
Tibial bone strength is enhanced in the jump leg of collegiate-
level jumping athletes: a within-subject controlled cross-
sectional study

Alyssa M. Weatherholt1 and Stuart J. Warden1,2,*

1Center for Translational Musculoskeletal Research, School of Health and Rehabilitation 
Sciences, Indiana University, Indianapolis, IN 46202, USA

2Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana 
University, Indianapolis, IN 46202, USA

Abstract

An efficient method of studying skeletal adaptation to mechanical loading is to assess side-to-side 

differences (i.e. asymmetry) within individuals who unilaterally exercise one side of the body. 

Within-subject controlled study designs have been used to explore skeletal mechanoadaptation at 

upper extremity sites; however, there is no established model in the lower extremities. The current 

study assessed tibial diaphysis and distal tibia asymmetry in collegiate-level jumping athletes (N = 

12). To account for normal crossed asymmetry, data in jumping athletes were compared to 

asymmetry in a cohort of athletic controls not routinely exposed to elevated unilateral lower 

extremity loading (N = 11). Jumpers exhibited side-to-side differences between their jump and 

lead legs at both the tibial diaphysis and distal tibia, with differences at the former site persisting 

following comparison to dominant-to-nondominant leg differences in controls. In particular, jump-

to-lead leg differences for cortical area and thickness at the tibial diaphysis in jumpers were 3.6% 

(95% Cl =0.5% to 6.8%) and 3.5% (95% Cl = 0.4% to 6.6%) greater than dominant-to-

nondominant differences in controls, respectively (all p < 0.05). Similarly, jump-to-lead leg 

differences in jumpers for tibial diaphysis maximum second moment of area and polar moment of 

inertia were 7.2% (95% Cl, 1.2–13.2%) and 5.7% (95% Cl, 1.7–9.8%) greater than dominant-to-

nondominant differences in controls, respectively (all p < 0.05). Assessment of region-specific 

differences of the tibial diaphysis in jumpers indicated that the jump leg had greater pericortical 

radii on the medial and posterior sides and greater radial cortical thickness posteromedially when 

compared to the lead leg. These data suggest that athletes who perform repetitive and forceful 

unilateral jumping may be a useful and efficient within-subject controlled model for studying 

lower extremity skeletal mechanoadaptation.
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INTRODUCTION

Exercise is promoted as a means of improving bone health as the skeleton responds and 

adapts to mechanical forces. Randomized controlled trials (RCTs) have provided strong 

evidence of the skeletal benefit of mechanical loading [1,2]; however, RCTs are costly in 

terms of both time and money. An efficient alternative is to cross-sectionally compare bone 

health between former athletes and controls. However, this approach does not control for 

inherited and other systemic influences on bone properties. To cross-sectionally explore 

skeletal mechanoadaptation while controlling for the influence of inherited/systemic factors, 

a within-subject controlled study design can be used.

Within-subject controlled study designs involve assessing side-to-side differences (i.e. 

asymmetry) within individuals who unilaterally exercise one side of the body. By comparing 

skeletal properties on the exercised side to the contralateral non-exercised side, the influence 

of inherited/systemic factors can be controlled. Inherited/systemic influences may modulate 

bone responses to exercise; however, these effects on asymmetry are considered small 

relative to the overall loading effect.

Within-subject controlled study designs have almost exclusively been used to address 

questions regarding skeletal mechanoadaptation at upper extremity sites. For instance, by 

comparing dominant-to-nondominant arm differences in racquet sport players, the relative 

benefits and surface-specific effects of exercise at different times during the pubertal growth 

period have been identified [3,4]. Similarly, the lifelong benefits of exercise completed 

when young were observed by comparing throwing-to-nonthrowing arm bone properties in 

former baseball players [5,6].

In contrast to the upper extremity, there is no established model to explore exercise-induced 

side-to-side skeletal differences in the lower extremities. Model involving the lower 

extremity are required as: 1) fractures associated with age-related bone loss cause the 

greatest morbidity when they occur in the lower extremity, and; 2) upper and lower 

extremity sites potentially respond differently to stimuli, such as mechanical loading [7]. 

Individual studies have demonstrated lower extremity skeletal asymmetry in some athletic 

populations, including rhythmic gymnasts (takeoff > landing leg) [8], ten-pin bowlers (slide 

> trail leg) [9], soccer players (stance > kicking leg) [10], and fencers (lunging > trail leg) 

[11]. However, findings have yet to be replicated and a number of the studies did not 

compare lower extremity skeletal asymmetry in their athletes to that measured in controls. 

Humans exhibit crossed asymmetry [12,13] whereby the lower extremity opposite the 

dominant arm possesses enhanced bone properties [14,15]. By comparing asymmetry in 

athletes to that measured in controls, within-subject exercise benefits can be corrected for 

crossed asymmetry effects.

We hypothesized athletes who compete in unilateral jumping activities (such as high and 

long jump) possess greater lower extremity asymmetry than controls and, thereby, represent 

a possible population wherein lower extremity skeletal mechanoadaptation can be explored 

using a within-subject controlled study design. Jumping athletes repetitively and forcibly 

jump off one leg, with the jump leg being exposed to an active peak vertical ground reaction 
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force during take-off that is more than double that experienced during maximal sprinting 

[16–19]. RCTs have demonstrated the osteogenic potential of jumping exercises [20–23], 

and previous cross-sectional studies have suggested that jumping athletes have substantially 

enhanced bone properties [24,25]. Also, a unilateral hopping exercise program was 

prospectively shown to be beneficial to proximal femur properties in older men [26,27]. To 

our knowledge, only one previous study has explored lower extremity asymmetry in 

jumping athletes, with asymmetry limited to tibial trabecular bone mineral content when 

compared to asymmetry in non-jumpers [28].

The aim of the current within-subject controlled study was to assess tibial diaphysis and 

distal tibia asymmetry in collegiate-level jumping athletes. While the tibia is not a common 

site of osteoporotic fracture, its accessibility and loading during activities such as jumping 

make it a suitable site to preliminarily explore the within-subject lower extremity benefits of 

exercise. To account for crossed asymmetry, data in jumping athletes were compared to 

asymmetry measured in a cohort of athletic controls not routinely exposed to elevated 

unilateral lower extremity loading.

MATERIALS AND METHODS

Participants

Male collegiate-level jumping (jumpers; n = 12) and cross-country running (controls; n = 

11) athletes aged 18–30 years were recruited via convenience sampling from local 

universities and colleges. Jumpers were included if they were currently competing or 

practicing in collegiate-level long and/or high jump and had been continuously participating 

in competitive jumping for at least 3 years. Participants in both groups were excluded if they 

had: 1) participated >2 times per month for >6 months within the previous 3 years in an 

athletic activity (including basketball, triple jump, volleyball) that may preferentially load 

one lower extremity (except high or long jump in jumpers), or; 2) been exposed to lower 

extremity surgery or lower extremity immobilization for >2 weeks within the past 2 years. 

The take-off leg was defined as the jump leg in jumpers. The dominant leg in controls was 

defined as the leg on the opposite side of the body to their dominant arm (to account for 

crossed asymmetry). The contralateral leg was defined as the lead and nondominant leg in 

jumpers and controls, respectively. The study was approved by the Institutional Review 

Board of Indiana University and all participants provided written informed consent.

Demographic and anthropometric characteristics

Jumpers completed a questionnaire to document their participation (including age started 

competitive jumping, and estimated jump training time and jumps per week) and best 

performance in jumping endeavours. Height (to nearest 0.1 cm) and weight (to nearest 0.1 

kg) were measured using a wall mounted digital stadiometer and electronic balance scale, 

respectively. Body mass index (BMI, kg/m2) was calculated as mass divided by height 

squared. Tibial length (to nearest 1 mm) was measured using a sliding anthropometer as the 

distance between the medial tibial plateau and distal tip of the medial malleolus. Whole-

body, spine and stride/nondominant total hip areal bone mineral density (aBMD; g/cm2), 

and whole-body lean (kg) and fat mass (%) were assessed in all subjects via dual-energy X-
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ray absorptiometry (DXA) using the manufacturer’s standard protocols on a Hologic 

Discovery-W machine equipped with Apex v4.0 software (Hologic, Inc., Waltham, MA, 

USA). Subregional analyses of whole body scans were performed to obtain whole leg lean 

mass (kg) and bone mineral content (g), with the neck of femur being the landmark for the 

division of the lower extremities from the pelvis.

Jumping performance

To determine whether unilateral jump training engendered side-to-side differences in jump 

performance, jump height and force for each leg were assessed during single-leg counter-

movement jumps with freely moving arms. Subjects took a single step and jumped as high 

as possible off of the leg being tested. Jump height was measured using a Vertec vertical 

jump meter with moveable vanes every one-half inch (1.27 cm) (Sports Imports, Columbus, 

OH). Single-hand vertical reach was measured from a flat-foot standing position before 

subjects performed a single-leg countermovement jump to displace the highest vane 

possible. Vertical jump height (cm) was measured as the distance difference between 

standing and jump reach. Subjects were permitted to perform 3 jumps on each leg separated 

by ≥1 min, with the best jump on each leg recorded as jump height.

Jump force was measured as per jump height, but with subjects performing jump 

movements on an AMTI force platform (OR6-7-1000 with Gen5 digital amplifiers; 

Advanced Mechanical Technologies, Inc., Watertown, MA). Subjects stood quietly on the 

force platform to first measure the force exerted by body mass. Subjects subsequently 

performed single-leg countermovement jumps on each leg during which force within the 

acceleration phase of the jump was collected at 100 Hz using Vicon Nexus software (version 

1.8.5; Vicon, Oxford, UK). Subjects were permitted to perform 3 jumps on each leg 

separated by ≥1 min, with the highest force on each leg recorded as the jump force. Jump 

force data for each leg was subsequently converted into units of body weight (BW) by 

dividing by body mass force.

Peripheral quantitative computed tomography (pQCT)

pQCT was performed using a Stratec XCT 3000 machine equipped with software version 

6.20C (Stratec Medizintechnik GmbH, Germany). Subjects were positioned supine with the 

test leg centred within the machine’s gantry and anchored by stretchable straps to limit 

movement during testing. A scout scan was performed to localize the talocrural joint and a 

reference line was placed at the distal tibial plateau, bisecting the region of highest density at 

the lateral side of the distal tibia. Tomographic slices (thickness = 2.3 mm; voxel size = 400 

μm; scan speed = 20 mm/s) were taken at 66% (tibial diaphysis) and 4% (distal tibia) of 

tibial length proximal from the reference line, with tibial length measured earlier using a 

sliding anthropometer. The procedure was repeated on contralateral side to obtain bilateral 

measures.

Analysis of the tibial diaphysis slice was restricted to cortical bone parameters as trabecular 

bone is not present at this site. Cortical mode 1 (threshold, 710 mg/cm3) was used to obtain 

total area (Tt.Ar, cm2), and cortical volumetric bone mineral density (Ct.vBMD, mg/cm3), 

bone mineral content (Ct.BMC, mg/mm), and area (Ct.Ar, cm2). Medullary area (Me.Ar, 
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mm2) was derived as Tt.Ar minus Ct.Ar. Average cortical thickness (Ct.Th, mm) was 

obtained using a circular ring model by analyzing the slices using contour mode 1 

(threshold, 710 mg/cm3) to define the outer bone edge and peel mode 2 (threshold, 400 

mg/cm3) to separate the cortical and subcortical/medullary compartments. As some previous 

studies have suggested benefits of exercise on the fibula [29,30], exploratory analyses of the 

fibula were performed at the level of the tibial diaphysis slice using the same analysis 

protocol.

Bone strength of the tibial diaphysis was estimated by the density-weighted minimum (IMIN, 

cm4) and maximum (IMAX, cm4) second moments of area, and polar moment of inertia (IP, 

mm4) obtained using cortical mode 2 (threshold = 400 mg/cm3). IMIN and IMAX were 

estimated according to Gere and Timoshenko [31], and represent the distribution of bone 

material about the orthogonal planes of least and most bending resistance, respectively. IP 

was calculated as the sum of IMIN and IMAX, and was used to estimate the ability of the bone 

structure to resist torsion [32]. The ratio of IMAX to IMIN was derived to provide an 

indication of the directionality of diaphyseal adaptation.

Each tomographic slice at the level of the tibial diaphysis was also analysed to obtain lower 

leg lean cross-sectional area (CSA, mm2). Contour mode 3 (threshold, 100 mg/cm3) was 

used to locate the skin surface and peel mode 2 (threshold, 40 mg/cm3) used to locate the 

subcutaneous fat muscle boundary. A F03F05 filter was used to remove noise. Short-term 

precision for the pQCT scanning procedure on 30 healthy individuals scanned six times with 

interim repositioning showed root mean square coefficients of variation (RMS-CVs) of <1% 

for bone density, mass, structure, and estimated strength measures, and <1.5% for lean CSA 

[33].

To determine site-specificity of bone geometry adaptive responses associated with jumping, 

polar pericortical and endocortical radii at the tibial diaphysis were obtained for the jump 

and lead legs in jumpers. Stratec pQCT image files and data were opened in ImageJ (v1.45s; 

National Institutes of Health) and analyzed using the BoneJ plugin [34], as previously 

described [35]. Images were rotated to align the bones according to the IMAX and IMIN axes, 

and right-sided images were flipped to superimpose left-side images. Using a threshold 

value of 350 mg/cm3 to locate bone tissue, the distance of the endocortical and pericortical 

surfaces from the centroid of the medullary cavity were measured in 10° polar sectors. Ct.Th 

within each sector was calculated as the pericortical minus endocortical radius.

Analyses of the distal tibia slice included total, cortical and trabecular measures, and were 

achieved using contour mode 1 (threshold, 300 mg/cm3) to define the outer bone edge and 

peel mode 2 (threshold, 600 mg/cm3) to separate the cortical/subcortical and trabecular 

compartments. Properties recorded included total vBMD (Tt.vBMD, mg/cm3) and area 

(Tt.Ar, cm2), and total (Tt.BMC, mg/mm), Ct.BMC, and trabecular (Tb.BMC, mg/mm) 

BMC. Strength of the distal tibia to resist compressive forces was estimated by the Bone 

Strength Index (BSI, mg2/mm4). BSI was calculated as the product of Tt.Ar and squared 

Tt.vBMD, and is predictive of compressive failure load [36].
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Statistical analyses

Two-tailed analyses with a level of significance set at 0.05 were performed with IBM SPSS 

Statistics (v21; SPSS Inc., Chicago, IL). Demographic and anthropometric characteristics 

(including whole-body, spine and total hip DXA data) were compared between jumpers and 

controls using independent sample t-tests. Jump versus lead leg differences for tibial 

properties in jumpers were assessed by calculating mean percent differences ([jump leg lead 

leg] / lead leg × 100%) and their 95% confidence intervals (CIs). Similarly, mean percent 

differences ([dominant leg nondominant leg] / dominant leg × 100%) and their 95% 

confidence intervals (CIs) were calculated to determine crossed asymmetry effects in 

controls. 95% CIs not crossing 0% were considered statistically significant, as determined 

by single sample t-tests on the mean percent differences with a population mean of 0%. 

Bivariate correlations were performed in jumpers to assess whether side-to-side differences 

in bone properties were related to side-to-side differences in jump performance (height and 

force).

To establish the effect of jumping on bone properties independent of crossed asymmetry 

effects, jump-to-lead leg differences in jumpers were compared to dominant-to-nondominant 

differences in controls using independent sample t-tests. To explore the regional-specificity 

of bone geometry adaptive responses associated with jumping, tibial diaphysis polar 

pericortical and endocortical radii and polar Ct.Th data were assessed using two-way 

repeated measures ANOVA, with leg (jump vs. lead leg) and sector (1 through 36) as 

within-subject variables. In the presence of a significant leg x sector interaction, post-hoc 

paired t-tests were used to compare jump vs. lead leg differences within each individual 

sector. No adjustments were applied on the post-hoc comparisons because of the small 

sample size and preliminary nature of the regional analyses.

RESULTS

Jumpers and controls had similar age and height (all p = 0.30 to 0.31); however, jumpers had 

greater whole-body total and lean mass, and greater spine aBMD than controls (all p < 0.01) 

(Table 1). Ten jumpers matched the concept of crossed asymmetry and used the leg opposite 

their dominant arm as their jump leg. One left-hand and one right-hand dominant jumper 

used the leg on the ipsilateral side as their jump leg. All controls were right handed and, 

thus, their left leg was categorized as being dominant. There were no side-to-side differences 

in lean measures in either jumpers or controls, or dominant-to-nondominant leg differences 

in jump performance in controls (all p = 0.68 to 0.97) (Table 2). In contrast, jumpers jumped 

13.1% (95% CI = 3.4% to 22.9%) higher and generated 10.4% (95% CI = 2.6% to 18.2%) 

more force when jumping off their jump leg compared to their lead leg (all p < 0.01) (Table 

2).

There were no dominant-to-nondominant leg differences in controls at either the tibial 

diaphysis or distal tibia (all p = 0.06 to 0.97) (Table 3). In contrast, the jump leg in jumpers 

had greater Ct.BMC, Ct.Ar, Ct.Th, IMAX, IP and IMAX/IMIN ratio at the tibial diaphysis and 

greater Tt.BMC, Ct.BMC and BSI at the distal tibia than in the lead leg (all p < 0.05) (Table 

3). There were no jump-to-lead leg differences in jumpers for Ct.vBMD, Tt.Ar, Me.Ar or 

IMIN at the tibial diaphysis or Tt.vBMD, Tt.Ar, or Tb.BMC at the distal tibia (all p = 0.07 to 
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0.92) (Table 3). There was a significant correlation at the tibial diaphysis in jumpers 

between jump-to-lead leg difference in jump height and IMAX (R2 = 0.34; p < 0.05) and 

significance was approached for a correlation between jump-to-lead leg difference in jump 

height and IP (R2 = 0.26; p = 0.09). There were no side-to-side differences at the fibula for 

any parameter in either jumpers or controls (all p = 0.15 to 0.98) or differences in side-to-

side differences between jumpers and controls (all p = 0.33 to 0.87).

The jump-to-lead leg difference in tibial diaphysis Ct.BMC in jumpers did not differ from 

dominant-to-nondominant differences in controls (p = 0.07). However, jump-to-lead leg 

differences for tibial diaphysis Ct.Ar and Ct.Th in jumpers were 3.6% (95% Cl =0.5% to 

6.8%) and 3.5% (95% Cl = 0.4% to 6.6%) greater than dominant-to-nondominant 

differences in controls, respectively (all p < 0.05) (Fig. 1). Similarly, jump-to-lead leg 

differences in jumpers for IMAX, IP and IMAX/IMIN ratio were 7.2% (95% Cl, 1.2–13.2%), 

5.7% (95% Cl, 1.7–9.8%) and 7.0% (95% Cl, 0.8–13.3%) greater than dominant-to-

nondominant differences in controls, respectively (all p < 0.05) (Fig. 1).

There were significant leg x sector interactions for polar pericortical and endocortical radii, 

and polar Ct.Th (all p < 0.05). The jump leg in jumpers had greater pericortical radii on the 

medial and posterior sides and smaller pericortical and endocortical radii on the lateral side 

of the tibial diaphysis compared to the lead leg (all p < 0.05) (Fig. 2A). The jump leg had 

greater Ct.Th in posteromedial polar sectors and less Ct.Th in lateral sectors compared to the 

lead leg (all p < 0.05) (Fig. 2B). There were no jump-to-lead leg differences detected at the 

distal tibia when compared to dominant-to-nondominant differences in controls (all p = 0.13 

to 0.90) (Fig. 3).

DISCUSSION

The current data suggest that athletes competing in activities involving repetitive and 

forceful unilateral jumping may be a useful within-subject controlled model for studying 

lower extremity mechanoadaptation. Jumping athletes possessed superior spine aBMD than 

controls, and group differences for whole-body and hip aBMD approached significance 

(both p = 0.07), consistent with previous studies demonstrating enhanced bone health in 

power (i.e. jumping/sprinting) versus endurance (i.e. cross-country running) athletes [37–

39]. In addition to having an enhanced background skeletal phenotype, jumpers exhibited 

side-to-side differences between their jump and lead legs at both the tibial diaphysis and 

distal tibia, with differences at the former site being greater than dominant-to-nondominant 

leg differences in cross-country runners. By using the lead leg as an internal control site and 

assessing the within-subject skeletal effects of jumping, the skeletal benefits of jumping 

were isolated from the potential influence of selection bias, which limit the findings of 

cross-sectional studies comparing bone properties between subjects. We also isolated the 

skeletal benefits of jumping from any crossed asymmetry not attributable to unilateral 

jumping activities by comparing side-to-side differences in jumpers to those in a group who 

historically have not participated in an athletic endeavour introducing unilateral lower 

extremity loading.
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The current findings extend those of Ireland et al. [28] who compared side-to-side 

differences in Master-level jumping athletes (pole vaulters and long jumpers) to sprinters 

and unconditioned jumpers who did not engage or competed, but did not train, in jump 

events, respectively. In jumping athletes, Ireland et al. [28] reported jump-to-lead leg 

differences for tibial diaphysis Ct.BMC and IP of ~2.5% and ~7%, respectively. These side-

to-side differences are comparable with the jump-to-lead leg differences of 3.6% and 5.7% 

for Ct.BMC and IP observed in jumpers in the current study, respectively. However, in 

contrast to Ireland et al. [28], a number of the side-to-side differences in jumpers in the 

current study persisted when compared to dominant-to-nondominant leg differences in 

controls. Thus, we observed jumping had skeletal benefits over-and-above any crossed 

asymmetry that is not attributable to participating in unilateral jumping activities. The 

reasons why side-to-side differences in jumpers were greater than observed in controls in the 

current study are not clear, but may be due to less data variability and/or the study of less 

comparative groups (jumpers vs. controls). With regards to the latter, Ireland et al. [28] 

compared side-to-side differences in four groups of athletes which required the use of an 

analysis of variance and relatively stringent post-hoc comparisons (Tukey’s HSD) to 

identify differences between individual groups.

There was no benefit of jumping on jump-to-lead leg differences in bone mass when 

compared to dominant-to-nondominant leg differences in controls, although significance 

was approached (p = 0.07). In contrast, jumpers exhibited greater jump-to-lead leg 

differences in tibial diaphyseal Ct.Ar, Ct.Th, IMAX and IP than dominant-to-nondominant 

leg differences in controls. These data suggest jumping led to a redistribution of bone mass 

to sites where needed most. There was no benefit of jumping on overall bone size (i.e. 

Tt.Ar), which may have been mediated by the fact that most of our jumpers begun unilateral 

jumping activities in adolescence (i.e. after puberty) when loading-induced periosteal bone 

accrual appears to slow [3,40]. However, assessment of pericortical radii and Ct.Th in polar 

sections of the tibia indicated directionally specific increased bone size in the posterior and 

medial directions. Increasing bone size and distributing bone material further from bending 

axes in the posterior and medial directions is functionally important as it increases resistance 

to bending in these directions, which may decrease stress fracture risk to the injury prone 

posteromedial region of the tibia.

Increased polar pericortical radii in the medial direction were offset by reduced radii in the 

lateral direction. As the mediolateral plane in the tibial diaphyseal cross-section 

approximates the plane of least bending resistance (i.e. IMIN), summation of the mediolateral 

changes meant that IMIN was not altered in the jump leg of jumpers. This does not 

necessarily mean that resistance to bending in the mediolateral direction was not enhanced 

as the cumulative changes in medial and lateral pericortical radii suggest a modeling drift 

whereby the tibial diaphyseal cross-sectional as a whole had shifted medially. Such a shift 

would theoretically reduce the moment arm of the force that causes the tibia to bend 

medially during weight bearing activities [41].

In contrast to IMIN, IMAX was greater at the tibial diaphysis in the jump leg of jumpers. The 

anteroposterior plane approximates the plane of greatest bending resistance (i.e. IMAX) and 

the tibial diaphysis had greater pericortical radii and Ct.Th in the posterior direction that was 
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not offset by jump-to-lead leg differences in the anterior direction. The greater IMAX 

contributed to the jump leg having greater torsional rigidity, as IP is derived as the sum of 

IMAX and IMIN. The greater IMAX also contributed to the jump leg having a greater IMAX/

IMIN ratio, which further highlights the directional adaptation of the tibia to jumping 

activities. The pattern of tibial adaptation in the IMAX plane associated with jumping is 

likely an adaptive response to stiffen the bone to the predominantly posterior bending of the 

tibia during weight bearing activities [41], and supports the pattern of tibial adaptation to 

jumping and other weight bearing activities prospectively observed in boys [42] and 

observed in between-subject cross-sectional studies [25,43,44].

Surprisingly, no skeletal benefits of jumping were observed at the distal tibia site in the 

current study. This is surprising considering that the elevated unilateral forces associated 

with jumping activities generated differences at the tibial diaphysis and that the distal tibia 

would presumably also be exposed to elevated unilateral loading. Jumpers did have jump-to-

lead leg differences in estimated compressive strength (i.e. BSI) at the distal tibia as a result 

of elevated BMC in the jump leg; however, these differences were not statistically greater 

than dominant-to-nondominant leg differences observed in controls. That is, the side-to-side 

differences observed in jumpers could be explained by normal crossed asymmetry, as 

opposed to unilateral jumping activities. Possible explanations for the lack of an effect of 

jumping at the distal tibia include a lesser effect size of jumping activities and greater 

variability in data at this site resulting in reduced power to detect statistical differences.

The magnitudes of side-to-side differences observed at the tibial diaphysis in the current 

study are much smaller than those observed in within-subject controlled studies of the upper 

extremity. In the upper extremity, chronically exercised arms have been reported to have 

nearly twice the estimated strength of contralateral nonexercised arms [6,45]. The most 

likely explanation for the reduced asymmetry in the lower extremity is the fact that both the 

exercised and contralateral ‘nonexercised’ legs are habitually exposed to elevated 

mechanical loading during weight bearing activities, which include running and sprinting in 

jumping athletes. Chronic elevated loading of the contralateral leg alters its phenotype 

changing the magnitude of the denominator in asymmetry calculations, whereas chronic 

habitual loading and adaptation of the exercised leg reduces its sensitivity to superimposed 

heightened mechanical loads, such as those associated with jumping, due to cellular 

accomodation [46]. It should also be noted that jumping athletes often perform plyometric 

and other exercises whereby the contralateral leg serves as the landing leg and, thus, is 

exposed to its own unilateral loading which would reduce within-subject asymmetry in 

jumpers. Ultimately, the relatively small side-to-side differences observed in jumpers in the 

current study, despite their relatively prolonged and high level of participation in jumping 

activities, reduces the usefulness of this athlete population as a within-subject controlled 

model for exploring deeper questions regarding mechanoadaptation in the lower extremity.

Our study has a number of strengths, including the comparison of tibial properties within-

subject to control for selection bias, the inclusion of an athletic comparative group not 

exposed to unilaterally elevated loads to account for any normal crossed asymmetry, and the 

use of polar analyses to assess regional-specificity of bone geometry adaptive responses 

associated with jumping. However, the study also possesses a number of limitations that 
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warrant consideration when interpreting the data. These include the study of a relatively 

small sample size and males only, the inclusion of some long jump athletes who also 

competed in high jump, and limitations associated with the region specific analyses. The 

small sample size may have reduced our power to detect subtle group differences in some 

measures and contributed to our region specific analyses being preliminary in nature with at 

heightened risk of a Type-I error due to multiple comparisons. Our male only data may not 

be representative of tibial adaptation to jumping activities in females, while the inclusion of 

some long jump athletes who also competed in high jump may have contributed to 

variability in the data, with long and high jump requiring differing biomechanics that 

potentially introduce heterogeneous load magnitudes and distributions. With regard to the 

region specific analyses, these involved measuring the distance of the endocortical and 

pericortical surfaces from the center of the medullary cavity in polar sectors. Apposition 

and/or removal of bone from the endocortical surface may move the centre of the medullary 

cavity and artefactually alter radii length.

In summary, the current data demonstrate that collegiate-level jumping athletes have 

enhanced tibial bone properties in their jump leg compared to their contralateral lead (non-

jump) leg. The jump-to-lead leg differences in jumpers a the tibial diaphysis were greater 

than dominant-to-nondominant leg differences in controls indicating that the enhanced tibial 

properties in the jump leg of jumpers was due to jumping activities, as opposed to any 

normally occurring cross asymmetry. Overall, these data suggest that athletes who perform 

repetitive and forceful unilateral jumping may be a useful and efficient within-subject 

controlled model for studying lower extremity skeletal mechanoadaptation. However, 

additional studies are required to more fully establish the model’s utility and its ability to 

address deeper questions regarding mechanoadaptation in the lower extremity.
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Fig 1. 
Effect of jumping on tibial diaphysis bone density, mass, structure and estimated strength. 

Jumpers had greater jump-to-lead leg differences for cortical area (Ct.Ar), cortical thickness 

(Ct.Th), maximum second moment of area (IMAX), and polar moment of inertia (IP) than 

dominant-to- nondominant leg differences in controls. There were no group differences for 

cortical volumetric bone mineral density (Ct.vBMD), cortical bone mineral content 

(Ct.BMC), total area (Tt.Ar), medullary area (Me.Ar), or minimum second moment of area 

(IMIN). Data represent the difference between mean percent jump-to-lead leg differences in 

jumpers and mean percent dominant-to-nondominant leg differences in controls, with error 

bars indicating 95% confidence intervals. Confidence intervals greater than 0% indicate 

greater jump-to-lead leg differences in jumpers compared to dominant-to-nondominant leg 

differences in controls (*p < 0.05, unpaired t-test).
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Fig 2. 
A) Map of average pericortical and endocortical radii and B) average ± SD cortical 

thickness in 10 polar sectors at the tibial diaphysis in the jump (solid line) and lead (broken 

line) legs of jumpers. Sectors in A wherein jump leg pericortical radii were significantly (p < 

0.05) greater and less than corresponding radii in lead legs are indicated by thick solid and 

broken lines, respectively. Sectors in A wherein jump leg endocortical radii were 

significantly (p < 0.05) less than corresponding radii in lead legs are indicated by thick solid 

lines. Sectors in B wherein cortical thickness significantly (p < 0.05) differed between jump 

and lead legs are indicated by *.
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Fig 3. 
Effect of jumping on distal tibia bone density, mass, structure and estimated strength. There 

were no differences between jump-to-lead leg differences in jumpers and dominant-to-

nondominant leg differences in controls for total volumetric bone mineral density 

(Tt.vBMD), total (Tt.BMC), cortical (Ct.BMC) or trabecular (Tb.BMC) bone mineral 

content, total area (Tt.Ar), or Bone Strength Index (BSI). Data represent the difference 

between mean percent jump-to-lead leg differences in jumpers and mean percent dominant-

to-nondominant leg differences in controls, with error bars indicating 95% confidence 

intervals.
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Table 1

Demographic and anthropometric characteristics of jumpers and controlsa

Controls Jumpers

Demographics

 Age (yr) 22.3 ± 3.0 21.8 ± 2.1

 Dominant arm (R:L) 11:0 9:3

 Dominant/jump leg (R:L) 0:11 3:9

 Age starting competitive jumping (yr) — 14.2 ± 1.8

 Years competing (yr) — 6.2 ± 2.9

 Jumping sport (long:high jump) — 12:6b

 Jump training per week (min) — 193 ± 107

 Jumps per week (n) — 71 ± 58

 Personal best: long jump (m) — 7.11 ± 0.49

 Personal best: high jump (m) — 1.97 ± 0.18

Whole-body anthropometry

 Height (m) 1.79 ± 0.07 1.82 ± 0.07

 Mass (kg) 67.7 ± 8.7 78.5 ± 5.9**

 BMI (kg/m2) 21.1 ± 1.9 23.7 ± 1.8**

 aBMD (g/cm2)c,d 1.23 ± 0.10 1.35 ± 0.10

 Lean mass (kg)c 49.0 ± 5.7 58.6 ± 4.5**

 Fat mass (%)c 16.3 ± 4.4 14.0 ± 1.3

Regional anthropometry

 Spine aBMD (g/cm2)c,d 1.02 ± 0.09 1.23 ± 0.13**

 Total hip aBMD (g/cm2)c,d,e 1.13 ± 0.16 1.30 ± 0.14

a
Data indicate mean ± SD (except for frequencies)

b
6 jumpers participated in both long and high jump

c
Obtained via dual-energy x-ray absorptiometry

d
Corrected for whole-body lean mass

e
Of the nondominant and stride legs in controls and jumpers, respectively

**
p < 0.01 (independent sample t-test: controls vs. jumpers)
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