
Active Disturbance Rejection Control based on Generalized
Proportional Integral Observer to Control a Bipedal Robot with Five

Degrees of Freedom

Jaime Arcos-Legarda1, John Cortes-Romero2 and A. Tovar3

Abstract— An Active Disturbance Rejection Control based
on Generalized Proportional Integral observer (ADRC with
GPI observer) was developed to control the gait of a bipedal
robot with five degrees of freedom. The bipedal robot used is
a passive point feet which produces an underactuated dynamic
walking. A virtual holonomic constraint is imposed to generate
online smooth trajectories which were used as references of
the control system. The proposed control strategy is tested
through numerical simulation on a task of forward walking with
the robot exposed to external disturbances. The performance
of ADRC with GPI observer strategy is compared with a
feedback linearization with proportional-derivative control. A
stability test consisting on analyzing the existence of limit cycles
using the Poincaré’s method revealed that asymptotically stable
walking was achieved. The proposed control strategy effectively
rejects the external disturbances and keeps the robot in a stable
dynamic walking.

I. INTRODUCTION

This paper presents a control strategy aiming to overcome
one of the main challenges in bipedal robot control systems,
which is disturbance rejection. Although in the last few
decades bipedal robots have had a remarkable development,
control strategies to allow these devices to interact with
the human environment are still in their infancy. Human
environments have unpredictable sources of disturbances that
affect the normal performance of a robot, reason for which
methods to ensure stability are needed.

Several attempts have been made to solve the problems
brought about by external disturbances and model uncertain-
ties over bipedal robots. The first and most common approach
is the use of strategies to adapt the walking pattern in order
to change the trajectory references; its deployment gives the
robot the ability to put the swing foot on a place where it
finds balance easily [1]–[3].

A second approach is to improve the robustness of the
control system that tracks the references [4]. Although the
tracking control must be resistant to external disturbances,
little development is observed in this area. Achieving robust-
ness with the use of this control is highly important because
of the incapability of tracking the references could result in
the instability of the full robot. In consequence, in this case
the quality of the strategy to generate references becomes
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no longer relevant. Most of the times this approach uses
references that depend on the position of the robot instead
on the time [5], which allows it to adapt its trajectories to
the state of the gait.

Other strategies to detect the external disturbances use
redundant systems of sensors and are based on simplified
models as 1D Linear Inverted Pendulum dynamics model
[6]. Those methods make estimations of the states and dis-
turbances [7, 8]. The use of simplified models has permitted
the design of external forces observers using inertial sensors
[9], but the results regarding stability are limited by the
poor accuracy of the models. Arrays of sensors are used to
homogenize the reaction forces on the feet; although this
allows to reject external forces, it is constrained by the
condition of planar contact of the feet with the ground [10].

This work presents an alternative control system for
bipedal robots based on disturbances estimation and their
active rejection. Thus, the main contribution of this work
is to provide an effective control strategy to reject distur-
bances. External perturbations and model uncertainties are
lumped in a single group of signals called total disturbances.
Taking into account that the system has a multivariable
and nonlinear model, the total disturbances were estimated
with an extended observer approach, which assumes that the
total disturbances are uniformly absolutely bounded away
from zero and are smooth in all of its arguments [11].
Additionally it was considered that the total disturbances can
be approximated by m− 1 finite order polynomials. Based
on this assumption observers with m extended states were
proposed as this was the approach used in the GPI control
concept [12].

The outline of this paper is as follows: First, a model of a
five degrees of freedom bipedal robot is presented in Section
II. Then, the disturbances observer and the control strategy
is proposed in Section III. After this, Section IV presents a
reference trajectory design based on the robot’s state. After
that, global stability is tested by Poincaré’s return map in
Section V. Once established, simulations of the walking
control were performed in Section VI. Finally, conclusions
are draw in Section VII.

II. ROBOT MODEL

The robot’s model was obtained by studying the multibody
system formed by the bipedal robot that is shown in the Fig.
1. The bipedal walking is a periodic sequence of changes
between single and double support. If it is assumed that the
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double support phase is instantaneous, then the single support
phase would describe the longest phase of the walking [5,
13]. The Lagrange’s differential equation can be used to find
the model of the robot in the single support phase to get the
Euler-Lagrange expressed as:

Ds(qs)q̈s +C(qs, q̇s)q̇s +Gs(qs) = Bs(qs)u+δ (qs, q̇s)+ζ ,
(1)

where qs := [q1 q2 . . . q5]
′

is the generalized coordinates
vector (The expression [•]

′
represents the transpose), Ds(qs)

is the inertial matrix, Cs(qs, q̇s)q̇s is a vector of centripetal
and coriolis forces, Gs(qs) is a vector of forces associated to
the gravity, Bs(qs)u is a vector of generalized forces, δ (qs, q̇s)
takes into account the uncertainties of the model and ζ is
an unknown vector of the external disturbances. This model
was acquired based on the assumption that the support leg
is pinned to the ground with a revolute joint. Although, the

Θ(qs)

−q4 −q3
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Fig. 1. Robot model

assumption of the instantaneous double support phase is true
over few special conditions, it is not possible to avoid the
impact that takes place in the change of support leg. That
is why it is necessary to model the impact phase and to
form a hybrid model with the continuous model of the single
support phase and the discrete event in the foot switching
at the moment of impact [14, 15]. External forces affecting
the system are a mandatory consideration when it comes
to finding a model for the impact event. For this reason
in this phase of the walking, the model was studied as an
unpinned system and it was included a fix point over the
body of the robot with its coordinates referenced to a fix
frame, as it is shown below pe := [ph

e pv
e]

′
, where ph

e refers
to the horizontal coordinate of the point pe, pv

e to the vertical
one and pe was the position of the end of the support leg,
this information enlarged the generalized coordinate vector,
which took the following form qe := [q

′

s p
′

e]
′
. With the new

generalized coordinate vector clear, the dynamical model is
described as below:

De(qe)q̈e +Ce(qe, q̇e)q̇e +Ge(qe) = Be(qe)u+δFext , (2)

where δFext represents impulsive forces caused by the ground
reaction in the swing leg at the impact time. Based on the
concept of momentum conservation, the following equation
was obtained:

De(q
+
e )q̇

+
e −De(q

−
e )q̇

−
e = Fext , (3)

where (q−e , q̇
−
e ) and (q+e , q̇

+
e ) represent the position and the

velocity just before and after the impact respectively; Fext

is a forces vector which represents the effect of the ground
reaction on each joint. Define F2 := [FT

2 FN
2 ]

′
as the reaction

force in the swing leg, where FT
2 refers to the tangential

reaction and FN
2 to the normal one. Following the principle

of virtual work, it yields:

Fext = E2(q
−
e )

′
F2, (4)

where E2 := ∂ p2
∂qe

and p2 is the position of the swing leg end.
Replacing the Eq. (4) into (3) it produces:

De(q
−
e )q̇

−
e = De(q

+
e )q̇

+
e +E2(q

−
e )

′
F2. (5)

If the hypothesis that the impact is totally plastic is
accepted, it would be true that there exist no rebounds or
slips in the stance foot, which permits us to conclude that
the position of the mechanism would not change after the
impact , it is q−e ≡ q+e , and the velocity of the end leg would
be equal to zero as shown below:

d p2

dt
=

∂ p2(q−e )
∂qe

q̇+e ,

E2(q
−
e )q̇

+
e = 0. (6)

The Eq. (5) and (6) are collected in a matrix form to obtain
[

q̇+e
F2

]

=

[

De(q+e ) −E2(q−e )
′

E2(q−e ) 02×2

]−1 [
De(q−e )q̇

−
e

02×1

]

, (7)

which can be summarized in

q̇+e = ∆(q−e , q̇
−
e ), (8)

F2 = Σ(q−e , q̇
−
e ), (9)

Finally, the hybrid system is described in the Eq. (1) and
(8) as:

Σ :

{

q̈s = f (qs, q̇s)+Ds(qs)
−1Bs(qs)u pv

2 6= 0
q̇+e = ∆(q−e , q̇−e ) pv

2 = 0
(10)

where
f (qs, q̇s) = Ds(qs)

−1 [−C(qs, q̇s)q̇s −Gs(qs)+δ (qs, q̇s)+ζ ].
A more detailed description of the model can be found in

[5, 13].

III. CONTROL DESIGN

The problem of bipedal robot’s control is divided into two
main control loops, as it is displayed in Fig. 2. The external
loop has the task of generating the walking pattern, which
can either be time function or function of the robot state, this
problem will be studied in the following section. The internal
control loop has the task of tracking references generated by
the external loop. In this paper a control strategy for the
internal loop intended to keep the tracking error close to
zero, reject the external disturbances and overcome the model
uncertainties was developed.

Now, let us analyze the features of the problem. First, it
is clear that this system is a nonlinear and multi-input multi-
output system. This problem has an additional characteristic
that makes it a non-conventional problem, because it is an
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Fig. 2. control problem

underactuated system. Although the model of the robot in
Eq. (1) shows that there are five degrees of freedom, the
robot has four actuators only, one at each knee and one at
each side of the hip. To overcome the difficulties to control
design brought about by this underactuated feature of the
system the Eq. (1) is simplified below:

Ds(qs)q̈s +Ω(qs, q̇s) = Bs(qs)u+ ξ̃ (qs, q̇s), (11)

where:
Ω(qs, q̇s) :=C(qs, q̇s)q̇s +Gs(qs),
ξ̃ (qs, q̇s) := δ (qs, q̇s)+ζ .

The Eq. (11) is fragmented to separate the actuated part of
the system out of underactuated part. Now, let us fragment
the position vector and the output matrix as

qs :=

[

qb(N−1×1)

q(N1×1)

]

, Bs(qs) :=

[

B1(qs)(N−1×p)

0(1×p)]

]

,

where p is the number of actuators. Once the new structure
of the variables was established, the model was fragmented
as:

[

D11(qs) D12(qs)
D21(qs) D22(qs)

][

q̈b

q̈N

]

+

[

Ω1(qs, q̇s)
Ω2(qs, q̇s)

]

= . . .

· · ·=

[

B1(qs)
0

]

u+

[

ξ̃1(qs, q̇s)

ξ̃2(qs, q̇s)

]

. (12)

The fragmented model representation is used to express
the model as a function of the actuated variables, which is
[

D11(qs)−D12(qs)D
−1
22 (qs)D21(qs)

]

q̈b +Ω1(qs, q̇s)+ . . .

· · ·+D12(qs)D
−1
22 (qs)

[

ξ̃2(qs, q̇s)−Ω2(qs, q̇s)
]

= . . .

· · ·= B1(qs)u+ ξ̃1(qs, q̇s),

then, it is simplified to obtain

q̈b = κ(qs)u+ξ , (13)

where

ξ =
[

D11(qs)−D12(qs)D
−1
22 (qs)D21(qs)

]−1
∗ . . .

· · · ∗
{

−D12(qs)D22(qs)
−1

[

ξ̃2(qs, q̇s)−Ω2(qs, q̇s)
]

+ . . .

· · ·+ ξ̃1(qs, q̇s)−Ω1(qs, q̇s)
}

, (14)

and

κ(qs) =
[

D11(qs)−D12(qs)D
−1
22 (qs)D21(qs)

]−1
B1(qs).

(15)

A. Design of Generalized Proportional Integral Observer

Thanks to the ADRC approach, the MIMO (multi-input
and multi-output) (1) latter simplified as is shown in Eq.
(13) represents a system which can be treated as decoupled
system, therefore, the control strategy is reduced to a problem
of designing a group of SISO controllers (single-input and
single-output) with disturbance rejection [16]. In order to
design an observer to do estimations of the disturbances, the
simplified system is represented in a extended state space
form.

It is supposed that ξi can be approximated by a polynomial
with order m− 1, where m > 1, thereby dmξi

dtm ≈ 0. This is
the main difference between the classical ADRC approach,
that uses only one extended state and the ADRC with GPI
observer which uses more than one. This approach permits to
avoid the depoyment of high gains in the observer which is
an advantage in the process of implementation. It is defined
x1,i := qbi , x2,i := q̇bi , and x3,i := ξi, for all the values that
takes i, then the system takes the following form:

ẋ1,i = x2,i,
ẋ2,i = x3,i +κiui,
ẋ3,i = x4,i,
...
ẋm+1,i = xm+2,i,

ẋm+2,i =
dmξi
dtm



































∀i = 1, . . . ,N −1. (16)

With the model in state space established, the GPI observer
is proposed,

˙̂x1,i = x̂2,i + lm+1,i(x1,i − x̂1,i),
˙̂x2,i = x̂3,i + lm,i(x1,i − x̂1,i)+κiui,
˙̂x3,i = x̂4,i + lm−1,i(x1,i − x̂1,i),
...
˙̂xm+1,i = x̂m+2,i + l1,i(x1,i − x̂1,i),
˙̂xm+2,i = l0,i(x1,i − x̂1,i).



































∀i = 1, . . . ,N −1.

(17)
Subtracting the observer Eq. (17) from the system state

space representation (16) and defining the estimation error
as:

[ê1,i . . . êN−1,i]
′
= [(x1,i − x̂1,i) . . . (xN−1,i − x̂N−1,i)]

′
,

then, the estimation error dynamics can be described by

˙̂e1,i = ê2,i − lm+1,iê1,i,
˙̂e2,i = ê3,i − lm,iê1,i +κiui,
˙̂e3,i = ê4,i − lm−1,iê1,i,
...
˙̂em+1,i = êm+2,i − l1,iê1,i,
˙̂em+2,i =

dmξi
dtm − l0,ie1,i.



































∀i = 1, . . . ,N −1, (18)

or in a matrix form

êi= Âiêi + B̂ dmξi
dtm ,

yi = Ĉêi.

}

∀i = 1, ...,N −1, (19)



where

Âi =



















−lm+1,i 1 0 · · · 0 0
−lm,i 0 1 · · · 0 0
−lm−1,i 0 0 · · · 0 0

...
...

...
. . .

. . .
...

−l1,i 0 0 · · · 0 1
−l0,i 0 0 · · · 0 0



















; B̂ =



















0
0
0
...
0
1



















;

Ĉ =
[

1 0 0 · · · 0 0
]

.

The matrices Âi must be appropriately selected in order
to make the system described by the Eq. (19) be Hurwitz so
it will achieve an asymptotically stable observer. A way to
assign the values of Âi can be found in [17].

B. Control law proposition

+

GPI Observer

Controller +

Trajectory Generetor

Fig. 3. control ADRC

Once the observer has been designed, it is proposed a
control structure as is shown in the Fig. 3. This struc-
ture states a control law for tracking references. In the
control law the disturbance estimation vector, ξ̂ := x̂3 =
[x̂3,1 x̂3,2 . . . x̂3,N−1]

′
, is used to reject its effects in

the system. Furthermore, the estimation of position vector,
q̂b := x̂1 = [x̂1,1 x̂1,2 . . . x̂1,N−1]

′
, and velocity vector,

ˆ̇qb := x̂2 = [x̂2,1 x̂2,2 . . . x̂2,N−1]
′
, are used to build a

proportional-derivative control action, as is show below:

u = κ−1(q̈d −Kd(x̂2 − q̇d)−Kp(x̂1 −qd)− ξ̂ ), (20)

where qd is the reference vector and Kp and Kd are diagonal
matrices. This control law has the form of a proportional-
derivative (PD) control assisted by GPI observer, whose
results were compared with the ones obtained from a classi-
cal feedback linearization with PD control, without assistant
observer.

Replacing the control law (20) into the simplified system
(13), it gives the following equation:

(q̈b − q̈d)+Kd(x̂2 − q̇d)+Kp(x̂1 −qd) = ξ − ξ̂ , (21)

which is a decoupled equation system. Although the Eq.
(21) shows the close loop dynamics, it does not allow us
draw any conclusion about the tracking error. In order to
get a relation of the close loop dynamics as a function of
the tracking error, let us define the error position estimation
as ê1 = [ê1,1 ê1,2 . . . ê

′

1,N−1 and taking into account that

x̂1 = x1 − ê1, x1 = qb and x̂2 = ˙̂x1 − lm+1(x1 − x̂), then the
close loop system takes the following form:

(q̈b − q̈d)+Kd(q̇b − q̇d)+Kp(qb −qd) = . . .

· · ·= Kd ˙̂e1 +(Kp + lm+1)ê1 +(ξ − ξ̂ ). (22)

Applying the Laplace transform to the Eq. (22) and
defining the tracking error as eqi = (qbi −qdi),∀i= 1, . . . ,N−
1; then the tracking error dynamics is described by the
following transfer function:

eqi(s) =
Kd(i,i)

s+(Kp(i,i)
+lm+1,i)

s2+Kd(i,i)
s+Kp(i,i)

ê1,i(s)+ . . .

· · ·+
(ξi(s)−ξ̂i(s))

s2+Kd(i,i)
s+Kp(i,i)

,∀i = 1, . . . ,N −1, (23)

which shows that the tracking error tend asymptotically to
zero if:

1) the estimation errors tend to zero,
2) and, Kdi ,Kpi are chosen appropriately.

IV. TRAJECTORY GENERATION

The generation of trajectories or references for the joints is
a task that can be solved by an external control loop. One of
the most common approaches in the references generation
is to do it off-line and use them as function of the time.
Given that this approach has not the flexibility needed to
reject disturbances. In this work uses a methodology for
generation of trajectories as function of the state of the
robot. This methodology is better know as “virtual holonomic
constraint” and is employed to ensure that the references of
the inner control loop will be the correct ones to get a stable
periodic gait [15].

Although the aim of this paper is not to reject the
disturbances through a modification of the trajectories, the
way to generate a gait pattern presented here permits to ana-
lyze the performance of the tracking controls independently
from those. Before starting with the process of generation
of trajectories, few parameters were established taking as
inspiration the human-like walking, thus, the trajectory for
the hip is taken as a sine function and the step length is
a fraction of the human step length. Additionally to the
mentioned above, conditions to achieve smooth trajectories
are included. The trajectory of each joint is described by a
high order polynomial regression, which is function of the
absolute angle Θ(qs) shown in the Fig. 1. Those polynomials
produce the vector of references qd .

V. STABILITY TEST

The bipedal gait is a periodic sequence of states. This
periodicity makes the stability analysis a special challenge
because the asymptotic stability can not be established by the
classical sense of Lyapunov for equilibrium points. Thus,
the method of Poincaré’s section is used identify periodic
behavior in the dynamic of the biped. The Poincaré’s method
searches for the presence of a periodic orbit in the evolution
of the states; it is done through the sampling of the states
in a time when a condition is satisfied. Such a condition is
called the Poincaré’s section. Poincaré’s section could either



be a function of few robot states or can be determined by
external events. This is the case of the bipedal gait where
the Poincaré’s section for the bipedal gait is determined by
the switching foot event, which depends of the ground level.

The sampling done in the Poincaré’s section is used to
build a function that takes values just before the impact time
and it is defined as

x−(k+1) = P(x−(k)) (24)

where x−(k) is the kth sample of the state vector just before
the impact, x−(k + 1) is the state vector just before the
next impact and P(x−(k)) is a function called the Poincaré
return map. The stability test is summarized in the tasks of
evaluating the existence of an equilibrium point x−

∗
such that

x−(k+1) = P(x−
∗
(k)) = x−

∗
(25)

as well as in tasks of demonstrating the discrete system
stability of (24) in the classical sense of Lyapunov for the
equilibrium point x−

∗
.

Given the complexity of determining the Poincaré return
map, P(x−(k)), it is often calculated through numerical
simulations of the robot walking. The states of the robot
in each switching foot are saved in a vector

χ(k) =











x−(k− (ρ −1))− x−
∗

x−(k− (ρ −2))− x−
∗

...
x−(k)− x−

∗











, (26)

where ρ represents the number of switching feet executed in
the simulation. A linear regression is performed between the
χ(k) and χ(k−1) values. The result of the regression gives
a linear approximation of (24) with the following form

(x−(k+1)− x−
∗
) = Φ∗ (x−(k)− x−

∗
) (27)

where the eigenvalues of Φ must have a magnitude lower
than one to guarantee the asymptotic stability of the walking.

VI. SIMULATIONS AND RESULTS

The control strategy, the extended observer and the tra-
jectories generator proposed at the above sections were
evaluated through simulation of the bipedal robot in the task
of forward walking over a flat ground. Before evaluating
the systems, parameters like the order of the approximation
of the total disturbance, the observer and the controller
constants need to be established. First, the order of total
disturbance, ξ , which is approximated by m = 7. Second,
the observer constants, that were calculated to define the
dynamic of the observer is described by the eigenvalues of
the matrix Â, Shown in the Table I. Finally, the controller
constants were selected as shown in the Table II.

The simulations of the walking robot controlled by ADRC
with GPI observer was compared with a classical con-
trol strategy like feedback linearization with proportional-
derivative action, called from now on NPD (Nonlinear P-D).
The control law for the NPD proposed takes the form

u = κ−1(q̈d −Kd(x̂2 − q̇d)−Kp(x̂1 −qd)−ξ ). (28)

where ξ is taken from the model shown in the Eq. (14), but
with ξ̃1(qs, q̇s) = 0 and ξ̃2(qs, q̇s) = 0 [13].

TABLE I

OBSERVER EIGENVALUES

i Eigenvalues
∀i -180, -324, -583, -1050, -1890,

-3401, -6122, -11.020, -19.836,

TABLE II

CONTROLLER CONSTANTS

i Kp(i,i) Kd(i,i)
∀i 5000 50

In order to get a comparable dynamic between the control
strategies, the constants used by NPD controller do not differ
from the ones used in the Table II. The evaluation below
intends to contrast the performance of the two strategies and
therefore, a test of each one of them undergoes a test of 12.5
steps (25 swithing foot) done for each one. These simulations
evaluate the capacity to reject external disturbances, which
were emulated through torques applied to the joints of the
system and injected in the 10th steep.

Figure 4 shows the tracking references of the control
NPD, the control signals and its response to the external
disturbance. Even though the system has the capacity to
keep the stability, the perturbation affects the controller’s
performance. On the other hand, Figure 5 shows the per-
formance of the controller ADRC with GPI observer, which
has an effective disturbance rejection without deviation of
the tracking reference.
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Fig. 4. Performance NPD

The progression of Θ(qs) vs d/dtΘ(qs) of both tests,
shown in Figure 6, depicts the feature of a cycle limit of the
walking. It also shows that the ADRC control has not been
affected by the external disturbances and that the stability
of the cycle limit is not under risk. On the other hand,
the control NPD does not have the ability to guarantee the
stability if the system is exposed to external disturbances in
a critical phase of the gait.

The stability of the bipedal robot in the simulation of
ADRC with GPI observer was tested through the Poincaré’s
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Fig. 5. Performance ADRC with GPI observer
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method. First was calculated the equilibrium point in the
Poincaré map, which is equal to:

x−
∗
=

[

3.247 3.672 −0.622 −0.644 −0.0104 · · ·
· · ·−0.298 0.340 −1.578 1.370 −0.170

]

.

Second the values of the sampling states in the Poincaré
section were used to find Φ with a linear regression. Finally
the eigenvalues of Φ were found and their magnitudes were
calculated to obtain |λ (Φ)|. Given that all the eigenvalues,
λ (Φ), were inside a unitary circle, then it can be concluded
that the control system is asymptotically stable.

|λ (Φ)|=

[

0.640 0.640 0.844 0.844 0.237 · · ·
· · ·0.237 0.138 0.354 0.354 0.6609

]

.

VII. CONCLUSIONS

An Active Disturbance Rejection Control with Generalized
Proportional Integral observer approach was proposed to con-
trol the tracking reference of an underactuated bipedal robot.
This device achieved a periodically asymptotically stable
walking. A performance comparison between the proposed
control and a classical controller showed the benefits of the
ADRC with GPI in tracking references and disturbances
rejection.

An effective control strategy to reject external disturbances
in the gait of bipedal robots was developed through the use
of active disturbance rejection control based on generalized
proportional integral observer. Simulations on the control
strategy proposed evidenced its capability to reject external
disturbances as well as its capability to achieve asymptoti-
cally stable walking.

The nominal walking pattern projected was a successful
virtual holonomic constraint to achieve a stable gait. Al-
though the trajectories generation method was successful to
keep the robot equilibrium, it did not provide an optimal
trajectory reference to minimize energy consumption and
neither gave a smooth enough trajectory in the impact.
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