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Abstract

Traumatic brain injury (TBI) often results in structural damage and a loss of neurons that is commonly accompanied by

early changes in neuronal electrical activity. Loss of neuronal activity has been hypothesized to contribute to post-traumatic

epileptogenesis through the regulation of homeostatic plasticity. The existence of activity loss in cortical neurons after TBI

and its subsequent transition into hyperactivity over time is not well characterized, however, particularly in models of TBI

in vivo. In the current study, changes in neuronal activity in the primary motor cortex after moderate controlled cortical

impact (CCI) in mice were studied using a single-unit recording technique in vivo. Recordings were made at different time

points after CCI from cortical layer V pyramidal neurons that were within 1–2 mm from the anterior edge of the injured

foci. Within 1–4 h after CCI, the frequency of spontaneous single-unit activity depressed significantly, with the mean firing

frequency decreasing from 2.59 – 0.18 Hz in the sham group to 1.05 – 0.20 Hz of the injured group. The firing frequencies

recovered to the normal level at 1 day and 7 days post-CCI, but became significantly higher at 3 days and 14 days post-CCI.

The results suggest that TBI caused initial loss of activity in neurons of the perilesional cortical region, which was followed

by compensatory recovery and enhancement of activity. These time-dependent changes in neuronal activity may contribute

to the development of hyperexcitability through homeostatic activity regulation.
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Introduction

Traumatic brain injury (TBI) often results in structural

damage and neuronal loss that is commonly accompanied by

immediate changes in the pattern and level of neuronal activity. An

early decrease in neuronal activity has been documented as depressed

excitatory transmission and network activity after injury in acute slice

or organotypic slice culture,1,2 as reduced action potential firing or

multiunit activity in models of TBI in rats or cats,3,4 and as reduced

spontaneous multiunit activity and suppressed evoked potential in

patients with TBI.3,5 Similarly, reductions in action potential firing

and evoked potentials occur in neurons of the peri-infarct region

immediately after ischemic stroke, and last for hours to days.6–8

Loss of neuronal activity after TBI has been hypothesized to ac-

tivate homeostatic regulation of activity and contribute to the devel-

opment of post-traumatic epilepsy, a severe neurological condition

featuring synchronized paroxysmal activity of the surviving neurons

in the injured brain regions.9,10 The homeostatic plasticity mechanism

is well established in the developing cortex and recently in the adult

cortex, in which neuronal excitability and synaptic activity in cortical

neurons can scale up or down to compensate for a decrease or increase

in action potential firing rate, respectively.11–14 For example, chronic

blockade of action potential firing by tetrodotoxin induces homeo-

static plasticity that involves changes in excitatory and inhibitory

synaptic transmission and spontaneous seizures on removal of the

activity blockade in the hippocampus in vitro15,16 or in vivo.13

Chronic partial denervation by cutting Schaffer collaterals of the

hippocampus leads to a delayed homeostatic increase in neuronal

excitability.17 In the partially isolated neocortex (undercut) model of

post-traumatic epileptogenesis,18–20 the deafferented neocortical re-

gion exhibits long periods of silence and brief bursts of activity and

subsequent development of paroxysmal discharge.4,21 These studies

indicate that loss of activity may be an initial factor that eventually

leads to post-traumatic epileptogenesis.

Characterizing activity loss after TBI is the first step toward

establishing the potential role of homeostatic regulation in post-

traumatic epileptogenesis. Because most previous electrophysio-

logical studies on TBI focused on measuring neuronal activity and

network excitability at a single time point, however, changes in

neuronal activity over a time period post-TBI are not understood.

Particularly, the duration and severity of such post-injury activity

loss in vivo is not well characterized. Further, the prominent feature
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of deafferentation in the models of undercut and hippocampal le-

sion discussed above are not commonly seen in other animal

models and typical cases of TBI, which leads to the question about

whether homeostatic regulation hypothesis is also involved in post-

traumatic epileptogenesis in other contusive models of TBI.

Therefore, we used in vivo extracellular single-unit recording to

monitor action potential firing in mouse neocortex at different times

after controlled cortical impact (CCI), a widely used animal model

of TBI in which post-traumatic epileptogenesis has been estab-

lished by several groups.22–24 Because of the roles of cortical layer

V in initiating epileptiform activities20,25 and our previous work on

the neurophysiology of pyramidal neurons and interneurons in

layer V,26–28 we continued focusing on this population of neurons.

Our results showed time-dependent changes in neuronal activity

after TBI that involved early hypoactivity after injury and a later

hyperactivity at 2 weeks after TBI.

Methods

Animals

Male C57BL6 mice aged 2 months old were used for this ex-
periment. The mice were kept in our animal facility on a 12-hour
light/dark cycle, with food and water supplied ad libitum. All
procedures were approved by the Animal Care and Use Committee
of the Institutional Guide for the Care and Use of Laboratory An-
imals at Indiana University School of Medicine.

Controlled cortical impact model of TBI

The mice were anesthetized with intraperitoneal ketamine/
xylazine (87.7/12.3 mg/kg) and were fixed on a stereotaxic appa-
ratus. After a midline incision on the scalp, a *4 mm craniotomy
was performed above the left hemisphere of the brain, with the

center being between the lambda and bregma sutures of the skull
and the medial edge being 1 mm from the midline. An Impact
One� stereotaxic impactor (Leica Microsystems Inc., Buffalo
Grove, IL) with a 3-mm diameter rod tip was used to compress the
cortex at a velocity of 3.0 m/sec to a depth of 1.0 mm. This setting
allowed us to generate moderate TBI of the brain. A small piece of
sterile plastic film was used to cover the burr hole, and the scalp was
sutured. The mice in the sham group received only the craniotomy
without cortical impact.

Because TBI-induced brain edema may increase cortical thick-
ness, we also measured changes in cortical thickness in 12 mice (2
in each group). The mice were sacrificed after sham injury or at 1–
4 h, 1 day, 3 days, 7 days, and 14 days after CCI, respectively. Fresh
coronal slices across the level of the recording site were cut im-
mediately with a vibratome and imaged using a digital CCD camera
(Fig. 1D–F). Thicknesses of the ipsilateral and contralateral cortex
were measured and the percentage of cortical swelling was calcu-
lated by dividing the ipsilateral cortical thickness by contralateral
cortical thickness.

Single-unit recording

Extracellular single-unit recordings were made from the primary
motor cortex of the mice within 1–4 h, or at 1, 3, 7, or 14 days after
CCI. Before the recording, the animal was anesthetized with intra-
peritoneal ketamine/xylazine (87.7/12.3 mg/kg)29 and placed in a
stereotaxic apparatus with a heating patch under its body to keep it
warm. A 1.5–2 mm diameter hole was drilled on the skull for in-
serting a recording electrode. The hole was located 1-mm lateral to
the midline and 1–2 mm from the anterior edge of the cranial win-
dow that had been used to create for CCI (Fig. 1A). Recording
electrodes were pulled from borosilicate glass tubing (impedance of
8–12 MO) and filled with 2 M NaCl solution. The recording elec-
trode was mounted on a motorized micromanipulator (PatchStar,
Scientifica, UK), which was calibrated and controlled by software.

FIG. 1. In vivo single-unit recording from control and injured primary motor cortex in mice. (A) Top view of a whole mouse brain
showing the locations of controlled cortical impact (CCI, large grey circle), recording site (small dotted circle), and the surface
projection of the primary motor cortex (bright green area). The black triangle indicates bregma; the two red lines indicate corresponding
levels of coronal sections in the following images (B–F). (B,C) Fluorescent Nissl staining of coronal cortical slices of the sham and CCI-
injured brains. There are tissue loss and damage from superficial to deep cortical layers at 3 days post-CCI (C). (D–F) Unfixed brain
slices across the level of in vivo cortical recording site after sham injury, and at 1 and 7 days after CCI. The differences in cortical
thickness between ipsilateral (Ipsi) and contralateral (Contra) hemispheres are small in these sections. Scale bars: 1 mm in all images.
The mouse brain image was created with Allen Mouse Brain Atlas using Brain Explorer� 2 (Website: ª2014 Allen Institute for Brain
Science. Allen Mouse Brain Atlas: http://mouse.brain-map.org/). Color image is available online at www.liebertpub.com/neu
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The position and orientation of the mouse head was carefully
adjusted so that the cortical surface of the recorded hemisphere was
perpendicular to the recording electrode. The recording electrode
was then vertically lowered through the dura into the neocortex.
Under continuous monitoring of spontaneous activity, the pipette
was firstly inserted to *400 lm below the pial surface and then
slowly advanced at 5 lm until a single-unit activity was clearly
detected and remained stable. After a 3–5 min waiting period for
the spontaneous firing to become stable, recordings were made and
lasted for 10–15 min. During each recording session, the exposed
cortex was covered by a small piece of saline cotton to keep the
tissue from drying.

Because the level of anesthesia affects the rate of spontaneous
firing, it is important that in vivo recordings were made when the
animals were in a stable state of anesthesia. To determine the du-
ration and depth of anesthesia after ketamine/xylazine injection, we
monitored mouse response to tail pinch, heart rate, blood pressure,
and electroencephalography (EEG) in four control mice. We found
that the mice maintained a stable blood pressure and EEG fre-
quency patterns for 25–30 min after initial or supplemental (at ½
dosage) injection of ketamine/xylazine. Their responsiveness to tail
pinch was closely correlated with increase in blood pressure, sug-
gesting that the mice were awakening from the anesthesia state.

These observations were consistent with previous studies
showing that ketamine-induced anesthesia lasted for about 30 min,
during which stable EEG patterns are maintained and cortical
neurons have depressed but constant firing activity.30,31 Therefore,
our recordings were made in a time window between 5–25 min after
initial or supplemental drug injection, during which the response to
tail pinch and breath rate were monitored.

Signals were filtered (*10 kHz) and recorded with MultiClamp
700B (Molecular Devices, Sunnyvale, CA) and were saved in a
computer. At the end of the experiment, the mice were sacrificed
with a lethal injection of sodium pentobarbital.

Histological verification of recording sites

We used the depths of pipette penetration driven by the micro-
manipulator to measure the depths of the recorded neurons and their
laminar location in the cortex.32,33 This approach allowed us to
efficiently record multiple neurons from a mouse, but there might
be a deviation between the anatomical location of a recorded
neuron and the penetration depth of the recording electrode. To
correct this error, we compared the anatomical locations of pipette
tips marked by electrocoagulation and the depth of pipette pene-
tration in a subset of recorded mice (n = 10).

After a glass micropipette was lowered into the cortex, the depth
of penetration relative to the pial surface was recorded, and a re-
cording was made. A single current (600 lA, 200 ls) was applied
with an isolated pulse stimulator (Model 2100, A-M systems, Se-
quim, WA) through the pipette. Animals were then sacrificed, and
the brains were removed. The cortical regions containing the re-
cording sites were sectioned at a thickness of 200 lm using a vi-
bratome (Leica VT1200, Leica Biosystems, Richmond, IL). The
unfixed brain slices were immediately observed under a micro-
scope (Zeiss Axio Imager M2), and images were captured using a
digital CCD camera.

Nissl staining

Mice receiving CCI or sham injury were deeply anesthetized and
then were perfused transcardially with 0.9% NaCl followed by 4%
paraformaldehyde. The brains were removed, postfixed overnight,
and transferred to a 30% sucrose solution until they sank. The
brains were sectioned at 30 lm using the Leica CM1950 cryostat.
The sections were rehydrated in 0.01 M phosphate-buffered saline
(PBS, pH 7.2) for 40 min, followed by washing in PBS plus 0.1%
Triton� X-100 for 10 min. After two washes in PBS, the sections

were then incubated with NeuroTrace solution (1:200 in PBS, Life
Technologies, Grand Island, NY) for 20 min at room temperature.
After several washes at room temperature, the sections were
mounted with FluoroGel mounting medium (GeneTex, Irvine, CA)
and were imaged with an inverted microscope system (Zeiss, Ax-
iovert 200M equipped with Apotome).

Data analysis

Single units were automatically detected based on rise time,
amplitude, and duration of the events using Wdetecta software.27

The detecting parameters were manually adjusted for each re-
cording trace to ensure correct detection of all single units. By
overlaying individual spikes at the beginning, the middle, and the
end of each trace, we confirmed that the waveform of each single
unit was generally constant during the recording period (Fig. 3A,B
inserts). Recordings with increasing spike width during the re-
cording period were excluded from the data analysis. Based on
published studies, pyramidal neurons were identified using the
following criteria: (1) the mean firing frequency of the spike was
lower than 10 Hz; (2) the spike width was longer than 660 ls.34,35

Statistical analyses of spike frequency were performed using
GraphPad Prism 5.0 software. Data were presented as mean –
standard error of the mean. Statistical comparisons of cortical depth
and firing frequency among all groups were made using one-way
analysis of variance (ANOVA) followed by Newman-Keuls multiple
comparison test. Distribution of fractions of events with different
interspike intervals (ISI) among all groups was analyzed with two-
way ANOVA followed by the Bonferroni post hoc test. The percent
of events with ISI £10 msec was compared with the Mann-Whitney
U test. The statistical significance was set at p < 0.05.

Results

Extracellular single-unit recordings were made from a total of 165

neurons in the primary motor cortex from 48 adult mice of the sham

and injured groups. The number of mice in each group and the number

of recorded neurons from each mouse are listed in Table 1. Recordings

were made consistently from a small area that was 1–2 mm anterior

and parallel to the medial edge of the CCI lesion site or a homotopic

area of sham injured cortex (Fig. 1A). Moderate TBI induced by

CCI resulted in a partial loss of cortical tissue, as was revealed in

coronal sections using fluorescent Nissl staining (Fig. 1B,C).

The depths of electrode penetration relative to the pial surface at

each recording site were used to estimate the location of the re-

corded neurons. We verified the accuracy of this method for neu-

ronal localization by comparing the penetration depths of the

recording electrodes and the anatomical distances between the re-

corded neurons as marked by electrical currents and the pia in fresh

coronal sections. The mean measured pipette tip location was

52.8 – 7.5 lm deeper than the penetration depth from microma-

nipulator movement. Therefore, the depths of the neurons recorded

were corrected by adding this average value.

We also found slight increases in cortical thickness after CCI.

The thicknesses of the ipsilateral cortex were 100%, 100.3%,

103.7%, 105.6%, 103.45, and 102.7% of the contralateral cortex

in the sham, and 1–4 h, and 1, 3, 7, and 14 days post-CCI groups,

respectively (Fig. 1D–F). The measured cortical depth of each

neuron was further adjusted. Neurons that were located within

500–800 lm below the pial surface were classified as layer V

pyramidal neurons and included in data analysis. Locations

of the neurons were also confirmed in Nissl staining sections

(Fig. 2A). The average depths of the recorded cortical neurons

were similar among all the five groups ( p > 0.05, One-way

ANOVA, Fig. 2B).
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We analyzed the firing frequencies in cortical layer V pyramidal

neurons, which accounted for the majority of the recorded neurons

(82% of the 165 neurons recorded). To determine whether there

was any difference at different times after sham injury, we made

recordings from mice at 1–4 h and 14 days after sham injury. The

firing rates of layer V pyramidal neurons in these two sham groups

were very close, so the data were pooled as a single sham group. In

the sham group, the mean frequency of spontaneous single-unit

activity was 2.59 – 0.18 Hz (n = 31).

The CCI caused significant changes in the frequencies of

spontaneous activity of these neurons at different post-injury times

(Fig. 3,4). Within 1–4 h after CCI, the firing frequency of the layer

V pyramidal neurons became significantly lower than the sham

group (1.05 – 0.20 Hz, n = 21, p < 0.01, One-way ANOVA followed

by Newman-Keuls multiple comparison test. Fig. 3A,B and Fig. 4).

This depressed activity was followed by a recovery of firing fre-

quency at 1 day post-CCI (2.34 – 0.39 Hz, n = 21), which was

higher than 1–4 h post-CCI (Fig. 4, p < 0.05); then an overshoot at 3

days post-CCI (3.87 – 0.67 Hz, n = 12), which was significantly

higher than the 1–4 h post-CCI group (Fig. 4, p < 0.001).

At 7 days post-CCI, the firing frequency recovered to about the

level of the sham group level (2.49 – 0.70 Hz, n = 16) and higher

than the 1–4 h post-CCI group ( p < 0.05). At 14 days post-CCI, the

frequency again became significantly higher (4.30 – 0.43 Hz,

n = 20) than the sham ( p < 0.01) and 1–4 h ( p < 0.001), 1 day

( p < 0.01), and 7 days post-CCI groups ( p < 0.05) (Fig. 4), sug-

gesting a state of neuronal hyperactivity.

To determine potential changes in the pattern of neuronal firing,

we further plotted histograms to determine the distribution of inter-

spike interval (ISI) of each group. In the sham group, events with

<0.1 sec ISI accounted for about 40% of the total number of events,

and events with ISI between 0.1–1.6 sec accounted for most of the

remaining percentage (Fig. 5A). The fraction of events with ISI

<0.1 sec in the 1–4 h post-CCI group became lower than the sham

group and all the other CCI groups ( p < 0.001, two-way ANOVA

followed by the Bonferroni post hoc test), but the fraction of these

events in 3 and 14 day post-CCI group became higher than the 1 day

post-CCI group ( p < 0.001, two-way ANOVA followed by the

Bonferroni post hoc test).

In contrast, the fraction of events with ISI between 0.4–0.8 sec in

the 7 day post-CCI group was significantly lower than the sham,

and 1–4 h and 1 day post-CCI groups (Fig. 5A). The results indicate

that events with less than 0.1 sec ISI accounted for the majority of

the total spontaneous events and that the trends of their increase or

decrease at different times after TBI were generally consistent with

the mean firing frequencies of all groups.

In animal models of chronic epilepsy, previous studies found an

increase in the number of burst spiking in hippocampal pyramidal

neurons that fire action potentials at more than 100 Hz within a

burst.36,37 Because there are also burst spiking pyramidal neurons in

cortical layer V,38,39 we examined the percentage of events with ISI

£10 msec in each neuron to determine their burst firing activity. The

percentages of events with ISI £10 msec in 1–4 h and 1 day post-CCI

groups were significantly lower than the sham group and almost all

other CCI groups. (Fig. 5B, p < 0.05 – p < 0.01, one-way ANOVA

followed by the Bonferroni post hoc test). The result suggested an

acute decrease in burst firing activity in these neurons after TBI.

Discussion

Neuronal activity is essential for normal brain functions. It plays a

key role in guiding and sculpting circuit formation in the developing

Table 1. Number of Recorded Cell in Each Mouse of all Experimental Groups

Group No. of animals No. of neurons No. of neurons from each mouse

Sham 12 31 1, 2, 3, 2, 4, 3, 2, 3, 2, 3, 2, 4
1–4 hours post-CCI 11 21 1, 1, 1, 3, 4, 1, 1, 3, 2, 3, 1
1 day post-CCI 6 21 2, 3, 2, 5, 4, 5
3 days post-CCI 6 12 2, 2, 2, 2, 2, 2
7 days post-CCI 7 16 2, 2, 2, 3, 3, 1, 3
14 days post-CCI 6 20 4, 4, 3, 3, 4, 2

CCI, controlled cortical impact.

FIG. 2. Locations of recording pipettes within the neocortex. (A) A representative image of Nissl staining shows the location of the tip
of a recording pipette in layer V of the cortex (white arrow), which was made by applying an electric current (1 mA, 200 lsec) to the
electrode at the end of recordings. (B) Distributions of the depth of the recorded cortical neurons in each group. Each dot in the graph
represents the location of a neuron relative to the pial surface. There were no significant differences in the mean depths among all groups
( p > 0.05, one-way analysis of variance). Scale bar in A: 250 lm.
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brain40,41 and is likely involved in the plasticity, repair, and epi-

leptogenesis after brain injury as well.10,42 Understanding neural

activity profiles after TBI may shed light on the mechanisms of TBI-

induced functional deficits as well as post-traumatic epileptogenesis.

In this study, we recorded single-unit activity in cortical layer V

pyramidal neurons at different time points after moderate CCI in vivo.

Our results showed that CCI resulted in an acute decrease in

spontaneous firing rate of these neurons that were adjacent to the

foci of TBI injury. This reduced firing was followed by recoveries

to nearly normal firing rates at 1 day and 7 days post-CCI but higher

firing rates at 3 days and 14 days post-CCI. These time-dependent

changes in firing rates revealed that an acute loss of activity after

TBI is followed by a trend of homeostatic/compensatory recovery

of activity and development of hyperactivity, which may contribute

to post-traumatic epileptogenesis.

Extracellular single-unit or multi-unit recording is a classic

electrophysiological technique commonly used for measuring

neuronal activity under physiological and pathological conditions

in vivo. The activity of a single cell can be viewed as a component of

a complex network and to a certain degree reflects the integrity and

functional state of the neuronal network. In a previous study, Alves

and associates3 found that the mean multiple unit firing rate within

6 h after fluid percussion injury was 0.41 – 0.01 spike/sec in rats,

which was significantly less than the normal spiking rate of

2.87 – 0.90 spikes/sec observed in sham control rats. In patients who

were admitted within 12 h after severe closed head TBI, spontane-

ous single-unit activity was found to be 0.21 – 0.04 spikes/sec.

Their results are consistent with our finding that the spontaneous

single-unit firing rate decreased from 2.59 – 0.18 Hz in the unin-

jured cortex to 1.05 – 0.20 Hz within 1–4 h after CCI (Fig. 3,4).

Because injured neurons that are silent or fire very infrequently

have a lower probability of being detected with our current re-

cording technique, the actual firing frequency in the injured cortex

may be lower than what we have recorded. Further, neurons di-

rectly underneath or close to the impact site are expected to have

more severe damage and thus sustain more severe loss of neuronal

activity.

TBI initially causes neuronal death, excitotoxicity, deaf-

ferentation, and loss of synapses.43,44 It appears straightforward

that structural damage and neuronal death in the cortex after TBI

would result in loss of synaptic input and dysfunction of the

surviving neurons and lead to suppressed neuronal activity. In-

deed, loss of neuronal activity is commonly observed during the

acute stage after brain injuries. Studies from different models of
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brain injury indicate that both spontaneous neuronal activity and

excitability are depressed in the cortex within hours to days after

TBI.1,3,4,45 In stroke models, decreases in multi-unit activity and

evoked potential in the perilesion area have also been well

documented.8,46,47

Most previous studies, however, examined changes in neuronal

activity after TBI at a single time point; how and when initial loss of

activity transforms into hyperactivity is not well understood. Our

results indicate that cortical neuronal hyperactivity evolves from an

early loss of activity and that this is not a steady process. The

hypoactivity after injury recovered at 1 day and turned into hy-

peractivity at 3 days post-CCI. This hyperactivity recovered to

normal level again at 7 days, and then became hyperexcitability

again at 14 days post-CCI (Fig. 4).

A similar pattern of changes in neuronal activity in vivo has been

reported in a middle cerebral artery occlusion model of brain is-

chemia in rats, in which neuronal activity was significantly reduced

within the first day after injury, recovered to about normal level at 2

days post-ischemia, but reduced again at 7 days.8 In the undercut

model of brain injury in cats in vivo, there is an increased efficacy of

excitatory connection in cortical neurons at 2 and 6 weeks after

injury, but a decreased amplitude of excitatory synaptic events at 4

weeks after injury.9

Although the time frames among these studies are different, the

results suggest that the pattern of activity changes in a period after

brain injuries is time-specific and may reflect different pathological

mechanisms. Thus, the first peak of hyperactivity at 2–3 days post-

injury may underlie acute post-traumatic seizures while the second

peak that appeared at day 14 post-CCI may result from chronic

pathological events that may underlie post-traumatic epileptogen-

esis. Indeed, current data support that acute post-traumatic seizures

are mechanistically different from chronic post-traumatic epilepsy.

The development of hyperactivity from initial hypoactivity may

be attributable, at least in part, to the regulation of homeostatic

synaptic plasticity. The homeostatic regulation of activity is well

established in developing neurons and more recently in the adult

brain.14,48,49 A loss of neuronal activity because of sensory depri-

vation or injury will cause changes in neuronal intrinsic properties

and synaptic transmission, leading to hyperexcitability of the af-

fected neuronal network. In the undercut neocortex, an increase in

the frequency and/or amplitude of excitatory post-synaptic currents

and a decrease in inhibitory post-synaptic currents were observed

and are believed to contribute to cortical hyperexcitability.9,50

Chronically axotomized neurons also have higher input resistance

and increased excitability.9,19 Reducing neuronal activity in the

normal brain for 2 or more days13,15,16,51 is sufficient to activate

homeostatic synaptic plasticity in the cortex.

In the current study, neuronal firing rate returned to normal

level at 1 day post-CCI. This relatively short period of activity loss

may be related to the focal injury of the CCI model, the moderate

injury severity, and the recording site that was in the perilesional

region. Under the condition of mild brain injury such as cortical

compression, acute suppression in the amplitude of evoked sensory

FIG. 5. (A) Distributions of inter-spike intervals (ISI) showed a decrease in the fraction of events with ISI £0.1 sec in the 1–4 h post-
CCI group than all other groups (#: p < 0.001), and increases in the fractions of events with ISI £0.1 sec in 3 and 14 day groups than the 1
day group. There was also a significant decrease in the fractions of ISIs between 0.4–0.8 sec of the 7 day post-CCI group than the sham,
1–4 h, and 1 day groups. (*: p < 0.05, **: p < 0.01; ***: p < 0.001. Two-way analysis of variance followed by the Bonferroni post hoc
test). (B) The percentages of events with ISI £10 msec in 1–4 h and 1 day post-CCI groups were significantly lower than almost all other
groups (*: p < 0.05, **: p < 0.01. Mann-Whitney U test).
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sham group. In contrast, the firing frequency of the 14 days post-
CCI groups was significantly higher than those of the sham, 1–4 h,
1 day, and 7 day post-CCI groups (*: p < 0.05, **: p < 0.01; ***:
p < 0.001. One-way analysis of variance followed by Newman-
Keuls multiple comparison test).
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potentials occurs in the cortex, but it soon turns into hyperexcit-

ability.52 In more severe brain injury, such as severe TBI, the loss of

activity lasts significantly longer.

A key difference between TBI and sensory deprivation condition

is that TBI involves direct brain tissue damage, which is accom-

panied by a series of pathological events such as neuronal death,

excitotoxicity, and inflammation. These factors likely also con-

tribute to enhanced excitatory activity and amplify homeostatic/

compensatory responses. Therefore, a decrease in neuronal activity

seen in the current study in the CCI model and previously in the

undercut model4 likely supports the activation of homeostatic

regulation of activity and contributes to the development of neu-

ronal hyperexcitability.

As one of the major neurophysiological consequences at the

early stage after TBI, loss of neuronal activity has important

pathophysiological significance. On one hand, such activity loss

may reflect and underlie injury-caused brain dysfunction. Pro-

moting the recovery of activity may therefore be important for

brain functional recovery after TBI. On the other hand, a quiescent

period of activity after TBI may activate the homeostatic plasticity

mechanism and contribute to post-traumatic epileptogenesis of the

injured brain. Therefore, regulating and maintaining a relatively

normal level of neuronal activity may have important significance

in patients with TBI.
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