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Abstract

Cardiovascular malformations (CVMs) are the most common birth defect, occurring in 1–5% of 

all live births. Genetic, epigenetic, and environmental factors all influence the development of 

CVMs, and an improved understanding of causation of CVMs is a prerequisite for prevention. 

Cardiac development is a complex, multi-step process of morphogenesis that is under genetic 

regulation. Multiple developmental pathways act independently or in combination to effect proper 

cardiac lineage specification, differentiation, and structure. Because of this complexity, there are 

numerous potential mechanisms by which genetic variation can impact both fetal cardiac 

development and latent cardiac disease. Although the genetic contribution to CVMs is well 

recognized, the genetic causes of human CVMs are still identified relatively infrequently. Mouse 

models are important tools to investigate the molecular mechanisms underpinning cardiac 

development as well as the complex genetics that characterize human CVMs. In this review we 

provide an overview of the key genetic concepts characterizing human CVMs, review their 

developmental basis, and provide examples to illustrate the critical developmental and genetic 

concepts underlying the pathogenesis of CVMs.
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INTRODUCTION

The underlying causes of CVMs can include cytogenetic abnormalities, single gene 

disorders, environmental etiologies, or most commonly, multifactorial etiologies (Table 1). 

Chromosomal abnormalities account for 12–14% of all live born cases and 20–33% of fetal 

cases of congenital cardiovascular malformations (CVMs), indicating that the proper genetic 

control of cardiac development is essential 1–4. CVMs can occur as isolated findings, as part 

of a well-defined syndrome, or in conjunction with additional extracardiac anomalies not 

formally recognized as a syndrome 5. The designation of CVMs as isolated can be 

problematic since many important distinguishing features of syndromic conditions, such as 

developmental delay or dysmorphic features, may not be apparent at initial evaluation. As a 

result, syndromic cases of CVM may be underestimated. In addition, the traditionally cited 

incidence for CVMs of ~1% of live births likely also underestimates the scope and impact of 

disease. Taking into account very high rates of CVMs in spontaneous abortuses, common 

malformations such as BAV (present in 1.2% of the population) and latent cardiac diseases 

such as aortic dilation which are not included in the birth incidence of CVMs, genetically 

mediated CVMs are likely much more common than previously thought. When considering 

the etiology of CVMs, as opposed to the proportion of CVM cases that manifest as disease 

at birth, the incidence increases to approximately 5%.

Recently, we summarized the overall progress in the molecular genetic analyses of CVMs 

and current recommendations for clinical application of genetic testing. In particular, we 

reviewed the utility and limitations of chromosomal microarray analyses (CMAs) and the 

emerging clinical roles for whole exome sequencing (WES) and other next-generation 

sequencing (NGS) technologies 6. Readers with an interest in the current clinical testing 

approaches for CVMs are referred there. Here, we focus on common genetic and 

developmental themes across the wide variety of CVMs and the ability of animal models 

and knowledge of cardiac developmental biology to impact our understanding and approach 

to CVMs.

The genetic basis of CVMs

Epidemiologic studies suggest that a syndromic form of CVM is identifiable in 

approximately 20% to 30% of cases 4. Known genetic causes are extremely heterogeneous, 

encompassing not only mutations in cardiac relevant genes but also more complex 

chromosomal abnormalities, submicroscopic duplications/deletions, and whole-chromosome 

aneuploidies (Table 1). As noted above, CVMs can be isolated or can occur as part of a well-

recognized genetic syndrome, and this distinction may be subtle.

Inheritance patterns for many CVM-associated genetic conditions are well characterized 

(reviewed in 6) (Table 2). Genetic syndromic conditions associated with CVMs are most 

commonly de novo or autosomal dominant. For dominantly inherited conditions, such as 

Noonan or Holt-Oram syndromes, individual recurrence risks for offspring with the 

syndrome is 50%. Importantly, not all patients with a particular syndrome have associated 

heart defects and the proportion can vary by syndrome. Furthermore, the presence or 

severity of a CVM in the parent does not predict the severity in the child.
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Isolated CVMs may be inherited as autosomal dominant, autosomal recessive, or X-linked 

conditions, but are most commonly sporadic with multifactorial etiology (Table 3). Like 

other conditions inherited as a complex trait, isolated CVMs may show familial clustering 

with reduced penetrance7. For these reasons, recurrence risks for isolated CVMs can be 

difficult to assign. Consistent evidence of high heritability of isolated CVMs indicate that a 

strong genetic component exists, even for defects occurring without an obvious mode of 

inheritance 8.

Gene dosage as a mechanism for CVM

Gene dosage is an important concept underlying genetic disease, including birth defects. For 

many genes, a missing (deletion) or extra (duplication) copy of that gene results in no 

phenotypic consequences. In contrast, dosage sensitive genes produce abnormal phenotypes 

in the absence of two functional genes. Aneuploidies such as Trisomy 21 and Turner 

syndrome demonstrate that proper chromosome number is required for normal development. 

CVMs, including AVSD, are seen in approximately 50% of individuals with Down 

syndrome. Likewise, up to 50% of patients with Turner syndrome will have a CVM, most 

commonly a defect in the left ventricular outflow tract. Because of the large number of 

genes with abnormal dosage in these conditions, identifying the causal genes for the cardiac 

features has proven difficult. Furthermore, the decreased penetrance of the CVMs suggests 

that genetic modifiers interact with dosage-sensitive gene(s) on the same chromosome (in 

the case of Trisomy 21) or other chromosomes to cause CVM. Thus, a threshold exists in 

both aneuploid and euploid populations for the number of genetic perturbations that can be 

tolerated before CVM results. For example, Creld1 and Hey2 were recently identified as 

potential modifier genes in Trisomy 219. Mice with mutant forms of these potential 

modifiers were intercrossed to the Ts65Dn mouse model of Down syndrome. Breeding loss-

of-function alleles of either Creld1 or Hey2 onto the trisomic background causes a 

significant increase in the frequency of CVM. This supports a threshold hypothesis for 

additive effects of genetic modifiers in the sensitized trisomic population.

Submicroscopic chromosome deletions and duplications also underlie many genetic 

syndromes, and the term genomic disorder is used to refer to these conditions. Two classic 

genomic disorders, 22q11.2 deletion syndrome and Williams-Beuren syndrome, are 

discussed in further detail below.

Understanding the genetic basis of syndromic CVM can identify important genes for 
isolated CVM

Williams-Beuren syndrome (WBS) is a relatively common genetic syndrome associated with 

CVM caused by deletion at 7q11.23, resulting in haploinsufficiency of multiple genes, 

including elastin, ELN. Supravalvar aortic stenosis (SVAS) is the most classic cardiac 

finding in WBS, although other defects, including peripheral pulmonic stenosis, occur. 

Subsequent to the description of WBS as a deletion at 7q11.23 in 199310, Ewart et al. 

showed close linkage of ELN and supravalvular aortic stenosis (SVAS) in two families11. 

Deletions or point mutations limited to the ELN gene appear to result in nonsyndromic 

SVAS, whereas larger deletions spanning multiple genes lead to the WBS. Studies in a 
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mouse model with elastin deficiency have successfully corroborated the genetic findings 

with regard to SVAS and latent aortic disease 12, 13.

22q11.2 deletion syndrome provides a second example of a genomic disorder that led to the 

identification of a single gene causing CVM. CVMs occur in approximately 75% of patients 

with 22q11.2 deletion syndrome, with conotruncal defects predominating. After the 

identification of 22q11.2 deletion syndrome, significant effort was put forth to delineate the 

dosage sensitive gene(s) responsible for the CVMs using mouse development and genetics, 

ultimately identifying Tbx114, 15. Yagi et al. investigated TBX1 mutations in families who 

had 22q11.2 deletion syndrome phenotype but no detectable deletion and found that TBX1 
mutations are responsible for many major phenotypes of the syndrome, including CVMs. In 

much the same way that modifiers for the Ts65Dn mouse model of Down syndrome were 

identified, sonic hedgehog and retinoic acid developmental signaling pathways modify the 

phenotypes of a 22q11.2 deletion syndrome mouse model, suggesting that mice with 

reduced gene dosage are sensitized to these morphogens16. These disorders illustrate the 

concept that genes which cause CVMs may be associated with syndromic or isolated 

presentations. Comprehensive identification of dosage sensitive candidate CVM genes and 

integration into an understanding about the genetic and developmental origins of CVM 

would facilitate the development of therapies to rescue the CVMs associated with both 

syndromic and isolated CVM.

Blurring the boundaries: single gene defects that can cause both syndromic and isolated 
CVMs

Genetic testing technologies have identified several genes that cause both syndromic and 

nonsyndromic CVMs (Table 2–3) 6. For example, CVMs, including aortic aneurysm, are 

reported in syndromic patients (i.e., Marfan syndrome (MFS) and Loeys-Dietz syndrome 

(LDS)) with mutations affecting the TGFβ pathway (TGFB2, TGFBR1, TGFBR2, SMAD3, 
FBN1) (Table 2)17, 18. Non-syndromic aortic disease is a frequently asymptomatic but 

potentially lethal disease characterized by familial cases of thoracic aortic aneurysm and 

dissection (FTAAD). This monogenic but genetically heterogeneous condition is primarily 

inherited as an autosomal dominant disorder with variable penetrance and expressivity. 

Mutations in TGFB genes have also been described in nonsyndromic patients with isolated 

CVM or aortic aneurysm (Table 3) 18–21. These facts complicate the clinical approach to 

patients with CVMs and the choice of genetic testing. Furthermore, patients with mutations 

in ACTA2, a gene known to cause isolated FTAAD, can have a syndromic presentation 22 

and pediatric patients with FTAAD frequently have subtle signs of a connective tissue 

disorder 23. As the ability to identify genetic etiology improves, boundaries between 

syndromic and nonsyndromic disease often become less distinct. Careful phenotyping and 

improved interpretation of genetic variation are important to better refine our understanding 

of the spectrum of clinical effects of specific genetic variation.

The developmental basis for CVMs: genes and pathways required for critical stages of 
heart formation

Genetically engineered mice are extensively used in CVM research and have contributed 

greatly to an understanding of the genetic control and mechanistic basis of CVMs. Multiple 
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cell types contribute to the development of a fully septated four-chambered heart, including 

the first heart field (FHF) and second heart field (SHF), cardiac neural crest (NC), epicardial 

(Epi), and endocardial (EC) cell lineages (Fig. 1) 24. Both cardiac NC and endocardium-

derived cushion mesenchyme are important precursors of the outflow tract (OFT) septa and 

semilunar valves25. At embryonic day 9.5 (E9.5), endocardium in the proximal OFT region 

gives rise to cushion mesenchyme via epithelial-mesenchymal transition (EMT) (Fig. 

1) 25, 26. NC cells enter the distal OFT (E10), proliferate, and eventually colonize the 

endocardial ridges of the proximal cushions27. NC cells undergo apoptosis (E11.5 – 13.5), 

and are necessary for aorticopulmonary septation and OFT alignment28. Endocardium-

derived OFT cells also undergo proliferation but remain restricted to the endocardial ridges 

of the proximal OFT cushions (Fig. 2). Remodeling and fusion of the endocardial ridges of 

the proximal cushions results in the formation of fibrous OFT septum that undergoes 

differentiation (E13.5–15.5) and eventually becomes a completely muscular structure 

(E16.5–18.5) through a process called myocardialization26. Despite abundant contributions 

of NC to the OFT mesenchyme, few NC derivatives are present in the mature semilunar 

valves27. Although the precise role of NC cells or their interaction with endocardial EMT-

derived OFT cells remains unclear, more recent studies have suggested that NC cells are also 

important for the remodeling of the semilunar valves 27. Abnormal OFT cushion remodeling 

often results in semilunar valve thickening, defective OFT septation (persistent truncus 

arteriosus, PTA) or alignment defects such as double-outlet right ventricle (DORV) and 

ventricular septal defect (VSD) 25. The signals and cellular events that mediate valve 

remodeling are poorly characterized, although apoptosis and alterations in extracellular 

matrix production have been described 29, 30. Similar developmental events are noted in AV 

cushion formation and remodeling except that the cardiac NC are absent in the AV cushions 

and both dorsal mesocardium and epicardium provides additional cushion components of the 

AV cushion mesenchymal complex (Fig. 2) 31.

Developmental pathways acting independently or in combination contribute to heart 

development and have been reviewed recently 6, 32–34. For example, TGFβ and BMP family 

members play different roles during cardiac development (Fig. 3) (reviewed in 26, 35), and 

mutations in these genes result in distinct phenotypes 35–38. In Loeys-Dietz syndrome 

(LDS), mutations in the TGFβ pathway genes cause thoracic aortic aneurysm (TAA; Table 

3) and are also highly associated with BAV39. Paradoxically, elevated levels of TGFβ1 are 

seen in these patients. Similar increases in TGFβ1 activity is also associated with BAV in 

Turner syndrome 40. Overall, it remains unclear whether the loss-of-TGFB function and/or 

gain-of-TGFB function is the primary cause of CVM. On the other hand, BMP signaling is 

required to induce differentiation of early cardiac progenitors, but BMP signaling is 

inhibited at later stages by Smad6a to permit chamber development mediated by Tbx2 and 

Tbx20. Importantly, the role of a particular signaling pathway can vary as development 

proceeds. For example, Wnt signals are critical for early cardiac precursor induction and 

proliferation, but later become inhibitory. Combinatorial interactions are the rule. Notch 

signaling interacts with both BMP and TGFβ pathways 6, 41. The cardiac transcription factor 

Nkx2.5 physically and functionally interacts with Gata4, Tbx5, and Mef2c, each of which 

forms additional unique and shared connections with other molecular, genetic, and signaling 
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components 6, 33, 34. Such signaling and transcriptional networks hint at the possibility that 

some CVMs may result from additive effects of multiple low-effect susceptibility alleles.

Phenotypic heterogeneity and locus heterogeneity

Studies of gene targeted mouse models indicate that loss of a single gene can result in a 

spectrum of CVMs (Table 4–5, Fig. 4; non-comprehensive examples). For example, the OFT 

malformations of the TGFβ2-deficient fetuses include DORV, PTA, abnormal morphology 

and thickening of aortic and/or pulmonary valves, aortic arch artery malformations (i.e. 

IAA), DILV and/or overriding of tricuspid valves orifice via a perimembranous inlet VSD, 

and abnormal morphology and thickening of tricuspid and mitral valves. Similarly, a range 

of CVM phenotype is seen in mice which lack Tbx1, Nkx2-5, Tbx20, Tbx5, and Gata4.

Different CVM phenotypes are noted in patients with identical mutations, even among 

members of the same family (Table 4). Null mutation in several genes can cause AVSD in 

mice, including Nkx2-5, Gata4, and Tbx1 31. Additional examples are presented in Fig. 4. 

Developmental mechanisms that cause different CVMs in response to a mutation in a single 

gene remain incompletely understood.

Mutations in developmental pathways may result in latent disease

There are numerous potential mechanisms through which genetic mutations could affect the 

complex differentiation and morphogenetic processes in heart development. Once 

developed, the cardiovascular system must undergo homeostasis to maintain function 

throughout life. This ability to repair and remodel following stress and injury uses many of 

the same mechanisms involved in the original development and remodeling of those 

tissues38. Failure of these processes can result in late onset disease. Genes associated with 

CVMs (Fig. 4) 35, 38 are ideal candidates for these homeostatic, stress response and repair 

processes. Improvement in outcomes requires a better understanding of mechanisms 

underlying CVMs and dysregulated homeostatic/repair processes.

There are many interesting examples of genes in which homozygous gene deletion in mice 

results in CVMs in embryos and latent cardiac disease in adult mice, including elastin, 

emilin 1, periostin, and fibrillin 1. Elastin null (Eln−/−) mice die perinatally secondary to 

severe arterial obstruction reminiscent of SVAS12, whereas arteriopathy in the Eln+/− mouse 

manifests as systemic hypertension42. Juvenile Eln+/− mice demonstrate normal valve 

function, but progressive valve disease (predominantly aortic regurgitation) is identified in 

17% of adult and 70% of aged adult Eln+/− mice by echocardiography13. Thus Eln+/− mice 

are a model of latent aortic valve disease and reduced elastin leads to dysregulation in valve 

pathogenesis. Other good examples of mouse models of latent aortic disease include 

Emilin1, Fibrillin-1+/C1039G, and Fibrillin1mgR/mgR (Fbn1mgR/mgR), the latter two being 

mouse models of Marfan syndrome (MFS). The Fbn1mgR/mgR mice die spontaneously from 

rupture of the thoracic aorta between 2 to 4 months of age, and are useful in testing 

therapeutic strategies for aortic aneurysm. On the other hand, Fibrillin-1+/C1039G mice, 

where a point mutation seen in MFS has been made, represent a viable mouse model to 

study the development and progression of aortic aneurysm. The early manifestation of 

elastic fiber fragmentation and aberrant TGFβ signaling suggests that these processes are 
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crucial intermediate factors which provide novel information for diagnosis and treatment of 

patients with aortic disease 23, 43.

Decreased penetrance, variable expressivity and complex inheritance: lessons from 
mouse models

Genetically engineered mice can serve as a useful example of modifying genetic influences 

that affect phenotype. A good example is the different phenotypes seen in Tgfb2 null mice 

on mixed (129/Bl-Swiss) and inbred (C57BL/6) genetic backgrounds. The OFT 

malformations of the inbred null fetuses included DORV (100% cases), PTA (27.2% cases), 

and semilunar valve defects (100% cases). In addition, the null fetuses developed DILV 

and/or overriding of tricuspid valves orifice via a perimembranous inlet VSD (100% cases), 

and tricuspid/mitral valve defects (100%). Notably, the overall penetrance of the observed 

cardiac valve and septal defects was significantly higher in C57BL/6 inbred null fetuses 

compared to Tgfb2 null fetuses on the mixed genetic background. 44 This difference is 

attributed to the differences in genetic modifiers between the strains.

Epigenetic factors in CVM

An increasing recognition of epigenetic factors has revealed an unanticipated breadth to the 

causes of CVMs45. Epigenetics refers to functionally relevant changes to the genome that do 

not involve change in the DNA sequence. DNA methylation and histone modification are 

major epigenetic mechanisms which alter chromatin remodeling and gene expression 

without altering the underlying genetic information 5. A recent study by Pediatric Cardiac 

Genomics Consortium of the NHLBI identified de novo point mutations in several histone 

modifying genes that collectively contribute to approximately 10% of severe CVM5, 21. 

Refinements in technologies such as ChIP-seq and systems biology approaches will aid the 

understanding of global regulation and functional redundancies in cardiac transcription 

factors in CVMs33, 34. MicroRNAs (miRNAs), a class of "small" non-coding RNAs, 

negatively regulate the expression of their target genes through post-transcriptional 

processes and also interact with epigenetic machinery46. Regulation of gene expression via 

mechanisms that affect epigenetic machinery will identify novel etiologies for CVMs.

Future developments

The effect of gene variation on the assembly of distinct cardiac and extracardiac cell 

lineages during heart development is an important area that warrants future investigation. 

The relative importance and role of different cell types in cardiac morphogenesis and 

remodeling remains to be fully understood. Defining gene function in specific cell types in 

mouse models at high resolution will enable predictions to be made about the phenotypic 

consequences of variants in humans that currently lack functional interpretation. 

Experiments that delineate fundamental differences/similarities in loss-of-function and gain-

of-function genetic backgrounds in mice will provide insight into the consequences of gene 

dosage perturbation in humans and mechanisms of genetic disease. Finally, incorporation of 

new technologies such as next generation sequencing, gene expression profiling (i.e., RNA 

seq), and CRISPR/Cas9 -based methodologies to discover and validate novel genes involved 

in CVMs will significantly enhance the understanding of cardiac genetics and development.
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SUMMARY

Cardiac development is a complex, multi-step process under genetic regulation. A detailed 

understanding of the molecular basis of cardiac development is necessary to understand 

disease causation. The field of cardiovascular genetics is progressing at a rapid pace, leading 

to novel diagnostic genetic testing for CVMs. Recent efforts to integrate developmental 

studies from animal models with systems biology approaches offers significant promise for 

future CVM research. Understanding how genetic mutations affect the integration of 

multiple signal transduction pathways to cause CVM is an active area of research. The 

information gained from these developmental and genetic investigations should generate 

novel hypotheses for future experimentation and to provide diagnostic and therapeutic 

avenues for CVM patients.
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KEY POINTS

• There is a strong genetic contribution to cardiovascular malformations 

(CVMs).

• Genes important for syndromic CVM may also cause nonsyndromic 

CVM.

• An understanding of the genes and pathways required for critical stages 

of heart formation informs the approach to genetic testing and 

diagnosis.

• The same gene or genetic locus may cause different types of CVMs 

(phenotypic heterogeneity)

• The same CVM may result from mutations in different genes (locus 

heterogeneity)

• Mouse models are important tools to investigate the complex genetics 

of CVMs.
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Best Practices Box

What is the current practice?

Genetic Testing in Cardiovascular Malformations

• Genetic testing practices for congenital heart defects have yet to be 

standardized in many centers and testing is frequently underutilized.

• Guidelines for cardiac imaging and genetic testing for thoracic aortic 

aneurysm and cardiomyopathy

• A genetic diagnosis has important implications for patient 

management, screening recommendations for family members, and 

recurrence risk counseling

Genetic Testing Options

• Chromosome analysis is the gold standard for diagnosis of aneuploidies 

and other large chromosomal abnormalities.

• Chromosomal microarray (CMA) and fluorescence in situ 

hybridization (FISH) permit identification of microdeletion and 

duplication syndromes resulting from abnormalities too small to be 

detected by conventional chromosome analyses.

• Next generation sequencing (NGS) panels are the test of choice for 

some syndromic congenital heart defects, thoracic aortic aneurysm and 

cardiomyopathy.

• CMA and targeted NGS are non-redundant tests. Consulting a 

geneticist is important for establishing a differential, ordering the 

appropriate test(s), and interpreting results.

Implications for family members

• First degree relatives of patients with specific cardiovascular 

malformations (i.e. left ventricular outflow tract obstructive defects, 

thoracic aortic aneurysm) should undergo cardiac screening

• Family based risk assessment and recurrence risk information differs 

by type of cardiovascular malformation and should be provided to the 

family be a knowledgeable genetics professional.

What changes in current practice are likely to improve outcomes?

• Continued integration of genetic testing services into cardiovascular 

practice will improve diagnostic and prognostic accuracy and will 

support risk assessment and family planning initiatives.

• NGS technologies promise to greatly benefit patient diagnosis and gene 

discovery efforts.

• Appropriate cardiac screening and surveillance in at risk relatives will 

identify latent disease.

Azhar and Ware Page 12

Clin Perinatol. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Is there a Clinical Algorithm?

• An algorithm for congenital heart defects has been proposed recently. 6

• Guidelines summarize genetic testing for syndromic and non-

syndromic thoracic aortic aneurysm as well as cardiac screening in first 

degree relatives.47

Major Recommendations

Genetic testing and referral decisions should be determined based on the nature of the 

cardiac defect.

A detailed pedigree should be obtained in all cases of CVM.

Chromosome analysis is recommended for patients with suspected aneuploidy.

Patients with multiple congenital anomalies, neurological findings, developmental delay, 

and/or dysmorphic features should be referred for genetic evaluation.

CMA and/or FISH should be used in patients with conotruncal defects.

Patients with apparently non-syndromic LVOTO, RVOTO, AVSD, heterotaxy, or other 

complex defects should have CMA.

Patients with TAA should have a genetics evaluation and appropriate genetic testing.

Specific CVMs should trigger cardiac screening of first degree relatives.

Rating for the Strength of the Evidence

C Recommendation based on consensus, usual practice, expert opinion, disease-oriented 

evidence, and case series for studies of diagnosis, treatment, prevention, or screening
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1. Genetic evaluation and testing are increasingly important for 

cardiovascular malformations. Improvements in genetic testing 
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technologies have assisted gene discovery and helped to reshape 

standards of patient care. Risk assessment of family members and 

recurrence risk counseling are important components of management 

and care.
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Figure 1. Diagrammatic representation of heart development
Endocardium (EC) (aqua blue line) forms the endocardial cushions (green circle) via 

cushion EMT (E9.5). Neural crest (NC) (pink circle) cells migrate into the OFT during 

E10.5-12.5. Valve leaflets undergoing differentiation (orange color) and maturation (purple 

color) (E13.5-18.5) are clearly indicated. Only one semilunar valve is shown. SV, semilunar 

valves; AV, atrioventricular canal; RV, right ventricle; LV, left ventricle
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Figure 2. Cardiac remodeling and septation
Myocardium, endocardium, cardiac fibroblasts, and epicardium are major cell types in the 

heart. Left side, Components of OFT and AV cushions are indicated. OFT contains well 

demarcated conal (endocardium-derived) and truncal (NC-derived) cushions. AV cushion 

mesenchymal complex contains superior and inferior AV cushions (predominantly EC-

derived), right and left lateral AV cushions (rlavc, llavc) (with contributions from both 

epicardium and EC), mesenchymal cap (cap) and dorsal mesenchymal protrusion (dmp) 

(dorsal mesocardium-derived). Right side, fully septated 4-chambered heart. The valve 

annulus and vascular wall of the aorta and pulmonary trunk are predominantly comprised of 

smooth muscle cells. Heart valves predominantly contain valve interstitial cells. 

Endocardium/endothelium is the innermost layer, whereas epicardium is the outermost layer. 

Both ventricular and atrial regions contain myocardium and cardiac fibroblasts along with 

coronary vasculature. Purkinje fiber and atrioventricular and sinoatrial nodes constitute the 

cardiac conduction system. AoV, aortic valve; PV, pulmonary valve, RA, right atrium; TV, 

tricuspid valve; RV, right ventricle; LV, left ventricle; MV, mitral valve; LA, left atrium.
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Figure 3. Schematic diagram illustrating the TGFβ signaling pathway
TGFβs binds to a common TGFβ receptor complex, and signals through phosphorylation of 

the canonical TGFβ-specific SMADs (i.e., pSMAD2/3). The pSMAD2/3 forms a complex 

with SMAD4, which accumulates in the nucleus and can regulate target gene expression. 

SMAD4 also binds to BMP-specific SMADs (SMAD1/5/8), and therefore regulates BMP-

target gene expression in heart development.
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Figure 4. Phenotypic and genetic heterogeneity in CVMs
A single genetic abnormality can cause multiply types of CVMs. In addition, the same 

genetic abnormality can result in different CVMs. CVMs are indicated with colored circles.
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Table 1

Causes of Cardiovascular Malformations

Cause Example Characteristic CVMs

Environmental/teratogenic Lithium Chloride Ebstein’s anomaly

Genetic

  Chromosomal Trisomy 21 Atrioventricular canal defect

  Contiguous gene/CNV 22q11.2 deletion syndrome Conotruncal malformations

  Single gene Noonan syndrome Pulmonary valve stenosis

Epigenetic

  DNA methylation De novo SMAD2 mutations Conotruncal malformations
LV obstructions
Heterotaxy
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Table 2

Examples of common syndromes with CVMs caused by single gene mutations

Gene Syndromes
Common cardiac
anomalies

CHD7, SEMA3E CHARGE syndrome ASD, VSD, TOF

FBN1 Marfan syndrome Aortic dilation

JAG1, NOTCH2 Alagille syndrome
PS, peripheral PS,
TOF

KMT2D Kabuki syndrome
ASD, VSD, TOF,
CoA

PTPN11, KRAS,
NRAS, HRAS,
RAF1, SOS1,
NF1, CBL,
BRAF, SHOC2,
MAP2K1,
MAP2K2

Rasopathies: Noonan, Cardiofaciocutaneous, Costello
syndromes PS, HCM

SKI Shprintzen-Goldberg syndrome Aortic dilation

TBX5 Holt-Oram syndrome

ASD, VSD, AVSD,
conduction system
disease

TFAP2b Char syndrome PDA

TGFB2,
TGFBR1,
TGFBR2,
SMAD3 Loeys-Dietz syndrome types 1–4 Aortic dilation

TGFB3 Rheinhoff syndrome Aortic dilation

ZIC3 X-linked heterotaxy syndrome heterotaxy

ASD, atrial septal defect; AVSD, atrioventricular septal defect; CoA, coarctation of the aorta; PDA, patent ductus arteriousus; PS, pulmonic 
stenosis; TOF, tetralogy of Fallot; VSD, ventricular septal defect
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Table 3

Genes causing isolated heart defects

Gene Protein

ETS1 V-Ets avian erythroblastosis virus E26 oncogene homolog 1

TGFB2, TGFB3 Transforming growth factor ligand 2, 3

TGFBR1, TGFBR2 Transforming growth factor receptor 1, 2

SMAD2, SMAD3 Mothers against decapentaplegic, drosophila, homologs 2, 3

HAND1, HAND2 Heart and neural crest derivatives expressed 1, 2

GATA4, GATA5,
GATA6 GATA binding protein 4–6

TBX1 T-box 1

TBX20 T-box 20

CITED2
Cbp/P300-interacting transactivator, with Glu/Asp-rich carboxy-terminal
domain, 2

MESP1 Mesoderm posterior 1 homolog

IRX4 Iroquois homeobox 4

MYOCD Myocardin

Nkx2-5, Nkx2-6 NK2 homeobox 5, 6

NFATC1 Nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1

NOTCH1 Notch1

ELN Elastin
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Table 4

Phenotypic heterogeneity: the same genetic abnormality causes different heart defects

Gene CVMs in genetic mouse models

TGFB2 VSD, TAA, BAV

NKX2-5 VSD, AVSD, ASD

GATA4 ASD, VSD, AVSD

TBX1 AVSD, VSD,

TBX20 VSD, AVSD, ASD

BMP4 VSD, AVSD, ASD

GATA6 VSD, AVSD, ASD

ZIC3
Heterotaxy, d-TGA, DORV, AVSD, other heterotaxy spectrum
heart defects

JAG1 PS, ASD, TOF

GDF1 DORV, TOF, d-TGA

TBX5 ASD, VSD

Trisomy 21 ASD, VSD, PDA

45, X BAV, HLHS, CoA

22q11.2 deletion TOF, VSD, IAA type B

ASD, atrial septal defect; AVSD, atrioventricular septal defect; BAV, bicuspid aortic valve; CoA, coarctation of the aorta; DORV, double outlet right 
ventricle; d-TGA, d-transposition of the great arteries; HLHS, hypoplastic left heart syndrome; IAA, interrupted aortic arch type A; PDA, patent 
ductus arteriousus; PS, pulmonic stenosis; TAA, thoracic aortic aneurysm; TOF, tetralogy of Fallot; VSD, ventricular septal defect
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Table 5

Locus heterogeneity: the same CVM results from distinct genetic loci

CVM Type Examples of genetic etiologies

BAV TGFB signaling pathway single gene mutations, aneuploidy (45,X)

VSD
TGFB and BMP signaling pathway single gene mutations, aneuploidy (45,X;
Trisomy 21), 22q11.2 deletion

DORV GDF1, TBX1, 22q11.2 deletion

AVSD ACVR2, NKX2-5, GATA4, 22q11.2 deletion, aneuploidy (Trisomy 21)

PS JAG1, NOTCH2

TOF JAG1, NOTCH2, 22q11.2 deletion

MVP TGFB2, FBN1, FLNA

TAA TGFB signaling pathway single gene mutations, MYH11, ACTA2, MYLK1, FBN1,

HCM
Rasopathy gene mutations
Sarcomeric gene mutation
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