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Abstract 

In this study, the stress generation caused by phase transitions and lithium intercalation of 

nickel-manganese-cobalt (NMC) based half cell with realistic 3D microstructures has been studied 

using finite element method. The electrochemical properties and discharged curves under various 

C rates are studied. The potential drops significantly with the increase of C rates. During the 

discharge process, for particles isolated from the conductive channels, several particles with no 

lithium ion intercalation are observed. For particles in the electrochemical network, the lithium ion 

concentration increases during the discharge process. The stress generation inside NMC particles 

is calculated coupled with lithium diffusion and phase transitions. The results show the stresses 

near the concave and convex regions are the highest. The neck regions of the connected particles 
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can break and form several isolated particles. If the isolated particles are not connected with the 

electrically conductive materials such as carbon and binder, the capacity loses in battery. For 

isolated particles in the conductive channel, cracks are more likely to form on the surface. 

Moreover, stresses inside the particles increase dramatically when considering phase transitions. 

The phase transitions introduce an abrupt volume change and generate the strain mismatch, 

causing the stresses increase. 

Keywords: synchrotron X-ray tomography; NMC; phase transitions; finite element; stress; 

diffusion  
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1. Introduction 

Lithium ion rechargeable batteries (LIBs) are one of the most promising candidates for 

portable electronics and electric vehicles applications due to their high energy density [1]. Many 

technological improvements have been made to increase the energy density and cycle life of LIBs, 

including suppressing dendrites formation [2, 3], reducing side reactions [4, 5], and preventing 

thermal runaway [6, 7]. One of the critical challenges of LIBs is to enhance the mechanical stability 

of electrode materials. Diffusion induced stresses [8, 9] and phase transition [10, 11] during the 

operations of LIBs can cause fracture and mechanical failure. Hence, it is important to understand 

the stress generation in battery materials.  

Many studies have been done to study the stress generation to prevent the mechanical 

failures of LIBs [9, 12-16]. Zhang et al. [14, 15] studied the diffusion induced stresses in LiMn2O4 

under galvanostatic and potentiodynamic conditions using ellipsoid shaped particle model. Cheng 

and Verbrugge [13] investigated the strain energy of a spherically-shaped electrode particle under 

a periodic voltage excitation source. They evaluated the crack nucleation using strain energy 

density method. However, many of these studies employed single sphere particle model, and 

diffusion kinetics and electrochemical processes were simplified greatly. There are some attempts 

to simulate the stress generation of realistic microstructures in LIBs. Lim et al. [8] studied the 

diffusion induced stresses of realistic microstructures of LiXCoO2 and LiXC6 particles 

reconstructed by synchrotron X-Ray tomography. Wu et al. [17] investigated the mechanical 

behavior of LiMn2O4 cathode reconstructed by 2D SEM images under discharge conditions. The 

phase transition was not considered in the study. 

Stresses caused by phase transition inside the electrode materials are detrimental to 

electrode particles. Phase transition can introduce abrupt volume changes to the structure, leading 



4 
 

to structure instability. However, the studies of stress generation including diffusion induced stress 

and phase transitions are rare.  Park et al. [10] calculated the stresses with phase transition and 

intercalation in LiMn2O4 particles, but the geometry used in the model was simple shaped particles. 

Renganathan et al. [11] simulated the stress inside the porous electrode by taking advantage of the 

P2D model. They evaluated the stresses at the phase interface. Although the stresses caused by 

phase transition and Li intercalation have been considered in above works, some important features 

cannot be captured using homogeneous microstructures, such as the diffusion kinetics at high C 

rates and the geometry effect on stresses. Thus, a realistic microstructure based stress generation 

study with phase transition and intercalation is necessary. 

In this paper, the electrochemical performance and the stress generation inside the cathode 

microstructure including phase transition and Li intercalation will be calculated using synchrotron 

X-ray reconstructed NMC half cell. The paper is organized as follows: In section 2, the details of 

imaging processing and reconstruction of NMC half cell are given. In section 3, a set of 

mathematical formulations describing the electrochemistry and the stresses in LIBs are listed. In 

section 4, the electrochemical performance of NMC half cell under various C rates are studied. 

The geometry effect on stress is discussed. The stress distributions in the particles are also 

analyzed. Conclusions are given in section 5.   

 

2. Microstructure reconstruction and finite element mesh  

The microstructure used for the model was obtained by synchrotron X-ray tomography at 

beamline 2-BM at the Advanced Photon Source, Argonne National Laboratory. The NMC cathode 

(LiNi0.33Mn0.33Co0.33O2) used in the experiment was from a commercial LG HE4 18650 cell. The 

NMC 18650 cell was disassembled in argon filled glove box, and the cathode materials were 



5 
 

carefully scratched off. A set of gray-scale images ware obtained with a voxel size of 0.65 µm 

after synchrotron X-ray tomography. The carbon and binder phase was neglected in this study, 

because it is hard to distinguish it from the background. It is noted that the lack of carbon and 

binder phase may cause isolated NMC particles. In order to reduce the computational cost, an edge 

preserving smoothing filter and small islands removal filters were applied followed by greyscale 

threshold segmentation. The resulting reconstruction was a cuboid with a dimension of 45 μm × 

45 μm × 33 μm. The cross section images before and after image processing are shown in Fig. 1 

(a) and (b). Overall, the images after processing preserve the major microstructural features of the 

unprocessed images. 

In order to simulate the electrochemical performance, a three-dimensional finite element 

model of the NMC half cell was created. The NMC half cell was made up of cathode, electrolyte 

and separator domains. A separator with 10 μm thickness was added to the cathode domain (Fig. 

1 (c)). The pore space in the cathode domain was filled with electrolyte. The porous structure in 

the separator was neglected. Two domains were meshed and imported into Comsol Multiphysics 

for further simulation. 

  

(a)       (b) 
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       (c) 

Fig. 1: (a) Raw synchrotron X-ray reconstructed NMC cathode’s cross sectional view before image 

processing. White color represents NMC particles and black colar represents electrolyte. (b) Cross 

sectional view of NMC cathode after image processing. White color represents NMC particles and 

black colar represents electrolyte. (c) Three-dimensional finte element mesh of the NMC half cell. 

Red color represents NMC particles and blue color represents electrolyte. 

 

3. Model description 

The mathematical model consists of electrochemistry sub-model and mechanics sub-

model. The electrochemistry model describes the species and charge transports in the NMC half 

cell. The mechanics model computes the mechanical stresses and diffusion induced stresses in 

active particles. 

x

y

z
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3.1 Electrochemistry 

The electrochemistry model describing battery kinetics, mass and charge transports is 

based on the work of Doyle et al. [18] and Fuller et al. [19]. In order to distinguish different 

domains, subscript of i = 1 and 2 denotes the active cathode particles and the electrolyte. Here, we 

assume the lithium diffusivity and the electrical conductivity remain the same after the phase 

transition. 

Active cathode particles — The charge balance in the active cathode particles follows the Ohm’s 

law: 

׏ ∙ ሺെ݇ଵߘ߶ଵሻ ൌ ׏ ∙ ଵܬ ൌ 0     (1) 

where k1 is the electrical conductivity of the active cathode particles; ϕ1 is the electrical potential 

and J1 is the current density in NMC particles. 

 The transport of Lithium ions in active particles is described by the modified Fick’s law 

[15, 20], which includes the effect of stresses on diffusion: 

 
డ௖భ
డ௧
൅ ׏ ∙ ቀെܦଵܿߘଵ ൅

஽భఆ௖భ
ோ்

௛ቁߪߘ ൌ 0    (2) 

where c1 is the lithium ion concentration in solid particles; D1 is the diffusivity of lithium ions in 

NMC electrode; R is the universal gas constant; T is temperature, which is set 273 K in this study; 

Ω is the partial molar volume of active particles; σh = (σ11 + σ22 + σ33)/3 is the hydrostatic stress 

(σij is stress component in the stress tensor). 

Electrolyte — The charge transport equation of the electrolyte phase couples the concentration of 

lithium ions and the electrical potential, and has the following form: 

׏ ∙ ቀെ݇ଶߘ߶ଶ ൅
ଶ௞మோ்

ி௖మ
ሺ1 ൅ డ௟௡௙మ

డ௟௡௖మ
ሻሺ1 െ ଶቁܿߘାሻݐ ൌ ׏ ∙ ଶܬ ൌ 0   (3) 
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where k2 is the electrical conductivity of the electrolyte, ϕ2 is the electrical potential; F is the 

Faraday constant; c2 is the lithium ion concentration in the electrolyte; t+ is the transference number 

of positive ions, which is set 0.363 in this study; f2 is the mean molar activity coefficient of the 

electrolyte. 

 The mass transport of lithium ions in the electrolyte is expressed as: 

డ௖మ
డ௧
൅ ׏ ∙ ሾെܦଶ ቀ1 െ

ௗ௟௡௖బ
ௗ௟௡௖మ

ቁ ଶܿߘ ൅
௃మ௧శ
ி
ሿ ൌ 0    (4) 

where D2 is the reference lithium ion diffusivity in the electrolyte; dlnc0/dlnc2 is the concentrated 

solution correction to salt diffusivity; J2 is the current density in the electrolyte. Assume the solvent 

concentration is not a function of the electrolyte [21], the term dlnc0/dlnc2 will be neglected. Since 

t+ is a constant in this study, ׏ ∙ (J2t+/F) becomes zero. 

Interface conditions —  The chemical kinetics at the particle-electrolyte interface is described by 

the Butler-Volmer relationship: 

ܰ ൌ ௜೙
ி
ൌ ௜బ

ி
ൈ ቄexp ቂ

ሺଵିఈሻிఎ

ோ்
ቃ െ exp ቂିఈிఎ

ோ்
ቃቅ    (5) 

where N is the flux of lithium ions; i0 is the exchange current density; α is the cathodic charge 

transfer coefficient, which is 0.5 in this study; η is the overpotential at the particle-electrolyte 

interface.  

The exchanged current density is defined as follows: 

݅଴ ൌ ଴ሺܿଶሻଵିఈሺܿఏሻଵିఈ൫ܿଵ,௦௨௥௙൯݇ܨ
ఈ

    (6) 

where k0 is the reaction rate; c1,surf is the concentration of lithium ions on the surface of solid 

electrode; cθ is the concentration of available vacant sites on the surface of solid particles. 
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 The overpotential is given by: 

ߟ ൌ ߶ଵ െ ߶ଶ െ ܷ     (7) 

where U is the open circuit potential at the interface. 

 

3.2 Mechanics 

In mechanics model, only NMC particles are simulated. The Young’s modulus of liquid 

electrolyte is much lower than NMC particles. Hence, liquid electrolyte has little influence on the 

mechanical response of NMC particles. The mechanics model computes the stresses and particle 

deformations in active material particles. The total strain εij contains the mechanical strain εij
me, 

the diffusion induced strain εij
dis and the phase change induced strain εij

ph. The diffusion induced 

strain is formulated by the thermal analogy [11, 13]. The constitutive equation describing the stress 

and strain before phase transition is given by: 

௜௝ߝ ൌ ௜௝ௗ௜௦ߝ	௜௝௠௘൅ߝ ൌ
ଵ

ா
ൣሺ1 ൅ ߭ሻߪ௜௝ െ ௜௝൧ߜ௞௞ߪ߭ ൅

௖̂ఆ

ଷ
 ௜௝  (8)ߜ

where E is Young’s modulus; υ is Poisson’s ratio; σij is stress tensor; ܿ̂  is the concentration 

difference of lithium ions from the original value; Ω is the partial molar volume. 

 After phase transition, an additional strain was introduced: 

௜௝ߝ ൌ ௜௝௣௛ߝ	௜௝ௗ௜௦൅ߝ	௜௝௠௘൅ߝ ൌ
ଵ

ா
ൣሺ1 ൅ ߭ሻߪ௜௝ െ ௜௝൧ߜ௞௞ߪ߭ ൅

௖̂ఆ

ଷ
௜௝ߜ ൅

ௐ೛೓

ଷ
 ௜௝  (9)ߜ

where Wph is the volume change due to the phase transition. 

 The stress components obey mechanical equilibrium: 

௜௝,௝ߪ ൌ 0      (10) 
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3.3  Boundary conditions and material properties 

For electrochemistry model, at the right side outer boundary of the NMC electrode, a 

constant current density was applied. Different C rates were employed to simulate the discharge 

of NMC half cell. At the left hand side of the electrolyte, the electric potential is set 0 V. For all 

other outer surfaces, the periodic boundary conditions are applied. For mechanics model, fixed 

boundary conditions were applied on the outer surfaces of NMC particles. 

 The state of charge (SOC) is defined as the ratio of the maximum local lithium ion 

concentration to the stoichiometric lithium ion concentration in NMC particles 

(LiNi0.33Mn0.33Co0.33O2). It is reported that the LixNi0.33Mn0.33Co0.33O2 has a layered structrure  

when 0<x<1, while it has a spinel structure when 1<x<1.2 [22, 23]. In order to avoid the numerical 

diffuculty of the sudden phase transition, a linear transition zone with a width 0.05 at x=1 is 

applied. Hence,  when 0<SOC<0.975, the cathode has no phase transitions. 0.975<SOC<1.025 is 

the transition zone,  and SOC>1.025 is the region where phase transtion occur. The material 

properties used in the model are listed in Table 1. For electrical conductivity, lithium ion 

diffusivity, and ∂(lnf2)/∂(lnc2) in the electrolyte  were chosen at 25 °C as provided in Ref. [24]. 

The open circuit potential of NMC was chosen from Ref. [25]. The reaction rate constant k0 is 

6.5×10-9 m5/2s-1mol-1/2 [26]. 
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Table 1: Material properties used in the model 

 NMC electrolyte 

Initial concentration (mol m-3) 0 1000 

Stoichiometric concentration (mol m-3) 29000 / 

Electrical conductivity (S m-1) 10 [27] Ref. [24] 

Diffusivity (m2 s-1) 7.6×10-13 [27] Ref. [24] 

Young’s modulus (GPa) 80 [28] / 

Poisson’s ratio 0.3 [28] / 

Partial molar volume (m3 mol-1) 2.1×10-6 [29] / 

Volume change of the phase transition 0.034 [22] / 

 

4. Results and discussion 

The mathematical model described in section 3 was implemented in Comsol Multiphysics 

PDE module. The simulation time step was set to 0.001 s. The NMC half cell discharged under 

various C rates was simulated. In this study, the NMC half cell was discharged during SOC from 

0 to 1.1.  

 

4.1 Electrochemical response 

The discharge curves of the NMC half cell under 0.5 C, 1 C and 2 C are shown in Fig. 2 

(a). The normalized capacity is defined as the ratio of the actual capacity and the theoretical 

capacity. The NMC half cell discharged at 0.5 C rate has the best voltage response. With the 

increase of the C rate, the voltage drops. With the same capacity, the voltage of the NMC half cell 
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discharged at 2 C rate is about 0.15 V lower than the cell discharged at 0.5 C. Near the normalized 

capacity equals to 1, the voltage difference between the half cell discharged at 0.5 C and 2 C is 

huge.  

In order to explain the voltage reduction during the discharge, the actual polarization was 

calculated. In this study, the actual polarization was considered mainly due to activation 

polarization and concentration polarization. The average polarization of activation overpotential 

occurring at the electrode-electrolyte interface and concentration polarization occurring in 

electrolyte or NMC particles [30] is expressed as, 

௔௖௧௜௩௔௧௜௢௡ߟ ൌ
ଵ

஺∙௃೟೚೟ೌ೗
∬ ݅௡ ∙  (11)    ݏ݀	ߟ

௖௢௡௖௘௡௧௥௔௧௜௢௡ߟ ൌ
ଵ

஺∙௃೟೚೟ೌ೗
௠,௡ܬ∭ ∙

డథ

డ௡
ܸ݀   (12) 

where Jtotal is applied current density; A is the cross section area of the applied current density; m 

=1,2 where 1 represents NMC particles and 2 represents electrolyte; n=1,2,3 is the Cartesian 

coordinate component; s is the area of the electrode-electrolyte interface; V is the volume of 

electrode or electrolyte. As shown in Fig. 2 (b), (c) and (d), the average activation overpotential is 

the major contribution to the total polarization. The activation overpotential is about 4 to 5 times 

larger than the concentration polarization. With the increase of SOC, the total polarization 

increases monotonically. In addition, the polarization goes up with the increasing C rates, which 

taking accounts into the voltage reduction phenomenon shown in Fig. 2 (a). 
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Fig. 2: (a) Simulated discharge curves of NMC half cell under 0.5 C, 1C and 2 C rates. Average 

polarization in NMC half cell (b) at 0.5 C rate, (c) at 1 C rate, and (d) at 2 C rate. 

 

The lithium ion concentration profiles under 1 C rate are shown in Fig. 3 (a), (b), (c) and 

(d). Here are some features observed from Fig. 3: (i) Several particles have no lithium ion 

intercalation during the discharge process (see Fig. 3 (b), (c) and (d)). These particles are isolated 
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from the electrically conductive network and are not involved in electrochemical reactions. It is 

noted that NMC particles are only electron conductors in this model, since there is no carbon and 

binder phase in the model. This can also be confirmed by overpotential distributions inside the 

NMC half cell (see Fig. 3 (e), (f) and (g)). Several NMC particles located outside of the conductive 

network have zero overpotential, indicating no reactions happen in these particles. This is what 

traditional 1D models fail to predict; (ii) For particles in the electrochemical network, the lithium 

ion concentration increases during the discharge process. And the variation of the lithium ion 

concentration is less than 10% (see Fig. 3 (a), (b) and (d)); (iii) The lithium ion concentration is 

highest near the separator regions, and decreases along the thickness of the cathode (see Fig. 3 

(c)). This can be evidenced by the overpotential distributions along the cathode. In overall, the 

overpotential has the trend to decrease along the thickness of the NMC cathode. Higher 

overpotential leads to higher reaction current density and lithium flux. In addition, the small 

particles near the separator have higher lithium ion concentration (case A) than the large particles 

(case B). The surface area plays an important role in the lithium concentration profile, because 

larger surface area contributes to higher lithium flux. It can be concluded that the small particles 

near the separator have the highest lithium ion concentration in the cathode, while the large 

particles away from the separator have the smallest. 

The effect of discharge rate on local lithium distribution is shown in Fig. 3 (h), (i) and (j). 

It is noted that the group in 0-0.2 concentration represents the volume fraction of the isolated 

particles. At 0.5 C discharge rate, there is no obvious effect on local lithium accumulation. At 

moderate discharge rate, e.g., 1 C, the inhomogeneous NMC microstructure divides the 

concentration distribution into multiple groups. About 15% amount of active material is unutilized. 

At high discharge rate, e.g., 2 C, the microstructure inhomogeneity causes a huge impact on local 
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lithium accumulation. The local lithium concentration is broadening. The inhomogeneous lithium 

distribution in NMC cathode leads to 30% of active materials not utilized. 
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Fig. 3: Lithium ion concentration in NMC particles under 1 C rate. (a) SOC=0. (b) and (c) both 

shows the lithium ion concentration ar SOC=0.5, but with the color bar scale compressed in (c). 

(d) SOC=1.1. Overpotential distribution in NMC half cell at the end of (e) 0.5 C rate, (f) 1 C rate, 

and (g) 2 C rate. Lithium ion concentration population at the end of (h) 0.5 C rate, (i) 1 C rate, and 

(j) 2 C rate. 
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4.2 Stress response 

The maximum von Mises stresses in NMC particles under 0.5 C, 1 C and 2 C rates are 

shown in Fig. 4 (a). The maximum von Mises stresses under different C rates increase at the initial 

stage as lithium ions intercalates into particles. As the discharge process goes further, the stress 

levels go up dramatically around SOC=1, and then drop down after. The phase transition of NMC 

particles lead to this phenonmenon. With the increase of the lithium ion concentration, some NMC 

particles experience phase transition from layered structure to spinel structure around SOC=1. The 

phase transition introduces an abrupt volume change and generates strain mismatch, causing the 

stresses increase. With further electrochemical reactions, all NMC particles inside the 

electrochemical network change into spinel structure, and the strain mismatch is eliminated. This 

is further confirmed by Fig. 4 (b) and (c). At SOC=1, only the NMC particles near the separator 

turn into spinel structure, while all the particles in the conductive channel become spinel structure 

at the end of discharge. With the increase of the discharging current density, the maximum von 

Mises stresses increase. The maximum von Mises stresses occur after phase transition. The 

maximum stress at 2 C is 217.52 MPa, which is about 2 times larger than the 1 C case and 4 times 

larger than the 0.5 C case. The stresses tend to reach the maximum at higher SOC with the 

increaseing C rates. For example, the maximum von Mises stress occurs in NMC particles at 

SOC=1.008 under 0.5 C rate, while the stress reaches the maximum at SOC=1.01 for 1 C rate and 

at 1.025 for 2 C rate. It is noted that the stresses calculated in this work are one magnitude higher 

than the stresses in other studies. The maximum von Mises stress of LixMn2O4 in Zhang’s work 

[15] is about 48 MPa. And in Lim’s study [8], the maximum stress in LixCoO2 particle is about 20 

MPa. Considering phase transition inside the battery materials can have large influence on stress 

levels. Once the maximum von Mises stress inside the particles reaches the yield strength, the 
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mechanical failure will occur in NMC cathode. The yield strength of NMC is not available in the 

literature and hence we chose LiCoO2 as the reference, since it has a similar lattice structure and 

composition. The yield strength of LiCoO2 measured by Malav et al. [31] is about 200 MPa, which 

is lower than the maximum stress 217.52 MPa in this study. This implies the mechanical 

degradation will occur in NMC cathode discharging beyond 2 C rate. 

 

(a) 

 

(b) 

 

(c) 

Fig. 4: (a)Time history of maximum von Mises stresses in NMC particles under 0.5 C, 1 C and 2 

C rates. (b) spinel NMC at SOC=1 under 1 C rate. (c) spinel NMC at SOC=1.1 under 1 C rate. Red 

represents spinel NMC. The figures (b) and (c) are taken from the cross section of the half cell 

positioned at x=16.5 µm in Fig. 1. 
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 It is noted that there is sharp drop in stresses after SOC=1. To take into accounts for this 

phenomenon, different components of strain where the maximum von Mises stresses occur were 

calculated. The total strain consists of intercalation strain, phase transition strain and mechanical 

strain, as illustrated in equation (9). As shown in Fig. 5 (a), the intercalation strain increases 

monotonically with the increasing SOC, where phase transition strain experiences a sudden 

increase near SOC=1. For the mechanical strain (see Fig. 5 (b)), the off diagonal strain components 

exibit small values compared with the diagonal strain. The diagonal strain components show 

compression features and experince sudden increase in magnitute near SOC=1. During the 

discharge, the intercalation and phase transition expand NMC particles while the negative elastic 

deformation restores the volume. The total strain was obtained by summing up intercalation, phase 

transition and mechanical strain, as shown in Fig. 5 (c). With the competitions of these three 

components, the total strain has a sudden drop after SOC=1, which has a similar feature as the 

maximum von Mises stresses. 



22 
 

 

 

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

St
ra

in

SOC

Intercalation strain

Phase transitioin strain

(a)

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

M
ec

ha
ni

ca
l 

st
ra

in

SOC

ε11
ε22
ε33
ε12
ε13
ε23

ε11me

ε22me

ε33me

ε12me

ε13me

ε23me

(b)



23 
 

 

Fig. 5: Strain where maximum von Mises stress occurs during 1 C-rate discharge. (a) intercalation 

and phase transition strain; (b) mechanical strain; (c) total strain. 

 

 The maximum hydrostatic stress and maximum shear stresses in NMC particles under 

different discharge C rates are shown in Fig. 6. In all of the three cases, hydrostatic stress is 

dominant and much higher than the shear stresses. The hydrostatic stress keeps increasing with the 

increasing SOC, and has abrupt increase near SOC=1. This is due to the lattice volume expansion 
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Fig. 6: Maximum hydrostatic stress and maximum shear stresses in NMC particles under different 

C-rates. (a) 0.5 C; (b) 1 C; (c) 2 C. 

 

To better understand the failure mechanisms in the NMC half cell, the stress distribution 
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are some observations for stress distribution: (1) For the particles isolated from the electrochemical 

network, the stresses are zero (case A). Since there is no lithium ion intercalation inside these 

particles, stress will not be generated by diffusion and phase transitions. (2) The concave and 

convex regions are the most critical places where the mechanical failure may occur. The von Mises 

stresses near these regions are much higher than other areas (case B). (3) Away from the stress 

concentration regions, the stresses on the surfaces of NMC particles are higher than the stresses 

inside the particles (case C). Since the stresses near the concave and covex regions are the highest, 
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the cracks may be initiated in these regions. Once the cracks propogate, the neck regions of the 

connected particles will break and form several isolated particles. If the isolated particles are not 

connected with the electrically conductive materials such as carbon and binder, the capacity will 

lose in LIBs. For isolated particles in the conductive channel, cracks are more likely to form on 

the surface. Eventually, the particles will break into several small particles. 

 

 

Fig. 7: von Mises stresses distribution in reconstructed NMC particles at SOC=1 under 1 C rate. 

The figure is taken from the cross section of the half cell which positioned at x=16.5 µm in Fig. 1. 

To study the geometry effect more quantitatively, the stress distribution near the convex 

and concave regions was investigated. In the study, four points were selected to represent the 

concave and convex regions, as shown in Fig. 8 (a). A and C represent the concave regions, while 

B and D represent the convex regions. The von Mises stresses time history of four points under 1 

C rate is shown in Fig. 8 (b). The von Mises stresses of all of the four points show similar patterns 

as Fig. 4 (a). The stresses increase at the initial stage. As the discharge process goes further, the 

maximum von Mises stresses increase dramatically because of the phase transition, and then drop 



27 
 

down. The stresses of two concave points A and C are significantly higher than thier corresponding 

convex points B and D. The maximum von Mises stress of point A is 67.5 MPa, which is 49% 

higher than the stress of point B. The stress of point C is 22.5 MPa, which is four times the stress 

in its correspoonding convex point D. Hence, the stresses in the concave points are more critical 

than the convex points. 
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Fig. 8: (a): The positions of four selected points A, B, C and D. (b) The von Mises stresses time 

history of four selected points A, B, C and D under 1 C rate. 

 

5. Conclusions 

The electrochemical properties and stress generation caused by phase transition and 

intercalation in NMC, with realistic 3D microstructures from synchrotron X-ray tomography, have 

been investigated using finite element method. The conclusions are summarized as follows: 

(1) The discharged curves under various C rates are simulated. The potential drops 

significantly with the increase of C rates due to the increasing internal resistance. 

(2) During the discharge process, for particles isolated from the conductive channel, 

several particles without lithium ion intercalation are observed. For particles in the 

electrochemical network, the lithium ion concentration increases during the discharge 

process. The variation of the lithium ion concentration is less than 10%. 

(3) Stresses inside the particles increase dramatically when considering phase transitions. 

The phase transition introduce an abrupt volume change and generate the strain 

mismatch, causing the stresses increase. With the increase of the discharging current 

density, the maximum von Mises stresses increase. 

(4) For the particles away from the electrochemical network, they remain unstressed during 

the discharge process. The concave and convex regions are the most critical places 

where the mechanical failure may occur. Away from the stress concentration regions, 

the stresses on the surface of the NMC particles are higher than the stresses inside the 

particles. 
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(5) The maximum von Mises stress is more likely to occur at concave regions rather than 

convex regions. The study shows the von Mises stresses in the concave region can be 

four times larger than the convex region. 
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Fig. 5: Strain where maximum von Mises stress occurs during 1 C-rate discharge. (a) intercalation 

and phase transition strain; (b) mechanical strain; (c) total strain. 

Fig. 6: Maximum hydrostatic stress and maximum shear stresses in NMC particles under different 

C-rates. (a) 0.5 C; (b) 1 C; (c) 2 C. 
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Fig. 7: von Mises stresses distribution in reconstructed NMC particles at SOC=1 under 1 C rate. 

The figure is taken from the cross section of the half cell which positioned at x=16.5 µm in 

Fig. 1. 

Fig. 8: (a): The positions of four selected points A, B, C and D. (b) The von Mises stresses time 

history of four selected points A, B, C and D under 1 C rate. 
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