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ABSTRACT 

Appropriate and sequential differentiation of keratinocytes is essential for all functions of 

the human epidermis. While transcriptional regulation has proven to be important for 

keratinocyte differentiation, little is known about the role of translational control. A key 

mechanism for modulating translation is through phosphorylation of the α subunit of eIF2. A 

family of different eIF2α kinases function in the integrative stress response to inhibit general 

protein synthesis coincident with preferential translation of select mRNAs that participate in 

stress alleviation. Here we demonstrate that translational control through eIF2α phosphorylation 

is required for normal keratinocyte differentiation. Analyses of polysome profiles revealed that 

key differentiation genes, including involucrin, are bound to heavy polysomes during 

differentiation, despite decreased general protein synthesis. Induced eIF2α phosphorylation by 

the GCN2 protein kinase facilitated translational control and differentiation-specific protein 

expression during keratinocyte differentiation. Furthermore, loss of GCN2 thwarted translational 

control, normal epidermal differentiation, and differentiation gene expression in organotypic skin 

culture. These findings underscore a previously unknown function for GCN2 phosphorylation of 

eIF2α and translational control in the formation of an intact human epidermis. 
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INTRODUCTION  

In human skin, differentiation of keratinocytes is required to form a stress-resistant, 

impermeable barrier that protects against infection, water loss, UV damage, and other 

environmental stresses (Bikle et al., 2012; Fuchs, 2007). The process of keratinocyte 

differentiation involves reprogramming of gene expression and cell morphology (Bikle et al., 

2012; Green et al., 1982). Undifferentiated epidermal keratinocytes are attached to the cutaneous 

basement membrane that separates the epidermis and the underlying dermis. These basal layer 

keratinocytes actively divide until select progeny receive a signal to exit the cell cycle, detach 

from the basement membrane, and begin to migrate to the upper layers of the epidermis. During 

this process, cells begin to synthesize differentiation-specific proteins, including involucrin 

(IVL), loricrin (LOR), filaggrin (FLG), and various keratins (KRT1, KRT10) that are essential for 

changes in cell morphology and function (Abhishek and Palamadai Krishnan, 2016; Moll et al., 

1982; Steven et al., 1990; Warhol et al., 1985). Disruption of normal keratinocyte differentiation 

results in a diminished capacity of the epidermis to maintain barrier function, a hallmark of skin 

diseases such as psoriasis, atopic dermatitis, and non-melanoma skin cancers (Bouwstra and 

Ponec, 2006; Menon et al., 1994). Although changes in transcriptional and epigenetic networks 

during keratinocyte differentiation are well documented (Botchkarev, 2015), little is known 

about the contributions of translational control.  

Recent studies have suggested that posttranscriptional regulation has a role in skin 

development. Changes in amino acid incorporation into proteins were reported between the 

layers of the epidermis, and a recent genome-wide analysis of psoriatic tissue suggested 
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increased expression of the translational machinery (Swindell et al., 2015; Zhao et al., 2005). 

Furthermore, markers of the Unfolded Protein Response (UPR), which is an adaptive response to 

endoplasmic reticulum (ER) stress that features translational control, were suggested to be 

increased in the upper layers of normal epidermis and decreased in psoriasis and squamous cell 

carcinoma tissues (Sugiura et al., 2009). Therefore, we hypothesized that translational control 

occurs during normal keratinocyte differentiation. 

Signaling pathways that modify translation have been shown to participate in cellular 

differentiation processes (Masciarelli et al., 2010; Yang et al., 2016) and regulation of translation 

is an important means by which eukaryotic cells adapt to a variety of environmental stresses 

(Baird and Wek, 2012; Schwanhausser et al., 2011; Sonenberg and Hinnebusch, 2009). Cells 

repress global protein synthesis to conserve resources, coincident with preferential translation of 

mRNA transcripts that confer stress resistance. An important mechanism directing translational 

control during stress features phosphorylation of the α subunit of eukaryotic initiation factor 2 

(eIF2α-P). eIF2α-P decreases initiation of global translation through a reduced ability of eIF2α to 

combine with GTP and transport initiator Met-tRNAi
Met to ribosomes for mRNA translation 

(Baird and Wek, 2012; Wek et al., 2006). Four mammalian protein kinases phosphorylate serine-

51 of eIF2α, each activated by distinct types of stress. Because a variety of stresses regulate 

eIF2α-P, this pathway is referred to as the Integrated Stress Response (ISR) (Harding et al., 

2003). Key eIF2α kinases include general control nonderepressible 2 (GCN2/EIF2AK4), which 

is activated by amino starvation and UV irradiation, and PKR-like endoplasmic reticulum kinase 

(PERK/EIF2AK3/PEK) that responds to ER stress and participates in the UPR. In addition to 

repressing global translation, eIF2α-P enhances translation of a subset of cytoprotective gene 

transcripts, such as activating transcription factor 4 (ATF4/CREB2) and its downstream target 
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C/EBP homologous protein (CHOP/GADD153/DDIT3) by mechanisms involving upstream 

open reading frames (uORFs) in the 5’-leaders of these mRNAs (Harding et al., 2000; Lee et al., 

2009; Palam et al., 2011; Vattem and Wek, 2004; Young et al., 2016; Young and Wek, 2016). 

Additionally eIF2α-P induces the transcriptional and translational expression of growth arrest 

and DNA damage-inducible protein 34 (GADD34/PPP1R15A), which facilitates the 

dephosphorylation of eIF2α-P and resumption of translation (Connor et al., 2001; Novoa et al., 

2001; Young et al., 2015).  

Here we demonstrate the importance of translational control mediated through eIF2α-P in 

the differentiation of human keratinocytes. We show that repression of translation initiation 

occurs during keratinocyte differentiation, and differentiation specific genes such as IVL are 

resistant to translation inhibition by eIF2α-P. Strikingly, the eIF2α kinase GCN2 is activated and 

is required for proper formation of the human epidermis, as visualized by a three-dimensional 

(3D) in vitro organotypic epidermal model. These results demonstrate that translational control 

by the ISR is required for proper keratinocyte differentiation during the formation of human skin.  

 

RESULTS 

Translation initiation is repressed during keratinocyte differentiation in vitro 

Keratinocytes in vitro can be induced to differentiate by growing cells to confluence and 

switching to a growth media containing 2mM Ca2+ and 2% FBS for 72 hours (Borowiec et al., 

2013) (Figure 1a). This calcium switch protocol is widely accepted as a means to initiate 

keratinocyte differentiation in vitro (Micallef et al., 2009; Pillai et al., 1990; Poumay and 

Pittelkow, 1995). Differentiated keratinocytes were compared with subconfluent, proliferating 

cultures of keratinocytes (defined here as undifferentiated). To determine the dynamics of 
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translation initiation during keratinocyte differentiation, lysates were prepared from 

undifferentiated and differentiated keratinocytes and subjected to sucrose gradient 

ultracentrifugation.  This method measures the levels of protein synthesis as judged by polysome 

profiling, which determines the amount of ribosomal loading onto mRNAs at a fixed point in 

time. Keratinocyte differentiation substantially decreased the level of cellular mRNAs bound to 

heavy polysomes coincident with an increase in mRNAs associated with 80S monosomes, 

indicating repression of translation initiation (Figure 1b). Translational efficiency can be 

quantified by calculating the ratio of mRNAs bound to polysomes and monosomes (p/m); larger 

p/m values correspond to increased translation. The p/m of differentiated keratinocytes was 

decreased by six-fold compared to undifferentiated controls. To determine if translational control 

also impacted the elongation phase of protein synthesis, polysome profiling analyses were 

performed without the addition of cycloheximide (CHX). If differentiation also lowered the 

elongation phase of translation, omission of CHX should not significantly change the levels of 

measured polysomes. However in the absence of CHX, differentiated keratinocytes showed a 

further decrease in polysomes accompanied by increased levels of monosomes (Figure 1b, blue 

line), verifying that the repression of translation occurs predominantly at the initiation stage. 

While the use of in vitro two-dimensional cell culture is a powerful tool to study 

keratinocytes, this culture condition may not fully represent how intact three-dimensional skin 

undergoes differentiation. Therefore, 3D organotypic skin equivalents were constructed using 

primary keratinocytes (Figure 1c) and analyzed by polysome profiling. A monolayer of 

undifferentiated primary keratinocytes seeded on collagen/fibroblast matrix, the initial step in 

constructing a skin equivalent, displayed levels of translation similar to that of a keratinocyte 

monolayer grown on a plastic dish (Figure 1d). However, after seven days of growth at the air-
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liquid interface, fully stratified skin equivalents revealed sharply lowered levels of transcripts 

bound to heavy polysomes coincident with increased numbers of mRNAs associated with 80S 

monosomes, indicating a repression of translation initiation similar to keratinocytes 

differentiated in monolayers. Collectively, these results indicate that keratinocyte differentiation 

is concomitant with lowered translation initiation in a three dimensional tissue. 

 

The Integrated Stress Response is activated in differentiated keratinocytes 

To determine whether the ISR is induced in differentiating keratinocytes, eIF2α-P was 

measured in both undifferentiated and differentiated keratinocytes. Levels of eIF2α-P normalized 

to total eIF2α were nearly 9-fold higher in differentiated keratinocytes as compared to 

undifferentiated cells (Figure 2a and b). Of importance, there were increased amounts of the 

differentiation-specific proteins involucrin (IVL) and keratin 1 (KRT1) (Figure 2a). As a control, 

keratinocytes were also treated with tunicamycin (TM), a potent inducer of ER stress and the 

eIF2α kinase PERK. While eIF2α-P was increased following treatment with TM, there were no 

detectable IVL and KRT1 proteins, indicating that eIF2α-P alone does not induce keratinocyte 

differentiation. As expected, IVL mRNA was significantly elevated with keratinocyte 

differentiation but not with exposure to TM (Figure 2c). Importantly, eIF2α-P occurred early 

during differentiation (within 24 hours), was detected concurrently with IVL, and was sustained 

over the course of the experiment (Figure 2d). 

To address whether eIF2α-P occurs during keratinocyte differentiation in vivo, full-

thickness human skin was obtained from surgical abdominoplasty procedures. The tissue was 

fixed, paraffin embedded, sectioned, and stained with antibodies to measure eIF2α-P, ATF4, and 

CHOP (Figure 2e), which are subject to preferential translation in the ISR. Fluorescence marking 
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the increased presence of each of these ISR markers was increased specifically in the suprabasal 

layers of the epidermis, which contain differentiated keratinocytes. By comparison, these protein 

markers were not visible in the single layer of basal keratinocytes. Staining with an IgG isotype 

control confirms that the fluorescence is not a result of high background. These results indicate 

that eIF2α-P and translational control are induced in differentiated keratinocytes, in vivo and in 

vitro.  

 

Gene-specific translational control during keratinocyte differentiation 

In addition to global translation repression, eIF2α-P leads to enhanced translation of 

specific mRNA transcripts, such as ATF4 and CHOP. To investigate if gene-specific 

translational control occurs during keratinocyte differentiation, fractions were eluted and 

collected from polysome profiles and levels of specific mRNAs were measured by qPCR. The 

percent of total ATF4 and CHOP mRNAs bound to heavy polysomes (fractions 5-7) was 

increased by 18% and 27%, respectively, during differentiation of keratinocytes in vitro (Figure 

3a and b), indicative of preferential translation during eIF2α-P. Average polysome (fractions 5-7) 

over monosome (fractions 1-3) values are indicated for each gene to further illustrate changes in 

polysome association during differentiation. Importantly, IVL transcripts also shifted 27% toward 

heavy polysomes during differentiation (Figure 3c). By comparison, eIF4E mRNA led to a 12% 

shift away from heavy polysomes towards monosomes (Figure 4d), which is representative of the 

large number of genes that are subject to translation repression in the ISR. These results show 

that individual mRNAs including canonical ISR markers and keratinocyte differentiation-

specific transcripts are bound to heavy polysomes despite global repression of translation that 

occurs during keratinocyte differentiation (Figure 1b). 
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Inhibition of the ISR response suppresses keratinocyte differentiation 

To determine whether eIF2α-P plays a critical role in keratinocyte differentiation, we 

utilized a doxycycline-inducible system (DOX) to overexpress GADD34 in N-TERT 

keratinocytes (Collier et al., 2015). Elevated levels of GADD34 lead to robust dephosphorylation 

of eIF2α, which will halt the ISR and relieve global translational repression. When GADD34 

was overexpressed in differentiated keratinocytes, polysome profiling analyses revealed a shift to 

heavy polysomes alongside a decrease in monosome association (Figure 4a), consistent with 

GADD34 relieving translation repression in response to keratinocyte differentiation. Importantly, 

GADD34-induced dephosphorylation of eIF2α reduced the amount of IVL protein over 2-fold in 

keratinocytes compared to control keratinocytes (Figure 4b and c). GADD34 overexpression also 

decreased the levels of KRT1 protein (Figure 4b), indicating a widespread effect on 

differentiation gene expression. Elevated levels of GADD34 lowered the polysome association 

and resulting p/m ratio for ATF4 and CHOP mRNAs (Figure 4d), and IVL transcript (Figure 4e) 

compared to differentiation in the absence of DOX. By contrast, the p/m value for eIF4E was 

significantly increased upon GADD34 overexpression (Figure 4d). Of note, DOX-reduced levels 

of eIF2α-P also led to a 2-fold reduction in IVL mRNA levels during keratinocyte differentiation, 

suggesting that translational control also contributes directly or indirectly to the increase in IVL 

transcript (Figure 4f). These results indicate that differentiation-specific protein expression is 

dependent on eIF2α-P and the induction of the ISR.  

 

Loss of GCN2 abrogates differentiation gene expression and epidermal formation 
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eIF2α kinases are activated in response to distinct stress signals (Baird and Wek, 2012). 

In the case of PERK, accumulating levels of unfolded protein in the ER activates this eIF2 

kinase, which is a transmembrane protein situated in this organelle. PERK functions in the UPR 

in conjunction with other sensory proteins, such as inositol requiring enzyme 1 (IRE1), which 

directs transcriptional gene expression through cytosolic splicing of x-box binding protein 1 

(XBP1) mRNA that leads to the expression of an active XBP1(s) transcription factor. To 

determine if there is activation of the UPR and inferred ER stress during keratinocyte 

differentiation, levels of mRNA encoding XBP1(s) or the ER chaperone, binding 

immunoglobulin protein (BiP/GRP78/HSPA5), were measured by qPCR. Keratinocyte 

differentiation led to lower amounts of both XBP1(s) and GRP78 mRNAs, suggesting that there 

is minimal activation of the UPR (Supp. Figure 1a and b). In contrast, both UPR markers were 

robustly induced in keratinocytes treated with TM. While TM also induced robust PERK 

expression in keratinocytes, there was no increase in PERK protein levels during keratinocyte 

differentiation, suggesting that PERK is not activated by this type of stress (Supp. Figure 1d). 

Since the UPR was not appreciably induced during keratinocyte differentiation, we next 

tested whether PERK or GCN2 was responsible for differentiation-induced eIF2α-P. Knockdown 

N-TERT keratinocytes were created using shRNA against either GCN2 or PERK (Supp. Figure 

1c and Figure 5a). PERK knockdown had no effect on differentiation-induced eIF2α-P, IVL or 

KRT1 protein expression (Supp. Figure 1d and e). By comparison, depletion of GCN2 caused a 

decrease in differentiation-induced eIF2α-P compared to control (shCTRL) (Figure 5b and c). 

This was confirmed by analysis of two independent shRNA knockdowns of GCN2 targeting 

either the coding sequence or 3’ UTR. Loss of GCN2 also caused a sharp decrease (5-fold) in 

IVL and KRT1 protein induced upon differentiation (Figure 5b and c). Of interest, knockdown of 
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GCN2 also caused a decrease in differentiation-induced IVL mRNA expression compared to 

control (shCTRL) (Figure 5d), similar to that seen with GADD34 overexpression. To test 

whether lowered levels of IVL mRNA in differentiated GCN2-depleted keratinocytes was due to 

an increase in IVL transcript decay, we assayed the stability of IVL mRNA. Differentiated 

keratinocytes were treated with actinomycin D (AD), an inhibitor of transcript synthesis, and 

harvested at the indicated times following addition of the drug (Figure 5e). There was no 

significant difference between IVL mRNA decay in shCTRL compared to shGCN2 keratinocytes 

upon differentiation, suggesting that the decrease in IVL mRNA levels in shGCN2 cells is due to 

lowered transcription of the IVL gene.  

To examine whether GCN2 is directly activated by keratinocyte differentiation, levels of 

GCN2 phosphorylated on threonine 899 (GCN2-P) were measured by immunoblot. Activation of 

GCN2 leads to auto-phosphorylation on this residue, releasing auto-inhibitory molecular 

interactions that enahnce GCN2 phosphorylation of eIF2α (Castilho et al., 2014). Keratinocyte 

differentiation caused an increase in GCN2-P similar that seen with halofuginone (HF) a known 

GCN2 activator that inhibits charging of tRNAPro (Figure 5f). Importantly, the ER stress inducer 

TM did not induce GCN2-P. These results indicate that GCN2 is activated during keratinocyte 

differentiation and is required for eIF2α-P and translational control as well as expression of 

differentiation proteins. 

Given the adverse effect of GCN2 knockdown on differentiation in monolayer 

keratinocytes, we next addressed the impact of GCN2 loss on epidermal differentiation and 

formation of an intact, stratified tissue. 3D organotypic cultures were constructed using primary 

keratinocytes expressing shGCN2 or shCTRL. After seven days of induced differentiation, skin 

equivalents were sectioned and stained with hematoxylin and eosin (H&E) or antibodies against 
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eIF2α-P, IVL, or Ki67, a well-characterized marker of cell proliferation (El-Abaseri et al., 2006). 

There was a striking difference in histology of the shCTRL and shGCN2 skin equivalents, as 

noted by disorganization of the keratinocytes and decreased cornification compared to the 

control (Figure 6a). As expected, there was decreased immunofluorescence detected using 

antibodies against IVL protein or eIF2α-P (Figure 6b and c). These findings are consistent with 

those observed in monolayer tissue culture (Figure 5b). Of interest, there was an increase in Ki67 

positive cells in the basal layer, indicating higher numbers of actively proliferating cells, which 

can be indicative of hyperplasia (Figure 6d). Furthermore, immunofluorescence analysis with an 

IgG isotype control indicated that these results are not due to non-specific antibodies. These 

results indicate that GCN2 is required for proper expression of IVL during keratinocyte 

differentiation and as a consequence is critical for proper formation of an intact epidermis. 

 

DISCUSSION 

This study shows that translational control through GCN2 phosphorylation of eIF2α is 

required for epidermal differentiation. eIF2α-P represses global translation initiation coincident 

with preferential translational control of genes such as IVL during keratinocyte differentiation 

(Figure 1-3). Loss of either eIF2α-P or GCN2 abrogated this translation regulation as well as 

caused a decrease in differentiation and accompanying induced expression markers (Figure 4-6). 

IVL and KRT1 protein levels were decreased sharply in eIF2α-P deficient and GCN2 

knockdown cells compared to controls. The significance of GCN2 was further demonstrated 

when depletion of GCN2 resulted in disorganized epidermal formation and decreased squamous 

layers in 3D organotypic culture (Figure 6). Of importance, loss of PERK did not have any 

detectable effect on differentiation-induced eIF2α-P and was not activated during keratinocyte 
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differentiation (Supp. Figure 1), indicating that ER stress and induction of the UPR are not 

critical. Similarly, our data suggest that GCN2 is activated during keratinocyte differentiation 

(Figure 5). These results show an importance for GCN2 and translational control in normal 

epidermal formation, as well as point to potential involvement of this signaling pathway in 

diseases with impaired keratinocyte differentiation such as psoriasis, squamous cell carcinoma, 

and atopic dermatitis.  

Regulation of IVL expression has previously been characterized at the transcriptional 

level, with extensive focus on promoter elements that control IVL mRNA levels (Eckert et al., 

2004). To our knowledge, this is the first report of IVL regulation at the translational level, as we 

saw a 27% percent shift of IVL mRNA toward heavy polysomes during keratinocyte 

differentiation (Figure 3c). The resistance of transcripts such as IVL to translation inhibition by 

eIF2α-P ensures appropriate protein expression during keratinocyte differentiation. Lowered 

general translation would reduce energy and nutrient expenditure and dramatically alter the 

proteome during the differentiation process. It is noteworthy that total IVL mRNA levels were 

also decreased both in eIF2α-P deficient and GCN2 knockdown keratinocytes compared to 

controls (Figure 4f and 5d). This finding indicates that transcriptional induction of IVL is 

partially dependent on the ISR. Our laboratory and others have previously characterized a cohort 

of eIF2α-P-dependent transcription factors, which include ATF3, ATF5, C/EBPβ, and NF-κB 

(Calkhoven et al., 2000; Deng et al., 2004; Dey et al., 2012; Jiang and Wek, 2005; Jiang et al., 

2004; Jiang et al., 2003; Teske et al., 2013; Zhou et al., 2008). The IVL promoter contains 

canonical AP1, SP1, C/EBP, and CRE binding sites, all of which have shown to have some 

effect on IVL transcription (Adhikary et al., 2005; Banks et al., 1998; Crish et al., 2006). It is 
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anticipated that GCN2/eIF2α-P controls the activity of a transcription factor(s) that modulates 

IVL transcriptional expression, which can also contribute to keratinocyte differentiation. 

Importantly, general and gene-specific translational control can also occur during 

inhibition of mammalian target of rapamycin (mTOR) signaling. Our preliminary data suggest 

that mTOR signaling is also inhibited during keratinocyte differentiation, and previous work 

indicates that GCN2 can facilitate sustained mTOR repression during amino acid deprivation 

(Anthony et al., 2004; Ye et al., 2015). Therefore GCN2 may also be required for inhibition of 

mTOR signaling during keratinocyte differentiation, and that this could contribute to 

translational regulation of genes such as IVL. 

Our data indicate direct activation of GCN2 during keratinocyte differentiation. GCN2 is 

known to be activated through binding of uncharged tRNAs to an aminoacyl-tRNA synthetase-

like domain (Dong et al., 2000; Wek et al., 1989; Wek et al., 1995; Zaborske et al., 2009). 

Previous research has reported that the composition of tRNAs can be altered in different layers 

of mouse skin (Zhao et al., 2005), suggesting that the dynamics of tRNA expression and 

subsequent aminoacylation may also be an activating signal of GCN2 during human keratinocyte 

differentiation. GCN2 has previously been suggested to participate in the differentiation of other 

cells types. During an immune response, GCN2 has been shown to respond to the 

immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO), which blocks T-cell 

differentiation (Munn et al., 2005). In this case, GCN2 was suggested to be activated by 

tryptophan depletion caused by IDO activation. Other studies suggest that through GCN2, IDO 

suppresses T-cell differentiation by blocking key enzymes for fatty acid synthesis (Eleftheriadis 

et al., 2015). Leucine deprivation has also been suggested to inhibit differentiation of myoblasts 

through GCN2 (Averous et al., 2012) and GCN2 is specifically inhibited by the protein IMPACT 
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in differentiated neural cells to allow for high levels of translation (Pereira et al., 2005; Roffe et 

al., 2013). Based on these earlier observations and our findings, GCN2 is suggested to play 

critical roles in cellular differentiation among diverse tissues. However, there appear to be 

important differences in the mechanisms by which GCN2 and translational control can effect cell 

fates. Additionally, the processes of regulating GCN2 and the ISR in the determination of 

different cell types are suggested to incorporate changes in tRNA charging, amino acid 

availability, and/or expression of GCN2 regulatory proteins. 

In addition to the importance of the ISR in normal keratinocyte differentiation, our results 

also point toward potential ISR involvement in skin diseases in which differentiation is 

dysregulated. Previous reports have shown differential expression of translation-related proteins 

in psoriasis and squamous cell carcinoma (SCC) tissue, and there are suggestions that SCC-

derived cell lines fail to regulate translation in response to calcium (Gibson et al., 1996; Sugiura 

et al., 2009; Swindell et al., 2015). Combined with studies herein suggesting specific expression 

of the ISR in differentiated skin layers, we propose that ISR markers such as eIF2α-P, along with 

ATF4, CHOP, or GADD34 could serve as valuable markers of skin disease. Previous studies 

have also shown that the action of the cyclosporin A in psoriasis treatment depends on CHOP, 

indicating that activation of the ISR could alleviate certain skin lesions (Hibino et al., 2011). 

Multiple pharmacological agents can alter the ISR, and targeting eIF2α in disease has become an 

increasingly promising option as the importance of translational control continues to be 

elucidated (Fullwood et al., 2012). Among drugs that activate the ISR is salubrinal, a GADD34 

inhibitor, which has been shown to be effective in cell culture and mouse models of 

neurodegenerative disease and osteoporosis (Sato et al., 2015; Saxena et al., 2009). Another 

reported GADD34 inhibitor, guanabenz, is a clinically approved α2-adrenergic agonist used to 
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treat hypertension (Holmes et al., 1983). Alternatively, ISRIB is an ISR inhibitor that can 

improve memory function in mice (Sidrauski et al., 2013). Altogether, this work has underscored 

a previously unrecognized importance for translational control through the ISR in keratinocyte 

differentiation, and we can now begin to explore the application of well-studied pharmacological 

agents in the context of skin disease. 

 

MATERIALS AND METHODS  

Cell culture   

 Normal human keratinocytes were isolated from neonatal foreskin tissue as described 

previously (Kuhn et al., 1999). The collection of human skin samples was approved by the 

Indiana University School of Medicine Institutional Review Board. Cultured cells were treated 

with 2 µM tunicamycin (Sigma-Aldrich, St. Louis, MO), 10 µM actinomycin D (Sigma), 1 

µg/mL doxycycline (Sigma), 100 nM halofuginone (Sigma), or 50 µg/mL cycloheximide 

(Sigma) as indicated. Stable GADD34 overexpression using a Tet-inducible promoter in N-

TERT cells was carried out as previously described (Collier et al., 2015), and doxycycline was 

added for 24 hours prior to any additional treatments. Tunicamycin was added for 6 hours, but 

similar experimental results were obtained following 24 hour treatment (data not shown). 

Knockdown of PERK and GCN2 by shRNA and lentiviral delivery are detailed in the 

supplement section. 3D organotypic cell culture was performed using primary human 

keratinocytes and fibroblasts obtained from neonatal foreskin tissue as described previously 

(Kuhn et al., 1999; Loesch et al., 2016). Details are discussed in the Supplemental Data. 

Immunoblot analysis 

 Immunoblots were performed as described previously (Collier et al., 2015; Teske et al., 
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2013) and details are discussed in the Supplemental Data.  

Measurement of mRNA levels by qPCR 

 Total mRNA and polysome mRNA levels were measured as previously described 

(Collier et al., 2015). Details and primer sequences are listed in the Supplemental Data.  

Immunofluorescence and Microscopy 

Immunofluorescence was performed as described previously (Loesch et al., 2016). 

Details are discussed in the Supplemental Data. A Nikon 80i microscope with Intensilight 

epifluorescence and Qimaging camera were used for all imaging purposes. Images were taken 

using a 20X objective lens at 25°. Qimaging and Nikon Elements software were used for data 

acquisition. 

Polysome Profiling by Sucrose Gradient Ultracentrifugation 

  Polysome profiling was performed as described previously (Collier et al., 2015; Palam et al., 

2011; Teske et al., 2013). Additional details are discussed in the Supplemental Data.  
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FIGURE LEGENDS 

 
Figure 1. Global translation initiation is repressed during keratinocyte differentiation. (a) Phase-

contrast images of undifferentiated (undiff) and differentiated (diff) N-TERT keratinocytes 

generated by switching confluent N-TERT keratinocytes to a media containing 2mM Ca2+/2% 

FBS for 72 hours. Polysome profiles for these conditions are shown in (b). No CHX (blue) 

indicates that cycloheximide was omitted from the protocol. (c) 3D organotypic cultures were 

fixed at day 0 (undiff) and 7 (diff) after raising to the air-liquid interface and stained with H&E. 

Polysome profiles were generated for these conditions compared to an undifferentiated 

monolayer control are shown in (d). For all polysome profiles, ratio of polysomes to monosomes 

(p/m) is indicated to the right of each sample label. Scale bars = 50µm. 

 

Figure 2. The Integrated Stress Response is activated in differentiated keratinocytes. (a) 

Undifferentiated (undiff), differentiated (diff), and tunicamycin (TM) treated N-TERT 

keratinocytes were subjected to immunoblot analysis to measure levels of the indicated proteins. 

Levels of eIF2α-P normalized to total eIF2α as measured by densitometry are indicated in (b). 

Alternatively, RNA was collected from samples and total mRNA levels were measured for IVL 

(c). Keratinocyte differentiation was also monitored for the indicated number of days and 
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subjected to immunoblot analysis (d). Full-thickness skin was stained for antibodies against 

eIF2α-P, ATF4, CHOP, or an IgG isotype control (e). The basement membrane is demarcated 

with a gray line. Scale bars are: large image = 50 µm, inset = 25µm. Error bars = mean +/- SD. 

 

Figure 3. Gene-specific translational control during keratinocyte differentiation. RNA was 

isolated from sucrose fractions taken from polysome profiles in Figure 1b and used to generate 

cDNA. qPCR was used to measure mRNA levels of (a) ATF4, (b) CHOP, (c) IVL, and (d) eIF4E 

in each fraction. Levels of mRNA were normalized to a spike-in luciferase transcript, and 

represented as a percent total for each mRNA so as to omit changes in gene transcript levels. 

Arrows represent shifts toward (green) or away from (red) heavy polysomes (fractions 5-7), and 

the total percentage of each gene transcript that shifts during differentiation are indicated. Error 

bars = mean +/- SD. 

 

Figure 4. Inhibition of the ISR suppresses keratinocyte differentiation. (a) Polysome profiles 

were generated for undifferentiated (undiff), differentiated (diff+vehicle), and differentiated 

during GADD34 overexpression (diff+DOX) N-TERT keratinocytes grown in monolayer 

culture. Polysome/monosome (p/m) ratios are listed beside each sample. (b) Alternatively, 

lysates were subjected to immunoblot analysis to measure the indicated protein levels. 

Measurement of eIF2α-P normalized to total eIF2α and IVL proteins are indicated in (c). (d) p/m 

values were calculated for each indicated gene in differentiated cells treated with vehicle or DOX 

to induce GADD34 overexpression that sharply lowers eIF2α-P by dividing the percent of the 

gene transcript in polysome (5-7) by monosome (1-3) sucrose fractions. (f) Alternatively, total 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

20

RNA was isolated from cells and qPCR was performed to measure levels of IVL mRNA. *, 

p<0.05, error bars = mean +/- SD. 

 

Figure 5. Loss of GCN2 abrogates differentiation gene expression. (a) GCN2 mRNA 

knockdown efficiency was measured by qPCR. (b) Undifferentiated (undiff), differentiated 

(diff), or tunicamycin (TM) treated N-TERT keratinocytes with control (shCTRL) or shGCN2 

shRNA were subjected to immunoblot analysis to measure the indicated proteins. Measurement 

of eIF2α-P normalized to total eIF2α and IVL proteins are indicated in (c). (d) RNA was also 

isolated from these treatments and IVL mRNA levels were measured by qPCR. (e) An mRNA 

half-life assay was performed by treating shCTRL or shGCN2 cells that had been allowed to 

differentiate for 24 hours with 10µg/mL actinomycin D (AD). RNA was isolated from each 

sample after the indicated number of hours, and qPCR was performed to measure levels of IVL 

mRNA. (f) N-TERTs were treated with 2µM TM or 100nM halofuginone (HF) for 6 hours or 

were differentiated. Lysates were then subjected to immunoblot analysis to measure GCN2 

activation. *, p<0.05. Error bars = mean +/- SD. 

 

Figure 6. GCN2 is required for proper epidermal differentiation. 3D organotypic cell cultures 

were made using shCTRL and shGCN2 primary human keratinocytes that were seeded on a 

collagen-fibroblast matrix and raised to the air-liquid interface in order to differentiate and 

stratify. After 7 days the samples were fixed, sectioned and stained with (a) H&E or antibodies 

against (b) eIF2α-P, (c) IVL, (d) Ki67, or (e) an IgG isotype control. Relative GCN2 knockdown 

efficiency in primary keratinocytes was measured by qPCR in (f).  Scale bar = 25µm for every 

image. 
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