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Abstract

Rapid evaluation of therapies designed to preserve β cells in persons with type 1 diabetes (T1D) is 

hampered by limited availability of sensitive β-cell health biomarkers. In particular, biomarkers 

elucidating the presence and degree of β-cell stress are needed. We characterized β-cell secretory 

activity and stress in 29 new-onset T1D subjects (10.6 ± 3.0 years, 55% male) at diagnosis and 

then 8.2 ± 1.2 weeks later at first clinic follow-up. We did comparisons with 16 matched healthy 

controls. We evaluated hemoglobin A1c (HbA1c), β-cell function (random C-peptide [C] and 

proinsulin [PI]), β-cell stress (PI:C ratio), and the β-cell stress marker heat shock protein (HSP)90 

and examined these parameters’ relationships with clinical and laboratory characteristics at 

diagnosis. Mean diagnosis HbA1c was 11.3% (100 mmol/mol) and 7.6% (60 mmol/mol) at 

follow-up. C-peptide was low at diagnosis (P < 0.001 vs controls) and increased at follow-up (P < 

0.001) to comparable with controls. PI did not differ from controls at diagnosis but increased at 

follow-up (P = 0.003) signifying increased release of PI alongside improved insulin secretion. PI:C 

ratios and HSP90 concentrations were elevated at both time points. Younger subjects had lower C-

peptide and greater PI, PI:C, and HSP90. We also examined islets isolated from prediabetic 

nonobese diabetic mice and found that HSP90 levels were increased ~4-fold compared with those 

in islets isolated from matched CD1 controls, further substantiating HSP90 as a marker of β-cell 

stress in T1D. Our data indicate that β-cell stress can be assessed using PI:C and HSP90. This 

stress persists after T1D diagnosis. Therapeutic approaches to reduce β-cell stress in new-onset 

T1D should be considered.
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INTRODUCTION

Type 1 diabetes (T1D) is characterized by autoimmune pancreatic β-cell destruction. After 

diagnosis and insulin therapy initiation, persons with new-onset T1D frequently enter a 

transient partial recovery of β-cell function known as the “honeymoon” period. The 

maximum recovery is typically reached 2–4 months after diagnosis and characterized by 

increased endogenous insulin secretion, decreased exogenous insulin demands, and 

improved glycemic control.1–3 The honeymoon period has been characterized in numerous 

ways, with all definitions including 1 or more of the following parameters: hemoglobin A1c 

(HbA1c) < 8.0% (64 mmol/mol), daily total insulin dose <0.5 units per Kg body weight per 

day (U/kg/d), or stimulated insulin connecting peptide (C-peptide) concentrations > 300 

pM.1,3 However, this remission is nearly always relatively short lived.

Emerging data from rodent and human models suggest that activation of intrinsic β-cell 

stress pathways such as endoplasmic reticulum (ER) stress, oxidative stress, and 

mitochondrial dysfunction contribute to T1D pathogenesis.4–6 These pathways likely 

become activated early during the progression toward T1D and may either trigger 

autoimmunity through neoantigen formation or act independently to accelerate autoimmune-

mediated β-cell death.7–11 Robustly and noninvasively identifying activation of these 

processes and monitoring their progression after T1D diagnosis are not currently feasible. 

Moreover, whether the honeymoon period is associated with modulation of β-cell stress 

remains undefined.

Insulin is synthesized in β cells as the precursor molecule preproinsulin, which consists of an 

N-terminal signal peptide, the insulin B chain, C-peptide, and the insulinA chain. As the 

newly synthesized insulin protein is translocated into the ER lumen to undergo folding and 

maturation, the signal peptide is removed generating a proinsulin (PI) molecule. PI cleavage 

(into insulin and C-peptide) occurs in secretory granules before β-cell exocytosis. Under 

normal conditions, little intact PI is secreted.12 An elevation in the proportional secretion of 

PI relative to fully processed, mature insulin (assessed using C-peptide) is indicative of β-

cell dysfunction and is primarily thought to reflect alterations in insulin protein folding and 

processing that originate in the ER.12,13 Under inflammatory conditions, isolated islets 

release of PI increases.14 Because pre-PI is the most abundant protein produced by the β 

cell, alterations in this molecule’s processing not only provide insight into β-cell secretory 

capacity but may also provide an assessment of overall ER health.

When proteins fail to fold correctly within the ER lumen, an unfolded protein response 

(UPR) is activated. 7,8 The UPR decreases new protein delivery to the ER, restores cellular 

homeostasis, and ultimately increases ER protein-folding capacity through key chaperone 

protein synthesis such as protein disulfide isomerase and heat shock proteins (HSPs), for 

example, HSP90.7,15,16 If the inciting stress is unresolved, continual UPR stimulation can 

lead to activation of proapoptotic pathways and eventual β-cell death. This transition is 

referred to as ER stress.7,8 ER health alterations may arise from a variety of perturbations 

relevant to T1D pathophysiology including autoimmunity and inflammation, intracellular 

calcium homeostasis alterations, oxidative stress, and hyperglycemia. Islets from nonobese 

diabetic (NOD) mice demonstrate increased activation of these pathways before and at T1D 
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onset.4 Moreover, pancreatic section analyses from humans with T1D, obtained through the 

Network of Pancreatic Organ Donors with Diabetes program, demonstrate increased 

expression of ER stress molecules such as CCAAT/enhancerbinding protein homologous 

protein (CHOP) and binding of immunoglobulin protein (BIP).6

Our aim was to evaluate the activation and modulation of intrinsic β-cell stress pathways in 

subjects at T1D diagnosis and during the early honeymoon period. β-cell secretory activity 

was quantified by measuring serum C-peptide and PI. To provide a functional assessment of 

β-cell stress and ER function, PI to C-peptide (PI:C) ratios were calculated and total serum 

HSP90 concentrations measured. Relationships between measures of β-cell stress and 

variables that might influence stress attenuation or diabetes remission including age, gender, 

body mass index (BMI), and serum bicarbonate at diagnosis were also defined.

RESEARCH DESIGN AND METHODS

Subjects

This study was approved by the Indiana University Institutional Review Board. Subjects 

aged 7–18 years with new-onset T1D were sequentially recruited over a 12-month period 

whereas hospital inpatients within 1–3 days of diagnosis. Informed consent was obtained 

from parents with assent from children. Subjects were defined as having T1D if they had 1 

or more positive autoantibodies with clinical features of T1D (including hyperglycemia, 

weight loss, normal BMI) or were autoantibody negative but aged <10 years at diagnosis. 

Exclusion criteria included diabetic ketoacidosis requiring an intensive care unit stay, 

diabetes other than T1D, history of prior chronic illness known to affect glucose metabolism, 

use of medications known to affect glucose metabolism, history of smoking, use of statins or 

angiotensin converting enzyme inhibitors, psychiatric impairment, or current use of 

antipsychotic medications. Subjects received a $10 gift card for each visit. All T1D subjects 

had peripheral blood drawn at 2 time points: at diagnosis and at the first return clinic visit 6–

10 weeks after diagnosis during the honeymoon initiation period. Random (mostly 

nonfasting) samples were collected in serum-separator tubes. Serum was isolated by 

centrifugation and stored at −80°C.

Control sera from nondiabetic healthy children were obtained from a biorepository at 

Indiana University School of Medicine and matched based on gender, age, and BMI. BMI z 
scores were calculated using online software (http://stokes.chop.edu/web/zscore/). Of note, 

14 subjects did not have a height obtained at diagnosis, and therefore heights from the 

second assessment time were used for BMI calculations.

Laboratory assays

Autoantibodies to glutamic acid decarboxylase 65, Insulin (mIAA), and Islet Antigen 2 

(IA-2) were assayed from peripheral blood at diagnosis or at the first clinic follow-up at 

Mayo Clinic Laboratories (Rochester, Minnesota). HbA1c levels were measured at diagnosis 

and at first clinic visit by point-of-care sampling using either the Bayer A1cNow system or 

the Bayer DCA 2000 (Tarrytown, New York). Values obtained from other facilities before 

transfer to our hospital at the time of diagnosis were sometimes measured using other 
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assays. For samples with values above the assay upper limit of detection (13.1% [120 mmol/

mol]), 13.1% was used for subsequent analyses. Serum C-peptide, PI, and HSP90 were 

quantified in stored serum samples using capture enzyme linked immunosorbent assays and 

performed according to the manufacturer instructions. The C-peptide assay (Alpco, Salem, 

New Hampshire) detected levels in the range of 20–3000 pM with a sensitivity of 2.95 pM. 

The PI assay (Alpco) detected levels in the range of 2.5–180 pM with a sensitivity of 1.25 

pM. Four samples had serum PI levels below the assay lower limit of detection. For these 

samples, a value of one-half the lower limit of detection was used.17 The HSP90 assay 

detected levels in the range of 0.78–50 ng/mL with a sensitivity of 0.2 ng/mL (Enzo Life 

Sciences, Farmingdale, New York).

Animals, islet preparations, and immunoblots

Animals were maintained under protocols approved by the Indiana University Institutional 

Animal Care and Use Committee, the United States Department of Agriculture Animal 

Welfare Act (9 Code of Federal Regulations Parts 1, 2, and 3), and the Guide for the Care 

and Use of Laboratory Animals.18 Female NOD/ShiLTJ (NOD) mice were obtained from 

The Jackson Laboratory (Bar Harbor, Maine), and control CD1 mice were obtained from 

Charles River (Wilmington, Massachusetts) at the age of approximately 8 weeks. Mouse 

cages were kept in a standard light-dark cycle with ad libitum access to food and water. At 

10 weeks, islets were isolated from both NOD and control CD1 mice as described 

previously.19 Immunoblot analysis was performed as described previously using anti-HSP90 

(Enzo Life Sciences) and anti-Actin mouse antibodies (MP Biomedical, Santa Ana, 

California).20 Immunoblots were scanned using an LI-COR Odyssey 1828 scanner and 

analyzed with LI-COR Image Studio software. Densitometries of scanned images were 

calculated using ImageJ software (National Institutes of Health, Bethesda, Maryland).

Statistics

Descriptive statistics were calculated for all variables. Means ± standard deviations are 

reported unless otherwise noted. Two sample t tests were used to compare the T1D group 

with the control group. Paired t tests were used to compare the T1D samples at the 2 time 

points (diagnosis and honeymoon initiation). Levene’s test for equality of variances and 

Pearson correlations were used to find linear relationships between 2 variables. SPSS 

version 20.0 (SPSS Inc., Chicago, Illinois) was used for all statistical analyses. Where 

indicated, adjustments were made for age, gender, and diagnosis C-peptide.

RESULTS

Evaluation of β-cell stress markers

Previous work by our group has demonstrated a nearly 9-fold increase in serum PI:insulin 

ratios in prediabetic NOD mice, correlating with increased expression of established markers 

of ER stress signaling including spliced XBP-1, Bip, and Chop.4 To define whether islet 

expression of the protein chaperone HSP90 was similarly increased, immunoblots were 

performed. Results revealed a ~4-fold increase in HSP90 levels in islets isolated from NOD 

mice compared with islets isolated from age- and sex-matched CD1 controls (Fig 1; P < 

0.05).
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Although these data support the use of the PI:C ratio and HSP90 as indicators of β-cell stress 

in a mouse model of T1D, the main goal of this work was to establish their utility in human 

T1D. We assembled and studied a cohort of 29 children with new-onset T1D. T1D subjects 

were then matched based on age, gender, and BMI matched to 16 healthy non-T1D control 

subjects. See Table I for demographic details. For 3 samples, complete matching was not 

possible, and samples were partially matched based on either subject age or subject BMI.21 

Samples from control subjects were analyzed for all biomarkers; however, for T1D samples, 

analysis of HSP90 levels was carried out using serum from 27 patients.

Evaluation at diagnosis of T1D: glycemic control, islet secretory function, and level of β-
cell stress

As expected, subjects newly diagnosed with T1D were hyperglycemic (mean HbA1c 11.3 

± 1.7% [100 mmol/mol], range 7.5%–15.7% [58 mmol/mol–148 mmol/mol]), with 

decreased serum C-peptide levels relative to healthy controls (P < 0.001). Serum PI 

concentrations of persons with T1D at diagnosis were not different than those of controls (P 
= 0.86). However, the PI:C ratio and serum HSP90 concentrations were significantly 

elevated at the time of diagnosis of T1D compared with controls (PI:C, P < 0.001; HSP90, P 
= 0.02; Fig 2, A–E).

Evaluation at the initiation of honeymoon period: glycemic control, islet secretory 
function, and level of β-cell stress

During the honeymoon period, glycemic control significantly improved, with a mean HbA1c 

of 7.6 ± 0.9% (60 mml/mol) and range 6.4%–9.7% (46 mmol/mol–83 mmol/mol); P < 0.001 

vs diagnosis (Fig 2, A). β-cell secretory activity improved, with significantly increased C-

peptide concentrations (P < 0.001 vs diagnosis), to levels that were comparable to those of 

the controls (Fig 2, B). Interestingly, PI measured at this time point was increased relative to 

levels at the time of diagnosis (P = 0.003), and PI levels were also significantly higher than 

those observed in the controls (P = 0.001; Fig 2, C).

At the second blood draw 6–10 weeks after T1D diagnosis, the PI:C ratio and HSP90 levels 

remained significantly elevated compared with controls (PI:C, P < 0.001; HSP90, P < 

0.001), suggesting continued β-cell stress (Fig 2, D and E). Compared with diagnosis, both 

markers trended toward increased concentrations, yet changes were not statistically 

significant.

Evaluation at the honeymoon initiation period: changes in islet secretory activity with time 
after diagnosis

We then compared the relationship between C-peptide and PI and time elapsed between 

diagnosis and the second blood draw. T1D subjects’ total C-peptide concentrations trended 

to be lower as more time elapsed since diagnosis (r = −0.35; P = 0.063). However, a 

significant positive correlation (r = 0.481; P = 0.008) was observed between the PI 

concentration and the amount of time after diagnosis at second evaluation (Fig 3, A and B). 

This correlation with time after diagnosis was not attenuated after adjustment for age, 

gender, or C-peptide concentration at the time of diagnosis.
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Evaluation at the honeymoon initiation period: changes in PI:C and HSP90 with time after 
diagnosis

PI:C and HSP90 did not change significantly between diagnosis and the honeymoon period. 

However, we observed a positive correlation between PI:C and the time from diagnosis to 

the second time point (r = 0.587; P = 0.0008). The correlation between HSP90 and time 

from diagnosis was not significant (r = 0.03; P = 0.847; Fig 3, C and D).

β-cell secretory activity and β-cell stress with variables: age, gender, and BMI at diagnosis

Because data from other studies suggest that younger children have a shorter honeymoon 

period compared with older children, 1,2 we next examined how age at diagnosis related to 

β-cell secretory function and degree of β-cell stress. We divided our population into 2 

groups: (1) young children, age <10 years (n = 12; mean age 7.6 ± 1.6 years; 58% male; 

BMI z score at diagnosis 0.0 ± 1.3; HbA1c at diagnosis 11.2 ± 1.4% [99 mmol/mol]; 

HbA1C at honeymoon initiation 7.5 ± 0.7% [58 mmol/mol]), and (2) older subjects age ≥10 

years (n = 17; mean age 12.8 ± 1.5; 53% male; BMI z score at diagnosis −0.2 ± 1.3; HbA1C 

at diagnosis 11.4% ± 1.9 [101 mmol/mol]; HbA1C at honeymoon initiation 7.6% ± 1.1 [60 

mmol/mol]).

At diagnosis and at the time of the second blood draw, subjects aged ≥10 years had 

significantly higher C-peptide compared with the younger children (diagnosis: P = 0.008; 

honeymoon: P = 0.011). We also examined age as a continuous variable and found that at 

the time of second visit, younger subjects had lower C-peptide (r = 0.416 P = 0.025). The 

absolute changes in C-peptide concentrations between diagnosis and honeymoon did not 

vary with subject age (Fig 4, A and B).

Similar to C-peptide, PI levels at diagnosis in the ≥10-year age group were significantly 

elevated compared with those of <10 (P = 0.004). The PI concentrations in the≥10-year age 

group at the honeymoon initiation were overall lower than in those aged <10 years, but this 

comparison was not significant (P=0.693; Supplementary Fig 1, B). There was a small 

nonsignificant negative correlation between PI level at the honeymoon initiation and subject 

age. Of note, there was a significant negative correlation between subject age and absolute 

change in PI levels from diagnosis to honeymoon (r=−0.388; P=0.037). It was more 

common for older subjects to have decreases in PI from time of diagnosis to honeymoon 

initiation than younger subjects (Fig 4, C and D).

There were no significant differences in PI:C either at diagnosis or at the second blood draw 

between the 2 age categories (<10 and ≥10 years). Although differences were not significant, 

the ≥10-year age group had higher PI:C ratios than the younger age group at diagnosis, but 

at follow-up, the ≥10 years of age category PI:C was lower (Supplementary Fig 1, C). When 

age was considered as a continuous variable, although older patients again tended to have 

lower PI:C in the honeymoon period, this trend was not significant. Of note, age at diagnosis 

and the absolute change in PI:C ratio from diagnosis to follow-up were significantly 

correlated, with older subjects being more likely to have a decrease in PI:C ratios than 

younger subjects (Fig 4, E and F).
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At diagnosis and at the honeymoon time point, subjects aged ≥10 years had lower HSP90 

concentrations than subjects aged <10 years. During the honeymoon period, this trend 

achieved statistical significance (P = 0.017; Supplementary Fig 1, D). A significant negative 

correlation was observed between subject age and HSP90 at the honeymoon initiation time 

point (r = −0.507, P= 0.007). There was a nonsignificant negative correlation between 

absolute change in HSP90 concentration between diagnosis and honeymoon and subject age 

at T1D diagnosis (Fig 4, G and F). HSP90 and PI:C ratios were not correlated with HbA1c 

at either time point, either before or after adjustment for age.

There were no significant differences based on gender for C-peptide, PI, or PI:C at either of 

the 2 time points. At the honeymoon time point, males had higher HSP90 concentrations (P 
= .041). However, at diagnosis, the HSP90 increase in males was not significant.

There were no significant correlations between BMI z scores or bicarbonate at diagnosis and 

C-peptide, PI, PI:C ratio, and HSP90 concentrations at T1D diagnosis or at the honeymoon 

period.

DISCUSSION

The prediagnostic phase of T1D is marked by clinically silent changes in β-cell function. 

Insulitis and β-cell injury occur early and are followed by decreased first-phase insulin 

response and changes in β-cell glucose sensitivity.22 With continued β-cell destruction, 

dysglycemia ensues and T1D becomes clinically evident.23 Recently, there has been an 

increasing appreciation for the role of intrinsic β-cell stress pathways in T1D 

pathophysiology and progression. However, noninvasive β-cell stress measures in vivo are 

lacking, and little is known about changes in β-cell stress after diagnosis.

The T1D honeymoon represents a period of improved metabolic control clinically 

characterized by low exogenous insulin requirements and decreased blood glucose lability. 

This period is associated with improved β-cell secretory function, shown by greater 

endogenous C-peptide and improved insulin sensitivity.24 As expected, within the studied 

cohort, we observed improved β-cell secretory function during the honeymoon period. Our 

primary goal was to provide an assessment of β-cell health at T1D diagnosis and to 

determine how β-cell stress evolved during the honeymoon period. To this end, we measured 

the relative proportion of PI to fully processed insulin secretion (assessed by measurement 

of C-peptide) and levels of the stress chaperone HSP90. As validation that these markers 

accurately reflected a state of β-cell stress, the same assessments were performed in age, 

gender, and BMI-matched controls.

Both HSP90 levels and the PI:C ratio were significantly higher in new-onset subjects 

compared with healthy, nondiabetic controls. Interestingly, despite amelioration of 

hyperglycemia and parallel increases in serum PI and C-peptide, there were no differences in 

the PI:C ratio or HSP90 levels between values obtained at T1D diagnosis and those obtained 

on average 8 weeks later. These findings indicate that although secretory function of the β 

cell increased, overall β-cell health or level of β-cell stress may not change substantially in 

the honeymoon period.
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Increased PI:C ratios have been shown previously in autoantibody-positive first-degree 

relatives of persons with T1D with and without decreased first-phase insulin 

response.13,25,26 In additon, elevated PI:C ratios have been described in individuals with 

new-onset T1D before insulin initiation.27 Our findings do contradict 1 previous study 

demonstrating significantly increased PI:C levels after T1D diagnosis.28 However, we 

looked at β-cell stress levels immediately after diagnosis and during the very initial 

honeymoon period, whereas the prior study evaluated β-cell stress levels at longer time 

periods after diagnosis. It is plausible that levels of stress change with more prolonged 

disease states. Longitudinal studies capturing additional time points after diagnosis would be 

needed to address this.

We selected serum HSP90 as a second potential marker of β-cell stress. HSP90 is a 

cytoplasmic chaperone that plays an active role in mitigating the UPR and ER stress by 

binding and stabilizing 2 ER stress sensors, PERK and IRE1α, to attenuate cellular damage, 

including in β-cell lines.29,30 PERK in β cells is a key modulator of insulin synthesis during 

stress.31 In addition, studies indicate that oxidative stress can promote measurable cellular 

release of HSP90.32 Notably, alterations in autoantibody responses to HSP90 have been 

reported in patients with T1D.33 Given the association with ER and oxidative stress, HSP90 

is therefore a plausible candidate for a serum marker of β-cell stress.34,35 In the NOD mouse 

model at 10 weeks, before the onset of overt hyperglycemia, there is an associated 4-fold 

increase in HSP90. To our knowledge, this is the first assessment of HSP90 as a potential 

T1D biomarker.

It is noteworthy that the improvement in hyperglycemia due to insulin therapy appeared to 

have no effect on the level of β-cell stress. Hyperglycemia is known to be toxic to pancreatic 

β cells and has been shown in vitro to activate ER and oxidative stress pathways.36,37 In 

addition, preclinical and clinical literature have revealed a role for insulin signaling in 

maintenance of β-cell health, survival, and proliferation.38 However, the continued high PI:C 

and HSP90 during the honeymoon period suggests that restoration of insulin signaling with 

exogenous insulin may play a minor role, if any, in reducing β-cell stress. This finding is 

consistent with data showing that T1D patients treated with intensive closed-loop insulin 

therapy at the time of diagnosis did not experience improved preservation of β-cell function 

measured by C-peptide retention relative to subjects who did not receive closed-loop therapy 

at diagnosis.39 These data support the continued effect of autoimmunity on β-cell health and 

also suggest that β-cell pathways activated during the progression of T1D are not easily 

extinguished despite improvements in the overall metabolic status. The results also suggest 

that β-cell “rest” in T1D may not dramatically improve overall β-cell health.

Of the variables, age, gender, BMI and bicarbonate at diagnosis, we only observed a 

significant relationship between the age at diagnosis, β-cell secretory function, and β-cell 

stress. Our data concur with previous clinical findings that younger individuals have shorter 

honeymoon periods than those of older T1D patients.1,2 The directly inverse relationship 

indicates the possibilities of an immature β cell more rapidly succumbing with loss of 

metabolic stability in this period or of a less mature immune system launching more 

aggressive immune assault. Younger subjects’ lower PI levels at diagnosis and increase in PI 

levels after diagnosis indicate that this subset of individuals have a much more rapid loss of 
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β-cell ER functionality. Our findings indicate that younger age is associated with decreased 

β-cell adaptation at the time of honeymoon initiation. Of note, we did not observe any effect 

based on gender, BMI, or acidosis. The lack of changes seen with BMI may be attributed to 

unstable and unpredictable weight changes in the period preceding and after T1D diagnosis. 

We may not have seen changes with acidosis because we excluded subjects who required an 

ICU stay at diagnosis.

Our study has several limitations. Although we believe that the observed PI elevations 

indicate continued secretion of incompletely processed insulin and β-cell protein processing 

disruption, we acknowledge this could reflect altered PI systemic clearance. Elevated 

circulating serum PI might also reflect greater immature β-cell granule releasewith a higher 

content of intact PI.40,41 Furthermore, this was a pilot study with a relatively small sample 

size. In addition, we assessed random measures of C-peptide, PI, and HSP90. These 

measures may be affected by the degree of fasting, which was not taken into account with 

study design because we recruited patients during breaks in inpatient education and did 

follow-ups during regularly scheduled clinic visits. Future study would benefit from 

characterization of C-peptide and PI secretion using provocative stimulatory tests such as a 

mixed-meal tolerance test. Finally, although HSP90 is present in β cells, it is not exclusive to 

β cells. Stress and inflammation likely exert tissue-specific effects on HSP90 release as 

serum levels of this chaperone were increased in lupus erythematosus patients, although 

decreased serum HSP90 was detected in patients with autoimmune bullous pemphigoid.42,43

CONCLUSIONS

The diagnosis of T1D reflects a failure of maintenance of adequate insulin production and is 

associated with increases in circulating serum PI and HSP90. Despite significant 

improvements in metabolic control during the honeymoon period, sustained β-cell stress is 

observed. We observed that young T1D subjects demonstrate greater evidence of β-cell 

dysfunction and stress, characterized by lower C-peptide and higher PI than older children.

Once the loss of metabolic control has occurred and individuals leave the honeymoon phase, 

there is greater difficulty reaching glycemic targets. Thus, the honeymoon period’s stabilized 

metabolic control and increased β-cell secretion of insulin represents a transient golden 

period for the T1D patient. Still as shown here, even during the honeymoon period, β-cell 

stress is sustained pointing toward eventual loss of function. Better characterization of the β 

cell during this period marks a first step toward defining the optimal window for β-cell–

specific therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

BiP binding of immunoglobulin protein

BMI body mass index

CHOP CCAAT/enhancer-binding protein homologous protein

C-peptide insulin connecting peptide

ER endoplasmic reticulum

FPIR first phase insulin response

GAD65 glutamic acid decarboxylase 65

HbA1c hemoglobin A1c

HSP heat shock protein

mIAA insulin autoantibody

IA-2 islet antigen 2

LLD lower limit of detection

nPOD Network of Pancreatic Organ Donors with Diabetes

NOD nonobese diabetic

PI proinsulin

TID type 1 diabetes

UPR unfolded protein response
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AT A GLANCE COMMENTARY

Watkins RA, et al

Background

Type 1 diabetes (T1D) is attributed to autoimmune-mediated β-cell destruction. Emerging 

data suggest that endoplasmic reticulum and oxidative stress pathways are triggered early 

within the β cell during the evolution of T1D and may initiate and accelerate 

autoimmune-mediated β-cell destruction.

Translational Significance

Our article describes changes in β-cell C-peptide secretion and biomarkers of β-cell stress 

in young persons with recent-onset T1D. In particular, we examine 2 biomarkers: 

proinsulin/C-peptide ratios and heat shock protein 90 concentrations. These data mark 

initial steps toward a long-term goal of establishing treatments aimed at sustaining β-cell 

secretory function by alleviating β-cell stress after diagnosis.
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Fig 1. 
Expression of HSP90 in islets from CD1 and NOD mice. A representative western blotting 

of 3 experiments (upper panel) shows that the expression of HSP90 is higher in islets from 

10-week-old NOD mice compared with those from the age-matched control (CD1 mice). 

O.D for HSP90 normalized to the O.D for actin shows that HSP90 increases about 4 times in 

the islets from NOD relative to those from CD1 (lower panel). *P < 0.05. HSP, heat shock 

protein; NOD, nonobese diabetic; O.D, optical density.

WATKINS et al. Page 14

Transl Res. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. 
(A–E): Glycemic control (A), β-cell secretory activity (B, C), and β-cell stress (D, E) 

quantification. Healthy control and T1D subject sera at diagnosis and honeymoon period 

were analyzed for C-peptide, PI, and HSP90. (A) Hemoglobin A1c of T1D subjects at 

diagnosis and at honeymoon. (B) C-peptide levels in control and T1D subjects at diagnosis 

and at honeymoon. (C) PI levels in control and T1D subjects at diagnosis and at honeymoon. 

(D) β-cell stress assessed by the ratio of PI to C-peptide (PI:C) in control and T1D subjects 

at diagnosis and at honeymoon. (E) Stress assessed by serum HSP90 in controls and T1D 

subjects at diagnosis and at honeymoon. Error bars display standard deviations from the 

mean. Each circle represents one control subject, each square represents one T1D subject at 

diagnosis, each triangle represents one T1D subject at honeymoon initiation. *P < 0.05, **P 
< 0.01, ***P < 0.001 vs control based on independent sample t test. ##P < 0.01, ###P < 

0.001 vs T1D subject at time of diagnosis based on paired sample t test. 1For subjects (n = 4) 

with serum PI below the LLD, a value of one-half the LLD was used. HSP, heat shock 

protein; LLD, lower limit of detection; PI, proinsulin; T1D, type 1 diabetes.
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Fig 3. 
Pearson correlations of relationship between β-cell secretory activity measures (A and B) 

and β-cell stress measures (C and D) with time after diagnosis of T1D. (A) A nonsignificant 

negative correlation is observed with lower C-peptide levels at second time point. (B) 

Significant positive correlation demonstrating that when second time point was further from 

diagnosis, C-peptide was higher. (C) Significant positive correlation is observed with 

subjects returning further from diagnosis having higher levels of PI:C. (D) No correlation 

was observed between HSP90 and time from diagnosis. Each triangle represents one T1D 

subject at the time of honeymoon initiation. HSP, heat shock protein; PI, proinsulin; T1D, 

type 1 diabetes.
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Fig 4. 
Pearson correlation between β-cell secretory activity (A and B) and β-cell stress (C and D) 

with age at diagnosis. (A) A significant positive correlation is observed with younger 

subjects having lower levels of C-peptide at honeymoon. (B) No correlation was observed 

between the age of subject at diagnosis and the absolute change in PI:C levels between 

diagnosis and honeymoon. (C) A nonsignificant negative correlation is observed between PI 

at honeymoon and subject age. (D) A significant negative correlation is observed between 

absolute change in PI levels from diagnosis to honeymoon and subject age. Older subjects 

were more likely to have a decrease in PI than younger subjects during the honeymoon 
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initiation time point. (E) There was a nonsignificant negative correlation between β-cell 

stress measured by PI:C ratios and age at diagnosis. (F) A significant negative correlation 

was observed between the absolute change in PI:C ratio from diagnosis to honeymoon 

period and subject age at diagnosis. Older subjects were more likely to have a decrease in 

PI:C ratios at the honeymoon time point. (G) A significant negative correlation was 

observed between HSP90 levels at honeymoon initiation time point and subject age. Older 

subjects had lower HSP90 concentrations at honeymoon. (H) A nonsignificant negative 

correlation was observed between the absolute change in HSP90 between diagnosis and 

honeymoon. Each triangle represents one T1D subject at the time of honeymoon initiation; 

each diamond represents the difference between baseline and honeymoon initiation values in 

one T1D subject. HSP, heat shock protein; PI, proinsulin.
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Table I

Study demographics

Characteristic Non-T1D controls T1D subjects

Number of subjects* 16 29

Age (y), (range) 10.5 ± 3.0 (4–15) 10.6 ± 3.0 (4–15)

Gender (male) 56% 55%

BMI† (Kg/m2) 18.15 ± 2.46 17.93 ± 3.31

BMI z score†(range) — −0.12 ± 1.24 [−2.68 to 2.33]

Number of autoantibodies positive‡,§ — 0 AutoAb positive: 6.9%

1 AutoAb positive: 17.2%

2 AutoAb positive: 65.5%

3 AutoAb positive: 10.3%

Basal insulin requirement prior to hospital discharge (units/kg/d) — 0.31 ± 0.09

Basal insulin requirement at first outpatient clinic follow-up (units/kg/d) — 0.20 ± 0.1

Time from diagnosis to first blood draw (range) — 1.2 d (1–3)

Time from diagnosis to first outpatient clinic follow-up (range) — 8.2 ± 1.2 wk (6–10)

HbA1c at diagnosis (range)|| — 11.3 ± 1.7% (7.5–15.7)

HbA1c at first outpatient clinic follow-up (range) — 7.6 ± 0.9% (6.4–9.7)

Abbreviations: BMI, body mass index; HbA1c, hemoglobin A1c; T1D, type 1 diabetes.

Values displayed are means ± standard deviations unless otherwise noted.

*
For HSP90 analysis, number of T1D subjects = 27.

†
For BMI and z score calculation, 14 subjects did not have diagnosis heights. For calculation of BMI and z score at diagnosis, heights from clinic 

follow-up were used.

‡
The following 3 diabetes-associated antibodies were tested: GAD, miAA, and IA-2A.

§
All autoantibody-negative subjects were aged <10 years.

||
Four subjects at diagnosis had HbA1c recorded as >13.1. For data analysis, a value of 13.1 was used.
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