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Abstract

Brain imaging and protein expression, from both cerebrospinal fluid and blood plasma, have been 

found to provide complementary information in predicting the clinical outcomes of Alzheimer’s 

disease (AD). But the underlying associations that contribute to such a complementary 

relationship have not been previously studied yet. In this work, we will perform an imaging 

proteomics association analysis to explore how they are related with each other. While traditional 

association models, such as Sparse Canonical Correlation Analysis (SCCA), can not guarantee the 

selection of only disease-relevant biomarkers and associations, we propose a novel discriminative 

SCCA (denoted as DSCCA) model with new penalty terms to account for the disease status 

information. Given brain imaging, proteomic and diagnostic data, the proposed model can perform 

a joint association and multi-class discrimination analysis, such that we can not only identify 

disease-relevant multimodal biomarkers, but also reveal strong associations between them. Based 
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on a real imaging proteomic data set, the empirical results show that DSCCA and traditional 

SCCA have comparable association performances. But in a further classification analysis, 

canonical variables of imaging and proteomic data obtained in DSCCA demonstrate much more 

discrimination power toward multiple pairs of diagnosis groups than those obtained in SCCA.
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Imaging genomics; Alzheimer’s disease; Proteomics; Canonical correlation analysis; Multi-class 
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1. Introduction

Alzheimer’s disease (AD) has been well known as one of the most common brain dementia, 

a major neurodegenerative disorder that has been characterized by gradual memory loss and 

brain behavior impairment. According to the latest report,1 more than 5 million Americans 

are living with Alzheimer’s and it has been officially listed as the 6th leading cause of death. 

Also, due to the significant decline of self-care capabilities during disease, it is not only the 

patients who suffer, but also the family members, friends, communities and the whole 

society considering the time-consuming daily care and high health care expenditures needed. 

In the past decade, deaths attributed to Alzheimer’s disease has increased 68 percent, while 

deaths attributed to the number one cause, heart disease, has decreased 16 percent. And all 

of these situations will continue to deteriorate as the population ages during the next several 

decades. To prevent such health care crisis, substantial efforts have been made to help cure, 

slow or stop the progression of the disease.

In the last few years, many efforts have been dedicated to explore whether the combination 

of multi-modal measures, e.g. brain atrophy measured by magnetic resonance imaging 

(MRI), hypometabolism measured by functional imaging and quantification of proteins, can 

better predict the clinical outcomes of AD, such as disease status and cognitive outcomes.19 

In many of these works, it has been found that brain imaging and protein expression, from 

both cerebrospinal fluid (CSF) and blood plasma, hold some complementary 

information.12,18 But how they are related with each other still remains elusive.

In this work, we will explore the relationships between brain imaging and protein expression 

using bi-multivariate association models. Sparse Canonical Correlation Analysis 

(SCCA)11,16 is a typical example that has been widely used for associative analysis in both 

real8,15 and simulated3 -omics data sets.2,11,17 But it can not guarantee the selection of 

disease-relevant biomarkers and therefore the associations generated in SCCA are not 

necessarily related to a specific disease either, unless the input features are already 

prefiltered disease-related biomarkers.5 On the other hand, most existing SCCA algorithms 

use the soft threshold strategy for solving the Lasso11,16 regularization terms, which assumes 

the independence structure of data features. Unfortunately, this independence assumption 

does not hold in neither imaging nor proteomics data, and will inevitably limit the capability 

of yielding optimal solutions.
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To overcome these limitations, we propose a novel discriminative SCCA (DSCCA) model, 

coupled with a new algorithm to eliminate the independence assumption, to explore the 

imaging and proteomic associations. Given imaging, proteomic and diagnostic data, the 

proposed model can perform a joint association and multi-class discrimination analysis. As 

such, we can not only identify disease-relevant multimodal biomarkers, but also reveal 

strong association between them. We perform an empirical comparison between the 

proposed DSCCA algorithm and a widely used SCCA implementation in the PMA software 

package (http://cran.r-project.org/web/packages/PMA/).16 The results show that DSCCA 

and SCCA have comparable association performances. But in a further classification 

analysis, canonical variables of imaging and proteomic data obtained in DSCCA 

demonstrate much more discrimination power toward diagnosis groups than those obtained 

in SCCA.

2. Discriminative SCCA (DSCCA)

Throughout this section, we denote vectors as boldface lowercase letters and matrices as 

boldface uppercase ones. For a given matrix M = (mij), we denote its i-th row and j-th 

column to mi and mj respectively. Let X = {x1, …, xn} ⊆ ℜp be the imaging data and Y = 

{y1, …, yn} ⊆ ℜq be the protein data, where n is the number of participants, p and q are the 

number of brain regions and proteins respectively.

Canonical correlation analysis (CCA) is a bi-multivariate method that explores the linear 

transformations of variables X and Y to achieve the maximal correlation between Xu and 

Yv, which can be formulated as:

(1)

where u and v are canonical loadings or weights, reflecting the significance of each feature 

in identified associations.

However, the power of CCA in biomedical applications is quite limited due to 1) its 

requirement on the relatively large number of observations n which is expected to exceed the 

combined dimension of X and Y, and 2) its nonsparse outputs u and v which make the 

ultimate pattern hard to interpret. To address this concerns, sparse CCA (SCCA) method was 

later proposed, where two penalty terms on both weight vectors P1(u) ≤ c1 and P2(v) ≤ c2 

were introduced to help generate sparse results.

A widely used SCCA implementation, PMA package,16 applied L1 norm penalty for both P1 

and P2. But without diagnosis information, its capability in identifying disease-relevant 

biomarkers is quite limited. Thus the ultimate association relationships are not necessarily 

related to a specific disease either. Another limitation of PMA is that it takes the soft 

threshold strategy in the solution, which requires the input data to have an linear 

independence design XTX = I and YTY = I (see Section 10 in14). Unfortunately, this 

independence assumption does not hold in both imaging and proteomics data (e.g., 
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correlated voxels in an ROI, correlated protein expressions), and will inevitably limit the 

capability of identifying meaningful imaging proteomics associations.

To overcome these limitations, we propose a novel discriminative SCCA (denoted as 

DSCCA) algorithm to not only take into account the diagnosis information but also 

eliminate the independence assumption. Inspired by the application of locality preserving 

projection (LPP) in linear discriminative analysis,10 we add two new constraints as P1 and 

P2 for multi-class discrimination.

(2)

Here, we construct two graphs Gw and Gb to account for the diagnosis groups, where each 

vertex indicates one subject (Fig. 1). In Gw, only subjects within the same diagnosis group 

have connections to each other. In other words, we build a complete graph for all the 

subjects belonging to the same diagnosis group. In Gb, only subjects from different 

diagnosis groups have connections. Lw and Lb are the Laplacian graphs of Gw and Gb 

respectively. While the traiditonal L1 norm helps ascertain the sparsity of selected imaging 

and protein biomarkers, the new penalty term ‖ · ‖D encourages the closeness between 

subjects within the same diagnosis groups and distance between subjects from different 

diagnosis groups after projection. α is a trade off parameter that help balance the within- and 

between-group constraints. Since canonical variables Xu and Yv have the exact same length, 

we use the same α for both penalties P1 and P2.

The final objective function of DSCCA can be written as follows:

(3)

Using Lagrange multipliers, Eq. (3) can be reformulated as follows:

(4)

Eq. (4) is known as a bi-convex problem, which can be easily solved using an alternating 

algorithm as discussed in.16 By fixing u and v respectively, we will have the following two 

minimization problems shown in Eq. (5) and (6).
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(5)

(6)

Both objective functions can be efficiently solved using the Nesterovs accelerated proximal 

gradient optimization algorithm.9 Algorithm 2.1 summarizes the optimization procedure. 

The convergence is based on the value changes of the objective function and we use 10−6 as 

stop criteria. Five-fold nested cross-validation was applied to automatically tune the 

parameters β1, β2, λ1 and λ2. According to,2 the learned pattern and performance are 

insensitive to γ1 and γ2 settings. Therefore in this paper we set both of them to 1 for 

simplicity. The optimization method used in steps 3 and 4 is similar to that proposed in.9

Algorithm 2.1

Discriminative SCCA (DSCCA)

Require:

X = {x1, …, xn}, Y = {y1, …, yn}, Lw ⊆ ℜn×n, Lb ⊆ ℜn×n

Ensure:

Canonical vectors u and v.

1: t = 1, Initialize ut ∈ ℜp×1, vt ∈ ℜq×1;

2: while not converge do

3:   Solve Eq. (5) using Nesterov’s method and obtain u;

4:   Solve Eq. (6) using Nesterov’s method and obtain v;

5:   Scale u so that uTu = 1

6:   Scale v so that vTv = 1

7:   t = t + 1.

8: end while

3. Results

3.1. Data and Experimental Setting

The MRI data, quantification of proteins in CSF and blood plasma were downloaded from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The primary goal of 

ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. For up-to-date information, see 

adni.loni.usc.edu.

We totally extracted 246 subjects with all MRI, CSF and plasma proteomic data available. 

To balance the diagnostic groups, we randomly removed some mild cognitive impairment 
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(MCI) participants. Finally, 176 subjects (67 AD, 67 MCI and 42 healthy control (HC)), 

were included in this study (Table 1). For each baseline MRI scan, FreeSurfer (FS) V4 was 

employed to extract 73 cortical thickness measures and 26 volume measures, as well as to 

extract the intracranial volume (ICV). CSF and blood plasma samples were evaluated by 

Rules Based Medicine, Inc. (RBM) proteomic panel and 229 proteomic analytes survived 

the quality control process, with 83 from CSF and 146 from plasma. Using the regression 

weights from HC participants, all the MRI, CSF and blood plasma proteomic measures were 

pre-adjusted for the baseline age, gender, education, and handedness, with ICV as an 

additional covariate for MRI only.

3.2. Experimental Results

Both DSCCA and PMA were performed on the normalized FS and proteomic measures. To 

avoid the over-fitting problem, 5-fold nested cross-validation was applied, which also helped 

to optimally tune the parameters. Table 2 shows 5-fold cross-validation canonical correlation 

results. It is observed that proposed DSCCA and PMA have comparable performances in 

identifying imaging proteomic associations, whereas DSCCA is slightly better in 

performance stability.

Next, we examined the discriminative power of canonical variables Xu and Yv generated by 

DSCCA and PMA. Area under ROC curve (AUC) was calculated for each single canonical 

variable of five folds. Both imaging and proteomic canonical variables of PMA and imaging 

canonical variable of DSCCA were found to have little discrimination power in all HC vs 

MCI, HC vs AD and MCI vs AD cases. Proteomic canonical variable Yv of DSCCA has the 

best performance, with an averaged AUC around 0.7 for all three cases. Shown in Fig. 2 is 

an example plot of Xu against Yv in one fold. Dot colors represent different diagnostic 

groups. Compared to one single canonical variable, we observe that combination of two 

canonical variables generated in DSCCA demonstrated much more discrimination power 

than PMA. In Fig. 2(a) three diagnosis groups are all very well separated, whereas in Fig. 

2(b) subjects are mixing together.

To further validate our results, a follow up classification analysis was performed using both 

imaging and proteomic canonical variables as predictors. Canonical loadings learned in the 

training data set are applied to both training and test data to calculate the training and test 

canonical variables respectively. The LIBSVM toolbox was employed to implement the 

SVM using a linear kernel under default settings. Three pair-wise binary classification 

analyses were performed between HC vs MCI, HC vs AD, and MCI vs AD respectively. 

Shown in Table. 3 are the classification performance comparison between DSCCA and 

PMA. The results are very encouraging. Canonical variables of DSCCA significantly 

outperformed those of PMA in terms of the overall accuracy in almost all the cases. The 

resulting best prediction rates for HC vs AD (92.1%), HC vs MCI (75.3%) and MCI vs AD 

(70.3%) were competitive with prior multi-modal studies,6,19 especially considering that it is 

under default parameter settings.

All five-fold experiments generated similar sparse results in terms of selection of imaging 

and proteomic markers. Fig. 3 shows the imaging and proteomic markers commonly 

identified across all folds using DSCCA, where the color represents the weights of 
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corresponding brain regions. Top brain regions identified include entorhinal cortex, 

amygdala volume, hippocampal volume, etc. (Fig. 3(a)), which are all aligned with previous 

AD findings.12,19 In terms of proteomic markers, expression levels of 12 proteins from CSF 

and 19 proteins from blood plasma were found to be strongly associated with those brain 

regions. According to the STRING database (http://string-db.org/), these proteins are highly 

interconnected with each other, as shown in Fig. 3(b). Edges are colored based on the 

evidence of the connection, such as experimental interaction, co-expression or co-occurrence 

in the literature. The more edges two proteins have, the more confident their connection will 

be.

In particular, four proteins, apolipoprotein E (APOE), AXL receptor tyrosine kinase(AXL), 

interleukin 6 receptor (IL6R) and vascular endothelial growth factor (VEGF), were 

identified in both CSF and blood plasma. APOE is the top risk gene of AD. AXL is a 

member of the Tyro3-Axl-Mer (TAM) receptor tyrosine kinase subfamily, which has been 

previously reported to be involved in Amyloidogenic APP Processing and β-Amyloid 

Deposition in AD.20 For growth factor VEGF, both its variants and expression changes are 

found to be associated with AD.4,13 IL6R is less explored in terms of its relationship with 

dementia. But in a recent study it was reported to have significant associations with proteins 

involved in amyloid processing and inammation.7 These findings suggest the existence of 

certain connections between brain and blood biomarkers. Thus, more accessible fluid 

biomarkers from blood should have potential to provide extra insights of AD and guidance 

for future therapeutic intervention activities.

4. Discussion

We performed an integrative analysis of brain imaging and protein expression data to jointly 

identify AD related biomarkers and their associations using a new sparse learning model 

DSCCA. The overall association performance of DSCCA is better than SCCA. the 

combination of its two canonical variables are much more powerful in discriminating 

multiple diagnostic groups simultaneously. Using both imaging and proteomic canonical 

variables in DSCCA as predictors, we obtained very promising prediction performances: HC 

vs AD (92.1%), HC vs MCI (75.3%) and MCI vs AD (70.3%), which were competitive with 

prior multi-modal studies. Since the classification was done under default parameter settings 

and the sample size is very limited, we expect improved performances with more advanced 

parameter optimization strategies and/or larger sample sizes.

In real applications, many identified proteomic markers are found to be interconnected, but 

the underlying mechanisms still warrant further investigation. Replication in independent 

large samples will be important to confirm these findings. Further pathway enrichment 

analysis could be performed as a future direction to identify underlying biological pathways 

of relevant genes and proteins. Considering the ever increasing data volume and diversity in 

many complex diseases, another potential future topic is to investigate whether DSCCA can 

help identify valuable complementary information between new -omics features and further 

improve the classification performance.

Yan et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2016 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://string-db.org/


Acknowledgments

This work was supported by NIH R01 EB022574, R01 LM011360, U01 AG024904, R01 AG19771, P30 AG10133, 
UL1 TR001108, K01 AG049050 and R00 LM011384; DOD W81XWH-14-2-0151, W81XWH-13-1-0259, and 
W81XWH-12-2-0012; and NCAA 14132004 at Indiana University.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the 
following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; 
AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; 
Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company 
Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; Janssen Alzheimer Immunotherapy Research & Development, 
LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; 
Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda 
Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical 
sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health 
(www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the 
study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. 
ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

References

1. Alzheimers-Association: Alzheimers disease facts and figures. Alzheimers and Dementia. 2016; 
12:4.

2. Chen, X.; Liu, H.; Carbonell, JG. Structured sparse canonical correlation analysis; International 
Conference on Artificial Intelligence and Statistics; 2012. 

3. Chi, E.; Allen, G., et al. Imaging genetics via sparse canonical correlation analysis; Biomedical 
Imaging (ISBI), 2013 IEEE 10th Int Sym on; 2013. p. 740-743.

4. Del Bo R, Ghezzi S, Scarpini E, Bresolin N, Comi G. Vegf genetic variability is associated with 
increased risk of developing alzheimer’s disease. Journal of the neurological sciences. 2009; 283(1):
66–68. [PubMed: 19272614] 

5. Du L, Yan JW, Kim S, Risacher SL, Huang H, Inlow M, Moore JH, Saykin AJ, Shen L, Initia ADN. 
A novel structure-aware sparse learning algorithm for brain imaging genetics. Medical Image 
Computing and Computer-Assisted Intervention - Miccai 2014, Pt Iii. 2014; 8675:329–336.

6. Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for ad in a multi-modality framework: 
an analysis of mci progression in the adni population. Neuroimage. 2011; 55(2):574–589. [PubMed: 
21146621] 

7. Kauwe J, Bailey M, Ridge P, Perry R, Wadsworth M, Hoyt K, Ainscough B. Genome-wide 
association study of csf levels of 59 alzheimer’s disease candidate proteins: significant associations 
with proteins involved in amyloid processing and inammation. Plos Genetics. 2014; 
10(10):e1004758. [PubMed: 25340798] 

8. Lin D, Calhoun VD, Wang YP. Correspondence between fMRI and SNP data by group sparse 
canonical correlation analysis. Med Image Anal. 2013

9. Liu, J.; Ji, S.; Ye, J. Proceedings of the twenty-fifth conference on uncertainty in artificial 
intelligence. AUAI Press; 2009. Multi-task feature learning via efficient l2,1-norm minimization; p. 
339

10. Lu K, Ding ZM, Ge S. Sparse-representation-based graph embedding for traffic sign recognition. 
Ieee Transactions on Intelligent Transportation Systems. 2012; 13(4):1515–1524.

11. Parkhomenko E, Tritchler D, Beyene J. Sparse canonical correlation analysis with application to 
genomic data integration. Statistical Applications in Genetics and Molecular Biology. 2009; 8:1–
34.

12. Shen L, Kim S, Qi Y, Inlow M, Swaminathan S, Nho K, Wan J, Risacher SL, Shaw LM, 
Trojanowski JQ, Weiner MW, Saykin AJ, Adni. Identifying neuroimaging and proteomic 
biomarkers for mci and ad via the elastic net. Multimodal Brain Image Analysis. 2011; 7012:27–
34. [PubMed: 27054198] 

Yan et al. Page 8

Pac Symp Biocomput. Author manuscript; available in PMC 2016 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fnih.org


13. Tarkowski E, Issa R, Sjgren M, Wallin A, Blennow K, Tarkowski A, Kumar P. Increased intrathecal 
levels of the angiogenic factors vegf and tgf- in alzheimers disease and vascular dementia. 
Neurobiology of aging. 2002; 23(2):237–243. [PubMed: 11804709] 

14. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical 
Society. Series B (Methodological). 1996; 58(1):267–288.

15. Wan J, Kim S, et al. Hippocampal surface mapping of genetic risk factors in AD via sparse 
learning models. MICCAI. 2011; 14(Pt 2):376–383. [PubMed: 21995051] 

16. Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse 
principal components and canonical correlation analysis. Biostatistics. 2009; 10(3):515–534. 
[PubMed: 19377034] 

17. Yan J, Du L, Kim S, Risacher SL, Huang H, Moore JH, Saykin AJ, Shen L. Transcriptome-guided 
amyloid imaging genetic analysis via a novel structured sparse learning algorithm. Bioinformatics. 
2014; 30(17):i564–i571. [PubMed: 25161248] 

18. Yan, J.; H, H.; Kim, S.; Moore, J.; Saykin, A.; Shen, L.; Initia, ADN. Proceedings of the twenty-
fifth conference on uncertainty in artificial intelligence. IEEE; 2014. Joint identification of 
imaging and proteomics biomarkers of alzheimer’s disease using network-guided sparse learning; 
p. 665-668.

19. Zhang DQ, Wang YP, Zhou LP, Yuan H, Shen DG, Initia ADN. Multimodal classification of 
alzheimer’s disease and mild cognitive impairment. Neuroimage. 2011; 55(3):856–867. [PubMed: 
21236349] 

20. Zheng Y, Wang Q, Xiao B, Lu Q, Wang Y, Wang X. Involvement of receptor tyrosine kinase tyro3 
in amyloidogenic app processing and -amyloid deposition in alzheimer’s disease models. Plos 
One. 2012; 7(6):e39035. [PubMed: 22701746] 

Yan et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2016 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Illustration of within- and between-group graphs Gw and Gb. Each circle indicates one 

subject and subjects from the same diagnosis group are colored the same.
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Fig. 2. 
Plot of canonical variables Xu and Yv. Left: DSCCA; Right: PMA; Red: AD; Green: MCI; 

Blue: HC; Solid: Training; Circle: Test.
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Fig. 3. 
Common imaging and proteomic markers across 5-fold cross-validation. (a): Mapping of 

imaging canonical loadings onto the brain; (b): Known interactions between identified 

protein biomarkers from STRING database.
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Table 1

Participant characteristics

HC MCI AD

Number 67 67 42

Gender(M/F) 38/29 45/22 22/20

Handedness(R/L) 64/3 64/3 38/4

Age(mean±std) 75.15±7.68 74.28±7.25 75.93±5.82

Education(mean±std) 15.12±3.01 15.96±2.92 15.88±2.77
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