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Abstract

As a step toward the goal of relating changes in underlying myocardial structure to observed 

altered cardiac function in the hearts of individual patients, this study addresses the feasibility of 

creating echocardiography-derived maps of regional myocardial fiber structure for entire, intact, 

excised sheep hearts. Backscatter data were obtained from apical echocardiographic images 

acquired with a clinical ultrasonic imaging system and used to determine local fiber orientations in 

each of seven hearts. Systematic acquisition across the entire heart volume provided information 

sufficient to give a complete map for each heart. Results from the echocardiography-derived fiber 

maps compare favorably with corresponding results derived from diffusion tensor magnetic 

resonance imaging. The results of this study provide evidence of the feasibility of using 

echocardiographic methods to generate individualized whole heart fiber maps for patients.
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Introduction

In the heart, function and structure are closely linked (Arts et al. 2003; Buckberg et al. 2008; 

Sengupta et al. 2006; Sengupta et al. 2007) and, as a consequence, knowledge of the specific 

myocardial fiber structure throughout the heart of an individual patient could aid in the 

identification of the origin of dysfunction, as well as in evaluating the potentially beneficial 

effects of therapy. To this end, the advancement of methods to image intrinsic myocardial 

structure has been identified as a key area of development in recommendations from the 
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National Heart, Lung and Blood Institute (NHLBI). (Baumgartner et al. 2005; Buckberg et 

al. 2004; Williams et al. 2006) Alterations in myocardial fiber structure and orientation can 

also precede cardiac dysfunction and the clinical manifestation. (Giglio et al. 2003) Mapping 

the fiber structure of the whole heart would provide insight into both global and regional 

function and could potentially permit a better understanding of the role that the underlying 

myocardial structure is playing in the individual’s cardiac function and as well as creating 

the opportunity for early intervention for a better outcome. (Arts et al. 2003; Buckberg et al. 

2008; Costa et al. 2001; McQueen and Peskin 2000; Peskin and McQueen 1992; Sengupta et 

al. 2006; Sengupta et al. 2007) Such information could be useful in identifying subclinical 

alterations in fiber structure and thus create the opportunity for early intervention for a better 

outcome. Furthermore, assessment of fiber orientation may provide additional insights into 

the origin of observed altered global and regional cardiac deformation as currently assessed 

by advanced methods such as in vivo wall motion tracking methods and, hence, provide 

additional diagnostic information. To this end, efforts have been made to map the fiber 

structure of the heart using modalities such as diffusion tensor imaging (DTI) and elastic 

tensor imaging (ETI).(Lee et al. 2012a; Lee et al. 2012b) Therefore, one of the motivations 

behind this study is to contribute to the development of a method that will permit a better 

understanding of the role fiber structure plays in the overall cardiac function in individual 

patients.

Ultrasonic imaging is well suited as a modality for generating myocardial fiber maps for the 

individual patient. Ultrasound is widely available and utilized in routine clinical practice for 

decision making and is relatively inexpensive. It does not involve ionizing radiation and thus 

is well-suited for serial evaluations. Although this approach would be useful in observing 

the undesirable remodeling associated with myocardial infarction, its primary contribution is 

likely to in monitoring (constructive) reverse remodeling such as that seen in 

resynchronization therapy (Mekkaoui et al. 2012; Yu et al. 2002) or potential reverse-

remodeling observed in heart failure patients utilizing left ventricular assist devices (LVAD) 

and therefore monitoring the efficacy of therapy. (Ambardekar and Buttrick 2011; Hellawell 

and Margulies 2012). In children born with single ventricle physiology, staged palliation 

employing the single ventricle to support the systemic circulation has resulted in remarkable 

survival of children with a heart defect otherwise proving uniformly fatal if not repaired 

with this palliation (Cetta et al. 1996; Gaynor et al. 2002). However, in many, the palliation 

fails due to single ventricular failure (Khairy et al. 2008) that arises partly from abnormal 

myocardial fiber architecture and fibrous matrix of the ventricular myocardium (Ho et al. 

1996). A study of single ventricle myocardial fiber orientation may help patient and 

appropriate intervention selection. This is often hampered by a lack of non-invasive and 

easy to use tool to study the myocardial fiber architecture.

To this end a previous report from our laboratory demonstrated that, in principle, 

quantitative measurements of myocardial fiber structure for individual hearts can be derived 

from analyses of echocardiographic images. (Milne et al. 2012) That study, limited to 2D 

short-axis reconstructions, found that echocardiographic-based measurements of fiber 

structure in a specific transverse plane qualitatively agreed with the corresponding estimates 

obtained using diffusion tensor magnetic resonance imaging (MRI) methods. The objective 
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of the current study is to extend the previous work on single planes of the heart by 

demonstrating the feasibility of creating quantitative myofiber multiplane structure maps 

over the entire volume of intact hearts based on 3D echocardiographic information. In 

addition, our echocardiographic-derived estimates are quantitatively compared with 

published diffusion MRI measurements of fiber structure. Regional differences in fiber 

structure within the heart are also elucidated for selected regions-of-interest (ROI).

Methods

Seven sheep hearts were obtained within one hour of slaughter from a local slaughterhouse 

using a procedure consistent with the policies of the Animal Studies Committee of 

Washington University. Sheep hearts were utilized because they are comparable in size and 

composition to the human heart. (Rudolph 2009) The intact, excised hearts were thoroughly 

rinsed and fixed in a 10% formalin solution for a minimum of five weeks prior to being 

imaged. The use of fixed tissue permitted ample time for imaging of the hearts without 

concerns for structural degradation. (Some limitations arising from the use of fixed tissue 

are described below in the Discussion section.)

Methods for data acquisition and analysis were similar to the methods described in a 

previous paper from our laboratory. (Milne et al. 2012) In brief, after fixation preparation 

was completed, each heart was placed base-down in a cylindrical water-filled tank in 

preparation for collecting backscatter data. A series of apical echocardiographic images, in 

5-degree rotational increments about the apex of each heart, were obtained using a General 

Electric Vivid 7 clinical imaging system (GE Healthcare, Wauwatosa, WI, USA) at a 

nominal center frequency of 5.0 MHz in fundamental imaging mode (Figure 1a). A GE 

Model 7S phased-array probe was used in fundamental imaging mode at 5.0 MHz nominal 

frequency. The postprocessing settings on the clinical imaging system were configured such 

that the grayscale level of the images had a linear relationship to the amount of 

backscattered energy, to allow quantitative estimates of the level of backscatter from the 

grayscale images. The details of this calibration have been previously described by our 

laboratory. (Holland et al. 2006) The time-gain compensation (TGC) settings were adjusted 

so that the backscatter signal strength was within the useful linear dynamic range for all 

depths and a single transmit focus was placed near the center of the left ventricle.

After image acquisition, the backscatter values along individual transverse profile lines 

corresponding to specific depths from the apex were normalized using the following 

approach: Myofibers that are perpendicular to the ultrasound beam (typically fibers in the 

mid-myocardium) are known to yield the largest acoustic backscatter values. (Hoffmeister et 

al. 1995; Holland et al. 1997; Yang et al. 2007) Consequently, at a specific distance from the 

apex, the pixels with the highest values of backscatter along transverse profile lines placed 

on the left and right walls of the heart in the grayscale image were identified as arising from 

locations where the fiber orientation was predominately perpendicular to the ultrasonic beam 

direction. These brightest pixels were normalized to the maximum gray scale value and all 

other pixels were normalized to their corresponding relative gray scale value. Normalizing 

the backscatter in this fashion provided an approach to compensate for the effects of signal 

attenuation as the acoustic beam traveled through the overlying tissue in a fashion that is 
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analogous to transthoracic apical window imaging in a clinical setting (Figure 1b). Possible 

issues arising from the assumption that the brightest pixels correspond to fiber orientations 

perpendicular to the ultrasonic beam are considered in the Discussion section below.

After normalization, fiber angle relative to the beam direction was determined from the 

normalized backscatter values. This determination was carried out by making use of 

previously acquired backscatter data relating the magnitude of the scattered signal to the 

orientation of the acoustic beam relative to the fiber direction. (Milne et al. 2012) In this 

previous study, cylindrical myocardial cores from an additional set of fixed sheep hearts 

were insonified from different angles using the same clinical echocardiographic imaging 

system configured in the same fashion as described above. The resulting grayscale images 

and the relative core/ultrasonic probe orientation data were analyzed to relate signal strength 

to fiber direction relative to the interrogating acoustic beam (Figure 1c).

In the current study, with the information obtained from all distances from the apex of the 

heart, the fiber angle data were combined into a single, three-dimensional, composite fiber 

map for each heart. Fiber orientation was interpolated to fill in the regions between each 

acquired apical echocardiographic view in order to create a complete three-dimensional fiber 

angle map of the heart. This interpolation was accomplished by bisecting the gap between 

the apical views and filling with a weighted average of the nearest neighbors, in a fashion 

similar to that used to fill the gaps in the “fan” of a clinical echocardiogram sector image. 

The distributions of fiber orientations were determined for specific regions-of-interest, thus 

permitting comparison among different regions of the heart and to permit comparison of our 

data with previously published findings.

Results

For each of the seven hearts that were studied, the fiber orientation relative to the direction 

of the ultrasound beam, which roughly parallels the long axis of the heart, was obtained for 

the entire heart as described above. Figure 2 illustrates how data were reassembled for one 

of the hearts in the manner depicted in the accompanying cartoon and for comparison 

includes the equivalent fiber map obtained by diffusion MRI for the same levels of the same 

heart. Figure 3 shows the percent difference in measured fiber orientation between the two 

imaging modalities. In general the percent difference between the fiber angles measured 

using the two modalities is less than 15% in the mid-myocardium tissue of the left 

ventricular wall. This reported difference is likely an upper limit on the true disagreement 

between the two methods, because the disagreement is largely associated with the difficulty 

of achieving proper registration between the images. Figure 4 shows the same transverse 

slices depicted in Figure 2 (plus one additional transverse slice from the base of the heart) 

side-by-side for easier inspection of the fiber orientation. Figure 5 shows the data from the 

same heart reassembled in a three-plane view. The same three-plane view for the remaining 

six hearts used in this study are displayed in Figure 6.

For each heart, these data indicate that the fibers in the midmyocardium are typically 

oriented circumferentially (corresponding to a helical angle of 0° and a gray scale value of 

maximally white in the images). The fibers exhibited gradually increasing tilt angles as the 
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location moves towards the endocardium or towards the epicardium (corresponding to 

increasing helical fiber angles and darker gray scale values). This orientation appears to be 

consistent with reported results obtained by histological assessment of myocardial fiber 

orientation (Greenbaum et al. 1981; Streeter et al. 1969). For one heart, a second set of 

ultrasound data was taken at a later date and the fiber orientation analysis was repeated. 

Examining a selection of regions in the two fiber maps acquired on the two separate 

occasions showed that variation between the fiber angles for the same tissue was less than 

10 degrees on average. As with the comparison between the ultrasonic fiber maps and 

diffusion MRI fiber maps, comparison was complicated by the difficulty of properly co-

registering the images, hence the true variability in the fiber maps may be considerably less. 

It should also be noted that with histological assessment, the standard deviation for myofiber 

at a given location is found to be approximately 5 degrees on average (Greenbaum et al. 

1981; Streeter et al. 1969)

Transmural profile lines, such as those shown in Figure 7, demonstrate in greater detail the 

change in orientation of fiber angle across the myocardial walls. These profile lines were 

generated from two regions in the heart, one more apical and one more basal, and in two 

views, one similar to the four chamber view and one similar to the two chamber view. All 

four profile lines demonstrate the gradual rotation of fiber angle for transmural locations 

within the heart wall. For example, for a progression beginning at an orientation of 

approximately 60° at the epicardium of the left ventricular free wall, the profile lines show 

the fibers gradually rotating toward an orientation of 0° (i.e. circumferential) in the mid-

myocardial region, and then gradually rotating away from circumferential back toward an 

angle of approximately 60° as one travels toward the endocardium of the left ventricular 

freewall.

Discussion

In Figure 8, results of the present study are compared with those from a previously 

published study of sheep hearts (Mekkaoui et al. 2012) obtained using diffusion tensor MRI. 

These data correspond to an area of interest in the midlevel of the left ventricular free wall. 

In order to facilitate direct comparison, results from our study are plotted in a manner such 

that fibers exhibit a right-handed helical orientation closer to the endocardium (i.e. the angle 

is positive in the subendocardial region) and a left-handed helical orientation closer to the 

epicardium (i.e. negative in the subepicardial region), which is to say that the appropriate 

sign was assigned to the calculated magnitude of the fiber orientation for purposes of 

comparison. For normal hearts and hearts with only mild fiber orientation disorder, we 

expect that sign assignment should be straightforward; however, it may become more 

problematic in severely diseased hearts. In the Mekkaoui paper, the reconstructed myofiber 

lengths were limited to half the heart circumference (defined as the πR case in the Mekkaoui 

paper). Median values from the Mekkaoui paper are shown with a dashed line in Figure 8, 

with minimum and maximum angles shown with dotted lines. The fiber angles are plotted as 

functions of position measured as a percentage of the distance through the left ventricular 

free wall for both studies. Data from the current study are shown using a solid line; error 

bars denote the standard deviation at each position. Data from the current echocardiography-

based study are in good agreement with those obtained with diffusion tensor MRI. 
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Furthermore, the transmural distribution of fiber angles observed in the current study are 

similar to the histology-derived values observed in canine hearts (Streeter et al. 1969) and in 

human hearts (Greenbaum et al. 1981).

When comparing an ultrasonic method of obtaining fiber orientation to fiber orientation 

obtained with diffusion tensor MRI, it is useful to note the strengths and weaknesses of each 

modality. One primary limitation of diffusion MRI is the relatively long scan time required 

to obtain a high-resolution image. For this reason, the MRI fiber map shown in figure 2 has 

a much lower spatial resolution that its ultrasonic counterpart. In addition, MRI also suffers 

from susceptibility artifacts, which appear primarily at the edge of the tissue. In this study, 

efforts were made to minimize potential susceptibility artifacts using a spin-echo sequence. 

We expect susceptibility artifacts would be less prominent in in vivo studies because the 

heart tissue is not surrounded by air. Ultrasound is faster and has higher resolution, however 

one drawback is the inherent inability to distinguish between fibers that are rotated towards 

the ultrasonic beam from fibers that are rotated the same angle away from the ultrasonic 

beam with respect to the perpendicular plane. Such a distinction may require additional 

images to be acquired using different echocardiographic windows.

In Figure 9 the distribution of fiber angles associated with specific regions of the heart (left 

ventricular free wall, right ventricular free wall, and septum) are presented. The differences 

in the fiber orientation distributions observed in the right, septal, and left ventricular regions 

are likely associated with the different roles each myocardial region plays in overall cardiac 

function. These data demonstrate that the tissues in the left ventricular free wall tend to have 

more fibers at low angles (below 20°) and a distribution which peaks between 21° and 30° 

(i.e., consistent with more circumferentially oriented fibers and a radial contraction). In 

contrast, fibers in the right ventricular free wall exhibit distributions with peaks between 31° 

and 40° (i.e., more longitudinally oriented fibers). The fiber angle distribution for the septal 

wall lies between those of the two outer walls, perhaps a consequence of the sharing of the 

septal wall between the right and left ventricles and thus sharing characteristics, as well as 

functions, of both the right and left ventricular walls.

To assess the potential clinical implementation of echocardiography-based estimates of fiber 

orientation, we explored the use of real-time 3D volumetric echocardiographic imaging. A 

GE Vivid E9 imaging system, equipped with a 4V matrix phased array transducer, was used 

to acquire complete volumetric images of one of the sheep hearts from a single position and 

orientation of the probe. In an analogous configuration to the one described above, the heart 

was placed base-down in a water bath and interrogated from the apex, as depicted in Figure 

10. Figure 11 depicts a transverse cut-away rendered view of the 3D volume of backscatter 

data, where the bright midmyocardial region is clearly delineated. Figure 12 shows a series 

of nine individual transverse image planes extracted from the 3D volumetric acquisition, 

tiled in a fashion similar to that shown in Figure 4. Although these data do not explicitly 

represent the measured fiber orientations, similarities between Figure 12 and Figure 4 (i.e., 

the bright band in the midmyocardium and gradual change in brightness as one moves 

towards the epicardial and endocardial regions) are striking. These results, therefore, suggest 

eventual clinical implementation of echocardiography-based estimates of fiber orientation 

(in beating hearts) using 3D volumetric imaging methods may be feasible. In Figure 13, line 
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profiles at one level of the 3D ultrasonic date are presented. These images are qualitatively 

similar to the basal line profiles for the 2D ultrasonic data presented in Figure 6 (the 3D 

system was not specifically configured to have a linear relationship between grayscale 

brightness and backscatter level, hence the relationship between backscatter level and fiber 

orientation could not be quantified). Fully translating this approach to 3D echocardiography 

may require trade-offs between optimal volume acquisition rates and spatial resolution. If 

higher spatial resolution is needed, image acquisition could be ECG triggered and the fiber 

map generated from a composite volume acquired over multiple heart cycles.

There are some limitations associated with the echocardiographic approach employed in this 

study. An inherent limitation of ultrasonic imaging is the spatial variations in signal intensity 

(speckle) (Wagner et al. 1983), which contributed to apparent spatial variations in the 

estimated fiber orientation. Spatial averaging serves to reduce the potential consequences of 

speckle on estimates of fiber orientation. (Baldwin et al. 2005; Liu and Zagzebski 2010) 

Although this spatial averaging reduces the effective resolution of our method, results seen 

in Figures 2 through 8 clearly indicate the gradation of fiber orientation, as expected. In 

addition, a single transmit focus was utilized for these studies. Utilization of multiple focal 

zones may potentially enhance the spatial resolution of fiber orientation estimation but may 

adversely affect the required frame rates necessary for in vivo measurements.

We have chosen to use fixed tissue in this preliminary study to avoid the additional 

complication of changes in tissue properties during the imaging process. Although fixation 

is known to affect some ultrasonic properties of the tissue, such as the attenuation (Hall et al. 

2000), it is generally assumed that fixation does not significantly alter fiber orientation, 

which is of primary interest for this study.

In addition, the fiber angle was measured relative to the direction of the ultrasonic beam, 

which roughly parallels the walls of the heart. A more sophisticated approach may be to 

report the fiber orientation based on a heart-defined coordinate system. This approach was 

not attempted in this preliminary study. However, a trigonometric calculation suggests that 

the maximum error is less than 10 degrees in the apical region for all the hearts studied, and 

is less than 5 degrees in the middle and base of the hearts using the current (beam-based 

geometry) method.

We anticipate that the methods used here could also be used in in vivo hearts without 

substantial change, so long as the data were processed frame by frame. A potential 

complication in the clinical application might appear for hearts where fiber orientation has 

been substantially altered, as this might invalidate the assumption that the brightest 

backscatter in a given level of the heart corresponded to fibers normal to the ultrasonic 

beam. Nonetheless, this alteration should be readily identifiable when compared to that 

anticipated for normal fiber structure and may provide useful diagnostic information.

Conclusion

Results of this study demonstrate the feasibility of imaging the myofiber structure of whole 

hearts using echocardiographic methods. The fiber maps created during this study are 
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consistent with previously reported histological results as well as with the fiber orientation 

obtained by diffusion magnetic resonance (Mekkaoui et al. 2012; Milne et al. 2012), 

suggesting that the fiber orientation estimated from echocardiography can provide a 

quantitative assessment of the unique fiber orientations associated with specific regions of 

the heart.
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Figure 1. 
Generation of fiber orientation estimates within a single short-axis plane: a) A series of 

apical echocardiographic images were acquired from each excised heart as the probe was 

systematically rotated in 5° increments over a full 180°. A representative apical image is 

depicted. b) For each apical image frame acquired, the level of ultrasonic backscatter was 

measured at each position along a radial line segment positioned a specific distance from the 

apex. The radial line backscatter profiles corresponding to a specific distance from the apex 

for each apical echocardiographic image acquired were assembled in the short-axis plane 

and displayed in a 2D grayscale format. c) The radial line backscatter profile data were 

transformed into fiber orientation data using a previously measured relationship between the 

relative level of ultrasonic backscatter and fiber orientation. These data were interpolated 

and spatially filtered to provide a reconstructed short-axis 2D image depicting local fiber 

orientation
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Figure 2. 
A cartoon illustration and the corresponding fiber maps for one of the hearts at a selection of 

levels. The fiber map derived from ultrasonic data is on the left, and the fiber map derived 

from diffusion MRI data is on the right (note that the two fiber maps have different 

resolutions). The apex of the heart is at the top of the image; the base of the heart is at the 

bottom. The large cavity in the center of the basal slices is the left ventricular cavity.
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Figure 3. 
The percent difference between the fibers for a single layer of one heart as found from 

ultrasound and diffusion MRI. Note that agreement between the two modalities is 

particularly good in the mid-myocardium.
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Figure 4. 
A series of fiber orientation images corresponding to transverse planes at specific levels of 

the heart from the apex (top left of figure) to base (bottom right). The central cavity in many 

of the levels is the left ventricular cavity. Bright white bands in the mid-myocardium result 

from fibers that have a circumferential orientation (i.e. a fiber orientation of 0°).
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Figure 5. 
A three-plane view of the fiber orientation of an excised heart, oriented so that the apex of 

the heart is at the top of the image. The map on the right shows an outline of the heart tissue 

(solid lines) and the location of the fibers oriented approximately circumferentially (between 

the dashed lines).
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Figure 6. 
Three-plane view for the remaining six hearts. Each heart is oriented so that the right 

ventricle is in the front left of the image. In some cases, the right ventricular cavity is not 

visible in the image because the cavity lies below the height at which data were taken.
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Figure 7. 
Transmural profile lines illustrating the fiber orientation at the two levels of the heart shown. 

At each level, two profiles are presented, as illustrated. In all cases the fiber orientation 

rotates from an angle greater than 60° towards the 0° (most circumferential) orientation and 

then back towards higher angles as one travels through each tissue wall. The deep dip in 

angle shown in the left portion of Basal View 1 corresponds to the location of the right 

ventricular cavity.
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Figure 8. 
The results from the current paper are compared with the results from the diffusion tensor 

MRI-derived study of Mekkaoui (Mekkaoui et al. 2012) Angles are plotted as a function of 

percent distance through the left ventricular free wall for both sets of data. Current 

echocardiography-based results are shown with a solid line, with the error bar depicting the 

standard deviation. The corresponding mean values of the helical angles for the Mekkaoui et 

al. results are shown with a dashed line, with the maximum and minimum angles measured 

along a fiber shown with dotted lines.
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Figure 9. 
Comparison of fiber orientations in different regions of the heart. The left ventricular free 

wall orientations are shown in red (downward hatching lines), the septal wall orientations 

are shown in green (solid), and the right ventricular free wall orientations are shown in blue 

(upward hatching lines). The fibers in the left ventricular wall have a slightly shallower 

average fiber orientation than those in the right ventricular wall.
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Figure 10. 
Cartoon depicting the manner of the 3D volume acquisition of the hearts.
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Figure 11. 
Volume rendered cut-away image of an excised sheep heart acquired using the 3D 

echocardiographic imaging system. The bright midmyocardial region, consistent with 

circumferential fiber orientation, is clearly delineated.
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Figure 12. 
Series of transverse short-axis slices, from apex to base, extracted from the 3D volumetric 

echocardiographic data acquired from an excised sheep heart. As in Figure 2, brighter pixels 

within the mid-myocardium correspond with regions having in-plane fiber orientation.
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Figure 13. 
Line profiles for two views as seen in the 3D ultrasonic data. Note the similarity to the basal 

views in figure 7.
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