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Abstract Introduction: Pathophysiological changes that accompany early clinical symptoms in prodromal
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Alzheimer’s disease (AD) may have a disruptive influence on brain networks. We investigated
resting-state functional magnetic resonance imaging (rsfMRI), combined with brain connectomics,
to assess changes in whole-brain functional connectivity (FC) in relation to neurocognitive variables.
Methods: Participants included 58 older adults who underwent rsfMRI. Individual FCmatrices were
computed based on a 278-region parcellation. FastICA decomposition was performed on a matrix
combining all subjects’ FC. Each FC pattern was then used as a response in a multilinear regression
model including neurocognitive variables associated with AD (cognitive complaint index [CCI]
scores from self and informant, an episodic memory score, and an executive function score).
Results: Three connectivity independent component analysis (connICA) components (RSN, VIS,
and FP-DMN FC patterns) associated with neurocognitive variables were identified based on prespe-
cified criteria. RSN-pattern, characterized by increased FC within all resting-state networks,
was negatively associated with self CCI. VIS-pattern, characterized by an increase in visual
resting-state network, was negatively associated with CCI self or informant scores. FP-DMN-
pattern, characterized by an increased interaction of frontoparietal and default mode networks
(DMN), was positively associated with verbal episodic memory.
Discussion: Specific patterns of FC were differently associated with neurocognitive variables
thought to change early in the course of AD. An integrative connectomics approach relating cognition
to changes in FC may help identify preclinical and early prodromal stages of AD and help elucidate
the complex relationship between subjective and objective indices of cognitive decline and differ-
ences in brain functional organization.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is often recognized as a discon-
nection disorder where plaques, neurofibrillary tangles, and
neurodegeneration of the brain lead to reduced communica-
tion and coordination among regions important for cognition
[1]. Therefore, brain connectomics studies designed to
examine disruptions of connectivity in AD have become
increasingly common [2–7]. Brain connectomics is a field
of study that uses graph theory to analyze the ensemble of
brain connectivity networks, including functional networks.
While neurodegenerative diseases are often studied in a
focal manner (i.e., a particular region of interest [ROI] or
relatively small neural circuit), brain connectomics provides
a more complete systematic view by modeling the entire
human brain as a set of networks and assessing whole-brain
organizational changes or disruptions.

Functional connectivity (FC) estimates the level of func-
tional coupling of regional brain activity, measured as time se-
ries [8], among brain regions regardless of distance or
structural connections [9]. This method uses resting-state
functionalmagnetic resonance imaging (rsfMRI) data tomea-
sure correlations in low-frequency blood oxygenation level–
dependent (BOLD) signal fluctuations between distinct brain
regions. Implementation of this technique combined with a
gray-matter parcellation allows for extraction of whole-
brain FC data. Brain regions can then be further organized
into resting-state networks (RSNs), which have been shown
to correlate with well-described brain functions and are
defined by coordinated neural activity between distinct,
spatially separate brain regions [10–13]. Grouping brain
regions according to RSN allows for dimension reduction
and provides psychophysiologically relevant results [14].
There is evidence that abnormalities in brain networks appear
in early stages of AD [15–17]. Because current evidence
indicates that neurodegenerative changes begin before
clinical manifestations become apparent [18], it is crucial to
identify the earliest changes during preclinical and prodromal
stages of disease. Investigating early stages of AD from a FC
connectomics perspective may give rise to new hypotheses
about underlying pathophysiology that cannot be ascertained
using data from isolated regions or circuits [7,19].

Therefore, this study examined FC differences across the
continuous spectrum of early-stage AD, from at-risk and
prodromal stages to clinical AD dementia with significant
cognitive and functional impairment. Participants included
those categorized as experiencing subjective cognitive
decline (SCD) [20], as well as mild cognitively impaired
(MCI) individuals and those diagnosed with AD. SCD par-
ticipants reported a significant burden of subjective decline
in memory and cognition in the absence of psychometric
deficits [20,21]. As individuals age, there are increased
reports of self-perceived memory decline compared with
earlier periods in life [22,23]. However, older adults with
SCD have a greater number of complaints and may even
subjectively consider their own cognition to be impaired
relative to their peers despite objective cognitive test
performance (i.e., SCD individuals are only clinically
distinguishable from healthy participants in the number of
reported cognitive complaints). Relatively high levels of
these memory complaints or concerns have been regarded
as relevant to the diagnosis of prodromal AD and are
believed to be predictive of subsequent development of
amnestic MCI and, at later stages, AD. Therefore, early
detection of network changes associated with cognitive
complaints could help inform diagnosis and treatment
planning and may be useful as a biomarker for enrichment
in or as an end point for therapeutic trials.

Because neurodegeneration typically progresses gradually
in AD, with subtle transitions between preclinical and prodro-
mal stages rather than discrete changes [24–26], we applied a
recently developed analytic framework to identify FC network
patterns across early stages of AD. This data-driven methodol-
ogy, denominated connectivity independent component anal-
ysis (connICA) [27] and detailed in the methods section, is
distinct from voxel-level and a priori region–based indepen-
dent component analyses (ICAs) [28]. Our approach can un-
cover inherent and independent FC patterns that represent
different functional RSN features within the population (our
group cohort). In addition, it includes an ability to test associ-
ations of these FC patterns with subjective and psychometric
cognitive parameters relevant to AD. The latter is particularly
useful when investigating a continuum of states in which strat-
ification into diagnostic groupsmay not be clear-cut because of
the inherent complexity of diagnostic criteria.
2. Methods

2.1. Participants

The Indiana University Institutional Review Board
approved the study, andwritten informed consent was obtained
from all participants. Participants were older adults from a
larger cohort recruited for a longitudinal study of brain aging
and memory (Indiana Memory and Aging Study) and were
included based on the availability of resting-state imaging
data during their first visit. The present sample included 16 par-
ticipants with significant cognitive complaints despite cogni-
tive test performance within the normal range (SCD group)
[21], 21 participants with amnestic MCI, 8 AD patients, and
13 cognitively normal (CN) controls with minimal cognitive
complaints. Further details regarding participant recruitment,
selection criteria, and characterization are described in previ-
ous reports [21,29] and in Table 1. No differences were found
between groups regarding age and education (one-way anal-
ysis of variance [ANOVA]) or gender (chi-squared test).

2.2. Neurocognitive variables of interest

All participants underwent a comprehensive clinical
assessment and neuropsychological battery. Five cognitive
variables were included in the present analysis: (1) the Cal-
ifornia Verbal Learning Test (CVLT-II) long-delay free



Table 1

Demographics

CN SCD MCI AD P-value

N 13 16 21 8 –

Mean age (y) 67.15 (5.50) 73.38 (7.95) 73.33 (8.98) 76.38 (8.98) NS*

Gender (M/F) 1/12 8/8 9/13 2/6 NSy

Mean education (y) 17.32 (1.93) 17.38 (1.9) 16 (2.8) 16.13 (3.7) NS*

Mean CVLT-delayed (episodic memory) 44.21 (7.66) 43.59 (7.41) 29.56 (8.1) 9.25 (11.75) ,.05*

Mean WCST—# of categories (executive

function)

4.1 (1.19) 3.5 (1.41) 2.67 (1.49) 1.17 (0.41) ,.05*

Mean subject CCI score 9.97 (4.54) 27.92 (16.01) 20.85 (11.76) 51.29 (28.38) ,.05*

Mean informant CCI score 7.7 (11.46) 15.82 (13.41) 14.54 (16.1) N/A ,.05*

Abbreviations: CN, cognitively normal; SCD, subjective cognitive decline; MCI, mild cognitive impairment; AD, Alzheimer’s disease; NS, not significant;

CVLT, California Verbal Learning Test; WCST, Wisconsin Card Sorting Test; CCI, cognitive complaint index; N/A, not applicable.

NOTE. The participants of this studywere selected from a larger IndianaMemory andAging Study cohort. Above are the listedmeans and standard deviations

within each group for selected demographic and neurocognitive variables. Between-group differences in age, education, and cognitive variables were tested

using a one-way analysis of variance, while chi-squared test was used to detect gender differences between groups.

*One-way ANOVA.
yChi-squared.
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recall [30], a measure of episodic memory; (2) the Wiscon-
sin Card Sorting Test (WCST) correct number of categories,
a measure of executive function [31]; (3 and 4) a cognitive
complaint index (CCI) score from both the participant
(“self”) and an informant calculated as the percentage of
all items given that was endorsed as a complaint [21]; and
(5) the highest CCI score from either self or informant,
labeled CCImax (see Table 2), included to address the
diminished self-awareness that may occur in later stages of
AD. Significant differences between groups were detected
in all cognitive measures in the expected direction using a
one-way ANOVA (see Table 1).
2.3. MRI data acquisition

All subjects were imaged on a 3T Siemens Tim Trio MRI
scanner with a 12-channel head coil array. A detailed anatom-
ical magnetization-prepared rapid gradient echo (MPRAGE)
with whole-brain coveragewas acquired using a 3DMPRAGE
sequence (repetition time [TR]/echo time [TE] 5 2300/2.98
ms, 220 sagittal slices with slice thickness 5 1.2 mm, 1 ! 1
! 1.2 mm voxels) following the Alzheimer’s Disease Neuro-
imaging Initiative imaging protocol [32]. rsfMRI data were
collected with instructions given to subjects to think of nothing
in particular while remaining still with their eyes closed.
Whole-brain functional images were obtained using a Siemens
product gradient echo sequence (echo planar imaging [EPI];
scan duration 6 minutes 9 seconds; 161 BOLD contrast-
sensitive volumes; TR/TE 5 2250 ms/29 ms; 2.5 !
2.5 ! 3.5 mm3 voxels; 39 interleaved axial slices with
3.5 mm thickness and no gap; GRAPPA acceleration factor
2; 3D PACE prospective motion correction [33]).
2.4. BOLD preprocessing

rsfMRI preprocessing procedures, including head motion,
were adapted from Power et al. [34]. These included slice
timing correction, registration to MPRAGE volume (FLIRT
six degrees of freedom [DOFs] and boundary-based registra-
tion), detrending, band-pass filtering (0.009–0.08 Hz), and in-
tensity normalization to mode 1000. In addition to including
motion regressors from the realignment and their derivatives,
three image quality control measures (framewise displace-
ment, DVARS, and standard deviation) were applied to iden-
tify and remove (“scrubbing”) outlier BOLD volumes (D
referring to temporal derivative of timecourses, VARS refer-
ring to RMS variance over voxels, DVARS). EPI volumes
with an excessive (.50%) fraction of outliers were dropped
from subsequent analyses. This resulted in the exclusion of
imaging data from seven subjects (one CN, two SCD, and
four MCI), with the remaining 58 subjects comprising the
final sample. The first five signals obtained from principal
component analysis from three tissue compartments were re-
gressed out to address confounding effects of physiologic
noise and residual head motion. This procedure relies on
eroded masks in the whole-brain gray matter, white matter,
and cerebrospinal fluid of the third ventricle and includes
global signal regression [35].

The T1-weighted MPRAGE volume of each participant
was used to extract the brain (FSL “BET”) [36] and perform
a sequence of transformations (FSL’s FLIRT 6DOFs, FLIRT
12 DOFs, and nonlinear FNIRT) to the Montreal Neurolog-
ical Institute (MNI) brain template to provide tissue segmen-
tation. The inverse MNI-to-native transformation then
enabled functionally derived brain parcellation [37] into
278 cortical and subcortical ROIs to be performed in native
rsfMRI space. Correlation coefficients (Pearson r) between
mean BOLD time series of each ROI pair were sorted into
a 278 ! 278 FC matrix for each participant and used to
quantify the degree of connectivity between the paired
ROIs. Brain regions were then further ordered into seven
independently well-defined cortical RSNs [14], with subcor-
tical and cerebellar regions added for a total of nine networks
(Supplemental Fig. S1). This effectively results in a 9 ! 9
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FCmatrix, where the nine RSNs compromise the cells on the
diagonal, and the remaining cells termed “off-diagonal.”

2.5. connICA method

connICA [27] is a data-driven method based on ICA to
obtain cohort-level independent “FC patterns” while esti-
mating the presence of each pattern in an individual subject.
Here, ICA is applied directly onto the human connectome
domain (as opposed to time-series domain at the voxel
level). Specifically, ICA input consists of FC profiles of all
participants sorted into a single data set matrix with 58
rows (one row per subject) and 38,503 columns correspond-
ing to the upper triangular elements of each subject’s FCma-
trix (see Fig. 1). These independent patterns extracted from
the full FC data set then represent “independent connectome
subsystems” that characterize the whole sample and
comprise FC profiles of all subjects without any a priori
group stratification. ICA decomposition into FC pattern ma-
trix was performed with the fastICA algorithm [38], where
the number of components was fixed to 15 as guided by
voxel-based ICA studies [39]. Owing to a nondeterministic
nature of ICA, we performed 100 connICA runs and kept
only independent component patterns deemed to be
“robust”, that is, appearing in at least 75 out of the 100
runs. In particular, “appearance” required a Pearson correla-
tion coefficient above 0.75 (absolute value) with respect to
the first run. This method provides two outputs. The first
one, “FC pattern,” represents an independent pattern of FC
similar to the representation of each subject’s FC—a square
symmetric matrix with brain regions in rows and columns
(and therefore referenced as the FC pattern). However, the
FC pattern matrix values are in connectivity units (“load-
ings”), with their range not restricted to the [21,1] range, un-
like the Pearson correlation coefficient values from the
individual FCmatrices. The second connICA output is a vec-
tor of the signed weights of the FC pattern present on each
participant, which quantifies the prominence/presence of
the trait in each individual FC matrix as illustrated by Fig. 1.

connICAyielded six FC patterns. To establish the biolog-
ical relevance of these patterns, we organized brain regions
into canonical 9 ! 9 RSNs as illustrated by Fig. S2 and
detailed in Section 2.4. A pattern was considered in further
analyses only if the average FC loadings within at least
one element included a significant similarity with either
one of the canonical RSNs or their interaction
(Supplemental Fig. S2, diagonal or off-diagonal elements,
respectively). Specifically, the significance testing included
the following steps: (1) generating a frequency histogram
of FC loadings from the matrices of all six patterns, with
each pattern contributing (278*277)/2 values (not including
the diagonal); (2) setting a threshold value at the 95th
percentile of the FC value distribution; (3) calculating the
average FC loading for each pattern matrix in the 9 ! 9
RSN format; and (4) testing a selection criterion that at least
one canonically defined RSN cell must have an average FC



Fig. 1. Connectivity independent component analysis (connICA) methodology. Individual functional connectivity (FC) matrices are concatenated into a group

matrix where each row corresponds to one subject and columns are the functional connectivity entries in the FC matrix. FastICA extracts components (i.e., FC

patterns) associated to the cohort and their relative weights across subjects. Color bars indicate positive (red) and negative (blue) values; Pearson correlation

coefficient values for individual FC matrices (left side of figure) and unit-less connectivity weights for the FC patterns (right side of figure).
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value that equals or exceeds the 95th percentile value of
0.72. This significance criterion was met by three out of
six FC patterns.

2.6. Statistical analysis

The statistical inferences based on multilinear regres-
sion analysis were performed using MATLAB [40] func-
tion “regress”. The subject weights associated with each
FC pattern were entered as a response (dependent) variable
in an incremental multilinear regression model with up to
five predictors (independent variables). The predictors
Fig. 2. Robust FC patterns and individual weights as obtained by connICA. (A) Vis

RSNs. (B) Lines represent the quantified presence of each FC pattern on each indiv

subjects are represented along the x axis and ordered according to subjects with hi

tome to those with low presence of the FC pattern within their functional connect
included nuisance variables, including age, gender, and
years of education, and a single neurocognitive variable
of interest at a time (CVLT long-delay free-recall score,
WCST correct number of categories score, CCI-self score,
CCI-informant score, and CCImax score). To assess the
level of predictability that each neurocognitive variable of
interest added, we compared the R2 coefficient value of
the multiple regression model run with the neurocognitive
variable of interest to the R2 value of the model containing
only nuisance variables as predictors.

Finally, the aforementioned cognitive variables that
significantly increased the predictability of the chosen FC
ualization of the FC patterns sorted according to Yeo et al. (2011) functional

idual’s functional connectome (across all runs), termed as “weights.” All 58

gh presence of the corresponding FC pattern within their functional connec-

ome. Additionally, each colored line represents a single ICA run.



Table 3

Significance values for multilinear regression models

Model tested F-value for model P-value for model t-Value for predictor P-value for predictor

RSN model 3.40 .015* – –

Age – – 21.69 .097

Gender – – 0.29 .773

Education – – 0.55 .582

CCI-self – – 22.39 .020*

VIS model 1.35 .267 – –

Age – – 0.44 .659

Gender – – 0.84 .407

Education – – 20.6 .550

CCImax – – 2.04 .047*

FP-DMN model 1.96 .116 – –

Age – – 20.23 .823

Gender – – 0.63 .535

Education – – 2.47 .017*

CVLT delayed – – 0.27 .791

NOTE. Table shows significantly predictive multilinear regression models for the three FC patterns.

RSN model : RSN pattern weights5b01 b1age11b2sex21 b3educ31 b4cognitive variable4

VIS model : VIS pattern weights5b01b1age11b2sex21b3educ31b4cognitive variable4

FP-DMN model : FP� DMN pattern weights5b01b1age11b2sex21b3educ31b4cognitive variable4:

NOTE. Variables included show added significance to individual models. Significance denoted by asterisk (P , .05).
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pattern were identified (P � .05) to extract FC patterns most
associated with cognitive performance and subjective cogni-
tive ratings, which would likely be most sensitive to func-
tional brain changes in preclinical and prodromal AD.
3. Results

3.1. Identification of FC patterns

The three FC patterns identified using connICA and passing
the prespecified selection criteria were (1) resting-state
network or RSN-pattern; (2) visual network or VIS-pattern;
and (3) frontoparietal and default mode networks or FP-
DMN pattern. RSN-pattern primarily captures a within-
network coherence of the RSNs introduced by Yeo et al [14].
The VIS-pattern was characterized primarily by a significant
increase of within-network connectivity in the visual network.
Lastly, FP-DMN pattern primarily showed an increased inter-
action between DMNs and frontoparietal networks (Fig. 2).
3.2. Relationship of neurocognitive variables of interest
and FC patterns

As expected, the CN group had the highest CVLT-
delayed and WCST performance followed by the SCD
group, MCI, and AD groups (Table 1). Similarly, CCI scores
differed across diagnoses, in part, by definition as cognitive
complaints are part of the criteria for SCD and MCI.

The multilinear regression models including age, gender,
education, and neurocognitive variables of interest from
Table 2 were performed for each of the three identified FC
patterns, with significant results summarized in Table 3.
The first significant finding was observed in the model
that included age, gender, education, and CCI-self scores
as predictors for subject’s weights of the RSN-pattern
(Fig. 3A, top panel). The multiple regression model with
only nuisance variables as predictors yielded an R2 value
of 0.11. However, the inclusion of CCI-self score increased
the R2 value to 0.20 (Fig. 3A, middle panel), which was
significantly predictive of RSN-pattern weight (Fig. 3A, bot-
tom panel). Specifically, we found that a higher level of self-
perceived cognitive decline (e.g., more complaints) was
associated with a lower subject weight in the RSN-pattern.

The second significant multilinear regression model
included age, gender, education, and CCImax scores as
predictors for subjects’ weights for the VIS-pattern
(Fig. 3B, top panel). If only nuisance variables were used
as predictors for the subjects’ weights of VIS-pattern, the
R2 value was 0.01. However, the R2 value increased to
0.10 with the addition of CCImax as a predictor, with CCI-
max significantly predictive within the model for VIS-
pattern weights (Fig. 3B, bottom and middle panels). In
this analysis, we observed that a higher maximum
complaint score (reported from either the subject or a
knowledgeable informant; CCImax) was associated with
a lower subject weight score in the VIS-pattern.

The third significant multilinear regression model
included age, gender, education, and CVLT scores as predic-
tors for subjects’ weights of the FP-DMN-pattern (Fig. 3C,
top and bottom panels). Using only nuisance variables as
predictors yielded an R2 value of 0.11. CVLT-delayed score
increased the R2 value to 0.14 (Fig. 3C, middle panel). In
other words, the better the episodic memory performance
(i.e., higher CVLT-delayed score), the more that participant



Fig. 3. Relationship of FC patterns and neurocognitive variables of interest. Visualization of the three identified FC patterns (top row). The contributions of

neurocognitive variables of interest showing significant increase of the baseline R2 value in the multiple regression models are presented in the bar plots (middle

row). A grouped bar plot where black bars indicate the baseline (only age, gender, and education) R2 value, while the hatched patterned bars indicate when an

individual neurocognitive variable of interest has been added. The standard error bars were calculated across the 100 ICA runs. R2 value is shown above the

cognitive variable that has the greatest increase from the baseline R2 value. The scatter plots (bottom row) show actual versus model-predicted subject weights

with different symbols indicating group membership. The multilinear regression models include age, gender, education, and one of the neurocognitive variables

of interest. The three columns illustrate the relationships of (A) RSN-pattern and CCI-self score; (B) VIS-pattern and CCImax score, and (C) FP-DMN pattern

and CVLT score. These relationships are further detailed in the Results section. Significance denoted by asterisk (P , .05).
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exhibited a pattern of increased communication between two
important RSNs known to be involved in episodic memory,
the DMN and frontoparietal network.
4. Discussion

ICA is often used to evaluate the spatiotemporal structure
of BOLD data and to extract functional connections from
voxels’ time series. In a similar vein, we applied a novel,
data-driven connICA methodology directly onto functional
connectome data sets to model and tease apart common un-
derlying FC patterns of healthy and diseased human brains.
We successfully extracted independent FC patterns and
quantified the degree to which each pattern was present in
each individual’s functional connectome. Those individual
estimations or pattern weights were used as the response var-
iables in multilinear regression models (one per FC pattern)
with nuisance covariates and cognitive performance vari-
ables included as predictors. This approach allowed a
continuous mapping across different stages of AD within
functional connectomes.

Of the initial six robust independent FC patterns, three
(RSN, VIS, and FP-DMN) were considered biologically
relevant and retained for further consideration. All three
FC patterns showed associations with neurocognitive status
including performance scores. Specifically, we found that
SCD measures, considered to be among the earliest indica-
tors of risk for AD, were negatively associated with FC in
several important RSNs. These data indicate the potential
utility of connectomics approaches in early detection and
diagnosis.

The RSN-pattern, which resembles the canonically
defined RSNs [14], was negatively associated with CCI-
self score after controlling for age, gender, and education.
In other words, lower FC within the RSN-pattern was seen
in participants with more SCD (i.e., increased complaints).
This finding is highly relevant because in early stages of
AD, self and informant concerns may precede clinically sig-
nificant psychometric deficits in cognition, and cognitive
complaints are believed to confer an increased risk of cogni-
tive impairment and progression to dementia [20,21]. Our
finding suggests that disordered brain function,
characterized by decreased coherence in major RSNs, may
be related to self-perceived cognitive decline. This result
further adds to growing literature that SCD may indeed
reflect neuronal changes and suggests that RSN coherence
may serve as a good biological predictor of decline
[20,21,41]. If FC patterns could be used to identify
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individuals in a preclinical state of AD, then this technique
has the potential to enhance therapeutic or preventative
trials to identify disease-modifying treatments that can
stop or slow clinical progression [42,43].

The VIS-pattern had a strong negative association with
CCImax score. In other words, higher levels of SCD (taken
from either the subject or the informant) are associated with
lower within-network FC in the visual network. This result
provides evidence that impairment in brain areas responsible
for visual cognition may be associated with early indications
of cognitive impairment. This is in agreement with studies
that have found similar links between visual impairment
and early neurodegeneration [29,44]. In fact, tests of visual
cognition may be particularly sensitive to the effects of AD
[45]. Importantly, we may be able to use the integrity of the
FC in the visual network as a diagnostic marker to better char-
acterize or identify early sensory impairments caused by early
AD that may result in decreased quality of life for patients.

Lastly, features of FC in FP-DMN-pattern, which was
characterized by strong connectivity of FC between the fron-
toparietal network and DMN, were positively associated
with episodic memory. This result is similar to those from
previous studies that suggest that interdependent activity
of DMN and parietal regions are involved in memory
retrieval [46,47]. Thus, our findings and others suggest that
strong connections between brain regions in the
frontoparietal network and in the DMN are important for
better episodic memory performance.

There are limitations to the present study. The sample size
is modest, and there is unequal sampling across groups (CN,
SCD, MCI, and AD). Although we did not analyze results
based on group, these factors could affect the relative distri-
bution of neurocognitive scores across the sample. Future
studies with significantly larger overall and subgroup samples
are warranted. Second, we elected to use a specific brain par-
cellation scheme [37] and referenced our results to a partic-
ular set of RSNs [14]. It is possible that alternative
anatomic and functional templates would return different re-
sults. Thus, future studies including multiple brain parcella-
tion schemes and RSN definitions would help determine
the validity of our findings. Third, the ICA approach is still
being optimized, in particular with regards to the upper limit
of components that the algorithm can extract. Fourth, permu-
tation tests and cross-validation of the clinical cohort would
enable nonparametric estimation of significance [48] and pro-
vide a data-driven approach to multiple testing correction.
Fifth, wewere unable to incorporate data from clinically rele-
vant biomarkers such as b-amyloid and tau. To determine the
impact of hallmark AD biomarkers on FC patterns, future
studies will incorporate plasma and cerebrospinal fluid con-
centrations of amyloid and tau, as well as positron emission
tomography datawith radioligands that bind to these proteins.

Finally, the field of brain connectomics has great promise
for elucidating the complex relationships between cognitive
decline and FC patterns. This approach has strong potential
to generate clinically relevant biomarkers for brain function
in prodromal AD and other neurodegenerative disorders.
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RESEARCH IN CONTEXT

1. Systematic review: This study examined functional
connectivity (FC) differences across the spectrum of
early-stage AD, from at-risk and prodromal stages to
clinical AD dementia with significant cognitive and
functional impairment. Because neurodegeneration
typically progresses grad- ually inAD,with subtle tran-
sitions between preclinical and prodromal stages rather
than discrete drops, we applied a recently developed
analytic framework to identify FC network patterns
across early stages of AD. Specifically, a data-driven
methodology, denominated connICA, was used to un-
cover inherent and independent FC patterns within
the population and their associations with subjective
and psychometric cognitive parameters relevant to AD.

2. Interpretation: Our finding suggests that disordered
brain function, characterized by decreased coherence
in major resting-state networks, may be related to
self- perceived cognitive decline.

3. Future directions: Future studies with significantly
larger overall group and subgroup samples are war-
ranted along with optimization of this novel ICA
approach. Finally, FC patterns could be used to iden-
tify individuals in a preclinical state of AD, helping
to enhance therapeutic or preventative trials to iden-
tify disease-modifying treatments that can stop or
slow clinical progression.
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