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Abstract

Objectives—The generation of transgenic mice expressing green fluorescent proteins (GFPs) 

has greatly aided our understanding of the development of connective tissues such as bone and 

cartilage. Perturbation of a biological system such as the temporomandibular joint (TMJ) within 

its adaptive remodeling capacity is particularly useful in analyzing cellular lineage progression. 
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The objectives of this study were to determine: (i) if GFP reporters expressed in the TMJ indicate 

the different stages of cell maturation in fibrocartilage and (ii) how mechanical loading affects 

cellular response in different regions of the cartilage.

Design/Methods—Four-week-old transgenic mice harboring combinations of fluorescent 

reporters (Dkk3-eGFP, Col1a1(3.6kb)-GFPcyan, Col1a1(3.6kb)-GFPtpz, Col2a1-GFPcyan, and 

Col10a1-RFPcherry) were used to analyze the expression pattern of transgenes in the mandibular 

condylar cartilage. To study the effect of TMJ loading, animals were subjected to forced mouth 

opening with custom springs exerting 50 grams force for 1 hour/day for 5 days. Dynamic 

mineralization and cellular proliferation (EdU-labeling) were assessed in loaded vs control mice.

Results—Dkk3 expression was seen in the superficial zone of the mandibular condylar cartilage, 

followed by Col1 in the cartilage zone, Col2 in the prehypertrophic zone, and Col10 expression 

hypertrophic zone at and below the tidemark. TMJ loading increased expression of the GFP 

reporters and EdU-labeling of cells in the cartilage, resulting in a thickness increase of all layers of 

the cartilage. In addition, mineral apposition increased resulting in Col10 expression by 

unmineralized cells above the tidemark.

Conclusion—The TMJ responded to static loading by forming thicker cartilage through adaptive 

remodeling.

Introduction

The temporomandibular joint (TMJ) is a complex synovial joint that allows jaw movement 

in all three dimensions. The components of the TMJ that enable this complex motion include 

the condyle of the mandible, the glenoid fossa of the temporal bone and an interposing 

articular disk [1]. From a biomechanical perspective, a load applied at the surface of the 

mandibular condylar cartilage (MCC) translates to compressive-shear loading within the 

cartilage covering the condyle. This results in a complex pattern of strain-induced 

deformation of the tissue [2], which needs to be accommodated for continued health of the 

joint.

Unlike most hyaline articular cartilages in the appendicular joints, the MCC is classified as 

fibrocartilage [3]. Histologically, the cartilage is composed of the force-absorbent, 

proteoglycan-rich non-mineralized portion and the rigid mineralized region that abuts the 

subchondral bone. The cartilage is divided into zones based on the tissue architecture, on 

morphology of the cells, and on expression of specific proteins by cellular subpopulations. 

The superficial or articular zone is composed of cells with a flattened morphology [4]. The 

underling cartilaginous zone is populated by round, type I collagen-synthesizing 

fibrochondrocytes, which transition into type II collagen-synthesizing pre-hypertrophic 

chondrocytes [5]. The hypertrophic zone is characterized by type X collagen producing cells 

that lie beneath the chondrocytic zone starting at the tidemark, and extend into the 

mineralized cartilage [6]. The mineralized cartilage has not received as much attention as the 

soft cartilage but is an integral part of this structure as it separates the underlying 

subchondral bone from the MCC.

Mechanical force applied to the TMJ produces a biological response that is usually seen as 

an adaptation to the altered environment [7]. Growth and adaptation of the MCC to 
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mechanical loading have been investigated in animal experimental models by posturing the 

mandible forward [8]. This resulted in accelerated chondrocyte differentiation and 

maturation [6, 8, 9]. A major drawback of this model was the inability to measure the 

magnitude of applied forces. Recently, Sobue et al. [10] developed a forced mouth opening 

model to examine the effect of TMJ loading on the MCC. The mechanical stress on the joint 

produced an anabolic effect as seen by increased expression of chondrocyte maturation 

markers and cell proliferation [10]. Overall, this mechanical loading model was non-

invasive and allowed accurate measurement of the applied force. However, the changes in 

individual cellular subpopulations within the MCC were not elucidated as conventional 

histologic techniques in wildtype animals do not allow this characterization.

While the layers of the condylar cartilage have been defined by expression of a number of 

genes and mechanical loading can alter the growth and maturation of condylar cells, the 

effect of mechanical loading on the expression of these key genes is not fully defined. 

Therefore, the aim of this study is to analyze the impact of static loads on the expression of 

key genes that map to specific layers of the MCC in multi-color GFP reporter mice. We 

hypothesize that the loading regimen will lead to an acute response with increased 

expression of the various reporters that map to different regions of the cartilage, resulting in 

overall hypertrophy of the condyle.

Materials and Methods

GFP reporter mice

All experiments were performed under an institutionally approved IACUC protocol 

(100547-1015). The Dkk3-eGFP transgene (Dkk3-green) was obtained from the MMRRC 

repository (MMRRC:MGI:4846992) (http://www.mmrrc.org/). It was developed from a 

bacterial artificial chromosome (BAC) containing eGFP in the first exon of the murine Dkk3 

gene.

The other GFP transgenes used in this study have been previously described. Col1a1(3.6kb)-

GFPcyan (Col3.6-blue) and Col1a1(3.6kb)-GFPtpz (Col3.6-green) contain the 3.6-kb 

fragment of the rat type I collagen promoter that is strongly expressed in bone and weakly in 

fibrocartilage [11, 12]. Col2a1-GFPcyan (Col2-blue) and Col10a1-RFPchry (Col10-red) are 

expressed in the fibrocartilage of the TMJ within the chondrocytes and hypertrophic 

chondrocytes, respectively [13]. For the presented work, double-transgenic Dkk3-green x 

Col3.6-blue and triple-transgenic Col3.6-green x Col2-blue x Col10-red mice were 

generated by crossing the single transgenic mice.

TMJ mechanical loading model

The forced mouth opening model described by Sobue et al. [10] was used to analyze the 

effect of mechanical loading on the TMJ. Four-week-old dual transgenic mice (Dkk3-eGFP 

x Col3.6-cyan) were equally divided into loaded and control groups. Animals in both groups 

(n=6/group) received irradiated pellet chow and were anesthetized daily for the duration of 

the loading process with an intraperitoneal (IP) injection of ketamine/xylazine (87mg/kg/

13mg/kg). A custom-made spring fabricated from 0.017″ × 0.025″ β-titanium (CNA) wire 
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was used to deliver a force of 50 grams at maximal mouth opening. The TMJ of the animals 

in the loaded group was subjected to mechanical loading by forcefully opening the mouth 

for 1 hour/day for 5 days. The animals in the control group were anesthetized but did not 

undergo loading.

Injection of fluorescent dyes to measure mineral apposition of condylar cartilage

Mineralization labels including alizarin complexone (AC) (10 mg/kg), demeclocycline 

hydrochloride (30 mg/kg) and calcein (30 mg/kg) (Sigma Aldrich, St. Louis, MO) were 

injected IP in the mice. AC was injected 24 hours prior to sacrificing the animals in the 

single label experiments. For the double fluorescent labeling experiments, calcein was 

injected on day 3 of loading and demeclocycline 1 day prior to sacrifice to observe the 

dynamic process of mineral apposition.

Mandibular condyle dissection

The mandibular condyle was isolated, dissected and fixed in 10% formalin for 3 days. After 

3 days of fixation, the tissues were washed in PBS and placed in 30% sucrose (in PBS) 

overnight. The following day, the mandibular condyles were removed from the 30% sucrose 

and placed in cryomolds (Thermo Fisher Scientific Inc., Waltham, MA). Details of the 

dissection and sectioning of the condyles can be found in the supplemental materials.

EdU labeling and staining

Proliferating cells were labeled with EdU (5-ethynyl-2′-deoxyuridine) (Life Technologies, 

Grand Island, NY), a modified nucleoside that is incorporated during DNA synthesis [14]. 

EdU (30 mg/kg) was injected IP in the mice 24 hours prior to sacrificing the animals. The 

staining procedure was carried out on histological sections with the Click-iT EdU Alexa 

Fluor 647 Imaging Kit (Life Technologies, Grand Island, NY) according to the 

manufacturer’s instructions.

Microscopy and imaging

The sagittal and frontal histologic sections were first imaged for fluorescent signals, details 

of which can be found in the supplemental methods. The reader is encouraged to download 

the high-resolution files from the journal web-link. In addition, the image stacks that were 

used to generate figures 1, 4 and 5 can be accessed at http://ucsci.uchc.edu/achint/.

After the fluorescent images were collected, the section was stained with Mayer’s modified 

hematoxylin (Poly Scientific R&D Corp., Bay Shore, NY, USA) and eosin Y (Thermo 

Fisher Scientific, Waltham, MA, USA) or toluidine blue (TB), a metachromatic dye that 

stains nucleic acids blue and polysaccharides purple.

Image analysis and quantification

Changes in total cartilage area, total cells, number of EdU-labeled cells, Dkk3-green 

expression, Col3.6-blue expression, toluidine blue stained area, Col10-red expression, and 

mineralized cartilage area were all quantified from serial frontal sections. Details of the 

quantification can be found in the supplemental methods.
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Two-photon imaging

Freshly dissected mandibular condyles were cleaned of soft tissues and placed upright in a 

well of paraffin wax. This assembly was placed under the objective lens of a two-photon 

microscope (Ultima IV; Prairie Technologies, Middleton, WI). The condyle was imaged 

with a water immersion objective (XLUMPlanFL 20x/0.95W; Olympus, Center Valley, PA) 

in phosphate-buffered saline (PBS). All motorized movements of the slide stage were 

programmed and controlled by the acquisition software (Prairie Viewer; Prairie 

Technologies, Middleton, WI). The laser was tuned to 900 nm and the emission of the 

fluorophores and second harmonic generation signal for collagen were acquired in the 

following bandpass filters: 435–485 nm (SHG, CFP), 500–550 nm (CFP, eGFP, GFPTpz), 

and 570–620 nm (CFP, eGFP, GFPTpz, mcherry). After the completion of each experiment, 

z-stacks were reconstructed in three dimensions using the 3D viewer plugin [15] for Fiji 

[16].

Statistics

Serial frontal sections (4–6/animal) were used for image quantification by outlining the 

unmineralized and mineralized condylar cartilage areas. The values from the sections were 

averaged to provide a single value for each biological replicate (n=12 for Dkk3-green x 

Col3.6-blue and n=6 for Col3.6-green x Col2-blue x Col10-red mice). Differences between 

the loaded and control groups for all image analysis parameters were analyzed via 

independent samples t-test (significance level set to p < 0.05) in the SPSS Statistics 20 

software (IBM Corporation, Armonk, NY, USA).

Results

A preliminary tissue survey was carried out to examine the expression of the Dkk3-

transgene in the reporter mouse. Expression was seen in ligaments, tendons, articular 

cartilage, and menisci of the knee (Fig. S1).

A low power sagittal cryosection of the mandibular condyle from a Dkk3-green x Col3.6-

blue mouse is presented in Fig. 1(A–C) to illustrate the registration of the fluorescent signals 

to accumulated mineral at the tidemark and H&E stained section. The condylar bone that 

underlies the MCC shows a very strong Col3.6-blue signal overlying a uniform AC red 

mineralization line (arrow; panel A) that lies on mineralized bone surface (panel B) 

surrounding the bone marrow spaces (panel C). On the surface of overlying MCC are Dkk3-

green cells while relatively faint Col3.6-blue cells reside underneath the Dkk3 layer. The 

boxed region of the MCC is presented at a higher magnification. [Fig. 1(A1–C2)].

Expression pattern of Dkk3 and Col3.6 within layers of the condylar cartilage

Dkk3-green and Col3.6-blue are expressed in separate but overlapping cell populations [Fig 

1. (A1 vs A2)]. Dkk3-green expression is strongest in the superficial zone and gradually 

fades with depth. Also note that the entire articular surface is not covered with Dkk3-green 

cells leaving gaps (Fig. 1, arrows in C1) that exhibit no GFP signal. Col3.6-blue expression 

is seen as a distinct layer that begins within the Dkk3-green zone and extends down to the 

tidemark. The merged image [Fig. 1(A3)] reveals a population of double positive cells (cyan 
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in color) in the transition between the Dkk3-green and Col3.6-blue cell layers. When the 

GFP signals are aligned to H&E-stained image [Fig. 1(C1)], the Dkk3-green cells map to the 

flattened cells of the articular zone while the Col3.6-blue cells co-localize with the 

cartilaginous cells but do not extend to hypertrophic cells in the deeper layers.

The relation of transgene expression to mineralization

An irregular AC mineralization line that is above the underlying bone identifies the 

tidemark, which separates unmineralized and mineralizing cartilage of the MCC [Fig. 1(A1), 

arrow]. This mineralization line is within the extracellular matrix between hypertrophic cells 

of the deeper layers [Fig. 1(A3, C1)]. The label extends across the length of the condyle and 

the intensity is not uniform, suggesting that the mineral apposition rate of cartilage has 

regional variation.

Regional variations in Dkk3 and Col3.6 expression in the MCC

The irregular surface expression of the Dkk3-green reporter seen in Fig. 1 was investigated 

further using two-photon microscopy. The scanned composite image of the entire condylar 

surface showed an irregular pattern of Dkk3-green (Fig. 2A) that was distributed as patches 

of green superficial cells. A sagittal slice of the MCC (Fig. 2B) showed Dkk3-green cells on 

the surface, Col3.6-blue cells just underneath the surface and cells expressing both Dkk3-

green and Col3.6-blue at the interface between these layers. The Dkk3-green cells were 

primarily seen on the surface (Fig. 2B1) and faded away by a depth of 30μm (Fig. 2B4). 

This suggested that there were clusters of Dkk3-positive as well as negative cells in the 

articular zone. The two-photon imaging demonstrated significant variation in the regional 

intensity of Dkk3-green expression with a higher number of cells with stronger expression 

associated with the anterior region of the cartilage. It also revealed a continuation of strong 

and dense Dkk3-green cells over the medial side of the cartilage, a region not frequently 

examined in experimental studies.

To better define the medial to lateral distribution of the Dkk3-green cells in the MCC that 

was identified by the two-photon images, serial frontal cryosections of the condyle were 

imaged. Representative sections from the posterior, middle and anterior regions (Fig. 3, 

columns 1–5) demonstrate large variation in the shape of the condyle and thickness of the 

MCC (Fig. 3, rows A and E). The area of non-mineralized cartilage increases from the 

posterior to the anterior regions (Fig. 3E) with values of 0.04±0.002 (Fig. 3E1), 0.07±0.002 

(Fig. 3E2), 0.10±0.005 (Fig. 3E3), 0.14±0.001 (Fig. 3E4), 0.19±0.006 mm2 (Fig. 3E5) 

(mean±SEM).

Bone mineralization labels and the expression of fluorescent reporters in the deeper 
layers of the MCC

The relationship of the GFP labeled cells in the deeper layers of the MCC was examined in a 

Col3.6-green x Col2-blue x Col10-red triple transgenic reporter mouse (Fig. 5A) that had 

received an injection of demeclocycline one day prior to sacrifice (Fig. 5B). The higher 

power images from the ROI box in panel A rebuild the GFP cell layers starting with Col3.6-

green (Fig. 5D), Col2-blue (Fig. 5E) and ColX-red (Fig. 5F). While most of the cells exhibit 

a single color, dual color cells (Col3.6-green/Col2-blue and Col2-blue/ColX-red) can be 
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identified within the transitional layers (Fig. 5C). The organization of the mineralized 

fibrocartilage shows that the tidemark (line in Fig. 5C–F) localizes to the zone of cells with a 

hypertrophic morphology that express the Col2-blue (panel E) and ColX-red reporters (Fig. 

5F). Overall, the transition of reporter colors from green->blue->red suggest a lineage 

progression from Col3.6-green chondrocytic cells to Col2-blue prehypertrophic cells to 

Col10-red hypertrophic cells with the latter being aligned with the beginning of the 

mineralized zone and extending into the mineralized cartilage.

Change in collagen architectures between the different reporter zones

The progression of Dkk3->Col3.6->Col2->ColX cells from the articular surface to the 

mineralized cartilage also correlates with a change in collagen architecture. Via two photon 

collagen SHG imaging, collagen fibers near the condylar surface form a basket weave with 

multiple layers of fibers oriented in hoops. The Dkk3 cells reside within this layer and the 

Col3.6 cells start to appear at ~20μm beneath the surface [Fig. 6(A2)]. At ~30μm beneath 

the surface, the collagen architecture begins to transition from large fibers with periodical 

banding [Fig. 6(B2)] to the smooth appearance of collagen within the walls surrounding the 

cells within the lacunae [Fig. 6(B4)]. The lacunar collagen signal is seen throughout the 

remaining layers of unmineralized and mineralized cartilage.

Fluorescent reporter changes due to mechanical loading of the MCC

The forced open mouth loading protocol of the TMJ was employed as a simple experimental 

method for altering the loading environment within the cartilage to determine how cells 

within the MCC responded to altered loading. Serial frontal cryosections shown in figure 3 

contrast the control and loaded groups for changes in GFP expression (Fig. 3 rows A vs B), 

cell proliferation (Fig. 3 rows C vs D) and proteoglycan content (Fig. 3 rows E vs F). The 

overall area and total cell number within the MCC increased by 20–23% in the loaded group 

(Fig. 7B–C; p<0.05). However, cell density did not change. An increase in the GFP intensity 

was seen within the Dkk3-green articular zone in the loaded group compared to the control 

group (Fig. 7D, p<0.05). The increase was more intense in the anterior-medial regions 

although all regions were more prominent in the loaded group with the total Dkk3 area 

increasing by 40% in the loaded groups (p<0.05). In addition to Dkk3, the overall area of 

Col3.6blue cells increased by 35% (Fig. 7E; p<0.05).

The regional distribution of proliferating cells within the soft cartilaginous zone in the 

control and loaded groups was assessed in the same set of frontal sections by EdU labeling 

(Fig. 3, rows C vs D). A gradual increase in the number of EdU-positive proliferating cells 

was observed in a posterior to anterior direction, corresponding with the increase in cartilage 

thickness. Additionally, the EdU-labeled cells imaged on the same sections showed a similar 

trend with increased proliferation seen in the condylar cartilage in the loaded versus the 

control group (Fig. 7F).

The effect of the loading protocol on proteoglycan accumulation was visualized by TB 

staining (Fig. 3, E vs. F). TB staining is typically found within the deeper prehypertrophic 

and hypertrophic layers. Following loading, not only was the overall TB area increased in 

the loaded group but TB staining was found closer to the articular surface (Fig. 7H; p<0.05). 
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The TB staining demonstrated the presence of chondrocytic cells closer to the surface of the 

cartilage despite the increase in size of the overall cartilage (Fig. 7C) or Dkk3 area (Fig. 

7D). The TB signal extended into in the mineralized cartilage zone and protruded further 

into the subchondral bone in the loaded group.

The response of the mineralized region of the MCC is shown in Fig. 8. The mineral 

apposition in loaded and control animals was quantified from a double label of calcein and 

demeclocycline. Calcein was administered 4 days prior to sacrificing the animals whereas 

demeclocycline was administered 1 day prior to sacrifice. The high rate of mineralized 

matrix formation even of the rapidly growing control animals resulted in only partial 

preservation of the calcein label and a wide zone of demeclocycline label (yellow). The 

loaded animals demonstrated a larger area of labeling matrix relative to the control (Fig. 

8D). Concomitant with the increase in mineralizing matrix, the pixel area of the ColX-red 

cells was greater in the loaded animals (Fig. 8C), and a proportion of these cells extended 

ahead of the mineralizing front in the loaded group (Fig. 8B). Overall, loading enhances the 

accumulation of mineralized cartilage resulting in a greater separation of the unmineralized 

cartilage from the subchondral bone.

Discussion

The TMJ has received significant attention as a model tissue to study cartilaginous 

adaptation to mechanical loading. From a clinical perspective, the functional adaptation 

within the condyle forms the underlying basis of mandibular growth modification in 

Orthodontics that is used to correct various forms of skeletal jaw discrepancies [17, 18]. The 

basis for these changes is not adequately understood and has been attributed to generation of 

new bone in the condylar ramus [19, 20] or expansion of the condylar cartilage [21]. Animal 

studies have linked the cellular response to changes in chondrocyte biomarkers, including 

PTHrP [22], Sox9 [23], type II collagen [24], type X collagen and Cbfa1 [25], pointing to 

the importance of the MCC as the tissue within the TMJ that responds to loading by altering 

its pattern of growth.

Understanding how the skeleton adapts to mechanical loads is a continuing challenge to the 

basic biologist and bioengineer. In the case of bone, the adaption to compressive load results 

in the activation of the surface osteoblasts to increase appositional growth while osteoclasts 

reshape the bone to better adapt to the altered loading. Similarly, tendon and ligaments will 

alter matrix production and remodeling in response to change in mechanical loading [26]. 

Cells within the enthesis synthesize a proteoglycan-rich fibrocartilage to dissipate stress 

accumulation between the relatively compliant tendon and stiff underlying bone. The 

fibrocartilage mineralizes during growth, resulting in four zones: the midsubstance, 

unmineralized fibrocartilage, mineralized fibrocartilage, and subchondral bone. Increased 

mineralized fibrocartilage apposition within the enthesis can result following alteration in 

mechanical loading [27]. In addition to tensile loads experienced within tendons and 

ligaments, other fibrocartilaginous structures such as the intervertebral disc or pubic 

symphysis have to respond to compressive forces. Water molecules associated with 

glycosaminoglycan side chains of proteoglycans (i.e., TB-positive region) within the 

cartilage matrix resist compressive loading, while the type I and II collagen fibers within the 
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cartilage act as a net to hold the proteoglycans in place and resist expansion of the cartilage. 

The increase in toluidine blue staining found in this study is likely in response to a 

presumable increase in compressive loads within the MCC.

Chen at al. [13] described the expression of Col3.6-green, Col2-blue and ColX-red in the 

deeper zones of soft cartilage. However, a marker for the superficial articular zone was not 

identified. Additionally, the study did not evaluate changes in unmineralized and 

mineralized cartilage compartments or individual cellular subpopulations within the MCC 

following mechanical loading. To address these gaps in knowledge, the present study was 

initiated from the unexpected observation that a Dkk3-green reporter was active in the 

superficial zone of cartilage. This non-canonical member of the Wnt family has been most 

fully studied in the eye where it is strongly expressed in the retinal progenitor cells [28]. 

Both GFP reporters and Cre-driver constructs from the Dkk3 promoter target these cells but 

their activity has not been investigated in other tissues. Expression of Dkk3 at the RNA level 

has been observed in a wide variety of other tissues [29] and it may have an anti-

proliferative activity in certain types of cancer tissues [30, 31]. Its function within the Wnt 

pathway is still unclear with reports of both agonistic [29] and antagonistic [32] roles 

depending on the model system. In the epidermis it appears to play an important role in 

regulating the transition of proliferative basal to differentiating superficial cells [33]. We 

have found that the reporter is strongly expressed in articular cartilage, ligaments, the 

meniscus of the knee, and at tendon insertion sites (figure S1). Clearly further study will be 

required to comprehend these molecular pathways and the biological role of this Dkk3 

population to the overall function of the condylar cartilage and other force-transmitting 

structures.

From a histological perspective, a transition of maturation, based on the merging of GFP 

reporter colors, can be appreciated from Dkk3->Col3.6->Col2->ColX expressing cells. 

However, the Dkk3-green cells do not appear to be the population that proliferates since the 

EdU labeling is localized somewhat deeper between the Dkk3/Col3.6 zones. This 

observation suggests that an unidentified population of tissue resident progenitor cells is 

responsible for the regenerative/adaptive potential of this cartilage. Upon mechanical 

loading, all the layers of the unmineralized cartilage increase in size and intensity of reporter 

expression. Although proliferation within the sub-Dkk3 zone does increase, it cannot 

account for the entire increase in tissue size upon mechanical loading, as cell density within 

the MCC does not change. Instead, the level of chondrogenic differentiation may increase in 

the subDkk3 regions as manifested by stronger toluidine blue staining that extends outward 

to the Dkk3 zone and far into the subchondral bone.

At the mineralizing front of the cartilage, ColX-red cells extend above the tidemark and the 

zone of mineralization is expanded toward the unmineralized cartilage so rapidly that a 

sharp mineralization line is no longer evident. As type X collagen is a marker of mineralized 

cartilage, this finding suggests that the cells above the tidemark at the time of loading 

mineralized in response to the applied mechanical stimulus. Overall, this indicates that the 

adaptation of the MCC to the loading regimen is seen as an expansion of both the 

unmineralized and mineralized cartilage components. These findings are consistent with 

previous work demonstrating an increase in both unmineralized (PTHrP, Sox9, Col2a1) and 
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mineralized (Col10a1) cartilage markers by qPCR following altered loading [10]. However, 

the current study mapped expression of cartilage maturation genes to specific layers of the 

condylar cartilage unlike the qPCR analysis in previous work.

This functional adaptation response to mechanical loading by the cartilage demonstrated 

remarkable regional variation. The serial frontal sections that we utilized showed an increase 

in all cell populations from the posterior to the anterior regions that was most prominent in 

the medial side than on the superior ridge of the cartilage. This finding has not previously 

been reported, and suggests that the regional responses of the condylar cartilage to 

mechanical loading may depend on the loading mechanism.

In conclusion, the fluorescent reporters and mineralization activity reveals a metabolically 

active and integrated tissue that is remodeling to meet an alteration in the mechanical forces 

of forced mouth opening. The reporters provide a technological tool to explore the regional 

cell lineage and molecular response to mechanical loading which should be helpful in 

understanding TMJ disease in healthy or genetically impaired mice.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dkk3-green and Col3.6-blue expression in cells of the MCC. Scanned and tiled sagittal 

cryosection of the MCC showing the fluorescent (A), fluorescent and darkfield, which 

highlights mineralized tissue (B), and fluorescent channels with hematoxylin stained (C) 

images. Panels A1–C2 are higher magnification images of the box area in panels A–C. A1 

shows the localization of superficial Dkk3-green cells and the irregular AC mineralization 

label of the tidemark (arrow in A1). In A2 the weak Col3.6-blue from the chondrocytes is 

not associated with the tidemark AC signal, but the strong Col3.6-blue from the subchondral 

osteoblasts overlie the AC label (yellow arrows in A2, & A–C). A3 is the merged image of 

the green and blue channels with the AC red fluorescent labels. B1 is the darkfield channel 

in addition to GFP reporters and AC signal from the tidemark. C1 is the fluorescent image 

merged with the hematoxylin stain to show the morphology of the Dkk3-green cells in the 

superficial zone while the Col3.6-blue cells are in the chondrocytic zone. C2 is hematoxylin 

alone. Note the acellular gaps between the Dkk3-green superficial cells without 

hematoxylin-stained nuclei (arrows in C1). Beneath the Col3.6-blue population are cells 

with a hypertrophic morphology (C1–2).
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Figure 2. 
Two photon image of the MCC. Supero-inferior view of the articulating surface of the 

mandibular cartilage from a Dkk3-green and Col3.6-blue mouse. Note the irregular, island 

like, clusters of Dkk3-green cells on the condylar surface. (B) Sagittal view of the MCC 

showing Dkk3-green cells (green arrows) on the surface, Col3.6-blue cells (white arrows) 

just underneath the surface and cells expressing both Dkk3-green and Col3.6-blue (cyan 

arrows). B1–B4 are supero-inferior slices from the surface (0μm) to a depth of 30μm (hashes 

in B denote position of slice in B1–4). Dkk3-green cells are primarily positioned on the 

condylar surface while Col3.6-blue cells are primarily positioned beneath the surface.

Utreja et al. Page 14

Osteoarthritis Cartilage. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Serial frontal cryosections of the MCC progressing from posterior to anterior (columns 1–5). 

The control group is presented in rows A, C and E to show the increasing area of 

unmineralized cartilage from posterior to anterior. Mechanical loading (rows B, D and F) 

leads to adaptive remodeling that is contrasted with the control. Dkk3-green signal increases 

in the loaded group (B) compared to unloaded controls (A) (see figure 7 for quantification). 

The EdU+DAPI staining for cell proliferation is presented in the C/D comparison. See 

figure 4 for more detail on the localization of the EdU relative to articular surface. The TB 

stain for cartilage proteoglycan accumulation is shown in the E/F comparison. The total area 

of TB stain is increased in the loaded group (see figure 7 for quantification).
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Figure 4. 
Localization of the proliferating cells within the MCC of a control animal. (A) 

Representative enlarged image from column 4 of cryosections presented in figure 3. Panels 

B–D are higher magnification images of the boxed region in A. (B) Dkk3-green and Col3.6-

blue expression in the superficial region of the condylar cartilage. (C) EdU-yellow and 

DAPI red labeling. (D) Merged image showing that the EdU-yellow expression is located in 

cells at the transition of Dkk3-green to Col3.6-blue cells. Arrows in B indicate EdU+ cells.
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Figure 5. 
Cells express more mature collagen types in deeper regions of MCC. A. Sagittal cryosection 

of the mandibular condylar cartilage from Col3.6-green, Col2-blue and Col10-red triple 

transgenic mouse. Demeclocycline (1 day before sacrifice) fluorescent label is yellow. The 

boxed region is presented at higher magnification in panels B–F. B) Demeclocycline label 

with darkfield channel demonstrating 516 the location of the tidemark (arrow). C) 

Composite image demonstrating the transition from Col3.6-green to Col2-blue to Col10-red 

cells with depth in the cartilage. Individual channels for Col3.6-green (D), Col2-blue (E), 

and Col10-red (F) further demonstrating the change in expression with depth. Lines in 

panels C–F denote the location of the tidemark.
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Figure 6. 
Collagen organization in relation to GFP reporters within the MCC. Two photon image 

stack from a Col3.6-green x Col2-blue x Col10-red triple transgenic reporter mouse. Sagittal 

views of composite image (A) with collagen SHG (blue) with visible Col3.6-green and 

Col10-red cells and collagen SHG only image (B). Supero-inferior slices of the MCC at the 

surface (A1, B1), 20μm (A2, B2), 30μm (A3, B3), and 50μm (A4, B4) beneath the surface. 

The collagen organization changes from a fibrous structure with hoops of collagen at the 

surface (B1–2) to smooth appearance of collagen in walls within lacunae in deeper layers 

(B4). Schematic on right depicts location of all GFP reporters used in this study in relation 

to collagen organization (black lines) in MCC. S – superficial, C – chondrocytic, PH – 

prehypertrophic, H – hypertrophic. The 3D reconstruction of the image stack is presented as 

a supplemental video.
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Figure 7. 
Adaptive changes of the unmineralized cartilage to mechanical loading. (A) Representative 

outline of the unmineralized MCC on a darkfield image of a frontal cryosection 

demonstrating the region used to quantify panels A–F. The total number of cells (i.e., DAPI 

nuclei) (B), total unmineralized cartilage area (C), area fraction of unmineralized cartilage 

containing Dkk3 cells (D) and Col3.6 cells (E), and EdU-labeled proliferating cells (F) were 

all significantly higher in the loaded 539 group compared to the control group (p<0.05). 

Euclidean distance mapping of toluidine blue staining in the first 100μm from the cartilage 

surface (arrows in G) reveals that total proteoglycan accumulation (area under curve) not 

only increased but the proteoglycans also accumulated closer to the surface, with significant 

changes starting at 50μm (n=12; 6 sections/animal; p<0.05). * denote significant difference 

(p < 0.05). Error bars indicate 95% confidence interval.
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Figure 8. 
Adaptive changes to mechanical loading by ColX-red hypertrophic chondrocytes within the 

mineralized cartilage. The mice were administered calcein (green) at 3 days of loading and 

demeclocycline (yellow) 1-day prior to sacrifice. The height of the forming mineralized 

cartilage during the period between labeling (24 hours) is shown by the double arrows in the 

control (A) and loaded (B) MCC. A region of interest that included the area of new 

mineralized cartilage apposition within the 24-hour period (defined by arrows in A and B) 

was used for quantification. The area fraction containing ColX-red cells is shown in panel C, 

while the total area undergoing active mineralization is in panel D (i.e., region of interest). 

Both measures are significantly increased in the TMJ loaded group (n=6, 6 sections/animal; 

p<0.05). Also note that additional ColX-red cells are present above the tidemark in the 

loaded animals where in the control mice these cells first appear at the tidemark. * denote 

significant difference (p < 0.05). Error bars indicate 95% confidence interval.
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