8) indicates significant sex differences in intercepts, a vertical shift. Several ROIs 

had significant sex differences in the intercepts and most of the significances appeared in the 

diffusion metrics of the NODDI model: ODI and ICVF (Table 2). The regression lines of 

ICVF and ODI in age-critical ROIs were plotted in Figure 3 to show the sex differences as in 

vertical shifts. The ODI of the male brains were ~7% significantly larger in the left fornix-

stria terminalis and right superior corona radiata (~0.017 in absolute ODI value). ICVF was 

~ 7% significantly higher in males in 13 ROIs including age-vulnerable anatomy (i.e., the 

right anterior segment of the cingulum, right hippocampal segment of cingulum, bilateral 

fornix-stria terminalis, and right uncinate fasciculus). A 7% of ICVF corresponds to 0.04 

absolute differences. DTI and P0 showed no significant sex differences in the intercepts of 

regression lines.

Aging effects

General trend and prevalence of age-sensitive diffusion metrics—Because all 

the diffusion metrics and ROI combinations had non-significant β3 in regression model 1, 

the aging effects were the same for both sexes. Therefore, β1 of either regression model 2 or 

regression model 3 were used to describe the common aging effect for both sexes. Table 3 

summarizes those significant β1s (slope) across the white matter ROIs, and Figure 4 shows 

the percentage changes of these slopes per decade. The significant regression lines for DTI 

and q-space analysis in age-critical ROIs are plotted in Figure 5. Regression lines for ODI 

are plotted in Figure 6. The general trend of age-related changes in diffusion metrics of DTI 

was decreased AD and increased RD followed by decreased FA. MD did not differ 

significantly over age. Similarly, tissue restriction (P0) was relatively stable in most white 

matter ROIs, but decreased significantly in 2 ROIs including the uncinate fasciculus (UNC). 

The general trend of age-related changes of NODDI metrics was increased fiber dispersion 

(ODI), which has highest prevalence of significant white matter ROIs. The intra-axonal 

volume fraction (ICVF) was stable without significant changes in all white matter ROIs.

Relationships between the diffusion metrics—As shown in Table 3 and Table S2, 

19% of FA-significant ROIs also had significantly decreased AD, and 76% of FA-significant 

ROIs had significantly increased RD. Together, there were 86% FA-significant ROIs with 

either decreased AD or increased RD. All FA-significant ROIs had increased ODI. All of 

AD- and RD-significant ROIs also had significantly ODI changes over age, except one RD-

significant ROI. FA, AD, and RD did not correlate with ICVF or P0.

The quantitative age-related change in diffusion metrics—The percentage changes 

of the diffusion metrics across ROIs are shown in Figure 4 (computed from β1 in Table 3 and 

mean values in Table S3). AD decreased between 1% and 3% per decade. RD increased 

between 3% and 7.0% per decade in most ROIs, but surged to 12% in the right uncinate 
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fasciculus. FA decreased between 1% and 8% per decade. P0 decreased 3% and 8%. ODI 

increased between 3% and 16%. Age-critical ROIs including the uncinate fasciculus, fornix 

and hippocampal segment of cingulum were often changed at higher rate than other white 

matter ROIs.

Age-sensitive white matter ROIs—Among the 48 white matter ROIs studied, the 

bilateral external capsule, retrolenticular part of the internal capsule and uncinate fasciculus 

were the most sensitive to aging with 4 diffusion metrics having significant age-related 

changes (Table 3 and Figure 4). The age-critical ROIs, including the left cingulum and 

fornix, had high sensitivity to aging with changes in 3 different diffusion metrics, whereas 

other age-critical ROIs, including the bilateral hippocampal segment of cingulum and 

fornix-stria terminalis, had moderate to low sensitivity. The bilateral anterior/superior/

posterior corona radiata and sagittal stratum were moderately sensitive to aging. These white 

matter ROIs connect to cerebral cortices involving higher-level cognitive function. The white 

matter fibers connecting the left and right brain, the genu and splenium of the corpus 

callosum, were also sensitive to aging.

TBSS analysis

A subset of corrected p-values images for age effects in RD, FA, and ODI is shown in the 

top three rows of Figure 7. While RD and ODI increased with age, FA decreased. AD, MD, 

P0 and ICVF did not show age dependence in this young to middle-aged cohort using TBSS 

analysis. The bottom two rows of Figure 7 show the spatial distribution of sex differences in 

ODI and ICVF. DTI and P0 did not detect sex differences. In addition, males had higher ODI 

and ICVF than females. The full data can be downloaded at http://dx.doi.org/10.7910/DVN/

KUYSDI.

Discussion

In this study, a flexible diffusion-weighted MRI method, HYDI, was used to investigate the 

relationships between diffusion metrics versus aging and sex in a healthy adult population. A 

strength of the HYDI method with five concentric diffusion-weighting shells is that it is 

versatile for multiple strategies of diffusion data processing (Wu and Alexander 2007, Wu et 

al. 2008, Wu et al. 2011, Wu et al. 2011). The shell with a b-value of 1000 s/mm2 is suitable 

for DTI, whereas the inner three shells with intermediate b-values may be further optimized 

for the NODDI model (Zhang et al. 2012), diffusion kurtosis model (DKI) (Fieremans et al. 

2011), or diffusion basis spectrum imaging (DBSI) (Wang et al. 2011). The whole dataset is 

suitable for q-space analysis (Callaghan 1991) or restriction spectrum imaging (RSI) (White 

et al. 2013). The outermost shell is a high angular resolution diffusion imaging (HARDI) 

acquisition scheme (Frank 2002, Tuch et al. 2002, Hess et al. 2006) and is suitable for q-ball 

imaging (QBI) to construct the fiber orientation distribution function (ODF) (Tuch 2004) 

and white matter tractography. HYDI requires at least 126 diffusion directions, which 

require approximate 25 min of scan time with parallel imaging and less than 7 min with 

simultaneous multislice (SMS also called Multi-band) technique (Setsompop et al. 2012).

Kodiweera et al. Page 10

Neuroimage. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.7910/DVN/KUYSDI
http://dx.doi.org/10.7910/DVN/KUYSDI


Study considerations

The whole HYDI dataset was used for the NODDI computation in this study. Although the 

HYDI sampling scheme has more diffusion directions than the recommended NODDI 

sampling scheme (Zhang et al. 2012), approximately 2/3 of the diffusion signals are at 

higher b-value with lower signal-to-noise ratio (SNR). A computer simulation was 

performed to validate the compatibility of using the HYDI scheme for NODDI computation. 

Figure 8 shows the simulation results at SNRb0 = 20, which is similar to the estimated white 

matter SNR of the human HYDI data in this study. The estimated SNR is approximately 21 

± 7 across the whole brain white matter of the 47 subjects at b-value = 0 s/mm2. Simulation 

results for other SNRs are in Figure S2. Across the range of SNRs and ICVF-ODI 

combinations, the recommended NODDI scheme and HYDI did not differ significantly from 

each other (p-value > 0.05). At SNRb0 = 20, HYDI overestimates low ICVFs more often 

than NODDI-p14, but both are comparable at a high ICVF (>0.5), which is a more realistic 

value for white matter (Table S3). Both schemes underestimate high ODIs, but work fine at a 

low ODI (<=0.5), which again is more realistic for white matter (Table S3).

The HYDI images were acquired at a voxel size of 2 × 2 × 3 mm3. There may be partial 

voluming effects in the diffusion metrics due to the variation of size, angle, and curvature of 

white matter tracts across subjects (Vos et al. 2011). Thus, The group level analyses may be 

biased by these hidden covariates. To minimize the partial voluming effects, the white matter 

ROIs were limited at the center of the white matter bundle (i.e., white matter skeletons).

Age-related changes in DTI indices in white matter have been reported in literature, showing 

quadratic pattern changes with age. In particular, Westlye et al. reported extended results of 

quadratic changes of DTI indices in a group of 430 subjects ranging in age from 8 to 85 

years old (Westlye et al. 2010). Nevertheless, liner models are appropriate for the young to 

middle-aged cohort in this study because: (1) in the paper by Westlye et al., the shapes of the 

quadratic curves for subjects between 18 to 55 years of age can be approximated by straight 

lines; and (2) both the residual and the Q-Q plots of the data in the present study showed no 

indications of non-linear relationships.

Aging effects

Age-sensitive white matter—Hippocampus-associated fiber tracts including the 

cingulum-hippocampal section and the limbic system (fornix, fornix-stria terminalis and 

uncinate fasciculus) were sensitive to aging. These findings support previous findings of 

aging related changes in grey matter using volumetric indices (Walhovd et al. 2011, Fjell et 

al. 2014) and NODDI metrics (Nazeri et al. 2015) as well as in white matter using voxel-

based-morphometry (VBM) (Walhovd et al. 2005, Fjell and Walhovd 2010), DTI (Westlye et 

al. 2010), and NODDI (Billiet et al. 2015). The aging effects on the hippocampal associated 

white matter fibers may explain the common amnesic syndrome in healthy older adults.

Microstructural changes in aging—In this young to middle-aged cohort, we found 

white matter fibers dispersed with aging in most white matter accompanied by relatively 

stable tissue restriction (P0) and intra-axonal volume fraction (ICVF). P0 is an index of 

tissue restriction and cellularity (Assaf et al. 2000, Wu and Alexander 2007, Ozarslan et al. 
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2013), and also highly correlates with myelination in studies of an animal model of 

dysmyelination (Wu et al. 2011) and of the human brain with demyelination due to multiple 

sclerosis (Assaf et al. 2005). In this aging cohort, P0 is relatively stable in most of the brain 

white matter, consistent with stable myelin-water fraction measured by multiple T2 

relaxation in (Billiet et al. 2015). Nevertheless, P0 did decrease significantly in aging-critical 

areas, the uncinate fasciculus, which may be explained by the pathologic findings of 

disrupted myelin in monkey studies (Sandell and Peters 2001, Sandell and Peters 2003) and 

substantial loss of myelinated fibers in the human brain (Marner et al. 2003). The age-related 

changes of ICVF have mixed results in previous studies. Increases of ICVF with age in 

white matter were found using a linear regression model in (Billiet et al. 2015) and using a 

logarithmic growth model in (Chang et al. 2015). Mixed increases and decreases of ICVF 

with age were found using a quadratic model in (Billiet et al. 2015). Interestingly, we did not 

find significant age-related changes in ICVF in all white matter ROIs, which may indicate 

the “axonal density” (Sepehrband et al. 2015) is relatively stable in this middle-aged cohort. 

However, more evidence of direct measurements in animal models of aging or rapid post 

mortem imaging and histology studies may be needed to further validate and understand the 

role of ICVF index in aging.

DTI vs. NODDI—Similar to all diffusion modeling, NODDI model has its own limitations 

such as the axons modeled as rigid sticks with a Watson distribution and a hierarchical 

fitting strategy (Zhang, et al, 2012). In the NODDI framework, the rigid sticks describe 

axons with fixed intra-axonal diffusivities, whereas other diffusion models use “flexible” 

sticks and may yield estimates of intracellular diffusivities (Fieremans et al. 2011, Chiang et 

al. 2014). In addition, the Watson distribution is a unimodal distribution that assumes a 

single orientation for fiber bundles within an imaging voxel. Thus, similar to the major 

eigenvectors in DTI, NODDI yields a single directional vector as the estimate of overall 

fiber orientation within a voxel. Nevertheless, NODDI may provide some insights of specific 

microstructural metrics that may better characterize pathophysiologic changes than DTI 

indices. In contrast to the findings of Billiet et al. (Billiet et al. 2015), we found that ODI, 

instead of FA, was the diffusion metric most sensitive to aging with significant increases in 

89% of the ROIs. This is probably due to slightly different population and the use of a 

different approach to generate white matter ROIs. While both dispersion index and 

intracellular volume fraction could affect FA (Zhang et al. 2012), in our study, all of the 

changes in FA were accompanied with changes in ODI, but not ICVF because ICVF is not 

sensitive to this young to middle-aged cohort. Although FA is a dependent diffusion index 

derived from AD and RD, 14% of changes in FA could not be explained by either AD or 

RD, suggesting a lack of sensitivity. In addition, all of the AD- or RD-significant ROIs did 

not have alterations in tissue restriction or the freedom of diffusion (volume fractions), but 

were 100% correlated with the increase in fiber dispersion. Although AD and RD are 

sensitive to axonal integrity and myelination in animal studies (Song et al. 2002, Sun et al. 

2005, Budde et al. 2009), in this aging cohort, changes in AD and RD merely reflected 

changes in the “organization” of fibers. Consistent with the previous suggestion in (Wheeler-

Kingshott and Cercignani 2009), this finding highlights the importance of cautions in 

interpreting DTI findings, especially AD and RD, on microstructural alterations in white 

matter.

Kodiweera et al. Page 12

Neuroimage. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sex differences

Reports using diffusion metrics from high-b-value experiments and compartmental modeling 

such as NODDI are limited in the literature. In this study, we found all of the white matter 

ROIs had no sex differences in the aging rate, but found nearly 30% of the white matter 

ROIs had absolute sex differences. Interestingly, among the white matter ROIs that we found 

showed significant sex differences also included the age-critical regions and the left fornix-

stria terminalis was the most sensitive to sex difference. After adjusting for age, men tend to 

have higher intra-axonal volume fraction than women in 27% of the white matter ROIs and 

increase the fiber dispersion in 2 ROIs. Similar to the results in aging, NODDI indices are 

more sensitive than DTI in detecting sex differences.

TBSS and ROI

The results of the ROI analyses are consistent with the TBSS results in which ODI increased 

significantly over age in most of the white matter skeleton (Figure 7) and MD, P0, and ICVF 

were not sensitive to aging. The TBSS analyses also showed similar trend of increased RD 

and ODI with decreased FA over age. DTI and P0 did not detect any sex difference using 

TBSS, which is also consistent to the ROI study. Similar to the ROI results in Table 2, the 

TBSS analyses show males had higher ODI and ICVF than females.

Conclusion

In this study, hippocampus-associated white matter tracts and white matter projecting to 

cerebral cortices were found to be sensitive to aging in young to middle-aged adults. 

Overall, aging led to greater dispersion of white matter fibers while the tissue restriction and 

intra-axonal volume fraction were relatively stable in most of the ROIs studied, except the 

uncinate fasciculus, which significantly decreased tissue restriction. The overall aging 

effects in the diffusion metrics were less than 10% per decade. The fiber dispersion index, 

ODI, of NODDI was more sensitive to aging than FA of DTI. In addition, most of the 

changes in AD and RD reflected changes in the fiber organization rather than in the freedom 

of diffusion. Despite men and women did not differ in the aging rate, significant sex-

difference with vertical shifts in the diffusion metrics were found in 30% of the white matter, 

in which men tend to have higher intra-axonal volume fraction. Similar to the aging effects, 

the NODDI indices were more sensitive to sex differences than DTI.
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Highlights

• Age-related white matter changes were studied using Hybrid Diffusion Imaging.

• NODDI diffusion indices are more sensitive to aging and sex differences than 

DTI.

• Aging mainly causes dispersion in white matter fibers in middle-aged adults.

• In young to middle-aged adults, men have greater axonal fractions and 

dispersion.

• Age-related changes in axial and radial diffusivity are driven by fiber dispersion.
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Figure 1. 
Forty-eight white matter ROIs were defined in the standard MNI space by intersecting the 

mean FA skeleton and the white matter atlas. The mean FA skeleton was created by TBSS 

commands and the white matter atlas was provided by Johns Hopkins University (JHU) 

ICBM-DTI-81 in FSL. The bottom figure shows the 48 ROIs overlaid on the averaged FA 

map in the standard MNI space. The acronyms for the ROIs are listed in Table 1 with 

matching color.
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Figure 2. 
Maps of the axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), and 

fractional anisotropy (FA) from DTI, and the tissue restriction index (P0) from the q-space 

approach as well as the orientation dispersion index (ODI), and intracellular volume fraction 

(ICVF) from the NODDI model. The gray scales of AD, RD, and MD are 0 to 1.7, 1.1, 1.3 

×10−3 mm2/s, respectively. The FA map is scaled from 0.2 to 1. The P0, ODI, and ICVF 

maps are scaled from 0 to 1.
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Figure 3. 
Results of linear regression of model 2 for females (red) and males (blue). β1 denotes the 

common aging rate for both females and males. β2 denotes the amount of vertical shift (i.e., 

intercept) between females’ and males’ regression lines. P-value denotes the uncorrected 

significant level and the q-value denotes the false discovery rate (FDR) of the multiple 

comparisons across the 48 ROIs. Note that with the criteria of q-value < 0.05 for 

significance, most of β1s shown here are not significantly different from the null hypothesis, 
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i.e., β1= 0, except ODI. However, the β2s shown here differ significantly between females 

and males. Figure 4
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Figure 4. 
Bar graphs of sorted percentage changes in the diffusion metrics per decade across 

significant ROIs. Percent change per decade was computed using β1 in Table 3 divided by 

the mean value of diffusion metrics across all subjects in Table S3, and multiplied by 10 

years.

Kodiweera et al. Page 23

Neuroimage. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Results of significant linear regression of model 3 for DTI (RD, AD, and FA) and q-space 

(P0) metrics in age-critical ROIs including the fornix (Fx), fornix stria terminalis (Fx-ST), 

uncinate fasciculus (UNC), and cingulum hippocampal segment (CGH). The aging rate, β1, 

is also reported in Table 3 and Figure 4. P-value denotes the uncorrected significant level 

and the q-value denotes the false discovery rate (FDR) of the multiple comparisons across 

the 48 ROIs. Q-value < 0.05 is considered significant.
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Figure 6. 
Results of significant linear regression of model 3 for NODDI-ODI in age-critical ROIs 

including fornix stria terminalis (Fx-ST) and cingulum hippocampal segment (CGH). The 

aging rate, β1, is also reported in Table 3 and Figure 4. P-value denotes the uncorrected 

significant level and the q-value denotes the false discovery rate (FDR) of the multiple 

comparisons across the 48 ROIs. Q-value < 0.05 is considered significant.
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Figure 7. 
TBSS analysis of the whole brain white matter skeleton to show the spatial distribution of 

age effects and sex differences. Maps of corrected p-value (as in (1-p)) overlaid on the 

standard T1W images. The green voxels indicate the white-matter skeleton. The red-yellow 

color code denotes positive correlation and blue-light blue color denotes negative 

correlation. The color scale is 0.95 to 1. The data is downloadable at http://dx.doi.org/

10.7910/DVN/KUYSDI.
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Figure 8. 
Computer simulation of NODDI and HYDI schemes for NODDI computation. NODDI-p14 

is the diffusion-encoding scheme recommended in the paper by Zhang et al. (2012). The 

p12345 is the HYDI 5-shell scheme used in this study. The dashed lines are ground truth: 

ICVF = [0.2, 0.4, 0.5, 0.8]; kappa = [0, 0.25, 1, 4, 16]; and FISO=0. Kappa is the 

concentration parameter in the Watson distribution and relates to ODI by the following 

equation, ODI=(2/π)arctan(1/kappa). There were 30 random trials at each of the 250 

different fiber orientations that were uniformly distributed on a unit sphere. The SNR 

simulated was 20 at b-value = 0 s/mm2, which is similar to the estimated white matter SNR 

of the HYDI human data in this study. For all the ICVF, the ODI simulated, NODDI-p14, 

and HYDI p12345 schemes did not significantly differ from each other (p-value > 0.05). 

HYDI overestimates low ICVFs more often than NODDI-p14, but both are comparable at a 

high ICVF (>0.5), which is a more realistic value for white matter (Table S3). Both schemes 

underestimate high ODIs, but work fine at a low ODI (<=0.5), which again is more realistic 

for white matter (Table S3).
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Table 2

Diffusion metrics and ROI pairs with a significant β2 in model 2 (Equation 8) indicating sex differences as a 

vertical shift, regardless of aging factors.

ROI ODI (β2) ICVF (β2)

ACR-L 0.039

ACR-R 0.031

ALIC-L 0.031

CGC-R 0.034

CGH-R 0.029

EC-R 0.024

Fx-ST-L 0.019 0.025

Fx-ST-R 0.034

PCT 0.032

PTR-R 0.034

SCR-R 0.014

RLIC-L 0.025

RLIC-R 0.033

UNC-R 0.067
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