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Abstract

Background: Human protein-protein interaction (PPI) data is essential to network and systems biology studies. PPI
data can help biochemists hypothesize how proteins form complexes by binding to each other, how extracellular
signals propagate through post-translational modification of de-activated signaling molecules, and how chemical
reactions are coupled by enzymes involved in a complex biological process. Our capability to develop good public
database resources for human PPI data has a direct impact on the quality of future research on genome biology
and medicine.

Results: The database of Human Annotated and Predicted Protein Interactions (HAPPI) version 2.0 is a major
update to the original HAPPI 1.0 database. It contains 2,922,202 unique protein-protein interactions (PPI) linked by
23,060 human proteins, making it the most comprehensive database covering human PPI data today. These PPIs
contain both physical/direct interactions and high-quality functional/indirect interactions. Compared with the HAPPI
1.0 database release, HAPPI database version 2.0 (HAPPI-2) represents a 485% of human PPI data coverage increase
and a 73% protein coverage increase. The revamped HAPPI web portal provides users with a friendly search,
curation, and data retrieval interface, allowing them to retrieve human PPIs and available annotation information on
the interaction type, interaction quality, interacting partner drug targeting data, and disease information. The
updated HAPPI-2 can be freely accessed by Academic users at http://discovery.informatics.uab.edu/HAPPI.

Conclusions: While the underlying data for HAPPI-2 are integrated from a diverse data sources, the new HAPPI-2
release represents a good balance between data coverage and data quality of human PPIs, making it ideally suited
for network biology.

Background
Human protein-protein interactions (PPI) has become a
fundamental data type to biomedical systems biology re-
search areas such as “network biology” and “network
medicine” [1, 2]. PPI data can help biochemists
hypothesize how protein complexes form by binding to
each other [3, 4], how extracellular signals propagate
through post-translational modification of signaling mol-
ecules [5, 6], and how chemical reactions are coupled to-
gether in a complex biological process [1]. PPI data
can also help genome scientists build gene network

modules in the analysis of large amount of next-
generation sequencing data to identify functionally sig-
nificant genomic variations among tens of thousands of
candidate measured signal changes [7, 8]. PPI data can also
help systems biologists develop better disease diagnostic
and prognostic biomarkers by linking candidate biomarkers
into “stable modules” [2, 9] than by using single gene or
protein as “biomarkers”, a common practice that often suf-
fers from lack of specificity and robustness. Moreover, PPI
data can help drug developers prioritize drug target selec-
tions based on newly characterized network topological
properties, e.g., PPI network centrality measures of genes,
in a disease gene network [10–14], or by designing drugs
to “pick the pocket” of proteins targeting critical PPI inter-
faces as a new drug development strategy [15]. Our capabil-
ity to develop comprehensive high-quality public human
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PPI databases has a direct impact on future research on
genome biology and medicine [16].
The surging interest to incorporate PPI data into a

wide range of biomedical studies is complicated by the
fact that there is still incomplete coverage of available
human PPI data reported today. Since the first report of
the initial large-scale human protein interaction of
13,656 in 2003 by Chen et al [17] and a draft public data
release of 70,000 physical interactions in 2004 [18], the
number of reported human PPIs has grown steadily. In
2009, we reported in the HAPPI database release 1.0
(HAPPI-1) a catalogue of more than 140,000 medium-
to-high-confidence human PPIs [19]. In mid-2014, this
data set was surpassed by the BioGRID database to reach
approximately 268,599 curated physical and genetic inter-
actions [20]. In spite of the data growth, Stumpf et al. esti-
mated the entire human protein interactome size to be
approximately 650,000 [21], assuming these PPIs are pri-
marily based on physical binding. The STRING database
tried to overcome the limited PPI data coverage issue
through comprehensive collection of known and pre-
dicted protein interactions, which include 2,132,575
direct (physical) and indirect (functional) associations
for human. Apparently, the contradiction in counts
highlight the challenge in both predicting human PPI
data and separating physical and functional PPI data.
While research on predicting human PPI types from
transient to stable binding is still ongoing [22], there
has been concerns on how to balance PPI data coverage
and quality. In practical applications, bioinformatic sci-
entists tend to favor the inclusion of more functional
interaction data to boost network data coverage while
biologists tend to trust only strong physical interactions
for signaling network constructions [23]. In addition,
researchers favor PPI databases with categorical classi-
fications that express how closely the two proteins are
related functionally or physically during an PPI event
than those without such information [24–26]. This de-
mand drives ongoing efforts in human PPI data integra-
tion and annotation.
In this work, we describe HAPPI (Human Annotated

and Predicted Protein Interactions) database release 2.0
(HAPPI-2), accessible to the public at http://discover-
y.informatics.uab.edu/HAPPI. HAPPI-2 is a major up-
date to the original HAPPI-1 database, which has been
indexed since 2009 by the PathGuide, a comprehensive
online pathway data resource guidebook [27]. HAPPI-1
generated a wide range of biomedical research applica-
tions, including: drugs’ side-effects discovery [28], protein
isoform identification [29], pathway development [30],
biomarker discovery for diabetes [7], Hepatocellular Car-
cinoma biomarker expression analysis [31], etc. In this re-
lease, we compiled human PPIs from a wide variety of
experimental and computational methods, which include

both direct physical interactions and functional associa-
tions derived from multiple platforms such as microarrays,
affinity purification, yeast two-hybrid, co-expression, simi-
lar sequences, genome context, and homology-based PPI
inference [32–39]. Compared with HAPPI-1, the human
PPI data coverage (at all confidence levels) in HAPPI-2
has increased by almost five-fold from 604,741 (for
HAPPI-1) to 2,922,202 (for HAPPI-2) entries, among
which 640,798 are of medium-to-high-confidence PPIs.
The coverage of unique and curated UniProt protein en-
tries in HAPPI has also expanded from 13,601 for HAPPI-
1 to 23,464 for HAPPI-2. In HAPPI-2, human PPIs are
categorized similarly to the HAPPI-1 database into five
confidence quality ratings, i.e., from 1-star (based on pre-
dicted and likely functional associations) to 5-star
(enriched by curated and likely physical associations), as
determined jointly by PPI data’s different sources, data
generation methods, and available literature references.
These confidence quality ratings of PPIs are validated with
two complementary methods, one by assessing the statis-
tic of shared gene ontology similarity score among curated
PPI pairs and the other by assessing the percentage of
conserved MetaGene interaction pairs. We also rede-
signed HAPPI-2 web portal to make it easy for biology re-
searchers to query, browse, annotate, store, batch retrieve,
and curate medium-confidence to high-confidence human
PPIs. The growing list of advanced features include:
searching the database with multiple human gene/protein
identifiers, annotating proteins involved in PPIs with drug
targets and disease relevance information, and limited user
annotation functions for specific PPI of interest. The
updated HAPPI-2 web portal provides a uniform,
quality-rated, searchable, and annotated online re-
source of human PPI data for biomedical researchers inter-
ested in network biology applications.

Method
Source and coverage of human PPI data
Human PPI data in the HAPPI-2 database are compiled
from the following database sources (with final counts
reported after mapping all gene symbols and protein IDs
to corresponding reviewed UniProtKB ID): HAPPI v1.1,
which consists of both annotated and predicted human
interactions; BioGRID v3.2 [40], which consists of 219,178
physical and genetic interactions; IntNetDB v1.0 [41],
which consists of 306,442 PPIs integrated using a prob-
abilistic model; I2D v2.3 [42], which consists of 236,541
PPIs integrated or predicted for human; STRING v9.1
[43], which consists of 2,166,793 both known physical and
predicted functional interactions for human; HPRD v9
[44], which contains 27,282 manually curated interactions;
and Wang’s human molecular signaling data set v6 [45],
which consists of 48,945 manually curated human mo-
lecular signaling data. After downloading the source
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data, raw data files were parsed using Python scripts
first and processed data were uploaded into an Oracle
11G relational database using the provided SQLLDR
utility. All the human proteins are mapped to their
UniProt identifiers using reviewed subset of the Uni-
ProtKB for standardized representations in the new
HAPPI database.

PPI data confidence scoring and categorization
We extended the unified PPI data scoring scheme, which
we initially described in HAPPI-1 [19], to encode the
likelihood that a human PPI of interest may arise from
physical and direct relationships of each other instead of
from functional and indirect relationships. The extended
scoring framework can be described as the following.
First, we rated each PPI experimental/computational
platform using a reliability index (a value between 0 and
1) similar to that in HAPPI-1. The more trustworthy we
have for an experimental or computational platform to
detect direct/physical interactions, the higher (up to 1)
the reliability index value we assign to the platform. Sec-
ond, we integrate individual reliability index values for
each PPI over different platforms into a final score PII,
using the following formula:

PII ¼ 1−
YN

i¼1
1−Sið Þ ð1Þ

where Si is an independent score for the PPI of interest
based on platform i and N is the number of different
platforms curated for the PPI. PII should range from 0 to
1. Third, we further integrate available PPI confidence
score from HAPPI-1 (PI) with the new PPI confidence
score calculated for HAPPI-2 (PII) using the following
calculation to derive the final score P:

P ¼ 1− 1−PIð Þ � 1−PIIð Þ ð2Þ
The primary reason for combing the confidence scores

this way is to ensure that a) current update does min-
imal impact to the scoring scheme and b) future upgrade
may be performed only locally for those when new infor-
mation becomes available. Therefore, this scheme can be
applied to all future scoring updates from the current re-
lease (by using PI) and the future release (by using PII).
Here, PPIs unique to HAPPI-2 are set to a default value
of PI =0. To categorize the confidence score into 5-star
confidence levels in HAPPI-2, we used the same follow-
ing P threshold ranges that were originally defined in
HAPPI-1:

� 1-Star (Ultra-low confidence): P < 0.25
� 2-Star (Low confidence): 0.25 ≤ P < 0.45
� 3-Star (Medium confidence): 0.45 ≤ P < 0.75
� 4-Star (High confidence): 0.75 ≤ P < 0.90
� 5-Star (Ultra-high confidence): 0.90 ≤ P ≤ 1

Data annotation and user curation
In HAPPI-2, we curated the human PPI data with the
following information: known sources of the PPI, known
association/binding types, known effect of association
such as inhibition or activation, and PPI data confidence
category ratings. All proteins involved in these PPIs were
also annotated with key functional information such as
protein function, pathway involved, protein family, disease
implication, and targeting drugs. The annotation data
were collected from UniProt [46], GenBank [47], Pfam
[48], and DrugBank [49], Gene Ontology (GO) [50], PDB
[51], and the HPD/PAGED pathway databases [30, 52]
and subsequently imported into the HAPPI-2 database
backend. On the web interface, we also provided users
with URLs that link out from HAPPI-2 PPI records to the
source web sites. Of particular mention is the user-specific
PPI curation experimental feature, in which we provide
users with the new ability to rank and comment specific
PPIs from their logged accounts. Users can either “like” or
“dislike” any retrieved PPI to keep track of PPI deemed as
“valid” or “invalid” by themselves. They can also add add-
itional PPI interaction details to share to the public.

PPI data quality assessment
While it can be challenging to establish golden standards
for both true positive and true negative human PPIs due
to the plurality of PPI types, current research findings
generally focus on two aspects of data quality assess-
ment: 1) stochastic errors, which may arise from false
positives or false negatives during the data collection
process, and 2) systematic errors, which may arise from
potential biases in human PPI experimental data gener-
ation or integrated data collection. Stochastic errors may
be evaluated using biological validation frameworks such
as 3D complex structure confirmation [53], shared GO
term count [53], and co-expression correlations [54, 55],
by comparing the PPI data set with a randomly gener-
ated PPI data set. Systematic errors may be assessed
using statistical evaluations of the proteins represented
in the PPI data set [56, 57].

1) Evaluation of stochastic errors
We adopted two approaches to evaluating HAPPI-2
PPI data’s stochastic errors. The first approach uses
a MetaGene pair enrichment (MPE) technique that
we developed earlier in HAPPI-1. The method uses
evolutionarily conserved co-expression pairs to
assess protein interaction quality, which we defined
as the probability to return validated PPIs from
retrieved results. Note that we cannot use established
True Positive Rate or False Positive Rate concepts,
because it is still fairly uncharacterized in this field
what human PPIs are true positives and true negatives,
even in the literature curated database [58]. While
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many PPI data sets were cross-validated with
species-specific gene co-expression profiles [55],
co-expression correlation alone has proven to be
less reliable in characterizing PPI data quality or
PPI network properties [59]. Therefore, methods
using evolutionary-conserved species-neutral
co-expression of orthologs of interacting partners
such as [55] have been proposed. Such methods are
shown to be more sensitive overall to predict or
validate PPIs than those using information purely
from the organism, e.g., simple co-expression, cellular
co-localization, or functional category enrichment
similarity [54]. For this purpose, we used MetaGene
[60], a comprehensive evolutionarily conserved
co-expressed gene data set by Stuart et al, to
independently evaluate the interactions from different
databases using the PPI data quality metric defined in
similar evaluation studies in HAPPI-1. The MetaGene
data set involves 6,591 human genes and 22,154
evolutionary conserved co-expression relationships
from humans, flies, worms, and yeast, based on the
analysis of over 3182 published DNA microarray
experiments. In this work, we decided to use the
MetaGene database instead of the other newer and
more comprehensive databases, such as CoXPRESS
[61], the Human Gene Coexpression Database [62],
due to the conservation of co-expression across
multiple species. In essence, we take a random sample
of a PPI database of interest, with each sample
consisting of 1000 PPIs, to characterize the sample’s
overlap with the entire MetaGene PPI data set.
Then, we repeat the random sampling and above
sample overlap analysis for 1000 times to obtain a
distribution of sample counts over binned overlapping
count ranges. The distributions for different PPI
databases, varying by different filter conditions, will
be compared with each other for the distribution’s
means and spread statistic. The higher the value of
the distribution mean and the better separated the
distribution from the other in comparison, the
better quality of the PPI data sample has. Since we
do not incorporate MetaGene in our database or its
constituent database during HAPPI-2 development,
the concern for introducing evaluation bias with
this method is minimal. Note that when comparing
databases of different sizes, we also introduce the
concept of “normalized sample size” for determining
the randomized sampling size against the size for
HAPPI-1 data. Normalization is necessary for a fair
comparisons of the overlap results between HAPPI
data sets of varied sizes, because the MetaGene
database is fixed in size and we use all its contents
to overlap with the database subset during sampling
comparisons.

The second approach uses Gene Ontology (GO)
term similarity (GOS) index, which is widely used to
test PPIs with well-characterized functions but not
those with novel functions [63]. We included this
approach primarily to provide supplemental
perspective of the first approach. In the GOS
approach, we first form a sample consisting of
randomly selected 1000 PPIs for each confidence
level (from 1-star to 5-star categories). Then, we
determined the statistical distribution of the GO
term similarity index among all PPIs in each sample,
which is calculated by using the funSim algorithm
[64] from the GOSim package v.3.0 [65]. Lastly, we
performed a t-test to evaluate the differences between
each PPI sample and a randomly generated negative
PPI data set. A p-value is provided for each pair of
comparisons.

2) Evaluation of systematic errors
We evaluate systematic errors of the PPIs in our
database using established gene/protein functional
enrichment analysis in bioinformatics. To establish
gene/protein functional enrichment, we used the
DAVID [66] bioinformatics toolset to obtain
interacting protein’s functional annotation charts
and functional annotation clustering tool, using
DAVID’s default parameters before reporting the
names of enriched GO [50] functional categories in
molecular functions and biological processes subsets,
using Benjamini’s adjusted P-value threshold of 0.05.
To compare between HAPPI-1 and HAPPI-2, we plot
histograms using the count of functional annotation
categories identified or the count of functional
annotated cluster separately.
To focus on evaluating systematic errors of the data
set, we use three performance measures. First, we
evaluate the Absent Protein Bias, which may be
observed by the enrichment analysis of proteins that
are reported in the UniProt database (curated
portion) but absent from the human PPI database of
interest. Second, we evaluate Missing Overlap Bias,
which may be observed by the enrichment analysis
of proteins in MetaGene that are from the non-
overlapped portion of the MetaGene, when we
perform a global PPI quality assessment by overlapping
the whole human PPI database of interest with
MetaGene pairs. Third, we evaluate Hub
Enrichment Bias, which may be observed by the
enrichment analysis of proteins that appear in the
top-100 well connected proteins by their degree of
connectivity. Overall, when observation of any of
the three types of biases are noted—while still in-
complete to address the
human PPI data quality issue in its entirety—we
will nonetheless gain an improved understanding
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how the integrated human PPI database of interests
stands against comparable databases for data coverage
biases.

3) Evaluation of false positive errors
We evaluated false positive errors of the PPIs in our
database by the overlapping between our HAPPI-2
database and the manual-stringent section of the
Negatome 2.0 database [67]. Negatome’s mannual
stringent section contains 1991 manually curated
pairs of protein which do not physically interact
excluding interactions detected by high-throughput
approaches. Similar to other PPI databases included
in HAPPI-2, we mapped protein identification in
Negatome to UniProt identification to acquire the
overlapping interactions between HAPPI-2 and
Negatome. We defined the false positive ratio of
HAPPI-2 by

E ¼ O=N ð3Þ
Where O is the count of overlapping PPIs between
HAPPI-2 and Negatome 2.0 and N is the size of
HAPPI-2 database. To show the improvement of
HAPPI-2, compared to HAPPI-1 and STRING, in
false positive errors, we applied formula (3) on
HAPPI-1 and STRING with different reliability index
(for HAPPI) and scale-to-1 confidence score [68]
(for STRING). In addition, considering Metagene’s
interactions as the true positive set and Negatome’s
manual-stringent interaction as the true negative set,
we calculated the area-under-curve (AUC) using the
reliability for HAPPI-2/HAPPI-1 and confidence
score for STRING.

Comparative evaluation of PPI data coverage, quality, and
network property
We applied several parameters to evaluate the human
PPI data coverage and data quality between the new
HAPPI-2 database and a few other underlying human
PPI databases in comparison. We define a database
coverage overlap ratio, ri,j, as the following:

ri;j ¼ Oi;j=Ni ð4Þ

Where Oi,j represents the human PPI data overlap count
between database i and database j, and Ni is the size of
the database i. ri;j reported will indicate how much redun-
dant information exists between two database sources in
the integrated HAPPI-2 database. We define a database
global data quality score, q-score, as the overlap between
the MetaGene pairs and the database’s all human PPIs.
For the database’s PPI network properties, we refer to PPI
network properties such as the node degree of connectiv-
ity, node centrality, clustering coefficient, network diam-
eter (for standard definitions, refer to [69]), all within the

largest connected network that can be constructed from
the human PPI database of interest. Here, we used Stan-
ford Network Analysis Platform (SNAP) library [70] to
analyze connected networks for each database of human
PPIs using network characteristics. To evaluate the rank-
ing of top-100 hub proteins for the database of interest, in
which “hub” is defined by the node degree of connectivity
and rank is given by descending orders of node degree of
connectivity for all proteins in the database, we used
Spearman’s rank correlation coefficient ρ, which can be
computed from the following:

ρ ¼ 1−6
X

i
d2
i =n n2−1

� � ð5Þ

Where di is the difference between two ranks of top-100
hub proteins, each of which comes from a different data-
base source under comparison.

Designing case study: database validation through PPI
rediscovery
We designed the Missing Genes Retrieval in Curated Gene
Sets using PPIs problem as a case-study to compare the
biological significance of HAPPI-2 database. We randomly
partitioned each curated gene set into the seeded set (S)
and hidden set (H). From the seeded set, we queried the
PPI databases to acquire the one-step-expansion gene set
(G), which contained every gene directly interacting to
genes in S. With the G set, we computed the retrieval sen-
sitivity by |H∩G|/|H|, where |H| is the number of genes in
H and |H∩G is the number of genes overlapping between
H and G (see Fig. 1 for more detail). To further explore
the impact of PPI database expansion, which tends to in-
flate the G set, in improving rediscovery, we design the re-
discovery factor α as follow:

α ¼ H∩Gj j=jGj � f ð6Þ
where f is the adjusted expansion factor depending on
PPI database. For BioGRID database, f is always 1. For
other non-BioGRID databases we set f as the ratio be-
tween the size of G-set acquired by the database and the
size of G-set acquired by BioGRID. In this problem, we
used 186 curated KEGG gene sets with size of at least 10
from MSigDB database [71]. We used gene set size filter-
ing to ease the random partition process. For each gene
set, we repeat the experiment 50 times to ensure the stat-
istical significance of the result.

Web-based database application development
We designed the HAPPI-2 database using a relational
database schema and implemented it using the Oracle
DBMS. The database application adopts a three-tier ap-
plication architecture. The database tier is hosted on the
Indiana University’s high-performance computing facility
and professionally managed. The middle tier runs the
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Apache web server and the middleware software serving
data from the database to web clients were written in
Perl and php. The front-end tier runs on any modern
web browser, with Javascript and CSS technologies to
enhance user interactions. The infrastructure can scale
up to accommodate medium Internet traffic. To access
the HAPPI-2 web application and details on the data-
base and software development documentation, user
guides, and frequently asked questions, users can visit
http://discovery.informatics.uab.edu/HAPPI.

Results
Content coverage
We have developed the HAPPI-2 database to include
2,922,202 distinct human PPIs, the largest integrated
compilation of human PPIs today. This represents a 485%
of the original count of PPIs in HAPPI-1 and also a signifi-
cant increase of coverage over BioGRID or STRING.
HAPPI-2 covers PPI information among 23,060 hu-
man proteins identified by their UniProt IDs—an in-
crease of approximately 12% over HAPPI-1. The count
of medium-confidence and above (3-, 4-, and 5-star) PPIs
have increased from 142,523 for HAPPI-1 to 640,748 for
HAPPI-2 (Table 1). The extent of overlap among HAPPI-
2’s constituent source databases are shown in Table 2,
which show why a comprehensive database integration ef-
fort such as HAPPI-2 is needed. The overlap analysis

shows that, despite various ongoing PPI data integration
projects, there are still significant room for PPI data cover-
age improvement.

Data functional and network characteristics
In addition to the increase in PPI data coverage, the PPI
network density and PPI functional category diversity—-
features often desirable for advanced network biology
studies [7, 72, 73]—have also improved with the new re-
lease of HAPPI-2. In Fig. 2a-c, we show that there is a
significant reduction of HAPPI-2 network effective
diameter [69] and significant expansion of functional an-
notations and functional automation clusters observed
with the DAVID analysis of high-confidence (4- and 5-star
confidence ratings) interacting proteins obtained. Here, a
network diameter represents an important metric to evalu-
ate closeness of nodes in a large complex network (see the
Method section); the smaller the value is, the more highly
connected the PPI network becomes. The results from
Fig. 2 also confirmed that the expanded interaction pro-
tein coverage for high-quality PPI subsets led to increased
protein functional category diversity in HAPPI-2 over
HAPPI-1: 47% increase in number of functional categories
and 29% increase in number of annotated clusters.
In Fig. 3, we show a comparison of the human PPI

data’s scale-free characteristics between HAPPI-1 and
HAPPI-2 among high-quality PPIs, i.e., with 4-star and
5-star confidence ratings. The two sets of data showed
similar intercept and regression R2 for the linear func-
tion in the node degree distributions plotted using log-

Fig. 1 An illustration of how we define the “database validation
through PPI rediscovery” approach. The rectangle area consisting of
both the S set (in green shades) and the T set (in red shades)
represents all genes taken from a curated gene set x from the
MSigDB database. The lines connecting genes are PPIs all taken from
a single database under validation. The G set shows new
(“discovered”, outside of the rectangle) or old genes (“re-discovered”,
in either the S set or the T set) by expanding from genes in the S
set by one layer of PPI relationships

Table 1 A comparison of human PPI data coverage distributed
over several sub-categories

HAPPI-1 HAPPI-2 Increase ratio

All Interactions 604,741 2,922,202 483%

5-star 37,754 175,476 464%

4-star 33,733 167,123 495%

3-star 71,036 298,149 419%

2-star 189,150 854,189 452%

1-star 273,068 1,427,265 523%

Table 2 Human PPI data coverage overlap (in %) among its
constituent database sources

HPRD I2d IntNetDB Wang BioGRID STRING

HPRD 100.00 67.21 1.13 14.38 41.34 58.56

I2d 15.50 100.00 1.49 5.78 26.00 38.42

IntNetDB 0.10 1.15 100.00 0.45 0.97 16.19

Wang 16.03 27.95 2.80 100.00 24.87 92.33

BioGRID 10.29 28.06 1.36 5.55 100.00 43.01

STRING 0.15 0.42 0.23 0.21 0.44 100.00

The percentage number are the overlapping count between the two data
sources at the intersection of row and column divided by the size of data
source for the row
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log scales, with HAPPI-2 having slightly flatter slopes.
This not only confirms the scale-free property for both
data sets, but also confirms the trend as suggested by
reduced network diameter (Fig. 2a) for the updated
HAPPI-2 to have “network hubs” with higher degree of
connectivity than HAPPI-1 as the data coverage is
expanded.

Data quality evaluations
In Fig. 4a, we showed an assessment of each HAPPI
database subsets for their tendency to contain true posi-
tive PPI data, by overlapping the MetaGene golden
standard data with randomized samples of un-normalized
size = 10,000 each (see Methods for details) for HAPPI-1,
HAPPI-2 ultra-high-confidence (confidence score ≥ 90%)
and high-confidence (confidence score ≥ 75%) subsets.
The two-digit numbers shown in parenthesis in the data
series legend for the database HAPPI-1 or HAPPI-2 refer
to the minimal PPI confidence quality scores (in percent-
age scale) used to construct the data subset. For example,
“HAPPI-2(90)” refers to the HAPPI-2 database subset with
ultra-high confidence, in which all the PPI data has a con-
fidence score ≥ 90%. Keep in mind that the size of HAPPI-
2 is approximately 4.85-fold of that for HAPPI-1 (Table 1)
and that the MetaGene golden standard data set is of fixed
size and used entirely for the overlapping count analysis.
The distributions show approximately the same range and
trend that we observed and validated for the HAPPI-1 in

its initial publication. The small shift to the left side for
the HAPPI-2 (90) and HAPPI-2 MetaGene overlap count
distributions compared to the corresponding ones for the
HAPPI-1 (90) and HAPPI-2 can be explained by the 4.85-
fold size differences between HAPPI-2 and HAPPI-1.
When we choose a random sample size adjusted to the
4.85-fold change between HAPPI-2 and HAPPI-1 data-
base, the HAPPI-2 shows a significantly higher tendency
than HAPPI-1 to become validated with the MetaGene
pairs across all confidence quality categories (Fig. 4b). In
other words, we demonstrated that there are more vali-
dated MetaGene pairs in HAPPI-2 than those in HAPPI-1
for the same slice of the respective database.
In Fig. 4c, we showed that HAPPI-2 acquired less false

positive ratio (described in formula (3)) than STRING
and HAPPI-1. However, when examining the counts of
overlapping interactions between HAPPI-2/HAPPI-1/
STRING and Negatome’s manual-stringent subset (NMS),
we found that these PPI databases above significantly
overlap with the Negatome’s manual-stringent subset.
Over 1,991 interactions in NMS, HAPPI-2 shared 871 in-
teractions, HAPPI-1 shared 309 interaction and STRING
shared 894 interactions. Surprisingly, when we applied the
same process for the BioGRID database, we found that
BioGRID and NMS shared 401 interactions, which counts
for 20.14% of the NMS. These facts explain why AUCs
using both HAPPI’s reliability index and STRING’s confi-
dence score to classify true positive PPIs (with MetaGene)

Fig. 2 A comparison between HAPPI-1 and HAPPI-2 for human PPIs with a confidence rating of 4-star and above. a Effective diameter. b Covered
Functional Categories. c Covered Annotation Clusters
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versus true negative PPIs (with NMS) are low. HAPPI-2
only acquired AUC of 0.477 and STRING only acquired
AUC of 0.483.
To evaluate systematic biases, we particularly exam-

ined both the “absent protein bias” and “missing overlap
bias” among three human PPI databases, STRING (v9.1),
HAPPI-1, and HAPPI-2. STRING was chosen for its
widespread popularity and high data coverage close to
that of HAPPI-2. We show our analysis of these examin-
ation results in Figs. 5 and 6 next.
In Figs. 5a and b, we show comparisons of protein

functional category enrichment as a result of “absent
protein bias” in GO Biological Processes category and
GO Molecular Function category respectively. The cat-
egorical distribution and length of protein enrichment
histogram bars for each of the three databases suggest
the extent of the presence of the “absent protein bias”.

These results show that HAPPI-2 overall has the least
amount of “absent protein bias” in both molecular func-
tions and biological processes among the three databases
compared. For the biological processes subcategory, both
HAPPI-2 and STRING seem to lack sufficient coverage
of proteins involved in important biological processes
such as sensory and extracellular cell signaling. These
problems highlighted the limitations of current human
PPI data collection efforts. HAPPI-1, on the other hand,
has a quite different profile for the “absent protein bias”
that is generally broader than those found for HAPPI-2
and STRING. For the molecular function subcategory,
the “absent protein bias” issue seem to be significantly
less severe for HAPPI-2 and STRING than for HAPPI-1.
Again, we observed lack of protein coverage in human
PPIs for antigen binding and olfactory receptor activity
function.

Fig. 3 A comparison of protein network degree distribution between HAPPI-1 and HAPPI-2
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a

b

c

Fig. 4 a A comparison of distributions of MetaGene overlap counts for randomized samples (size = 10,000 per sample) of HAPPI-1 and HAPPI-2
database subsets. b A comparison of distributions of MetaGene overlap counts for randomized samples of HAPPI-1 and HAPPI-2 database subsets.
The results shown has all randomized samples normalized with the database size differences between HAPPI-1 and HAPPI-2 databases, currently
with a size ratio factor of 1:4.85. c A comparison of false positive ratio among HAPPI-2, HAPPI-1 and STRING. Here, the STRING’s confidence
score (scale 1000) is scaled to 1 to compare with HAPPI-2’s and HAPPI-1’s confidence score on the x-axis (or reliability index for data from a
single source)
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In Fig. 6a and b, we show comparisons of protein func-
tional category enrichment as a result of “missing overlap
bias” in GO Biological Processes category and GO Molecu-
lar Function category respectively. The categorical distribu-
tion and length of protein enrichment histogram bars for
each of the three databases suggest the extent of the pres-
ence of the “missing overlap bias”, the parameter that
gauges potential false negative human PPIs in the human
PPI database. These results show that HAPPI-2 overall has
the least amount of “absent protein bias” in both molecular
functions and biological processes among the three data-
bases compared. For the biological processes subcategory,
HAPPI-1 seem to have missed many proteins involved in

cell cycle, RNA replication, and various types of RNA pro-
cessing. This was addressed properly in the HAPPI-2 up-
date. All three databases still have the “missing overlap
bias” of varying degrees in the “translation” category none-
theless. For the molecular function subcategory, the “miss-
ing overlap bias” issue seems to be more prevalent and
consistent with one another, with the majority of the biases
concentrated on non-protein binding categories. For PPI
data, this observation can be attributed to the protein-
binding data coverage bias inherent in the biology.
In Fig. 7, we show the significant difference on GO

term similarity among interactions from different cat-
egories. First, in the entire HAPPI-2, the medium to

a

b

Fig. 5 a A comparison of protein functional category enrichment as of a result of “Absent Protein Bias” among three human PPI databases. The
x-axis shows the –log(p-value) returned by DAVID for enriched functional categories of proteins under examination for absent protein biases.
Results are shown for A) GO Biological Processes subcategories. b A comparison of protein functional category enrichment as of a result of
“Absent Protein Bias” among three human PPI databases. The x-axis shows the –log(p-value) returned by DAVID for enriched functional
categories of proteins under examination for absent protein biases. Results are shown for B) GO Molecular Function subcategories
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ultra-high-confidence interactions (three star and above)
achieves higher GO term similarity than low-ultra-low-
confidence interactions (p-value = 3.29 × 10−78). Second,
the GO similarity scores of both the medium to ultra-
high confidence PPIs and the ultra-low-confidence PPIs
are significantly superior to the GO similarity scores of
random PPIs, which support our claims on HAPPI-2’s
quality. Third, the GO similarity scores of HAPPI’s
medium-confidence PPIs are similar to the ones of Bio-
GRID’s PPIs.

Performance of HAPPI databases in database validation
through PPI rediscovery
Comparing the performance among HAPPI-2, STRING
and BioGRID in the validation through PPI rediscovery
problem, we claim the biological significance of HAPPI-2.
The HAPPI-2’s sensitivity (mean = 0.809) is higher than

the STRING’s sensitivity (mean = 0.768). The pairwise t-test
between HAPPI-2’s sensitivity and STRING’s sensitivity
returns p-value less than 10−99. The HAPPI-2’s sensitivity is
also significantly higher than the BioGRID’s sensitivity
(mean = 0.24). In the other hands, HAPPI-2’s rediscovery
factor (α) (mean = 0.102) is also higher STRING’s α
(mean = 0.099), with p-value = 3.56 × 10−50. Overall, we
claim that although the superior of HAPPI-2 and STRING
over BioGRID in rediscovery sensitivity could be due pri-
marily to database extension with predictive PPIs, HAPPI
could maintain better trade-off between discovery and
expansion than STRING.

Comparative evaluation of PPI data coverage vs quality
tradeoffs
We evaluated the database’s potential for network biol-
ogy applications, in comparison to all other constituent

a

b

Fig. 6 a A comparison of protein functional category enrichment as of a result of “Missing Overlap Bias” among three human PPI databases. The
x-axis shows the –log(p-value) returned by DAVID for enriched functional categories of proteins under examination for missing overlap biases.
Results are shown for A) GO Biological Processes subcategories. b A comparison of protein functional category enrichment as of a result of
“Missing Overlap Bias” among three human PPI databases. The x-axis shows the –log(p-value) returned by DAVID for enriched functional
categories of proteins under examination for missing overlap biases. Results are shown for B) GO Molecular Function subcategories
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databases that were used to develop the HAPPI-2 data-
base. In the Additional file 1: S1, we listed top 100 hub
proteins from the HAPPI-2 along with each proteins’
node degree of connectivity and rank based on node de-
gree of connectivity globally, for HAPPI-2', HAPPI-2,
HAPPI-1', HAPPI-1, HPRD, I2D, IntenetDB, Wang’s
dataset, BioGRID, and STRING. HAPPI-2’ and HAPPI-
1’ refers to the medium- to ultrahigh-confidence subsets
of the HAPPI-2 and HAPPI-1 database respectively. We
observed that the ranking are not in consistent among
all the databases, comprehensible given the varying data
coverage and quality.
Using Spearman’s rank correlation, we also computed

the all-vs-all pairwise correlation between the available
database sources mentioned above (Table 3). From the

table, we made several observations of the complex yet
interconnected relationships of PPI hub data contents
among the databases under evaluations. First, HAPPI-2
has the highest degree of rank correlation with other
underlying constituent databases (using Spearman’s rank
correlation coefficient ρ ≥0.25 as the threshold). Second,
STRING’s network data content is similar to but differ-
ent from that of the HAPPI-2 database (ρ =0.77), justify-
ing our efforts in building the HAPPI-2 database. Third,
BioGRID’s hub gene content is closer to HAPPI-2’ (a
high-quality subset of HAPPI-2) with a ρ =0.65 than it
does with STRING with a ρ =0.12. It is known that Bio-
GRID collects PPIs primarily from validated experiments
whereas STRING collects PPIs from both experimental
and computational sources. Therefore, we claim that

Fig. 7 GO similarity from ultra-high-confidence PPIs to ultra-low-confidence PPIs, in comparison with BioGRID PPIs and random PPIs

Table 3 Calculated spearman’s rank correlation of PPIs among hub proteins found in common of each pair of human PPI databases
under evaluation

HAPPI-2’ HAPPI-2 HAPPI-1’ HAPPI-1 HPRD I2d IntNetDB Wang BioGRID STRING

HAPPI-2’ 1.00 0.28 0.19 −0.20 −0.07 0.57 0.23 0.05 0.65 0.19

HAPPI-2 1.00 0.42 0.40 0.06 0.41 0.50 0.01 0.02 0.77

HAPPI-1’ 1.00 0.51 −0.12 −0.32 0.60 0.20 0.03 −0.11

HAPPI-1 1.00 −0.24 −0.60 0.50 −0.45 −0.21 −0.54

HPRD 1.00 0.25 0.00 0.26 −0.06 0.55

I2d 1.00 −0.60 −0.32 0.56 0.49

IntNetDB 1.00 0.00 −1.00 0.00

Wang 1.00 0.18 0.14

BioGRID 1.00 0.12

STRING 1.00

The Spearman’s correlation coefficient is calculated by comparing the rankings of network degrees of connectivity among top-100 highly connected HAPPI-2
human proteins in each pair of databases under comparison. HAPPI-2’ and HAPPI-1’ refers to the medium- to ultrahigh-confidence subsets of the HAPPI-2 and
HAPPI-1 database respectively. The pairs of databases with high (>0.25) correlation coefficients are bolded
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HAPPI-2, along with its unique PPI data quality ranking
system, can help users balance the PPI data retrievals be-
tween high-coverage (STRING or HAPPI-2) and high
biological support (BioGRID or HAPPI-2’) for them-
selves. Fourth, the HAPPI-2 and HAPPI-1 has decent
correlation, although not quite high (ρ =0.40), suggesting
that the connection for both data provenance and the
content divergence between the two database releases.
Fifth, the negative correlations, e.g., between IntNetDB and
I2D (ρ = -0.60), and IntNetDB and BioGRID (ρ = -1.00),
suggests that some of the database such as IntNetDB may
capture dramatically different networks from the rest of the
databases in comparison. One plausible explanation for the
dramatic difference is the inherent high prediction errors
from the IntNetDB and I2D databases.

Web-based database application
We have built a simple web-based application located at
http://discovery.informatics.uab.edu/HAPPI with the goal
of providing users with an intuitive web interface for easy
access to human PPI data. In our design, we followed prin-
ciples for bioinformatics application usability guidelines
established by [74]. The web portal not only provide users
with a simple interface to retrieve and filter results by key
words or search criteria, but also enhance the retrieved re-
sults by providing detailed annotation of proteins and in-
teractions including detailed functional descriptions of
underlying proteins involved in the PPI, snapshots of pro-
tein family and disease annotation available. The advanced
features are also provided to allow batch query and re-
trieval, filtering of data based on quality, and user con-
tent rating/annotations. In particular, we highlight the
following features that have already been implemented
(with a growing list to be updated periodically on the
web site):

� Users can query the database with any gene symbol,
UniProt ID, partial gene or protein name, or
descriptions to search the database online.

� Users can search the database with a list of human
gene or protein IDs to retrieve PPIs connected all
within the list of genes or starting with the list of
genes for one interaction neighborhood rings (in the
Advanced Retrieval section).

� Users can explore information on the context of all
drug targets or disease relevance among the PPI
neighbors of the query genes/proteins.

� Users can personalize their interaction with the
database content by optionally saving interactions in
their accounts as user-managed PPI lists (Logon
required only due to technical requirement of
remembering user profiles).

� Users can now provide annotation comments or
rate the quality of each PPI for future collaborative
information filtering.

� Users can browse the proteins through the
automatically annotated protein family and protein-
disease categories to explore PPI data. All proteins
are extensively hyperlinked with external public
database reference.

An example of the retrieved interactions as a result of
search for query protein BRCA1 gene. A snapshot of the
human PPI user interface for the PPI page is shown in
Fig. 8. The result table lists 767 (medium-to-high qual-
ity) out of 2,051 (all quality) protein-protein interactions
found in the HAPPI-2 database and direct users to the
advanced retrieval tab for low-quality data download for
performance reasons. The users can type further key
words into the search box at the upper right corner of
the result table, or click on the table column headers to
sort the fields in ascending or descending orders. Users

Fig. 8 A Snapshot of the HAPPI 2.0 Web Interface Showing Partial Results of Protein Interactions Retrieved for the BRCA1 gene
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may get additional protein functional details by clicking
on the protein’s hyperlinked ID. Users may also select a
subset of the PPI data retrieved to download using the
“download” button provided, or to save the selections to
the user account if necessary for future returned analysis.
In addition, users can click on the “Interaction Stats” tab
at the top of the result table to explore relevant drug-
target protein and disease-gene relationships that may be
available in the HAPPI-2 database.

Discussion
Since the initial publication of HAPPI database in 2009,
the surging interest in network biology and medicine has
continued to fuel the growth of comprehensive public-
accessible human PPI databases. Our goal is to develop a
focused resource to enable users like ourselves—systems
biologists—and other biology users to quickly retrieve in-
formation that is comprehensive in coverage, good in
quality, well-annotated, and easy to use. We choose a
comprehensive data integration approach to select some
of the finest available databases such as BioGRID and
STRING as the starting point for creating this valuable re-
source that addressed the data coverage and quality bias
issues inherent in all the underlying databases. With the
experimental feature to allow users to rate, annotate, and
save contents as the database gains popularity in the fu-
ture, HAPPI is poised to evolve itself into a useful resource
for any users interested in human network biology and
network medicine studies. We plan to keep updating the
content periodically and implement additional features to
make the database resource well integrated with the Bio-
conductor/R [56] or Cytoscape [75] downstream analysis
in the future releases.
GO validation has been used as an approach to evalu-

ate the quality of protein interaction data sets [76, 77],
because experimentally validated PPIs tend to be stable
interactions between proteins performing similar GO
functions. However, due to the potential bias of data sets
that predict PPIs based on GO similarity, it is possible
that subsets of the PPI database being validated are
enriched with PPIs with high GO similarity. This is un-
likely to be the case for the new HAPPI database, because
our Fig. 7 shows that the predicted PPIs would have a low
reliability index approximately equivalent to low-quality
PPIs unless confirmed with additional data sources. On
the other hand, the BioGRID database, which was primar-
ily curated from literature or trusted experimentations,
has a relatively high GO similarity profile.
In this paper, we setup the starting system in HAPPI-1

and HAPPI-2 based on the arbitrary choice of parameters;
therefore, it lacks of universal justification. The usefulness
of our HAPPI-1 and HAPPI-2 reliability index is problem/
question-specific. In this paper, we use our reliability index
in some specific tasks, such as GO annotation and true-

positive validation with MetaGene. The reportable out-
comes in this paper justify the reliability index, but only
within the practices inside this paper. However, we do not
guarantee that the reliability index could be useful in other
problems. We believe that the users are responsible to de-
cide how to use and modify our reliability index in specific
researches.

Availability and requirements
Project name: HAPPI version 2.0
Project home page: http://bio.informatics.uab.edu/
HAPPI/
Operating system: Any version of Windows/MacOS/
Linux/Unix, with a standard web browser
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License: free for non-commercial use
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