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William Farris Fadel

STATISTICAL METHODS FOR EXTRACTING INFORMATION FROM THE

RAW ACCELEROMETRY DATA AND THEIR APPLICATIONS IN PUBLIC

HEALTH RESEARCH

Various methods exist to measure physical activity (PA). Subjective methods, such

as diaries and surveys are relatively inexpensive ways of measuring one’s PA; how-

ever, they are riddled with measurement error and bias due to self-report. Wearable

accelerometers offer a noninvasive and objective measure of subjects’ PA and are

now widely used in observational and clinical studies. Accelerometers record high

frequency data and produce an unlabeled time series at the sub-second level. An

important activity to identify from such data is walking, since it is often the only

form of exercise for certain populations. While much work has been done to advance

the use of accelerometers in public health research, methodology is needed for quan-

tifying the physical characteristics of different types of PA from the raw signal. In

my dissertation, I advance the accelerometry research methodology in a three-paper

sequence. The first paper is a novel application of functional linear models to model

the physical characteristics of walking. We emphasize the signal processing used to

prepare the data for analyses, and we apply the methods to a motivating dataset

collected in an elder population. The second paper addresses the classification of PA.

We designed an experiment and collected the data with the purpose of extracting

useful and interpretable features for differentiating among walking, descending stairs,

and ascending stairs. We build subject-specific classification models utilizing a tree-

vi



based classifier. We evaluate the effects of sensor location and tuning parameters on

the classification rate of these models. The third paper addresses the classification of

walking types at the population level. We propose a robust normalization of features

extracted for each subject and compare the model classification results to evaluate

the effect of feature normalization. In summary, this work provides a framework for

better use of accelerometers in the study of physical activity.

Jaroslaw Harezlak, Ph.D., Chair
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Chapter 1

Introduction

Various methods exist to measure physical activity (PA). Subjective methods, such

as diaries and surveys are relatively inexpensive ways of measuring one’s PA; how-

ever, they are riddled with measurement error and bias due to self-report. Wearable

accelerometers offer a noninvasive and objective measure of subjects’ PA and are now

widely used in observational studies. Accelerometers record high frequency data and

produce an unlabeled time series at the sub-second level. An important activity to

identify from the raw accelerometry data is walking, since it is often the only form of

exercise for certain populations. Currently, most methods use an activity summary

which ignores nuances of walking data such as gait characteristics, complexity, and

vector magnitude.

In their most basic form, an accelerometer is an electro-mechanical device that

measures acceleration along three orthogonal axes [Urbanek et al. (2015)]. The ac-

celeration is measured in units of gravity and sampled in a range from 30 to 100Hz.

Current devices are often the size of a typical watch and can be attached to a num-

ber of locations on the human body, but most often they are attached to the wrist,

hip, or ankles of participants. Many devices produce summarized activity summaries

based on proprietary algorithms that vary between devices. Our interest is in devel-

oping transparent methodology for working with the raw accelerometry data that is

robust to the many devices available. Specifically, this dissertation focusses on data
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obtained from individuals while performing different walking tasks (i.e., walking on

level ground, ascending stairs, and descending stairs).

In Chapter 2, we propose methodology to model specific health related outcomes

(scalar response variable) with a functional linear model utilizing spectra obtained

from the local fast Fourier transform (FFT) of walking as a predictor. Utilizing

signal processing techniques, the walking spectra are transformed from the frequency

domain to the order domain so the spectra across subjects are aligned. Utilizing prior

knowledge of the mechanics of walking, we incorporate this as prior information about

the structure of our transformed walking spectra. Methods are applied to the in-the-

lab data obtained from the Developmental Epidemiologic Cohort Study (DECOS).

The data were collected at the University of Pittsburgh as part of broader study of

physical activity in a normal aging population.

In Chapter 3, we are interested in classifying different types of walking. More

specifically, we are concerned with differentiating between walking on level ground,

ascending stairs, and descending stairs. As these activities appear very similar in

their raw data form, we propose to extract a set of relevant features from the raw

data and investigate their predictive power in terms of subject level classification. We

build our predictive models using the classification tree methodology as described by

Therneau and Atkinson (2015). We evaluate the properties of the models built with

data collected from four body locations (i.e., left wrist, left hip, left ankle, and right

ankle) and features extracted using three window lengths (i.e., 2.56, 5.12, and 10.24

seconds). Understanding which features provide the best discrimination under a wide

range of data collection scenarios is imperative to the design of successful studies.

In Chapter 4, we expand upon our work in Chapter 3 to the population level.
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Due to extensive heterogeneity between subjects, we are unable to directly compare

raw data and extracted features between subjects. Therefore, we propose a novel

normalization of the walking data to walking on level ground. Once data are normal-

ized, we build classification models similar to those in Chapter 3 and evaluate their

performance. We also evaluate the feature importance under the population scenario

in order to validate our findings in Chapter 3.

In Chapter 5, we wrap up this dissertation with a brief discussion. We will discuss

the value added and limitations of the work discussed within this dissertation as well

as the future research directions.
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Chapter 2

Functional Linear Models to Detect Associations between Characteristics

of Walking and Health Indicators using Accelerometry Data

2.1 Introduction

Wearable accelerometers have become increasingly common in studies of physical

activity, aging, and obesity [Copeland and Esliger (2009); Gardner and Poehlman

(1998); Lange-Maia et al. (2015); Pruitt et al. (2008); Richardson et al. (2014)]. Self-

report measures such as questionnaires have been widely used to assess physical activ-

ity (PA) previously [Pruitt et al. (2008)]. However, questionnaires require individuals

to recall their daily activities which can be extremely difficult, particularly for older

individuals [Baranowski (1988)]. Often, memory limitations among older individuals

bring a significant amount of recall bias into the measurements provided. Schrack

et al. (2013) showed there are changes in the daily patterns and amount of PA as

people age. To further understand the relationship between PA and age, it is infor-

mative to assess the relationship between age and characteristics of walking because

short periods of walking may be the only PA achieved by many individuals in an

elder population. According to the CDC, walking is the most popular form of aerobic

physical activity [https://www.cdc.gov/vitalsigns/walking/ (Accessed: 05/03/2017)].

Accelerometers offer a non-invasive and objective alternative to self-report methods.

Advancements in data processing now allow for the analysis of specific gait character-

istics such as cadence and asymmetry [Moe-Nilssen and Helbostad (2004)]. Likewise,
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Figure 2.1: Triaxial accelerometer data from the 400 meter walk for a single individual
(top left) and a zoomed 10 second window (top right). Vector magnitude from the 400
meter walk for same individual (bottom left) and zoomed 10 second window (bottom
right).

advancements in statistical methodology for analysis of high dimensional data have

opened up new paths for analyzing more complex, and potentially more informative,

summaries of accelerometry data. In this manuscript, we propose a novel applica-

tion of recently developed statistical methods to the analysis of accelerometry data

by associating scalar outcomes, such as age and BMI, to the Fourier spectrum of

walking.

Accelerometers are electro-mechanical devices that measure acceleration along

three orthogonal axes. They are often worn on a person’s waist and provide high

frequency, high-throughput data represented by three time series of acceleration mea-

surements along three orthogonal axes [Sandroff et al. (2012); Urbanek et al. (2015)].

The data are typically collected at the sub-second level (usually between 10 to 100

5



observations per second), however most studies aggregate the data over one minute

epochs, or windows, and often, using a user specified threshold, the data are char-

acterized into activity counts per minute. While thresholding methods are useful in

describing the timing and duration for certain levels of PA, many nuances of the data

are lost. For example, it is not possible to evaluate how a person is walking from

activity count summaries. Especially in an at risk population, such as elder or obese

populations, this raises the question as to whether a more detailed quantification of

the walking signal can provide additional information. For example, if an elder per-

son’s legs are bothering them, we may detect signs of limping that could help explain

the low levels of PA.

To illustrate the complex nature of the data collected, Figure 2.1 shows the raw

data collected from a triaxial accelerometer for a single individual during an in-lab

400 meter walk. The top left panel of Figure 2.1 presents the entire 400 meter walk,

where each axis is shown in a different color. With just over 5 minutes worth of data,

the characteristics of the signal are nearly impossible to visualize. The top right panel

of Figure 2.1 shows a 10 second window of the same data. When zoomed in, we can

discern a fairly periodic signal. The periodic characteristics of walking naturally lend

themselves to a frequency analysis approach for quantifying the features of walking.

Utilizing similar methods to those described in Urbanek et al. (2015), we can extract

estimates of cadence (steps per second) and average magnitude from windows of

raw data. In addition to these more common features, we also utilize the spectra

obtained from the local Fast Fourier Transform (FFT) as a functional predictor for

modeling the association of walking with scalar health related outcomes such as age

and body mass index (BMI). By incorporating the walking spectra as a predictor, we
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gain additional information about the characteristics of a person’s gait which may

be associated with the outcome of interest. For example, an individual with a very

smooth walking stride would result in most of the energy from walking concentrated

around the frequencies near the cadence. However, an individual with an interrupted

stride (e.g. a limp) would result in energy being more spread out through higher

frequencies.

Several methods exist for fitting a scalar-on-regression function such as y =∫
I x(t)β(t)dt+ε, where x(·) is a functional predictor and y is a scalar response variable.

Several methods for estimating β(·) are based on the eigenfunctions associated with

some covariance operator defined by the predictors [Randolph et al. (2012)]. Ramsay

and Silverman (2006) describe a number of methods that involve combinations of

empirical eigenfunctions or B-splines, but fail to provide methods for incorporating

prior knowledge of the structure into the estimation. Due to the periodic nature of

walking, we have strong reason to believe the vast majority of information contained

in the walking spectra will be located around the harmonics centered at multiples of

the dominant frequency. Therefore, the method developed by Randolph et al. (2012),

which allows for the incorporation of presumed structure directly into the estimation

process, is preferable to a purely empirical estimator.

The remainder of this paper is structured as follows. In Section 2.2, we describe

the data collection and pre-processing procedures. In Section 2.3, we describe the

functional linear model used to fit the data and how estimation is performed. In

Section 2.4, we apply the proposed model to data collected in the lab from a study

of an elder population. In Section 2.5, we conclude with a discussion.
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2.2 Data collection and pre-processing

Data were collected in the Developmental Epidemiologic Cohort Study (DECOS), a

study of elderly individuals in good health. The study was conducted at the Univer-

sity of Pittsburgh, by Nancy Glynn, and was designed to evaluate established tools

for measuring physical activity, fatigability, fitness, and muscle function as they relate

to physical function with the purpose of establishing optimal tools for future epidemi-

ologic studies in older adult populations. This paper focuses on N = 46 individuals

who completed the “in-the-lab” fast-paced 400 meter walk [Lange-Maia et al. (2015)].

Data were collected using an Actigraph GT3X+ worn at the right hip. The raw data

were sampled at 80Hz.

The first step in pre-processing the data is to split the observed triaxial signal from

the 400 meter walk into 10 second non-overlapping windows. For each window, we

transform the raw triaxial signal into vector magnitude (VM), where VM is defined

as the root sum of squares of the three axes, i.e. vm(t) =
√
x1(t)2 + x2(t)2 + x3(t)2.

The vector magnitude count (VMC) is then calculated as the mean absolute deviation

of the VM ,

vτ (t) =
1

τ

t+τ/2∑
u=t−τ/2

|vm(u)− vm|, (2.1)

where τ is the window size expressed as number of sampling points, as defined in

Urbanek et al. (2015). We then transform the VM from the time domain into the

frequency domain using the local FFT, or short time Fourier transform (STFT).

Similar to Urbanek et al. (2015), we define the STFT at time t of the vm(t) as

X(t, f ; τ) =
∑[t+τ/2]

u=[t−τ/2] vm(u)h(u)e−i2πfu/τ , where τ is a tuning parameter specifiying
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the number of observations in the interval centered at t. The Hanning weights, defined

as, h(u; τ) = 0.5[1 − cos{2πu/(τ − 1)}] are used to avoid a blurring of the obtained

spectra.

For each spectrum obtained, we then identify the fundamental frequency (cadence)

as the location of the largest peak in the spectrum. Since the usual speed of walking

is between 1.4 - 2.5 Hz, as reported in Pachi and Ji (2005), we chose to look for the

cadence in a conservative range of 1.2 - 4.0 Hz to be consistent with Urbanek et al.

(2015). The frequency axis used is from 0Hz to 39.9Hz sampled every 0.1Hz which

ensures every individual’s spectra will contain at least 10 multiples of their dominant

frequency, or cadence.

In order to align all spectra at their cadence, we further transform each spectrum

from the frequency domain into the order domain by scaling the frequency axis by the

cadence for each spectrum. Linear interpolation is used to put each spectrum back

on the same sampling grid. This ensures that all spectra are aligned and sampled at

equally spaced points.

Since each spectrum is sampled discretely, further harmonics may be misaligned in

the order domain. To compensate, we average the spectra across all windows for each

subject in order to obtain a global estimate of walking features for each individual.

Each spectrum is restricted to 546 points between 0.3 and 5.75 in the order domain

to avoid modeling signal noise at the beginning and end of the spectra.

Finally, we scale each individual’s average spectrum by the magnitude of the

spectrum at the cadence. By scaling the spectra in this way, the magnitude at

each harmonic can be interpreted as a ratio to the magnitude at the cadence. This

process is illustrated in Figure 2.2 and fully detailed in Table 2.1. These steps for
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pre-processing the raw accelerometry data are essential in order to properly fit the

statistical model described in Section 2.3.

2.3 Statistical Methods

Let Wi(·) denote a functional predictor from the ith subject (i = 1, . . . , N). We will

assume each observed predictor is a discretized sampling from an idealized function at

p equally spaced points, s1, . . . , sp, as can be seen in the walking spectra in Figure 2.2.

We let wi := [wi(s1), . . . , wi(sp)]
T be the p × 1 vector of values sampled from Wi(·).

Then our observed data take the form {yi;xi;wi} where yi is a scalar response, xi is

a K × 1 vector of measurements from K scalar predictors, and wi is the functional

predictor from the ith subject. We denote the true coefficient function by β(·), and

then, the functional regression model of interest is given by

yi = xTi γ +

∫
I
Wi(s)β(s)ds+ εi (2.2)

where εi ∼ N(0, σ2
ε ). Here xTi γ is the linear effect from K scalar predictors and∫

IWi(s)β(s)ds is the functional effect.

2.3.1 Estimation of Parameters

The approach proposed in Randolph et al. (2012) assumes yi is linearly dependent on

Wi(·) at the p sampling points, wi. We impose functional structure into the estimation

of β(·). Then, combining all N subjects, we can express equation 2.2 as
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Table 2.1: Algorithm 1

Input: x(t) - accelerometry signal, fs - sampling frequency, smin = 1.2Hz, smax =
4.0Hz

Output: FFT - scaled average FFT spectrum, VMC - average VMC, Cadence -
average cadence

Step 1. Divide accelerometry signal into 10 second non-overlapping windows.

Step 2. Transform accelerometry signal into vector magnitude vm(t).

Step 3. Compute vector magnitude count, v10(t), for each window.

Step 4. Compute Fourier spectrum for each window.

Step 5. Estimate cadence as frequency centered under the largest peak in spectrum.

Step 6. Transform spectra from frequency domain to order domain by scaling fre-
quency axis by the frequency of the cadence.

Step 7. Average vector magnitude count, cadence, and order domain spectra across
all windows.

Step 8. Restrict spectra to points between 0.3 and 5.75 multiples of the cadence
frequency.

Step 9. Scale spectra by magnitude of the average spectra at the cadence.
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Figure 2.2: Pre-processing data. Observed FFT spectra for one subject as described
in Step 4 of Table 2.1 (top left). Observed spectra realigned into order domain for
the same subject as described in Step 6 of Table 2.1 (top right). Average realigned
spectra for all subjects as described in Step 7 of Table 2.1 (bottom left). Scaled
average spectra for all subjects as described in Step 9 of Table 2.1 (bottom right).
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y = Xγ +Wβ + ε (2.3)

where y = [y1, . . . , yN ]T is an N × 1 vector of responses, X = [xT1 , . . . , x
T
N ]T is an

N × K design matrix corresponding to the scalar predictors with coefficient vector

γ, W = [wT1 , . . . , w
T
N ]T is an N × p design matrix corresponding to the functional

predictors with functional coefficient vector β.

Due to our belief that the relevant information contained in the walking spectra is

localized around the harmonics at multiples of the dominant frequency, we want to es-

timate β while imposing some prior knowledge on its functional structure. We achieve

this by incorporating an informed penalty operator, L, as proposed in Randolph et al.

(2012). The penalized estimates of γ and β are obtained by

[γ̃, β̃λ,L]T = arg min
γ,β

{||y −Xγ −Wβ||2 + λ||Lβ||2L2}, (2.4)

where we only penalize the functional coefficient vector β. Given some prior

knowledge about the structure of our functional predictor, our penalty can be defined

as a subspace containing this information [Randolph et al. (2012)]. We define an

informative space, Q, to be a span of basis functions emphasizing the relevant features

of β(·) and consider the orthogonal projection PQ = QQ+. As described in Randolph

et al. (2012), we define our decomposition-based penalty as

L ≡ LQ = a(I − PQ) + PQ (2.5)

for some a > 0. Thus, when a > 1 the estimate is penalized more in the non-

13



informative space orthogonal to Q. When a = 1, the estimate is simply a ridge

estimate. Therefore, a generalized ridge estimate of γ and β can be obtained as

[γ̃, β̃]T = (XT
o Xo + λLTo Lo)

−1XT
o y, (2.6)

where Xo = [X W ] and Lo = blockdiag{0, LTQLQ}. The choice of tuning parameter,

λ, is provided through a linear mixed model framework as described in Ruppert et al.

(2003).

2.4 DECOS Example

We applied the methods discussed in section 2.3 to the data described in section 2.2

to study the association of walking spectra obtained from the fast-paced 400 meter

walk with age and BMI [Lange-Maia et al. (2015)]. The fast-paced 400 meter walk

is often used in epidemiological studies of older adults in order to assess aerobic

fitness [Simonsick et al. (2006)]. The most common protocol implemented for the

fast-paced 400 meter walk is the Long Distance Corridor Walk (LDCW) [Simonsick

et al. (2001)]. The pre-processed walking spectra described in Section 2.2 were each

sampled at k = 546 distinct sampling points within 0.3 and 5.75 of the order domain.

This range was chosen because there is little energy contained in the spectra beyond

13.5 Hz. Assuming an average cadence of 2.0 Hz, this range sufficiently covers the

relevant features of walking. There were N = 46 subjects that completed the LDCW.

In addition to each subject’s scaled average walking spectra, an estimate of their

average cadence is used as a predictor in the proposed models to control for subject

specific walking speeds. In addition, VMC was used to control for the magnitude
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each subject produces. For example, an individual with a very controlled and smooth

walking style will show lower magnitude than an individual with a heavy stomp in

their walk. We also adjusted each model for gender differences.

In order to use our prior knowledge about the structure of the walking spectra,

we define a penalty LQ as given in equation 2.5 (with a = 2). We define our basis

functions as normal density functions centered at multiples of the cadence from 0.5 ∗

cadence to 5.5 ∗ cadence using steps of 0.5. We chose a standard deviation such that

the distributions were nearly orthogonal. Scaled average walking spectra and basis

functions are displayed in Figure 2.3. The following model was fit to these data

yi = γ0 +Malei ∗γ1 +Cadencei ∗γ2 +VMCi ∗γ3 +

∫
I
Spectrumi(s)β(s)ds+ εi (2.7)

where yi is either age or BMI, Malei is a binary variable, Cadencei and VMCi are

the cadence and vector magnitude count for subject i, respectively. Spectrumi(·)

is the scaled average walking spectrum for subject i as described in section 2.2. We

assume that εi N(0, σ2
ε ). We obtain the estimates as the BLUP from the mixed model

formulation described in Kundu et al. (2012).

Figure 2.4 displays the estimates of β(·) along with pointwise 95% confidence

bands for the two models described in equation 2.7. These figures show that the esti-

mated regression function is different from zero at different multiples of the cadence.

The regression function for age (left) shows that the coefficient function, β̃, is negative

at the multiples 1.5 and 3.5 and positive at the multiples 4, 4.5, and 5. These re-

sults indicate that younger individuals have larger magnitude in the lower harmonics
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Figure 2.3: Pre-processed walking spectra (left) and basis functions used for modeling
(right). The x-axis represents multiples of the frequency of the cadence.

Figure 2.4: Estimates of the coefficient function, β̃, (with 95% point-wise confidence
band) for the association of walking with (a) age and (b) BMI as described in Section
2.4. The x-axis represents multiples of the frequency of the cadence.
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relative to the magnitude at their cadence which indicates a heavier stomp compo-

nent and controlled walking motion. Older individuals have larger magnitude in the

higher harmonics relative to the magnitude at their cadence which indicates a less

controlled compensatory walking motion (i.e. a limp). These results are consistent

with intuition and prior research [Kavanagh and Menz (2008)].

The regression function for BMI (right) shows that the coefficient function, β̃, is

positive at the multiple 2.5 and negative at the multiples 4 and 5. Likewise, these

results are consistent with intuition in that overweight, or obese, individuals tend to

walk with a heavier stomp component which would show up as higher magnitude in

the lower harmonics. Leaner individuals would walk with a lighter stomp component

with more characteristics in their walking which would show up as lower magnitude

in the lower harmonics sustaining consistently over the higher harmonics.

2.5 Discussion

In this paper we proposed a novel application of existing functional linear model

methods to the study of physical activity data collected by accelerometers. We pro-

posed an algorithm for pre-processing the raw data collected from accelerometers to

quantify the characteristics of walking in a more detailed manner than is typically

used with activity count summaries. Utilizing the periodic characteristics of walking,

we were able to reduce the dimensionality of the raw data into a form that retained

some details of the original signal while allowing us to use existing statistical methods

for analyses. We applied these methods to the in lab data collected from a study of

healthy aging within an elder population.

While FFT has been widely used for pre-processing accelerometry data, the fea-
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tures extracted from such methods have been applied to the problem of classification

of activity types as opposed to associating characteristics of walking to health indica-

tors [Mannini et al. (2013); Preece et al. (2009); Urbanek et al. (2015); Zhang et al.

(2012)]. To our knowledge, this is the first proposed application of functional linear

regression techniques to model the association of walking spectra with health indica-

tors. Due to the periodic characteristics of walking, the proposed method naturally

lends itself to this application where we can inform the penalty operator of where

the relevant information is contained in the spectra. This method is not limited to

the cross-sectional setting as demonstrated in this paper, and it is easily extended to

outcomes collected longitudinally [Kundu et al. (2012)]. In addition to walking speed,

this more detailed quantification of walking may provide additional information as to

how certain degenerative diseases (e.g. Parkinson’s disease, multiple sclerosis) affect

a person’s ability to walk over the progression of disease. Reuter et al. (2011) showed

that certain walking programs can actually improve gait characteristics of individuals

with Parkinson’s disease over the course of a 6-month study. Gait characteristics

were measured on a specialized treadmill outfitted with specialized sensors to accu-

rately measure foot-ground contact. The application of these proposed methods could

alleviate any financial restrictions of such studies to allow for much larger random-

ized prospective studies to determine whether these exercise therapies actually slow

down the progression of Parkinson’s disease. Usefulness of such methods can only be

assessed with the inclusion of accelerometers in such studies.

We acknowledge the limitations of this study. Lack of available data has restricted

the analyses presented here to the known associations between age and BMI with

walking. Although age and BMI are easy to measure, the strength of this study
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is that it serves as a proof of concept for how researchers can utilize these walking

characteristics in the presence of more relevant health related outcomes.
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Chapter 3

Differentiating Between Walking and Stair Climbing Using

Accelerometry Data

3.1 Introduction

The use of wearable accelerometers in public health research of physical activity (PA)

has become increasingly popular. Unlike subjective methods, such as the widely used

self-report questionnaires, wearable accelerometers offer a non-invasive objective mea-

sure of a person’s PA. While subjective and objective methods may provide similar

results with regard to qualitative findings for age and gender (e.g., males more ac-

tive than females), the adherence to PA guidelines determined from accelerometers

is substantially lower than from self-report [Troiano et al. (2008)]. Furthermore, de-

tailed quantification of PA attributable to specific activities is quite challenging and

remains an elusive goal of PA monitoring research [Straczkiewicz et al. (2016)]. Body

acceleration is believed to be a valuable proxy for PA in the free-living environment.

However, the usual method for describing PA in the free-living environment is to

use activity counts and a cut-point approach which classifies intensities of PA rather

than the specific activity occurring [Esliger et al. (2011); Straczkiewicz et al. (2016);

Veltink et al. (1996); Zhang et al. (2012)].

While use of accelerometers to assess PA improves estimates of duration of time

spent in activities of various intensities, the current methods provide biased estimates

of energy expenditures (EE). Activity counts are summarized over a given window,
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and then, they are compared to preset thresholds to determine whether a subject is

in sedentary, light, moderate, or vigorous PA. These methods are unable to differenti-

ate between activities that produce similar total acceleration over time but that have

differing EE [Pober et al. (2006)]. For example, walking on a level surface and ascend-

ing stairs may produce similar levels of total acceleration, but the EE from ascending

stairs is nearly double that of walking on a level surface [Campbell et al. (2002)]. Al-

though these methods are primarily used to summarize the raw accelerometry data,

information about the structure of the data which may be pivotal to differentiating

between activities is lost [Mannini et al. (2013)]. Recent literature has attempted to

address this problem using a signal processing approach. The Fast Fourier Transform

(FFT) and discrete wavelet transform (DWT) have previously been used to develop

more detailed feature sets for classification of different activity types [Zhang et al.

(2012)]. One disadvantage of the FFT is that we lose information from the time

domain. The DWT addresses this problem by providing information in both the

time and frequency domains. Due to the high dimensionality of the raw accelerome-

try data structure, implementing a windowing approach is still an attractive option.

The short-time Fourier transform (STFT) can then be implemented within a localized

window recapturing the time information. However, this approach requires the choice

of an appropriate window size be made Preece et al. (2009); Urbanek et al. (2015).

The windowing approach to data segmentation is common throughout the ac-

celerometry literature. It has been demonstrated that smaller windows provide faster

activity detection and computing time, but larger windows tend to perform better in

the recognition of more complex activities [Banos et al. (2014)]. There are no clear

cut rules when it comes to choosing window length, but it is important to consider
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the application prior to making a choice as some shorter activities could be obscured

by noise in larger windows and longer activities may not be fully captured in shorter

windows. Banos et al. (2014) attempted to address this problem with an extensive

study of the impact of window length on activity recognition. Although they con-

clude the window size of 1-2s provides the best trade-off between recognition speed

and accuracy, their feature set consisted only of simple metrics such as mean, stan-

dard deviation, minimum, maximum, and mean crossing rate. When the interest lies

in differentiation among similar activities such as walking and stair climbing, more

detailed features must be implemented which require larger window sizes for higher

resolution of spectral features.

In this paper, we conducted the IU Walking and Driving Study (IUWDS) to collect

accelerometry data for walking, stair walking, and driving in a simulated free-living

environment. The study consisted of two separate trials, a walking trial and a driving

trial. Figure 3.1 displays the raw accelerometry data from a single participant during

the walking trial. Each subject was asked to complete five periods of walking on level

ground and six periods, each, of ascending and descending stairs. All participants

were instructed to perform each task at their usual pace to simulate data collected

in a free-living environment. Using the complete data from both walking and driving

trials, we were able to show that we can accurately differentiate between walking

activities and driving with high accuracy [Straczkiewicz et al. (2016)]. Therefore, the

focus of this paper is on differentiating between different types of walking. Prior to

any modeling, the raw accelerometry data were extensively pre-processed. Using a

windowing approach, we extract features of data from both the time and frequency

domains. Most of the chosen features provide either a measure of the energy exerted
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from certain activities or measures of periodicity from the signal, and half of the

features were derived from the FFT and DWT. Finally, extracted features are used

to build subject specific classification trees. The classification tree was chosen because

it has been shown to provide good classification of PA types [Bao and Intille (2004);

Ellis et al. (2016); Kwapisz et al. (2011); Zhang et al. (2012)]. Classification trees

also provide an interpretable model that can be used to inform subsequent association

studies of relevant features that may be used in modeling. The classification models

for each subject were built under different conditions of sensor location and window

length. Model evaluation was performed to assess the impact of sensor location and

window length on the classification accuracy for each of the three activity types.

The rest of this paper is organized as follows. In Section 3.2.1 we describe the

data collection and labelling methods for the raw accelerometry data. In Section

3.2.2 we describe the signal processing used to extract relevant features from the raw

data. In Section 3.2.3 we describe the classification model and subsequent statistical

models used to evaluate the properties of the classification model. In Section 3.3

we describe the results of classification and the impact of differing window sizes and

sensor location. In Section 3.4 we provide a brief description of the study results and

future research.
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Figure 3.1: Raw accelerometry data for Subject 14 during the walking trial. Each
panel represents different sections of the walking trial. The top left panel contains
data from the first segment of walking on level ground from the start of the trial to
the first set of stairs. The top middle panel represents the first set of stairs where the
participant descended the stairs, ascended the stairs, and descended the stairs again
prior to proceeding into walking on the second walking section (top right panel).
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3.2 Methods

3.2.1 Data collection and labelling

Thirty-two adults (13 men, 19 women) participated in a study (IUWDS) to identify

patterns of walking, stair walking, and driving from raw accelerometry data. The

study was approved by the Institutional Review Board of Indiana University; all

participants provided written informed consent. Participants wore four ActiGraph

GT3X+ accelerometers: one on the left ankle, one on the right ankle, one on the

left hip, and one on the left wrist. All four devices were synchronized to the same

external clock providing parallel measurement for the four body locations. Each

device was attached using velcro bands. The ankle accelerometers were worn on

the outside of the ankles. The wrist accelerometer was worn similar to a watch

on the top of the left wrist. The hip accelerometer was attached to the belt of

the participant on the left hip, but when a belt was not available, the device was

either attached to the corresponding belt loop or clipped to the waistband. Data

were downloaded immediately following each participant’s session. A human observer

recorded the starting and stopping times for the walking study. All devices were

initiated and data downloaded using the manufacturer’s software (ActiLife version

6.12.0) [http://actigraphcorp.com]. Table 3.1 contains demographic information for

the study participants. Thirty-one of the participants were right handed while the

remaining individual identified as ambidextrous. The study included a walking trial

(approximately 0.66 miles) followed by a driving trial (approximately 12.8 miles).

The walking trial included walking on level ground, ascending stairs, and descending

stairs. Immediately after the walking period, participants were accompanied to their
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Table 3.1: Study Demographics

Gender N Statistic Mean St. Dev. Min Max

Female 19 Age (y) 39.3 8.9 24.0 54.0

Height(in) 65.8 3.7 58.0 73.0

Weight(lbs) 143.0 32.1 100.0 212.0

BMI (kg/m2) 23.2 4.9 17.7 33.3

Walk Time (mm:ss) 11:36 01:11 09:01 13:49

Male 13 Age (y) 38.6 9.5 23.0 52.0

Height(in) 72.0 2.0 70.0 76.0

Weight(lbs) 208.7 47.3 140.0 310.0

BMI (kg/m2) 28.2 5.5 20.1 39.8

Walk Time (mm:ss) 11:31 00:58 09:47 13:01

vehicle, which they drove on a predefined route that included both highway and city

driving. The walking trial lasted between 9.0 and 13.5 minutes while the driving trial

lasted between 18 and 30 minutes, depending on traffic.

The data collection protocol requested participants to walk at their usual pace

along a predefined course to simulate free-living activities. Our prior experience

has demonstrated the inaccuracy of human observers labelling activities. In order to

ensure accuracy of the starting and stopping times for different activities, participants

were asked to clap three times at the beginning and end of each activity internally

marking the raw accelerometry data for the wrist with three consecutive spikes in

the signal. Using these internal markings within the data, we were able to accurately

assign activity labels for each section of the protocol. Once activity labels were

assigned, the clapping signal ±0.5 second of data were deleted to mimic smooth

transitions between activities. The walking trial consisted of five periods of walking
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on level ground, six periods of descending stairs, and six periods of ascending stairs.

The data from one participant include an additional period of walking on level ground

due to the participant briefly forgetting the directions before turning around to ascend

the stairs. For the purposes of this paper, we focus strictly on data from the walking

trial collected at the four sensor locations.

3.2.2 Signal processing and feature extraction

For each participant, we assume that we can identify periods of walking by utilizing

the algorithm developed by Urbanek et al. (2015) so we select only the walking trial

data. Their method uses a frequency analysis approach to detect periodic activity

within windowed portions of the raw triaxial accelerometry signal. They compute a

signal to noise ratio from the frequency spectrum obtained by FFT that indicates peri-

odic activity when this ratio exceeds a pre-specified threshold. This ratio (ratio.V M)

is described in more detail below.

We consider the triaxial signal x(t) = {x(t), y(t), z(t)} where x(t), y(t), and z(t)

are the measurements along the three orthogonal axes of the device at time t. Par-

ticipants walking while swinging their arm change the orientation of the wrist worn

device with respect to earth’s gravity which directly affects the measurement in each

axis [Bai et al. (2012); He et al. (2014); Straczkiewicz et al. (2016); Xiao et al. (2016)].

In order to remove the effects of sensor orientation, we consider the vector magnitude,

VM , defined as:

VM(t) =
√
x(t)2 + y(t)2 + z(t)2 (3.1)
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For feature extraction, we then divide the signal into windows of 2.56, 5.12, and 10.24

seconds providing 256, 512, and 1024 samples per window (i.e. 2.56s× 100Hz = 256

samples), respectively. We use a set of windows of varying lengths in order to evaluate

the impact of window size on feature importance and classification accuracy. Window

sizes were chosen to ensure the number of samples in each window was a power of

2 to simplify computation of FFT and DWT and avoid the need for zero-padding.

In addition, the smallest window of 2.56s ensures that a gait cycle is repeated at

least twice. The number of windows analyzed varies by subject due to variability

in the lengths of time to complete the walking trial. Similar to Zhang et al. (2012),

we extract features in both the frequency and time domains. The frequency domain

features are derived from the FFT and the DWT of the VM .

Sejdić et al. (2009) and Straczkiewicz et al. (2016) refer to the sliding window

FFT as the short-time Fourier Transform (STFT). For a window of size τ , centered

at time t, the STFT of the signal x(t) is defined as

X(f, t) =

[t+τ/2]∑
u=[t−τ/2]

x(u)h(u)e−i2πfu/τ (3.2)

where f is the frequency index and the weights h(u) assign more weight to obser-

vations close to t. We use the weights defined by the Hanning window, h(u; τ) =

0.5[1− cos{2πu/(τ − 1)}], as they have been shown to reduce aliasing, or blurring of

the spectrum [Harris (1978); Urbanek et al. (2015)]. The features extracted from the

frequency spectrum of each window include:

• f1 - where f1 is the dominant frequency between 1.2-4.0 Hz and provides an

estimate of the cadence (steps/second)
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Figure 3.2: Fourier spectrum (left) and power spectrum (right) with shaded regions
describing the features derived from the FFT. In the top figure, the shaded region
represents the numerator of ratio.VM, and the dominant frequency is labeled as f1.
In the bottom figure, the shaded region represents p1.

• ratio.V M - ratio of the partial area under the spectrum to total area under the

spectrum defined in Straczkiewicz et al. (2016); Urbanek et al. (2015)

• p1 - partial area under the power spectrum at f1

• p1 TP - ratio of p1 to the total area under the power spectrum between 0.3-12.5

Hz

Figure 3.2 provides a visual description of the features extracted from the FFT. While

ratio.V M and p1 TP appear similar in concept, p1 TP contrasts the power of each

step versus the entire spectrum, while ratio.V M contrasts multiple characteristics

of walking versus the non-walking related portions of the spectrum. In essence, if

we consider all relevant human movement to occur between 0.3-12.5 Hz, p1 TP is

measuring the energy associated with the step component of walking versus all other

movements within a given window. In contrast, ratio.V M is essentially measuring the

periodic content of the accelerometry signal relative to the total variation associated

with the VM signal.
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Additionally, we included two DWT features similar to Zhang et al. (2012). The

DWT of a signal x(t) is defined as

x(n) =
J∑
j=1

∑
k∈Z

dj(k)ψ∗(n− 2jk) +
∑
k∈Z

aj(k)φ(n− 2jk) (3.3)

where j ∈ Z and k ∈ Z represent the resolution, J is the depth of level, ψ is the

reconstruction wavelet function and φ is the scaling function [Sekine et al. (2000)].

The wavelet coefficients dj represent the details of the original signal at different levels

of the decomposition, and the aj represent the approximation of the original signal.

The wavelet coefficient dj and scaling coefficient aj are given by

aj(n) =
∑
k

g(k − 2jn)aj−1(k) (3.4)

dj(n) =
∑
k

h(k − 2jn)aj−1(k) (3.5)

where g and h represent coefficients of the low-pass and high-pass filters, respectively.

The features extracted from the DWT of each window are given by the following

equations:

DWT VM2 =

β∑
j=α

d2j/VM
2 (3.6)

DWT TP =

β∑
j=α

d2j/

J∑
j=1

d2j (3.7)

where d2j = dTj dj is the sum of squared DWT coefficient vector of VM at level j

(j = 1, · · · , J). In addition, VM2 is the sum of the squared VM signal in each
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window. For our purposes, we selected α and β to cover the frequency range 0.78-

6.25Hz, and J was selected to cover the frequency range 0-12.5Hz. DWT VM2 is

the ratio of energy related to walking versus the total energy of the accelerometry

signal. DWT TP is the ratio of energy related to walking versus the total energy

related to human movement. When the noise in the signal is negligible, DWT VM2

and DWT TP are nearly identical.

In addition to the FFT and DWT features, we also included vector magnitude

count which Urbanek et al. (2015) and Straczkiewicz et al. (2016) defined as

VMC(t) = 1/τ

[t+τ/2]∑
u=[t−τ/2]

|vm(u)− 1/τ
τ∑
u=1

vm(u)| (3.8)

where VMC(t) is the VMC for the window of length τ centered at t and four features

derived from the raw triaxial signal: activity intensity (ActInt = (sx + sy + sz)/3),

CORR.XY , CORR.XZ, and CORR.Y Z. We define CORR.XY as

CORR.XY =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
, (3.9)

the Pearson correlation coefficient between the x and y axes where x̄, sx, ȳ, and

sy are the sample means and standard deviations of the x and y axes, respectively.

CORR.XZ and CORR.Y Z are defined similarly. The mean and standard deviation

of the VM were included as the final two time domain features and defined as

Mean.V M(t) =
1

τ

[t+τ/2]∑
u=[t−τ/2]

vm(u) (3.10)

and
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SD.VM(t) =

√√√√ 1

τ − 1

[t+τ/2]∑
u=[t−τ/2]

[vm(u)−Mean.V M ]2 (3.11)

3.2.3 Modeling

All data management and modeling was performed using RStudio version 0.99.467

[RStudio Team (2015)]. Zhang et al. (2012) showed that many machine learning

algorithms provide satisfactory classification results, but the classification trees and

support vector machine provide the best results. We chose classification trees for

modeling the three types of walking activities due to their interpretability and ability

to handle correlated predictors. We are interested in an interpretable model so that

we can further understand what features are important for differentating between

the three activities. This understanding of important features will help to inform

subsequent statistical analyses of walking features with relation to health related

outcomes. The classification tree methodology from the R package rpart [Therneau

and Atkinson (2015); Therneau et al. (2015)] was used for the training and testing of

our classification models. We built a classification tree for each subject’s data under

the 12 combinations of window length (2.56, 5.12, and 10.24 seconds) and sensor

location (left hip, left wrist, left ankle, and right ankle).

In order to evaluate the performance of each classifier, cross-validation (CV) was

implemented to investigate the classification accuracy of each model. To avoid over-

training the classifier to identify a single activity (in our case, walking), we identified

the activity (ascending or descending stairs) with the fewest windows and 60% of that

sample size, nmin, was chosen for training from the 3 activities. We then sampled

nmin windows of each activity for training the classifier. All remaining windows were
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used for testing. This process was repeated 100 times for each participant, and the

confusion matrix from the CV was used to evaluate the performance of each model. A

final tree was fit for each participant using all their walking trial data using a uniform

class prior to address the imbalance in the three activities.

The accuracy of each classification model was evaluated using the following met-

rics.

• Sensitivity = Recall = True Positive Rate (TPR) = TP
TP+FN

• Specificity = True Negative Rate (TNR) = TN
TN+FP

• Positive Predictive V alue (PPV ) = Precision = TP
TP+FP

• F1 score = 2∗PPV ∗Sensitivity
PPV + Sensitivity

True positives (TP ) are defined as the number of windows in a given class that are

correctly classified (e.g. classifying walking as walking). False positives (FP ) are

defined as the number of windows classified to a given class, but they actually belong

to a different class (e.g. classifying walking as descending stairs). True negatives

(TN) are defined as the number of windows from a given class that are not classified

as a different class (e.g. the number of windows for ascending and descending stairs

that are not classified as walking). False negatives (FN) are defined as the number of

windows in a given class that are classified to as something else (e.g. the number of

windows of walking that are classified to ascending or descending stairs). In addition

to classification accuracy, we evaluated the feature set to identify which predictors

provided the best separation of the three walking activities. At each iteration, a

ranking of variable importance was obtained and averaged across the 100 iterations

per subject. The rankings range from 1 to 13, where 1 is the most important predictor

and 13 is the least important.
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Linear mixed models (LMM) were used to model the effects of window size and

sensor location on the classification accuracy for the three activities. Least square

means were evaluated for multiple comparisons using a Tukey adjusted p-value.

3.3 Results

We applied the classification trees described in Section 3.2.3 to the walking trial

data for the 32 participants in the IUWDS. As described in Section 3.2.1, data were

collected from sensors placed at the hip, left wrist, left ankle, and right ankle. Par-

ticipants were instructed to walk at their usual pace along a predefined course that

included walking on level ground, ascending stairs, and descending stairs. The clap-

ping periods used to internally mark the beginning and end of each activity type were

removed from the raw signal in order to mimic smooth transitions between activities.

Prior to modeling, the raw data were preprocessed using the methods described in

Section 3.2.2. Twelve classification trees were built for each participant using the data

collected from the 4 sensor locations and 3 window sizes (2.56s, 5.12s, and 10.24s).

Training and testing data for each participant were constructed using the CV method

described in Section 3.2.3. We evaluate each classifier in terms of sensitivity, speci-

ficity, PPV, and F1 score. Feature evaluation was performed to assess the average

importance ranking of each feature included in the model. Results are presented as

boxplots of the CV results, and the effects of window size and sensor location on

sensitivity are investigated using LMMs.
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Figure 3.3: Boxplots for sensitivity (top left), specificity (top right), PPV (bottom
left), and F1 score (bottom right) across participants by activity, sensor location, and
window length.
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3.3.1 Model evaluation

Figure 3.3 shows the results of the activity classification problem in terms of boxplots

for the sensitivity, specificity, PPV and F1 score for all participants obtained from

models built under each of the 12 window length and sensor location scenarios. The

general trend we observe is that shorter window lengths and data collected at the

wrist yield the lowest classification accuracy while larger windows and data collected

at the ankles yield the highest classification accuracy. However, it appears from the

top left panel of Figure 3.3 that there are differences in these trends for descending

stairs. For descending stairs, the levels of sensitivity seem to be constant across

window sizes for data collected from the left wrist and outperform the data collected

from the hip. For the shorter window lengths (2.56 and 5.12 seconds), the sensitivity

for the data collected from the wrist is higher than for the data collected at the hip.

Table 3.2: LS means of sensitivity for sensor location by activity.

Sensor Location Activity Mean Lower CL Upper CL Group1

Left Wrist Ascending 0.844 0.829 0.858 1

Left Wrist Walking 0.852 0.837 0.866 12

Left Hip Descending 0.863 0.849 0.877 123

Left Hip Ascending 0.869 0.855 0.883 234

Left Wrist Descending 0.874 0.859 0.888 234

Right Ankle Ascending 0.885 0.870 0.899 345

Left Ankle Descending 0.888 0.874 0.903 45

Left Ankle Ascending 0.889 0.875 0.904 45

Right Ankle Descending 0.889 0.875 0.904 45

Left Hip Walking 0.900 0.885 0.914 5

Left Ankle Walking 0.938 0.924 0.953 6

Right Ankle Walking 0.939 0.925 0.954 6

1 Groups with similar numbers are not significantly different from each other.
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Table 3.3: LS means of sensitivity for window length by activity.

Window Length Activity Mean Lower CL Upper CL Group

2.56s Ascending 0.855 0.841 0.868 1

2.56s Descending 0.855 0.842 0.869 1

10.24s Ascending 0.876 0.862 0.889 2

2.56s Walking 0.879 0.865 0.892 2

5.12s Ascending 0.885 0.871 0.898 2

5.12s Descending 0.889 0.876 0.903 2

10.24s Descending 0.891 0.878 0.905 2

5.12s Walking 0.914 0.901 0.927 3

10.24s Walking 0.929 0.916 0.942 3

Table 3.4: LS means of sensitivity for sensor location.

Sensor Location Mean Lower CL Upper CL Group

Left Wrist 0.856 0.845 0.868 1

Left Hip 0.877 0.865 0.889 2

Right Ankle 0.904 0.893 0.916 3

Left Ankle 0.905 0.894 0.917 3

Table 3.5: LS means of sensitivity for window length.

Window Length Mean Lower CL Upper CL Group

2.56s 0.863 0.852 0.874 1

5.12s 0.896 0.885 0.907 2

10.24s 0.899 0.887 0.910 2
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In order to investigate this interaction, we investigated the potential 3-way inter-

action of activity type, sensor location, and window length using a LMM. While the

3-way interaction was not statistically significant, there were significant interactions

between sensor location and window length with activity type. Since these interac-

tions were found to be statistically significant (p < 0.001 and p = 0.017, respectively),

it would be inappropriate to discuss the main effects of sensor location and window

length with respect to sensitivity. Tables 3.2 and 3.3 give the multiple comparison re-

sults for the sensitivity LMM of the 2-way interactions of sensor location and window

length by activity type, respectively. With the exception of the sensitivity for walking

and hip data, there is near perfect separation between data collected at the ankles

with the hip and wrist data. Tables 3.4 and 3.5 give the multiple comparison results

for the overall classification accuracy. We can see that overall, classification accuracy

is the lowest with the wrist data (95% CI: 85-87%). The classification accuracty of the

hip data is slightly better (95% CI: 87-89%), and the accuracy is highest among data

collected at the ankles (95% CI: 89-92%, for both right and left ankles). Intuitively,

the classification accuracy is lowest under the 2.56s windows (95% CI: 85-87%), and

indistinguishable between the 5.12s and 10.24s windows (95% CI: 89-91%, for both).

3.3.2 Feature evaluation

Figure 3.4 shows the distributions of the variable importance rankings for the classi-

fiers with differing window lengths and sensor locations. For features extracted from

the wrist data, we see that consistently, across all window sizes, the top five important

features are SD(VM), VMC, DWTVM , ActInt, and p1 implying features that mea-

sure changes in the intensity of the acceleration are best at differentiating between
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(a)

(b)

(c)

Figure 3.4: Variable importance rankings for the twelve scenarios. Variables are
sorted from top to bottom by median importance rank.
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types of walking from wrist worn devices. The same five features are also ranked

most important for the hip data with 2.56s windows. The hip data with 5.12s win-

dows includes those same features in the top six important features but also include

Corr(XY ) with a large amount of variability in importance between subjects. When

data is collected at the hip and 10.24s windows are used, the most important fea-

ture becomes ratio.V M implying improved resolution of the FFT spectrum improves

classification. The top two features most important for both the left and right ankle

data with 2.56s windows are Mean(VM) and p1. Consistently, p1 and p1 TP appear

in the top three most important features for the ankle data with 5.12s and 10.24s

windows which implies the amplitude of f1 plays a significant role in differentating

between types of walking when data are collected from the ankle.

3.4 Discussion

The main objective of this study was to design algorithms for differentiating between

walking on level surface, ascending stairs, and descending stairs. We evaluated the

impact of sensor location and window size on the observed classification rates. The

results show that the algorithms developed can classify different types of walking with

good accuracy regardless of the sensor location and window size used. In addition,

feature importance was compared for four sensor locations (left wrist, left hip, left

ankle, and right ankle) as well as three window sizes (2.56s, 5.12s, and 10.24s). In

general, ankle mounted sensors and larger window sizes showed the best classification

rates. However, similar classification rates were achieved using both 5.12s and 10.24s

windows. The largest discrepancies in classification accuracy was seen between dif-

ferent sensor locations. Wrist worn sensors yielded the lowest classification accuracy,
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followed by the hip worn sensors, and then both ankle worn sensors. There were no

significant differences in classification accuracy between the left and right ankles. The

hip and wrist data also had much larger variability as shown in Figure 3.3.

This work extends the current literature in that we have shown that walking

on level ground and stairs can be differentiated with good accuracy using relatively

simple feature extraction. Improved classification of types of walking can improve

estimates of energy expenditure in large scale studies. It has been shown that the

relative metabolic rate while ascending a flight of stairs can be more than double

that of walking on level ground, but the acceleration achieved is very similar [Ohtaki

et al. (2005)]. Therefore, improved classification of types of activity above and beyond

count-based thresholds may have a significant impact on how we measure PA in the

future. We have also shown that feature selection is not an arbitrary choice. One must

take into consideration the sensor location used in a study as well as the window size.

As demonstrated in Figure 3.4, the features that are important for classification of

walking and stair climbing can vary depending on where the data is collected and the

choice of windowing. Our results suggest that windows smaller than 5s may have a

dramatic affect on the classification accuracy achieved by any classification algorithm.

In addition, the highest classification accuracy was achieved by ankle-worn sensors,

but in practice, compliance with wearing a monitor on the ankle for several days is

likely to be low. Although the wrist-worn device yields the lowest overall classification

accuracy, it is reasonable to assume they would yield the highest rate of compliance

in larger and longer studies.

The next steps in our research will be to extend the work of this paper to the

population level. To achieve this, some normalization scheme must be chosen to
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allow the comparison of features between subjects.
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Chapter 4

Population Level Classification of Walking and Stair Climbing Using

Accelerometry Data

4.1 Introduction

Wearable accelerometers have been increasingly used in public health studies of physi-

cal activity (PA) and clinical trials [Bussmann et al. (2001); Ermes et al. (2008); Grant

et al. (2006); Hecht et al. (2009); Parkka et al. (2006); Pruitt et al. (2008); Schrack

et al. (2013); Troiano et al. (2008); Welk et al. (2000)]. In contrast to self-report ques-

tionnaires, they provide an objective record of human movement at the sub-second

level. The recent progress in sensor technology and wearable computing devices have

allowed researchers to collect real-time information on movement through the use

of accelerometers [Bai et al. (2012)]. However, identifying specific types of activity

remains a challenge with accelerometry data collected in a free-living environment.

Recent work done by Bai et al. (2012) and Xiao et al. (2016) has shown promise in

the PA prediction field by use of dictionary of movements representing short activities

which they term ”movelets”. However, their research was focussed on an aging pop-

ulation and did not address the differentiation of similar activities such as walking on

level ground and climbing stairs. In this paper, we are concerned with differentiating

between different types of walking (e.g., walking on level ground, ascending stairs,

and descending stairs) at the population level since these activities produce similar

results in terms of acceleration, but have differing levels of energy expenditure (EE).
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In fact, the relative metabolic rate of ascending stairs can be nearly five times that

of walking on level ground depending on the speed of walking [Ohtaki et al. (2005)].

Therefore, even short bouts of stair climbing can be an important distinction when

considering an individuals overall EE throughout a given day.

4.1.1 Data

The data were collected from thirty-two adults (13 men, 19 women) that participated

in a study to identify patterns of walking, stair walking, and driving from raw ac-

celerometry data. The study included a walking trial where participants were asked

to walk along a predefined course that included walking on a level ground, descending

stairs, and ascending stairs. Following the walking trial, subjects who consented to

the driving trial were escorted to their vehicles and asked to drive along a predefined

route for approximately 30 minutes. Each participant wore four Actigraph GT3X+

accelerometers placed on the left ankle, right ankle, left hip, and left wrist. Each

device was initiated to the same external computer clock providing parallel measure-

ments for the four body locations. The sensors were attached using velcro straps.

Each ankle device was attached to the outside of the ankle. The hip device was worn

on the waist line attached to a belt when available or attached to the waist line of

the participant’s pants. The wrist worn monitor was affixed to the top of the wrist

like a person would wear a watch. The raw accelerometry data was downloaded im-

mediately following each participant’s session. All data were collected at 100 Hz and

devices were initialized and data downloaded using the manufacturer’s software (Ac-

tiLife version 6.12.0) [http://actigraphcorp.com]. All participants provided written

informed consent and the study was approved by the Institutional Review Board of
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Indiana University.

In order to accurately identify transitions from different walking types (level walk-

ing, ascending stairs, and descending stairs), participants were asked to clap three

times during each transition. This imposed internal markings of three consecutive

spikes in the raw data that were then used for accurately labelling the activities. To

ensure that no external noise remained in the raw data, the clapping period ±0.5

seconds was deleted from the signal to mimic participants natural transitions be-

tween activities. The designed walking course included five periods of walking on

level ground, six periods of descending stairs, and six periods of ascending stairs.

One participant briefly forgot the instructions and had one additional short period

of walking on level ground. Similar to our previous work in Chapter 3, we will focus

solely on the data from the walking trial for this paper.

Figure 4.1 displays the raw accelerometry data obtained from the left wrist ac-

celerometers of two subjects. In Chapter 3, we emphasized the cyclical nature of

walking and climbing stairs. It should come as no surprise that the data from dif-

ferent subjects look similar in those respects. However, it is important to note the

differences in the magnitudes of the acceleration between subject for the same activ-

ities. Because of these differences, the features extracted from the raw data may not

be directly comparable across subjects. An important observation from Figure 4.1

is that these plots seem to suggest there is a consistent relationship within subjects

between the different types of walking. Notice that the magnitude for walking seems

to be lower than descending stairs but higher than ascending stairs. If you consider

the fact that the accelerometer is measuring acceleration with respect to gravity, this

should come as no surprise. When we descend stairs, we are working with gravity,

45



Figure 4.1: Raw triaxial accelerometer data of level walking (top row), descending
stairs (middle row), and ascending stairs (bottom row) for Subject 14 (left column)
and Subject 20 (right column) obtained from the left wrist accelerometer.

46



and when we ascend stairs we are working against gravity. It is this relationship that

will guide our proposed normalization scheme.

4.1.2 Proposed methods

In this paper, we address the subject to subject variability in the magnitude of the

raw accelerometry data, and thus, extracted features. We show that from using the

relationship between walking and stair climbing, we can provide a robust, yet simple,

transformation of the extracted features that normalizes all activities to walking.

Once the data are normalized to walking, we proceed to build classification trees

as we did in Chapter 3. However, to build a population level classification model,

we train the classifier on a subset of subjects and test the model on the remaining

subjects as opposed to sampling within subjects. This will allow us to ascertain the

generalizability of our results. We will assess the accuracy of the proposed models

and evaluate the predictive power of each feature included in the models. We will

show that the choice of window length and sensor location have a direct impact on

the features needed for classification and the accuracy of the models.

Specifically, we will use the classification tree methodology implemented in the R

package rpart [Therneau and Atkinson (2015); Therneau et al. (2015)]. In general,

the procedure looks for the feature that best splits the data into two homogeneous

groups. Then the procedure is repeated on each subgroup until a stopping point has

been reached in which no more improvements can be made or a minimum size has

been reached for the subgroups, or nodes. In order to avoid over-fitting the model to

the training data, a second step is applied to prune the tree back to a smaller size

using cross-validation. We use the Gini index as a measure of impurity in the nodes
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to build our tree. The result is an interpretable model that can be used to predict

types of walking in a general adult population.

4.1.3 Literature

A number of review papers have surfaced in recent years looking into classification

and feature extraction techniques for accelerometry data [Preece et al. (2009); Yang

and Hsu (2010)]. Due to differences in devices and study parameters, it is difficult

to directly compare the studies covered in these review papers, but it is informa-

tive to see what techniques have been used successfully for classification of different

PA types. For example, walking can be identified using a frequency-domain analysis

using variation in acceleration and dominant frequency peak between 1-3Hz in the

signal spectrum [Karantonis et al. (2006); Ohtaki et al. (2005)]. To distinguish be-

tween walking on level ground and climbing stairs, the discrete wavelet transform can

be used [Sekine et al. (2000)]. Classification schemes used include k-nearest neigh-

bor (kNN) [Bussmann et al. (1998); Foerster et al. (1999)], support vector machines

(SVM) [Lau et al. (2009); Mannini et al. (2013); Zhang et al. (2006)], Naive Bayes

classifier [Huynh and Schiele (2006); Long et al. (2009)], Gaussian mixture models

(GMM) [Allen et al. (2006)], hidden Markov models (HMM) [Mannini and Sabatini

(2010); Pober et al. (2006), classification trees [Zhang et al. (2012)], and a combina-

tion of methods [Ravi et al. (2005)]. As Xiao et al. (2016) points out, most of these

techniques suffer from the fact that the prediction process is difficult to understand

and interpret leading to potentially good classifiers without a true understanding of

the underlying mechanism. In contrast, our proposed method is simple to under-

stand, and can inform researchers of the underlying mechanisms that differentiate
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between types of walking. In addition, many of the current studies combine all types

of walking into one category as opposed to differentiating between walking on level

ground and climbing stairs. Due to the similarities of these activities, it becomes

a much more difficult problem to solve. Also, the EE estimates during walking are

inaccurate when locomotion is not on a level ground [Yang and Hsu (2010)].

The rest of the paper is organized as follows. In Section 4.2, we describe the signal

processing techniques used and describe the features extracted in detail. In Section

4.3, we detail the proposed normalization technique, and we review the classification

model used. In Section 4.4, we evaluate the classification models under different

conditions of sensor location and window size. In addition, we evaluate relevant

features and detail the relevant feature differences across the different conditions. In

Section 4.5, we conclude our paper with a discussion about the limitations of our

study, and describe future study considerations.

4.2 Signal processing

We start with the original triaxial signal xi(t) = {xi(t), yi(t), zi(t)}, where xi(t), yi(t),

and zi(t) denote the acceleration measurements for subject i at time t from the three

orthogonal axes. The interpretation of the acceleration measurements along these

three axes depends on the orientation of the device with respect to gravity. In order

to remove the effects of orientation from signal, we extract most of our features from

the vector magnitude, VM , of the signal defined as:

VMi(t) =
√
xi(t)2 + yi(t)2 + zi(t)2 (4.1)
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We use a sliding window of differing lengths (2.56, 5.12, and 10.24 seconds) in order

to extract features. Figure 4.2 displays sample windows of 10.24 seconds for the three

walking activities for a single subject. We can see that walking and stair walking

have nice periodic properties which can be described nicely using a frequency analysis

approach. These features are preserved in the transformed VM signal as well. For

this reason, we utilize the FFT and DWT of the VM to extract the majority of our

features from the frequency domain.

The sliding window FFT of a signal x(t) is defined as

X(f, t) =

[t+τ/2]∑
u=[t−τ/2]

x(u)h(u)e−i2πfu/τ (4.2)

where f is the frequency index and the weights h(u) assign more weight to obser-

vations close to t. We use the weights defined by the Hanning window, h(u; τ) =

0.5[1− cos{2πu/(τ − 1)}], as they have been shown to reduce aliasing, or blurring of

the spectrum [Urbanek et al. (2015)]. The DWT of a signal x(t) is defined as

x(n) =
J∑
j=1

∑
k∈Z

dj(k)ψ∗(n− 2jk) +
∑
k∈Z

aj(k)φ(n− 2jk) (4.3)

where j ∈ Z and k ∈ Z represent the resolution, J is the depth of level, ψ is the

reconstruction wavelet function and φ is the scaling function [Sekine et al. (2000)].

The wavelet coefficients dj represent the details of the original signal at different levels

of the decomposition, and the aj represent the approximation of the original signal.

The wavelet coefficient dj and scaling coefficient aj are given by
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aj(n) =
∑
k

g(k − 2jn)aj−1(k) (4.4)

dj(n) =
∑
k

h(k − 2jn)aj−1(k) (4.5)

where g and h represent coefficients of the low-pass and high-pass filters, respectively.

In addition to the frequency domain, we also extract features from the VM and raw

triaxial signal in the time domain.

4.2.1 Frequency domain features

Figure 4.3 shows the spectra obtained from the FFT (left column) and the wavelet

coefficients obtained from the DWT (right column) for the 10.24 second windows of

VM displayed in the right column of Figure 4.2. In the following paragraphs, we

define each of the frequency domain features derived from these transformations of

the VM .

There are four features derived from the FFT. A subject’s cadence (steps per

second) is defined as the dominant frequency (f1) in the FFT spectrum between 1.2

Hz and 4.0 Hz. The ratio.VM is defined as the ratio of the partial area under the

spectrum related to frequencies of walking to the total area under the spectrum as

defined in Urbanek et al. (2015) and Straczkiewicz et al. (2016). The p1 is the partial

area under the peak in the power spectrum located at f1. The p1 TP is defined as

the ratio of p1 to the total area under the power spectrum between 0.3 Hz and 12.5

Hz. Figure 4.4 provides a visual representation of these features.

In addition, there are two features derived from the DWT similar to those de-

scribed in Zhang et al. (2012). They are given by the following equations:
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Figure 4.2: Raw triaxial acceleration signal with different colors representing data
from each axis (left column) and vector magnitude (right column) for 10 seconds of
level walking (top row), descending stairs (middle row), and ascending stairs (bottom
row) for a single subject’s data collected at the left wrist.
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Figure 4.3: Fourier spectra (left column) and wavelet decomposition (right column)
for 10 seconds of level walking (top row), descending stairs (middle row), and ascend-
ing stairs (bottom row) for a single subject’s data collected at the left wrist.
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Figure 4.4: Fourier spectrum (left) and power spectrum (right) with shaded regions
describing the features derived from the FFT. In the left figure, the shaded region
represents the numerator of ratio.VM, and the dominant frequency is labeled as f1.
In the right figure, the shaded region represents p1.

DWT VM2 =

β∑
j=α

d2j/VM
2 (4.6)

DWT TP =

β∑
j=α

d2j/
J∑
j=1

d2j (4.7)

where d2j = dTj dj is the sum of squared DWT coefficient vector of VM at level j

(j = 1, · · · , J). In addition, VM2 is the sum of the squared VM signal in each

window. For our purposes, we selected α and β to cover the frequency range 0.78-

6.25Hz, and J was selected to cover the frequency range 0-12.5Hz. DWT VM2

measures the ratio of the power of wavelet coefficients in the frequency range for

walking to the total power of the signal and DWT TP measures the ratio of the

power of wavelet coefficients in the frequency range for walking to the total power

of all wavelet coefficients in frequency range associated with human movement. For

example, the numerator for both DWT features would be computed as the sum of the
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squared coefficients from decomposition levels 4 to 6 in the right column of Figure

4.3.

4.2.2 Time domain features

In addition to the FFT and DWT features, we also included vector magnitude count

(VMC [Straczkiewicz et al. (2016); Urbanek et al. (2015)] defined as the mean abso-

lute deviation of the VM and given by

VMC(t) =
1

τ

[t+τ/2]∑
u=[t−τ/2]

|vm(u)− 1

τ

τ∑
u=1

vm(u)|, (4.8)

and four features derived from the raw triaxial signal: activity intensity (ActInt =

(sx + sy + sz)/3), Corr(XY ), Corr(XZ), and Corr(Y Z). Where

Corr(XY ) =
1

n− 1

n∑
i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
(4.9)

is the Pearson correlation coefficient between the x and y axes and is defined similarly

for Corr(XZ) and Corr(Y Z).

4.3 Methods

4.3.1 Feature normalization

Before training and testing any population level classification model, it is important

to normalize features at the subject level. As Xiao et al. (2016) demonstrated, ac-

celerometry data is not directly comparable across subjects. Figure 4.5 illustrates

these subject to subject differences for the VM for a 10.24 second window of each

walking activity for two subjects from our study. While the measured acceleration
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appear similar in nature, we can see that the magnitude of the signal for each ac-

tivity is different across the two subjects. However, we observe that the magnitude

of the signal for descending stairs is the highest followed by level walking and then

ascending stairs. Hence our motivation for normalization is to normalize all features

to walking. The usual standardization simply centers data around the mean of the

distribution and scales by the overall standard deviation. In Figure (density plots of

features) we observe that the distribution of these features at best follow a mixture

of normal distributions, and therefore the usual standardization is not appropriate.

An assumption that we will make is that level walking is the overwhelming dominant

type of walking for the vast majority of human physical activity. Therefore, we im-

plore a simple, yet novel normalization scheme of centering each feature around the

median value and scaling by the median absolute deviation (MAD). For a feature x,

calculate a pseudo z-score as

z∗ =
x−median(x)

MAD(x)
(4.10)

Standardizing the features in this way ensures that each z-score can be interpreted

as a deviation from level walking. In order to evaluate the performance of such

normalization, all models were trained and tested using the non-standardized features

in addition to our proposed normalization.

4.3.2 Classification model

All modeling was performed using RStudio version 0.99.467 [RStudio Team (2015)].

We extend our previous work in Chapter 3 where we used classification trees to build

56



Figure 4.5: Vector magnitude for 10.24s windows of level walking (top row), de-
scending stairs (middle row), and ascending stairs (bottom row) for Subject 14 (left
column) and Subject 20 (right column).
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subject specific classification models in order to have interpretable models that may

inform the choice of predictors in subsequent association studies of walking with

certain health related outcomes. The classification tree methodology from the R

package rpart was used for fitting of all models [Therneau and Atkinson (2015);

Therneau et al. (2015)].

In order to evaluate the performance of each classifier, cross-validation (CV) was

implemented to investigate the accuracy. For performance evaluation, the subjects’

data were split into training (20 subjects) and testing (11 subjects) datasets. Each

model was fit to the training data and pruned using the 1-SE rule [Therneau and

Atkinson (2015)]. The model was then tested on the remaining 11 subjects’ data.

This process was repeated 100 times for each combination of sensor location and

window length. Final models were fit to all subjects’ data using a uniform class prior

to address the imbalance in the three activities.

In addition to classification rates, we evaluated the feature set to identify which

predictors provided the best separation of the three walking activities. At each itera-

tion, we assigned a rank to the variable importance produced by the model, and then

we averaged these rankings across all iterations. The rankings ranged from 1 to 13

for the most important to least important features, respectively.

4.4 Results

We applied the methods described in Section 4.3 to the data from the IUWDS de-

scribed in Section 4.1.1. The classification results are displayed in Figures 4.6 and

4.7 in terms of sensitivity, specificity, positive predictive value, and F1 score. The

final classification models and confusion matrices for each of the 12 scenarios for the
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proposed method are provided in Appendix 4.6.

Figure 4.6 shows the sensitivity and specificity obtained through RCV for the 12

classification models for both normalized and raw feature models. Because of the

imbalance in the three activities, we observe very high sensitivity for walking, but we

observe much lower sensitivity for ascending and descending stairs regardless of sensor

location and window size. In addition, we see the normalized features outperform the

raw features in nearly every scenario. Figure 4.7 shows the PPV and F1 score for the

12 classification models for both the normalized and non-normalized feature models.

Again, we notice the normalized features results are nearly always better than the

results obtained using the raw features. Similar to what we observed in Chapter 3,

walking on level ground is the easiest activity to identify among the three types of

walking, but it is also the most prevalent activity by a large margin. Instead, if we

focus on the PPV in the top panel of Figure 4.7, we observe that the PPV is higher

for left wrist versus left hip for descending stairs while the relationship is reversed

(i.e., left hip higher than left wrist) for asceding stairs. The left and right ankles yield

nearly identical results in terms of model performance.

Figure 4.8 shows the feature importance for the 12 scenarios of window length and

sensor location. Similar to what we observed in our previous work in Chapter 3, we

see that for data collected from the left wrist, the most important features are those

features which measure the variation in measured acceleration (i.e. SD(VM), VMC,

DWT VM2, ActInt, and p1). For the data collected at the hip, the same five features

are ranked the highest with exception that ratio.V M becomes the most important

variable for window lengths of 10.24 seconds. This is most likely attributable to the

need for higher resolution of the walking spectra before ratio.V M can be accurately
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measured. Consistently, p1 and p1 TP are ranked highly for the models built from

ankle data. This is consistent to our previous findings at the subject level, and indicate

the magnitude of the walking spectra at the dominant frequency is quite useful for

differentiating between types of walking when data is collected at the ankle.
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Figure 4.6: Sensitivity and specificity by activity, sensor location, and window length.
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Figure 4.7: Positive predictive value and F1 score by activity, sensor location, and
window length.
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(a)

(b)

(c)

Figure 4.8: Variable importance rankings for the twelve scenarios. Variables are
sorted from top to bottom by median importance rank.

63



4.5 Discussion

We have proposed a classification tree-based method for differentiating between walk-

ing on level ground, ascending stairs, and descending stairs using accelerometry data.

Relevant features were extracted from the raw data using a combination of frequency

analysis features and time domain features and a range of window sizes (e.g., 2.56,

5.12, and 10.24 seconds). In Chapter 3, we showed that we can achieve very good

classification results using the proposed methods for classification within subjects.

In this chapter, we have taken a step forward in trying to build a population level

classification model under a number of window size and sensor location combinations.

We proposed a novel normalization of features to standardize all activities to walking.

The within subject methods described in Chapter 3 are more accurate, but in

larger scale studies, it may not be feasible to obtain training data for every subject.

The population level model detailed in this chapter serve as an important step towards

our ultimate goal of building a reliable classification model. We showed that a novel,

yet simple, normalization of the features can improve between subject classification

results in nearly all scenarios and activities.

The data from the IUWDS was collected in a simulated free-living environment

from relatively healthy adults ranging in age from 23 to 54 years. The large hetero-

geneity in the study population, with respect to age, BMI, and gender, gives value to

the generalizability of our results. A next step for this research will certainly include

looking at smaller groups of homogeneous individuals to assess the accuracy of more

population specific models. In addition to homogeneous groups, more sophisticated

normalization techniques, or combinations of techniques, may improve the accuracy
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of the proposed models.
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Appendix 4.A Final population trees and CV confusion matrices

VMC < −0.75

f1 >= 0.2

Mean.VM >= 2.9 p1 >= 1.9

p1_TP < −1.4

f1 < −0.2

Ascending
.33  .33  .33

100%

Ascending
.64  .23  .13

39%

Walking
.14  .40  .46

61%

Descending
.24  .68  .08

16%

Ascending
.72  .28  .00

3%

Descending
.13  .78  .09

13%

Walking
.10  .30  .60

45%

Descending
.04  .83  .12

6%

Walking
.11  .21  .67

39%

Descending
.21  .60  .19

4%

Walking
.10  .17  .73

35%

Ascending
.50  .21  .30

4%

Walking
.06  .16  .78

31%

yes no

Ascending
Descending
Walking

Figure 4.9: Final classification tree for data collected at the hip and features extracted
using 2.56 second windows.

Table 4.1: Classification results based on data collected at the hip and features ex-
tracted using 2.56 second windows.

Summary

Overall Accuracy 70.8%

Confusion Matrix – HIP 2.56s

Actual activity class

Ascending Descending Walking Classified as

71,675 24,873 85,717 Ascending

14,392 51,746 62,065 Descending

9,941 15,572 392,876 Walking
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VMC < −0.93

f1 >= 0.098

Mean.VM >= 3.5 p1_TP < −1.1

p1 >= 2.4

Ascending
.33  .33  .33

100%

Ascending
.67  .23  .10

37%

Walking
.14  .40  .47

63%

Descending
.20  .70  .10

22%

Ascending
.77  .23  .00

3%

Descending
.10  .78  .12

18%

Walking
.10  .24  .66

41%

Descending
.28  .54  .17

7%

Walking
.06  .17  .77

34%

Descending
.02  .86  .13

2%

Walking
.07  .11  .82

31%

yes no

Ascending
Descending
Walking

Figure 4.10: Final classification tree for data collected at the hip and features ex-
tracted using 5.12 second windows.

Table 4.2: Classification results based on data collected at the hip and features ex-
tracted using 5.12 second windows.

Summary

Overall Accuracy 74.5%

Confusion Matrix – HIP 5.12s

Actual activity class

Ascending Descending Walking Classified as

69,828 22,811 57,338 Ascending

17,167 54,647 63,633 Descending

9,116 14,339 414,143 Walking
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ratio.VM < −0.47

SD.VM < −0.75

Mean.VM >= 4.1

p1_TP < −1

Ascending
.33  .33  .33

100%

Descending
.46  .47  .07

66%

Ascending
.72  .24  .04

30%

Descending
.24  .66  .10

36%

Ascending
.73  .26  .01

3%

Descending
.19  .70  .11

33%

Walking
.09  .07  .84

34%

Ascending
.43  .38  .19

3%

Walking
.05  .04  .91

31%

yes no

Ascending
Descending
Walking

Figure 4.11: Final classification tree for data collected at the hip and features ex-
tracted using 10.24 second windows.

Table 4.3: Classification results based on data collected at the hip and features ex-
tracted using 10.24 second windows.

Summary

Overall Accuracy 80.5%

Confusion Matrix – HIP 10.24s

Actual activity class

Ascending Descending Walking Classified as

64,608 23,417 28,118 Ascending

24,350 61,817 50,587 Descending

6,549 7,043 451,442 Walking
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DWT.VM2 >= 1.4

Mean.VM >= 3.5 CORR.XY < 0.1

SD.VM < −1.1

f1 < −0.2

ActInt >= 0.89

CORR.XY < −0.24

VMC < −1.3

Ascending
.33  .33  .33

100%

Descending
.21  .73  .07

36%

Ascending
.77  .21  .02

2%

Descending
.17  .76  .07

34%

Walking
.40  .11  .48

64%

Ascending
.60  .11  .29

34%

Ascending
.87  .04  .09

9%

Ascending
.50  .14  .37

25%

Ascending
.73  .13  .14

6%

Walking
.42  .14  .44

18%

Ascending
.54  .25  .21

6%

Walking
.36  .09  .56

12%

Ascending
.64  .06  .30

2%

Walking
.30  .09  .61

10%

Walking
.19  .12  .70

30%

Ascending
.67  .11  .22

4%

Walking
.12  .12  .76

27%

yes no

Ascending
Descending
Walking

Figure 4.12: Final classification tree for data collected at the left wrist and features
extracted using 2.56 second windows.

Table 4.4: Classification results based on data collected at the left wrist and features
extracted using 2.56 second windows.

Summary

Overall Accuracy 69.2%

Confusion Matrix – Left Wrist 2.56s

Actual activity class

Ascending Descending Walking Classified as

55,658 12,012 115,963 Ascending

19,468 70,010 46,442 Descending

20,882 10,169 378,253 Walking
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DWT.VM2 >= 1.3

Mean.VM >= 3.6 CORR.XY < 0.07

p1 < −0.94

f1 < −0.098

DWT.TP < −1.5

p1_TP < −1.6

Ascending
.33  .33  .33

100%

Descending
.22  .70  .07

39%

Ascending
.75  .23  .02

3%

Descending
.18  .74  .08

36%

Walking
.40  .10  .50

61%

Ascending
.62  .10  .29

31%

Ascending
.84  .07  .09

11%

Ascending
.50  .11  .39

21%

Ascending
.71  .12  .17

8%

Walking
.38  .10  .52

13%

Ascending
.65  .13  .22

3%

Walking
.30  .10  .60

10%

Walking
.18  .10  .72

30%

Ascending
.55  .23  .22

4%

Walking
.12  .08  .81

26%

yes no

Ascending
Descending
Walking

Figure 4.13: Final classification tree for data collected at the left wrist and features
extracted using 5.12 second windows.

Table 4.5: Classification results based on data collected at the left wrist and features
extracted using 5.12 second windows.

Summary

Overall Accuracy 70.7%

Confusion Matrix – Left Wrist 5.12s

Actual activity class

Ascending Descending Walking Classified as

54,520 13,478 101,146 Ascending

21,386 70,474 47,792 Descending

20,205 7,845 386,176 Walking
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DWT.VM2 >= 1.1

DWT.VM2 < 3.1

VMC >= 4.5

ratio.VM < 0.48

ratio.VM < −0.23

p1 < −1.2

CORR.XY < −0.0031

DWT.VM2 >= 0.21

f1 < −0.15

Ascending
.33  .33  .33

100%

Descending
.25  .67  .08

42%

Descending
.35  .53  .12

24%

Ascending
.86  .14  .00

3%

Descending
.29  .58  .13

21%

Descending
.29  .62  .09

19%

Walking
.24  .18  .57

2%

Descending
.13  .85  .02

18%

Walking
.39  .09  .52

58%

Ascending
.61  .16  .23

32%

Ascending
.83  .09  .08

13%

Ascending
.47  .21  .33

19%

Ascending
.62  .18  .21

11%

Walking
.27  .24  .49

8%

Descending
.21  .54  .25

3%

Walking
.30  .08  .62

5%

Walking
.11  .01  .87

26%

Ascending
.78  .11  .11

2%

Walking
.05  .00  .95

24%

yes no

Ascending
Descending
Walking

Figure 4.14: Final classification tree for data collected at the left wrist and features
extracted using 10.24 second windows.

Table 4.6: Classification results based on data collected at the left wrist and features
extracted using 10.24 second windows.

Summary

Overall Accuracy 74.7%

Confusion Matrix – Left Wrist 10.24s

Actual activity class

Ascending Descending Walking Classified as

60,062 17,775 82,446 Ascending

24,777 70,375 42,164 Descending

10,668 4,127 405,537 Walking
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p1 < −0.62

DWT.VM2 >= −0.72

Mean.VM < −2

Mean.VM < −1.1

f1 >= 0.2

Ascending
.33  .33  .33

100%

Descending
.45  .48  .07

59%

Ascending
.74  .18  .08

21%

Descending
.30  .64  .06

38%

Ascending
.59  .38  .03

11%

Descending
.18  .75  .07

27%

Walking
.16  .12  .71

41%

Ascending
.85  .09  .06

6%

Walking
.05  .13  .82

35%

Descending
.17  .64  .19

5%

Walking
.03  .05  .92

31%

yes no

Ascending
Descending
Walking

Figure 4.15: Final classification tree for data collected at the left ankle and features
extracted using 2.56 second windows.

Table 4.7: Classification results based on data collected at the left ankle and features
extracted using 2.56 second windows.

Summary

Overall Accuracy 82.0%

Confusion Matrix – Left Ankle 2.56s

Actual activity class

Ascending Descending Walking Classified as

71,438 21,988 31,660 Ascending

21,762 63,949 46,920 Descending

2,808 6,254 462,078 Walking
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p1_TP < −0.93

DWT.VM2 >= −0.56

Mean.VM < −2.7

DWT.VM2 >= −4.5 CORR.XY >= −0.0081

Mean.VM < −1.5

ratio.VM < −1.5

Ascending
.33  .33  .33

100%

Descending
.48  .49  .03

63%

Ascending
.82  .13  .05

18%

Descending
.34  .64  .02

45%

Ascending
.59  .39  .01

14%

Ascending
.73  .26  .01

10%

Descending
.25  .74  .01

4%

Descending
.22  .75  .03

30%

Ascending
.89  .09  .02

1%

Descending
.19  .78  .03

29%

Walking
.09  .07  .84

37%

Ascending
.65  .25  .10

5%

Walking
.01  .04  .95

33%

Descending
.12  .74  .15

1%

Walking
.00  .01  .99

31%

yes no

Ascending
Descending
Walking

Figure 4.16: Final classification tree for data collected at the left ankle and features
extracted using 5.12 second windows.

Table 4.8: Classification results based on data collected at the left ankle and features
extracted using 5.12 second windows.

Summary

Overall Accuracy 87.2%

Confusion Matrix – Left Ankle 5.12s

Actual activity class

Ascending Descending Walking Classified as

68,828 21,287 18,694 Ascending

24,466 66,985 22,044 Descending

2,817 3,525 494,376 Walking
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p1_TP < −1

DWT.VM2 >= −0.93

Mean.VM < −1.2 Mean.VM < −2.4

DWT.VM2 >= −4.3

ratio.VM >= −2.6

CORR.XY >= −0.019

Ascending
.33  .33  .33

100%

Descending
.48  .49  .03

68%

Ascending
.76  .18  .06

22%

Ascending
.85  .13  .02

19%

Descending
.25  .50  .25

4%

Descending
.34  .63  .02

45%

Ascending
.53  .46  .01

19%

Ascending
.64  .35  .01

13%

Ascending
.69  .30  .01

12%

Descending
.27  .72  .01

2%

Descending
.26  .74  .00

5%

Descending
.21  .76  .03

27%

Ascending
.95  .03  .02

1%

Descending
.19  .78  .03

26%

Walking
.02  .01  .96

32%

yes no

Ascending
Descending
Walking

Figure 4.17: Final classification tree for data collected at the left ankle and features
extracted using 10.24 second windows.

Table 4.9: Classification results based on data collected at the left ankle and features
extracted using 10.24 second windows.

Summary

Overall Accuracy 87.1%

Confusion Matrix – Left Ankle 10.24s

Actual activity class

Ascending Descending Walking Classified as

63,740 24,603 16,084 Ascending

29,045 66,272 18,544 Descending

2,722 1,402 495,519 Walking
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Mean.VM < −0.82

DWT.VM2 >= −0.97

Mean.VM < −2.7

p1_TP < −1.2

f1 >= 0.2

Ascending
.33  .33  .33

100%

Ascending
.58  .37  .05

52%

Ascending
.80  .14  .06

28%

Descending
.32  .63  .05

24%

Ascending
.68  .28  .04

5%

Descending
.23  .72  .05

19%

Walking
.07  .30  .64

48%

Descending
.14  .79  .07

14%

Walking
.04  .10  .86

34%

Descending
.23  .55  .23

4%

Walking
.01  .04  .95

30%

yes no

Ascending
Descending
Walking

Figure 4.18: Final classification tree for data collected at the right ankle and features
extracted using 2.56 second windows.

Table 4.10: Classification results based on data collected at the right ankle and fea-
tures extracted using 2.56 second windows.

Summary

Overall Accuracy 84.1%

Confusion Matrix – Right Ankle 2.56s

Actual activity class

Ascending Descending Walking Classified as

74,379 18,292 27,884 Ascending

19,561 68,469 42,801 Descending

2,068 5,430 469,973 Walking
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p1_TP < −0.9

DWT.VM2 >= −1.2

Mean.VM < −1.3

ratio.VM < −0.36

Mean.VM < −2.2

ratio.VM < −2.2

Mean.VM < −1.6

DWT.TP < −1.7

Ascending
.33  .33  .33

100%

Descending
.47  .49  .04

63%

Ascending
.75  .18  .06

25%

Ascending
.88  .11  .01

20%

Descending
.24  .47  .29

5%

Descending
.29  .63  .08

4%

Walking
.09  .06  .85

1%

Descending
.28  .70  .02

37%

Descending
.47  .52  .02

14%

Ascending
.70  .29  .01

5%

Descending
.33  .65  .02

9%

Descending
.16  .82  .02

23%

Walking
.10  .07  .82

37%

Ascending
.69  .24  .07

5%

Walking
.01  .04  .95

32%

Descending
.11  .67  .22

2%

Walking
.00  .01  .98

31%

yes no

Ascending
Descending
Walking

Figure 4.19: Final classification tree for data collected at the right ankle and features
extracted using 5.12 second windows.

Table 4.11: Classification results based on data collected at the right ankle and fea-
tures extracted using 5.12 second windows.

Summary

Overall Accuracy 87.6%

Confusion Matrix – Right Ankle 5.12s

Actual activity class

Ascending Descending Walking Classified as

66,226 21,089 13,268 Ascending

27,201 66,675 21,439 Descending

2,684 4,033 500,407 Walking
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p1_TP < −1

DWT.VM2 >= −1.3

Mean.VM < −1.5 Mean.VM < −1.8

DWT.VM2 >= −2.9

Mean.VM < −4.5

Mean.VM < −2

Ascending
.33  .33  .33

100%

Descending
.48  .49  .04

67%

Ascending
.72  .22  .06

28%

Ascending
.83  .15  .02

22%

Descending
.27  .52  .22

5%

Descending
.30  .68  .02

39%

Descending
.43  .56  .01

21%

Ascending
.59  .40  .02

9%

Descending
.30  .69  .01

11%

Ascending
.78  .21  .00

2%

Descending
.22  .77  .01

10%

Descending
.16  .82  .03

19%

Walking
.04  .02  .94

33%

Ascending
.77  .16  .07

2%

Walking
.00  .01  .99

31%

yes no

Ascending
Descending
Walking

Figure 4.20: Final classification tree for data collected at the right ankle and features
extracted using 10.24 second windows.

Table 4.12: Classification results based on data collected at the right ankle and fea-
tures extracted using 10.24 second windows.

Summary

Overall Accuracy 87.4%

Confusion Matrix – Right Ankle 10.24s

Actual activity class

Ascending Descending Walking Classified as

63,124 22,143 12,688 Ascending

28,908 68,049 21,247 Descending

3,475 2,085 496,212 Walking

77



Chapter 5

Discussion

Accelerometers are being widely used in PA studies around the world. They are

relatively cheap and offer an objective measure of human movement. However, the

large amount of raw data collected by these devices are complicated to work with. It

is often necessary to reduce the dimensions of the raw data using signal processing

methodology, and different types of PA are best described by different sets of features.

Further, subject to subject variability makes it impossible to compare the raw data

or features extracted from the raw data without an effective normalization.

My dissertation addresses these challenges in Chapters 2, 3, and 4. Specific em-

phasis is placed on the extensive data processing required before any modeling can

occur. In Chapter 2, we provided a framework for extracting characteristics of walking

from the raw accelerometry data and used a novel application of functional regres-

sion models to associate walking with specific health related outcomes (e.g., age and

BMI). The methodology could be applied in a more clinical setting to track changes

in walking characteristics as degenerative diseases (e.g., Parkinson’s disease) progress.

In Chapters 3 and 4, we evaluated the classification accuracy of models built from

data collected from a number of sensor location and processing scenarios. In Chapter

3, we demonstrated that we can achieve high classification accuracy when differen-

tiating between walking and stair climbing at the subject level. We also provided

feature evaluation to determine what features provide the best discrimination under
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the different scenarios. In Chapter 4, we demonstrated challenge of building a popu-

lation level classification model under the same scenarios described in Chapter 3 and

provided a novel solution to the problem. My research has also demonstrated the

need for careful design of studies using accelerometers. Researchers must consider

where to place the device and how to process the resulting data in order to achieve

their specific aims.

Further work is needed in the area of accelerometry research. As more data are

collected in clinical and observational settings, methodology must be developed and

adapted from other areas to address the specific research needs. For example, im-

proved estimation of gait parameters from could help to cut costs as well as improve

potential classification models. The area of data normalization also needs much more

attention. We addressed normalization in a very specific setting, but the increasing

use of gyroscopes in parallel with accelerometers has shown promise in the area of

walking classification [Laudanski et al. (2015)]. The methods described in this disser-

tation should be extended to include gyroscope data to address the complication of

differing sensor orientation between individuals. We have attempted to address this

issue in this dissertation, but lack of gyroscope data prevented us from making this

logical next step. In addition, combining accelerometry data with GPS data, heart

rate measurements, and other possible measures could provide valuable information

that is lacking when strictly using accelerometry data.
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