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Abstract. In a classical work of the 1950’s, Lee and Yang proved that the

zeros of the partition functions of a ferromagnetic Ising model always lie on the

unit circle. Distribution of these zeros is physically important as it controls

phase transitions in the model. We study this distribution for the Migdal-
Kadanoff Diamond Hierarchical Lattice (DHL). In this case, it can be described

in terms of the dynamics of an explicit rational function R in two variables

(the renormalization transformation). We prove that R is partially hyperbolic

on an invariant cylinder C. The Lee-Yang zeros are organized in a transverse

measure for the central-stable foliation of R| C. Their distribution is absolutely

continuous. Its density is C∞ (and non-vanishing) below the critical temper-

ature. Above the critical temperature, it is C∞ on a open dense subset, but

it vanishes on the complementary set of positive measure.
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1. Introduction

1.1. Phenomenology of Lee-Yang zeros. The Ising model is designed to de-
scribe magnetic matter and, in particular, to explain the appearance of sponta-
neous magnetization in ferromagnets and transitions between ferromagnetic and
paramagnetic phases as the temperature T varies.

The matter in a certain scale is represented by a graph Γ. Let V and E stand
respectively for the set of its vertices (representing atoms) and edges (representing
magnetic bonds between the atoms).

A magnetic state of the matter is represented by a spin configuration σ : V → {±1}
on Γ. The spin σ(v) represents a magnetic momentum of an atom v ∈ V. The total
magnetic momentum of the configuration is equal to

(1.1) M(σ) =
∑

v∈V

σ(v).

Each configuration σ has energy H(σ) depending on the interactions J(v, w) be-
tween the atoms and the external magnetic field h(v). In the simplest isotropic
case, J and h are constants, and the Hamiltonian assumes the form:

(1.2) H(σ) = −J
∑

{v,w}∈E

σ(v)σ(w)− hM(σ),

where the first sum accounts for the energy of interactions between the atoms while
the second one accounts to the energy of interactions of the matter with the external
field.

By the Gibbs Principle, the spin configurations are distributed according to
the Gibbs measure that assigns to configuration σ a probability proportional to
its Gibbs weight W (σ) = exp(−H(σ)/T ), where T is the temperature. Various
observable magnetic quantities (e.g., magnetizationM) are calculated by averaging
of the corresponding functionals (e.g., M(σ)) over the Gibbs distribution.

The total Gibbs weight Z =
∑
W (σ) is called the partition function. It is a

Laurent polynomial in two variables (z, t), where z = e−h/T is a “field-like” variable
and t = e−J/T is “temperature-like”.1 For a fixed t, the complex zeros of Z(z, t) in z
are called the Lee-Yang zeros. Their role comes from the fact that some important
observable quantities can be calculated as electrostatic-like potentials of the equally
charged particles located at the Lee-Yang zeros. (For instance, the free energy is
equal to the logarithmic potential of such a family of particles.)

A celebrated theorem of Lee and Yang [YL, LY] asserts that for the ferromag-
netic2 Ising model on any graph, for any real temperature T > 0, the Lee-Yang zeros
lie on the unit circle T in the complex plane (corresponding to purely imaginary
magnetic field h = −iTφ).3

Magnetic matter in various scales can be modeled by a hierarchy of graphs Γn
of increasing size (corresponding to finer and finer scales of matter). For suitable

1We will often refer to them as just “field” and “temperature”.
2i.e., with J > 0, which favors the same orientation of neighboring spins
3We will take a liberty to use either z-coordinate or the angular coordinate φ = arg z ∈ R/2πZ

on T without a comment.
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models, the Lee-Yang zeros of the partition functions Zn will have an asymptotic
distribution dµt = ρt(φ)dφ/2π on the unit circle. This distribution supports sin-
gularities of the magnetic observables (or rather, their thermodynamical limits),
and hence it captures phase transitions in the model. For instance, Lee and Yang
showed that the spontaneous magnetization of the matter (as the external field van-
ishes) is equal to ρt(0). So, the matter is ferromagnetic (meaning that it exhibits
non-zero spontaneous magnetization) at temperature t if and only if ρt(0) > 0.

The Lee-Yang zeros for the 1D Ising model with periodic boundary conditions
(corresponding to the hierarchy of cyclic lattices Γn = Z/nZ) can be explicitly
calculated using the transfer matrix technique (see e.g., [Ba]):
(1.3)

z±k = eiφ
±

k , φ±k = ± arccos

[√
1− t4 cos

(
π(k + 1/2)

n

)]
; k = 0, 1, . . . , n− 1;

see Appendix E. Their asymptotic distribution is supported on two symmetric
intervals, I+ = [φ∗, π − φ∗] and I− = −I+, where 0 ≤ φ∗ ≤ π

2 satisfies sinφ∗ = t2,
and its density is equal to

(1.4) ρt(φ) =
| sinφ|

2π
√
sin2 φ− t2

.

We see that for positive temperature, the support I+∪I− does not contain point φ =
0, and so the matter is paramagnetic and there are no phase transitions. As T → 0
the gap between I+ and I− closes up and the Lee-Yang zeros get equidistributed
on the unit circle (so, in this model, the matter becomes ferromagnetic only at the
zero-temperature limit). Note that ρt is real-analytic on I± and has power-like
singularities with exponent (−1/2) at the end-points.

For the ferromagnetic Ising model on lattices Zd with d ≥ 2, a similar picture is
believed to be true for high temperatures (above some critical temperature Tc > 0),
while below Tc the Lee-Yang distributions are conjectured to have full support
with positive density. This scenario would lead to a second-order phase transition:
a ferromagnet for T < Tc turns into a paramagnet for T > Tc. However, these
conjectures are hard to prove rigorously as no exact formulas for the Lee-Yang
zeros are available.

For the two-dimensional lattice, the phase transitions can be rigorously justified
by means of the Onsager exact solution4, see [Ba]. In all dimensions d > 1, it
was proven that for high temperatures, the Lee-Yang zeros do not accumulate
on the point φ = 0 (no spontaneous magnetization) [GMR, R1], while for low
temperatures, they have positive density at φ = 0 (the spontaneous magnetization is
observed) [P, Gr]. However, unlike the one-dimensional Ising model, for sufficiently
low temperatures, ρt(φ) is not real-analytic at φ = 0 [Isa], see Remark 2.2.

In a recent breakthrough, it was proven in [BBCKK] that the Lee-Yang ze-
ros φnk (t) ∈ T for the Zd Ising model with periodic boundary conditions, Γn =
Zd/(nZ)d, can be calculated at sufficiently low temperature t as

(1.5) φnk (t) = gt

(
π
(
k + 1

2

)

nd

)
+O(λ−n) k = 0, 1, . . . , 2nd − 1

4Note that Onsager’s solution requires h = 0, so it only gives some information about the

Lee-Yang distributions at φ = 0, not a global description.
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where λ > 1 and gt(φ) is a C2-diffeomorphism of the circle smoothly depending
on t. In particular, for sufficiently low temperatures, the limiting density ρt(φ)
is C2.

The classical renormalization theory [WK] predicts the critical exponents for
thermodynamic quantities of the Ising model on the Zd lattice near the critical
point (h, t) = (0, tc) in terms of eigenvalues of the renormalization transformation.
In particular, if t = tc and h is varied near 0, it predicts that the magnetization
satisfies M ∼ h1/δ, where δ = 15 for d = 2, δ = 4.790... for d = 3, and δ = 3
for d ≥ 4. Using an expression relating the limiting distribution of Lee-Yang zeros
to M (Proposition 2.2), this predicts for the Zd lattice at t = tc that the limiting
distribution of the Lee-Yang zeros vanishes at φ = 0 with exponent 1/δ for the
values of δ listed above.

At high temperatures, a quantum field theory interpretation gives a prediction
of the power exponents of the densities ρt near the end-points of I

±, see Fisher [F1]
and Cardy [Car]. For instance, for d = 2 the exponent is predicted to be (−1/6),
while for d > 6 it is predicted to be 1/2.

Study of the Lee-Yang zeros is an active direction of research in contemporary
statistical mechanics, see [MSh], [BB], [R4] and references therein for recent devel-
opments.

1.2. Diamond hierarchical model. The Ising model on hierarchical lattices was
introduced by Berker and Ostlund [BO] and further studied by Bleher & Žalys
[BZ1, BZ2, BZ3] and Kaufman & Griffiths [KG1].

Let Γ be an oriented graph with two vertices marked and ordered. The cor-
responding hierarchical lattice is a sequence of graphs Γn with two marked and
ordered vertices such that Γ0 is an interval, Γ1 = Γ, and Γn+1 is obtained from Γn
by replacing each edge of Γn with Γ so that the marked vertices of Γ match with
the vertices of Γn and their order matches with the orientation of the corresponding
edges of Γn. We then mark two vertices in Γn+1 so that they match with the two
marked vertices of Γn.

For instance, the diamond hierarchical lattice (DHL) illustrated on Figure 1.1
corresponds to the diamond graph Γ.5 Our paper is fully devoted to this lattice.

b bb

aa a

Γn

Γ0 Γ2Γ = Γ1

Figure 1.1. Diamond hierarchical lattice (DHL).

5In fact, in this case, we do not need to orient Γ and order the marked vertices since the

diamond is symmetric with respect to a reflection interchanging the marked vertices.
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Remark 1.1. The definition of the total magnetic momentum that we will use for
the DHL will be slightly different from (1.1) (see (2.1) and Appendix E.4 for a
motivation). Also, we will use t := t2 = e−2J/T for the temperature-like variable as
it makes formulas nicer.

It was shown in [BZ3] that the thermodynamic limit exists6 for the Ising Model
on the DHL and that for each temperature t ∈ I := [0, 1] the Lee-Yang zeros are
dense on the unit circle.

Existence of the thermodynamic limit implies that for each t ∈ I there is a mea-
sure µt on the unit circle describing the asymptotic distribution of Lee-Yang zeros7

at temperature t. In this paper, we will describe these asymptotic distributions for
the DHL. They are illustrated in Figure 1.2. It shows the cylinder C = T× I in the
angular coordinate φ ∈ [0, 2π] on the circle T. We will prove that for t ∈ [0, 1) the
Lee-Yang distributions are absolutely continuous with respect to Lebesgue measure
on the unit circle, so we may write dµt = ρt(φ) dφ/2π. In the blue (dark) region the
density ρt is a positive C∞ function, while in the orange (light) region it vanishes.
We can see blue (dark) “tongues” going from the bottom to the top of the cylin-
der and orange (light) “hairs” sticking from the top. The tongues fill the cylinder
densely. However, the hairs fill a set of positive area – in fact, of almost full area
near the top. This creates a false impression that everything is orange (light) near
the top of Figure 1.2. One can also see that the lowest temperature is reached by
hairs for zero field h (φ = 0): this is the critical temperature tc that separates the
ferromagnetic and paramagnetic phases. The critical temperature tc = 0.296... is
the unique real solution to t3 + t2 + 3t− 1 = 0.

Here is a precise statement:

Main Theorem (physical version). For any temperature t ∈ [0, 1) the limiting
distribution µt(φ) of the Lee-Yang zeros exists and it is absolutely continuous with
respect to the Lebesgue measure on Tt ≡ T × {t}: dµt = ρt(φ) dφ. It has the
following properties:

(1) For 0 ≤ t < tc, the density ρt(φ) is a positive C∞ function on the circle
Tt. Moreover, µ0 is the Lebesgue measure on T0 (i.e., ρ0(φ) ≡ 1).

(2) For t = tc, the density ρt(φ) is a positive C∞ function on Ttc \ {0, π} with
a power singularity at φ = 0, π:

ρt(φ) ≍ |φ|σ near 0, ρt(φ) ≍ |φ− π|σ near π,

with exponent σ = 0.0643... ∈ (0, 1). This critical exponent satisfies σ =
log 4
log λu −1, where λu = 4

t2c+1 is the “horizontal” eigenvalue of the derivative of

the Migdal-Kadanoff RG Equations (1.7), see below, at the renormalization
fixed point (φ, t) = (0, tc).

(3) For tc < t < 1, the density ρt vanishes on a nowhere dense set Kt ⊃ {0, π}
of positive Lebesgue measure. Moreover, the Lebesgue measure of Kt tends
to 2π as t→ 1. On each component of the complementary set Ot = TtrKt,
the density ρt is C

∞.
(4) For t = 1, the distribution dµt becomes purely atomic: it is supported on a

countable dense subset of T1.

6See §2.4 for a precise definition of “thermodynamic limit” and §2.6 for their proof.
7See Prop. 2.2 from §2.4.
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tc

2π0

t

0

1

π
2 φ 3π

2

Figure 1.2. Distribution of Lee-Yang zeros and RG dynamics.
Blue (dark) is the region where the Lee-Yang distributions have
positive C∞ density. Dynamically, it is the basin of attraction of
the bottom.

Moreover, there is a family of homeomorphisms gt : T0 → Tt, t ∈ [0, 1), such that
gt(φ) is smooth in t ∈ [0, 1) for any φ ∈ T, h0 = id, and ρt = (g−1

t )′(φ) a.e. on T.
For t < tc, the family gt(φ) is C

∞ in two variables.

We see, in particular, that ρt(0) > 0 below tc and it vanishes above tc, so we
observe at tc the ferromagnetic-paramagnetic phase transition. However, unlike
the scenario described above for the standard Zd lattices, the Lee-Yang zeros do
accumulate on φ = 0 even in the paramagnetic phase t > tc. So, though for t > tc,
the magnetization M(φ, t) vanishes at φ = 0, it is not analytic nearby.

The distributions µt(φ) described above for the Zd and the DHL are examples
of global distributions. One can obtain tangent distributions as follows. We fix an
arbitrary point φ̃ inside the support of µt(φ) as a reference point and rescale the

zeros near φ̃, by the affine map

φ 7→ Ln
2π

ρt(φ̃) · (φ− φ̃n),(1.6)

where Ln is the total number of Lee-Yang zeros at level n and φ̃n is the one that
is closest to φ̃. We say that the Lee-Yang zeros are locally rigid at φ̃ if the rescaled
zeros converge locally uniformly to the Z lattice, as n → ∞. (Similar phenomena
appear in other areas of mathematical physics. See, for example, [ALS].)

It follows directly from (1.3) that the Lee-Yang zeros for the Z1 lattice are
locally rigid everywhere. For the Zd lattice (with periodic boundary conditions),
local rigidity follows at sufficiently low temperatures from (1.5), since Ln = 2nd.

Because there are 2 · 4n Lee-Yang zeros at level n for the DHL, an expression of
the form (1.5) is not sufficient to show their local rigidity. Instead, we will show
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that the LY zeros φnk (t) ∈ Ot can be expressed as gnt (φ
n
k (0)), where the gnt are

diffeomorphisms locally C1 converging to the maps gt. This is sufficient for the
local rigidity, see Proposition 13.5.

Below we will re-interpret the above results in terms of the renorm-group.

1.3. Migdal-Kadanoff RG equations. There is a general physical principle that
the values of physical quantities depend on the scale where the measurement is
taken. The corresponding quantities are called renormalized, and the (semi-)group
of transformations relating them at various scales is called renorm-group (RG).
However, it is usually hard to justify rigorously existence of RG, let alone to find
exact formulas for RG transformations. The beauty of hierarchical models is that
all this can actually be accomplished.

In [M1], [M2], Migdal suggested approximations to RG for the classical Ising
model on Zd. They were further developed by Kadanoff [K], and became known
as the Migdal-Kadanoff approximate RG equations. It was then noticed by Berker
and Ostlund [BO] that these equations become exact for suitable hierarchical Ising
models (see also [BZ1] and [KG1]). In particular, the DHL corresponds to the 2D
lattice Z2. The Migdal-Kadanoff RG equations in this case assume the form:

(1.7) (zn+1, tn+1) =

(
z2n + t2n
z−2
n + t2n

,
z2n + z−2

n + 2

z2n + z−2
n + t2n + t−2

n

)
:= R(zn, tn).

where zn and tn are the renormalized field-like and temperature-like variables on
Γn. The map R that relates these quantities is also called the renormalization
transformation.

The Lee-Yang zeros for Γn are solutions of the algebraic equation Zn(z, t) = 0,
so they form a real algebraic curve Sn on the cylinder C (the Lee-Yang locus of level
n), see Figure 1.3. Equation (1.7) shows that Sn is the pullback of S0 under the
n-fold iterate of R, i.e., Sn = (Rn)∗S0. In this way, the problem of asymptotical
distribution of the Lee-Yang zeros is turned into a dynamical one.

1.4. Renormalization dynamics on the cylinder. The first observation is that
the cylinder C is R-invariant. Next, its bottom B is R-invariant as well, and R
restricts to z 7→ z4 on B. Moreover, B is superattracting, so there is an open basin
Ws(B) where the orbits converge to B: this is exactly the blue region on Figure 1.2.

The top T of C is also invariant except for two indeterminacy points α± =
(±π/2, 1) that “blow up” to a curve G going across the cylinder (see Figure 3.3
below). Because of this phenomenon, the degree of R on the top drops to 2,
(namely, R : z 7→ z2 on T ), and its basin Ws(T ) (roughly, the orange region on
Figure 1.2) is not open, but rather a “Cantor bouquet” of hairs sticking from T .

Despite this, R acts in a surprisingly nice way on the proper curves (i.e., curves
connecting the bottom to the top) – namely, a proper curve in C crossing G only
once lifts to four proper curves, compare Figure 1.3. In this sense, the action of R
on proper curves has degree four.

Our main dynamical result asserts that R is partially hyperbolic on the cylinder
C1 := C r T . This means that R admits an invariant horizontal tangent cone field
Kh(x) ⊂ TxC such that the horizontal tangent vectors v ∈ Kh(x) get exponentially
stretched under iterates of R.



8 PAVEL BLEHER, MIKHAIL LYUBICH AND ROLAND ROEDER

0 2π
t = 1

t = 0

S1

S0

S2

Figure 1.3. The level n Lee-Yang zeros Sn for n = 0, 1, and 2.

Let us also consider the complementary vertical cone field Kv(x) = TxCrKh(x).
A smooth curve γ(t) in C1 going though this cone field is called vertical. A vertical
foliation on C1 is a foliation whose leaves are proper vertical curves.

Given a vertical foliation F , the holonomy transformations gt : B → T × {t},
t ∈ [0, 1), are defined by the property that x and gt(x) belong to the same leaf of F .

A central foliation for R is an invariant vertical foliation.
Recall that a measurable map g : T → T is called absolutely continuous if

preimages g−1(X) of null-sets X ⊂ T are null-sets (where a null-set means a set of
zero Lebesgue measure). Note that this is not a symmetric notion: it may happen
that a homeomorphism g is absolutely continuous while the inverse one, g−1, is not
(and this is what actually happens below).

Main Theorem (dynamical version). The renormalization transformation R
is partially hyperbolic on C1, and it has a unique central foliation Fc. This foliation
is C∞ on Ws(B) but is not absolutely continuous on Ws(T ).8

Given any proper vertical curve γ on C, the pullback (Rn)∗γ comprises 4n proper
vertical curves, and (Rn)∗γ → Fc exponentially fast (away from the top).

The basin Ws(B) is open and dense in C. The basin W(T ) has positive area,
with density 1 at the top. The union of the two basins has full area in C.

Our proof of this geometric result is based upon counting arguments (making
use of Bezout’s Theorem). We call this method the “Enumerative Dynamics”.

A transverse invariant measure µ for F is a family of measures µt, t ∈ [0, 1), such
that µt = (gt)∗(µ0). It is uniquely determined by µ0. The Lee-Yang distributions
µt form a transverse invariant measure for Fc equal to the Lebesgue measure on B.

8Meaning that restrictions of the homeomorphism g−1
t to Ws(B) are C∞ but their restrictions

to Ws(T ) are not absolutely continuous.
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This fact makes a connection between the physical and dynamical versions of
the Main Theorem that will allow us to derive (easily) the former from the latter.

Let us also mention that the dynamical picture described in the last part of the
Main Theorem gives one more illustration of the “intertwined basins” phenomenon
studied by Kan, Yorke et al [Kan, AYYK], and more recently by Bonifant and
Milnor [BM], Ilyashenko [I], and Ilyashenko, Kleptsyn, and Saltykov [IKS].

In the upcoming Part II of this work [BLR2], we study the global structure of
the renormalization transformation and zeros of the partition function (Lee-Yang-
Fisher zeros) in the complex projective space CP2. The distribution of the zeros
is interpreted as the dynamical (1,1)-current of R, while the free energy itself is
the potential of this current. In this way the classical Lee-Yang-Fisher Theory gets
tightly linked to the contemporary Dynamical Pluripotential Theory.

We remark that connections between study of the Lee-Yang-Fisher zeros on more
general lattices and the dynamics of rational maps in higher dimensions is discussed
by De Simoi and Marmi in [DeSMa] and studied numerically by De Simoi in [DeS].

We also mention that it has been proved by Kaschner and the third author that
Fc is not a real analytic foliation in the neighborhood of any point of C. This leads
an analog of Isakov’s Theorem [Isa] for the DHL: There is a dense set of points
(t, φ) ∈ C so that the Lee-Yang zeros have non-analytic density in a neighborhood
of φ within Tt. We refer the reader to [KR, Thm. 5.2 and Cor. 5.3].

Several interesting questions remain open, arising from both physical and dy-
namical motivations. They are listed in Appendix F.

1.5. Structure of the paper. Let us now outline the structure of the paper in-
dicating ideas of the proofs. Since this paper is naturally placed on the borderline
of three fields (statistical mechanics, dynamics, and complex geometry) we have
attempted to make exposition reader-friendly for a non-expert in any one of these
fields, by motivating the problems and supplying needed background and basic
references.

We begin in §2 with relevant background material in statistical mechanics: de-
scription of the Ising model on graphs, formulation of the Lee-Yang Theorem, and
comments on physical significance of the Lee-Yang zeros. In particular, we supply
explicit formulas for the free energy and spontaneous magnetization in terms of the
asymptotic distributions of these zeroes. Then we pass to the diamond hierarchical
model and derive the Migdal-Kadanoff Renorm-Group (RG) Equations. They lead
to the renormalization transformation R.

In §3 we describe the structure of R on the invariant cylinder C. It is strongly
influenced by the presence of two indeterminacy points α± = (±i, 1) on the top
T that blow up to the curve G. (On Figure 1.2, these points are clearly seen as
the tips of the two main tongues of the blue region.) Because of them, R does
not evenly cover the cylinder: the region below G is covered four times while its
complement is covered only twice. However, we show that R acts properly with
degree four on the space of proper vertical curves. We will derive from here by a
counting argument the Lee-Yang Theorem for the DHL (§5).

In §4 we follow up this discussion with a description of the global features of R
on the complex projective space CP2: its critical and indeterminacy loci, superat-
tracting fixed points and their separatrices. (In fact, here it is more convenient to
deal with the map R that comes directly from the Migdal-Kadanoff RG Equations,
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without passing to the “physical” (z, t)-coordinates. This map is semi-conjugate to
R by a degree two rational change of variable CP2 → CP2.)

In §6 we prove that R admits a horizontal invariant cone field Kah(x) on C.
We construct it explicitly by taking the principal Lee-Yang locus S ≡ S0 (which
comprises two vertical segments) and translating it around the cylinder. It gives
us two transverse vertical foliations on C. Then we define Kah(x) as the horizontal
cone tangent to these foliations at x. Using Bezout’s Theorem, we check invariance
of this cone field. Unfortunately, this cone field degenerates at the top. We partially
fix this problem by modifying Kah(x) near the top in such a way that the new field
Kh(x) degenerates only at the indeterminacy points α±.

In §7 we prove that R| C admits a dominated splitting. This means that there
exists a “vertical” tangent line field Lc(x) and constants C > 0, λ > 1 such that
(1.8)
‖DRn(x)w‖ ≤ Cλ−n‖DRn(x) v‖ for any x ∈ C r U , w ∈ Lc(x), v ∈ Kh(x)

(where U is a neighborhood of the indeterminacy points), so the “horizontal” vectors
get stretched exponentially faster than the “vertical” ones.9 Integrating the line
field Lc(x), we obtain an invariant family of smooth vertical curves filling in the
whole cylinder. However, at this stage of the discussion we do not know yet that
the integration is unique, so the integral curves may not form a foliation.

In §8 we prove our main dynamical result that the map R| C is horizontally
expanding (and thus partially hyperbolic). This means that under iterates the
horizontal vectors get stretched exponentially fast:

(1.9) ‖DRn(x) v‖ ≥ cλn‖v‖, x ∈ C, v ∈ Kh(x),
where c > 0, λ > 1. To establish this property, we consider a central projection
π in CP2 onto the line at infinity. By a counting argument, we show that π ◦ Rn
restricted to the horizontal sections of the solid cylinder is a Blaschke product Bn (in
appropriate natural coordinates) vanishing at the origin to order 2n+2. Such a Bn
expands the circle metric at least by 2n+2, which gives us (1.9) with λ = 2. We then
provide a second proof of this expanding property that exploits the combinatorics
of the DHL partition functions and a variant of the Lee-Yang Theorem that we call
the Lee-Yang Theorem with Boundary Conditions.

In §9 we discuss the basin Ws(B) of the bottom B (the blue region of Figure 1.2).
We explain where the tongues observed on this picture come from and prove that
Ws(B) supports a C∞ foliation, the stable foliation of B.

In §10, we turn our attention to the top T of C. We prove that its basin Ws(T )
contains a “Cantor bouquet” of curves of positive measure. Moreover, the density
of its slices by horizontal circles T× {t} goes to 1 as t→ 1.

We then derive in §11, applying standard distortion techniques to horizontal
curves, that almost any orbit on the cylinder converges either to the bottom B or
to the top T (see [BloL] for the one-dimensional prototype of this method).

In the next section, §12, we use horizontal expansion to prove unique integra-
bility of the invariant vertical line field Lc yielding the desired invariant central
foliation Fc. We then collect in §13 consequences about regularity of the Lee-Yang
distributions (as formulated above) and calculate various critical exponents.

In the last section, §14, we analyze smoothness of periodic leaves that terminate
at periodic points on the top. Such leaves are real analytic near the bottom and the

9This property is also referred to as projective hyperbolicity of R.
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top, but we show that they must loose analyticity somewhere in the middle (in fact,
generically they can have only finite smoothness). This is another manifestation of
the phase transitions in this model.

We finish with several Appendices. In Appendix A we collect needed background
in complex geometry: rational maps, indeterminacy points and their blow-ups,
degrees and divisors.

In Appendix B we supply some calculations on the cylinder C, particularly, near
its top T and the indeterminacy points α± (performing their “blow-ups” in various
coordinates).

In Appendix C we construct an extension of Kh(x) that is invariant on an ap-
propriate complex neighborhood of C r {α±}. It gives us a supply of complex
horizontal curves that are used in §11 to obtain the Koebe distortion estimates.

In Appendix D we describe the global critical locus of the map R in CP2.
In Appendix E we re-prove the classical Lee-Yang Theorem and extend it to the

LY Theorem with Boundary Conditions used in §8. We then describe the Lee-Yang
zeros in the one-dimensional model, and explain in what sense the hierarchical
lattices give an approximation to the standard lattices Zd.

In Appendix F we collect several open problems. Finally, in Appendix G we
provide a list of notation that are frequently used throughout the paper.

1.6. Basic notation and terminology. I = [0, 1], C∗ = Cr {0}, T = {|z| = 1},
Dr = {|z| < r}, D ≡ D1, D∗ = D r {0}, N = {0, 1, 2 . . . }. Given two variables x
and y, x ≍ y means that c ≤ |x/y| ≤ C for some constants C > c > 0. A path (in
some topological space) is an embedded interval.
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2. Description of the model

2.1. Background: Ising models on graphs. Let Γ be a graph representing a
magnetic matter in a certain scale. Let V and E stand respectively for the set of
its vertices (representing atoms) and edges (representing magnetic bonds between
the atoms). Two vertices, v and w, connected by an edge are called neighbors:
we respectively write (v, w) ∈ E or {v, w} ∈ E for the corresponding oriented or
unoriented edge, respectively.

A spin configuration on Γ is a function σ : V → {±1}. The spin σ(v) represents
a magnetic momentum of an atom v ∈ V. The total magnetic momentum of the
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configuration is equal to10

(2.1) M(σ) =
1

2

∑

(v,w)∈E

(σ(v) + σ(w)) = n+(σ)− n−(σ),

where n+(σ) and n−(σ) stand respectively for the number of {++} and {−−}
bonds.

The Ising model depends on three physical parameters:

• J ∈ R – the coupling constant (strength of the magnetic bonds between
the atoms);

• h ∈ R – strength of the external magnetic field;
• T > 0 – temperature.

The Ising model is called ferromagnetic if J > 0, and anti-ferromagnetic otherwise.
The Gibbs distribution of a ferromagnetic model favors neighboring spins with the
same orientation. In this paper we consider the ferromagnetic model.

The total energy of the configuration σ is given by the Hamiltonian

H(σ) = −JI(σ)− hM(σ),

where

I(σ) :=
∑

{v,w}∈E

σ(v)σ(w) = n+(σ) + n−(σ)− n0(σ)(2.2)

is called the interaction of the configuration, with n0(σ) being the number of {+−}
bonds in σ.

Let Conf = Conf(Γ) be the configuration space, i.e., the space of all spin config-
urations. The Gibbs weight of a configuration σ is equal to11

(2.3) W (σ) ≡W (σ; J/T, h/T ) = e
−H(σ)

T = t−I(σ)/2z−M(σ),

where z = e−h/T and t = e−2J/T are field-like and temperature-like variables. Since
we assume the model is ferromagnetic (J > 0), the physical values h ∈ R and T > 0
correspond to 0 < z < ∞, 0 < t < 1. However, it is insightful to extend magnetic
observables beyond this region–we will do so starting in §2.3.

The partition function (or the statistical sum) is the total Gibbs weight of the
space:

ZΓ = ZΓ(z, t) =
∑

σ∈Conf

W (σ).

It is a Laurent polynomial in z and t.
The Gibbs distribution is the probability measure on Conf with probabilities of

the configurations proportional to the Gibbs weights:

P (σ) =
W (σ)

ZΓ
.

Note that it gives a bigger weight to less energetic configurations.
Let P = {(z, t)} ⊂ R2 stand for a relevant parameter space. The Gibbs weights

are invariant under simultaneous change of sign of the external field and the spins:

W (−σ; J/T,−h/T ) =W (σ; J/T, h/T ).

10As we have mentioned in the introduction, this definition is different from (1.1) as the

summation here is taken over the bonds rather than the atoms: see Appendix E.4 for a motivation
for this unconventional definition.

11We let the Boltzmann constant k = 1.
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This is the basic symmetry of the Ising model. It can be also formulated as follows.

Consider the “total configuration space” Ĉonf = Conf × P fibered over P. The
Gibbs weights W (σ; z, t) endow it with the fibered Gibbs measure. The basic
symmetry translates into invariance of this measure under the involution

(2.4) ι̂ : Ĉonf → Ĉonf; ι̂ : (σ; z, t) 7→ (−σ; z−1, t).

As a consequence of this basic symmetry, the partition function ZΓ is invariant
under the involution ι : (z, t) 7→ (z−1, t), so it has a form

(2.5) ZΓ =

d∑

n=0

an(t)(z
n + z−n), where d = |E| and ad(t) = t−d/2.

Thus, for any given t 6= 0, ZΓ(t, z) has 2|E| roots zi(t) ∈ C. They are called
Lee-Yang zeros.

The entropy of a configuration σ is defined as

S(σ) = − logP (σ) = logZ+H(σ)/T.

The free energy is defined as

(2.6) FΓ = H(σ)− TS(σ) = −T logZΓ.

It is independent of the configuration σ (in the Gibbs state) and hence coincides
with its average over Conf.

Remark 2.1. One can define in the same way the entropy and the free energy for an
arbitrary probability distribution on Conf. Then the Gibbs distribution is singled
out by one of two equivalent properties: (i) it minimizes the free energy; (ii) the
free energy is evenly distributed over configurations.

The magnetization of the matter is the average of the magnetic momentum over
the Gibbs distribution:

(2.7) MΓ =
∑

M(σ)P (σ) = −∂FΓ

∂h
= −z

∑ 1

z − zi(t)
+ |E|.

(The last equality is obtained using (2.5)).
Recall that physical values of temperature T > 0 correspond to t = e−2J/T ∈

(0, 1), where t = 0 and t = 1 correspond respectively to zero and infinite tempera-
ture.

Lee-Yang Theorem ([YL, LY]). For a ferromagnetic Ising model, for any tem-
perature t ∈ (0, 1), the Lee-Yang zeros zi(t) lie on the unit circle T.

This is a fundamental theorem of statistical mechanics. In Appendix E we
will provide a proof of it in this general form (in fact, even in a slightly more
general one). In §5 we will prove it for DHL using dynamics of the Migdal-Kadanoff
renormalization.

Given a subsystem of atoms, U ⊂ V, and a partial configuration σU : U → {±1},
we can define conditional configurations as all configurations σ : V → {±1} that
agree with σU on U . Let Conf(Γ|σU ) stand for the space of all such configurations.
The conditional partition function is defined as the total weight of this space:

ZΓ|σU
=

∑

σ∈Conf(Γ|σU )

W (σ).
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Lee-Yang Theorem with Boundary Conditions. Consider a ferromagnetic
Ising model on a connected graph Γ and let σU ≡ +1 on a nonempty U ( V. Then,
for any temperature t ∈ (0, 1) the Lee-Yang zeros z+i (t) of the conditional partition

function ZΓ|σU
lie outside the closed disc D.

This interpretation follows directly from the proof of the classical Lee-Yang Theo-
rem; see Appendix E. From the Basic Symmetry of the Ising model we get that for
σU ≡ −1 and t ∈ (0, 1) the Lee-Yang zeros zi(t) lie in the open disc D.

2.2. Multiplicativity of the partition function. For a subgraph Γ′ ⊂ Γ, let Γ̄′

stand for its closure obtained by adding to Γ′ all of the vertices adjacent to Γ′ and
all of the edges connecting them to Γ′. Let ∂Γ′ = Γ̄′ r Γ′.

Lemma 2.1. Let σU be a conditional configuration and let Γi be the connected
components obtained after removing the vertices in U and all of the edges ending
at them from Γ. Then

ZΓ|σU
=
∏

i

ZΓ̄i|σ∂Γi
.

Proof. Clearly,

(2.8) Conf(Γ|σU ) ∼=
∏

Conf(Γ̄i|σ∂Γi
).

Since there are no interactions between the partial configurations σ|Γi, we have the
additivity property for the energy:

H(σ|σU ) =
∑

H(σΓ̄i
|σ∂Γi

).

This implies multiplicativity for the corresponding Gibbs weights and (together
with (2.8)) for the conditional partition functions. �

2.3. Complexification. Nearly all of the quantities defined in §2.1 complexify
in the obvious way. Moreover, the basic symmetry (2.4) holds for any relevant
parameter space P ⊂ C2 and (2.5) implies for any t ∈ C∗ the partition ZΓ(z, t) has
2|E| roots zi(t) ∈ C.

The only caveat is that if one complexifies expression (2.6) for the free energy FΓ

by means of analytic continuation, singularities of the logarithm lead to monodromy.
This could be addressed by extending to a suitable Riemann surface. Instead, we
introduce a modulus under the logarithm:

FΓ(z, t) := −T log |ZΓ(z, t)| = −T
∑

log |z − zi(t)|+ |E|T ( log |z|+ 1

2
log |t| ),

(2.9)

where the summation is taken over the 2|E| Lee-Yang zeros zi(t) of Z(·, t) (here
log |z|- and log |t|-terms account respectively for the denominator and the leading
coefficient of Z(·, t)). In this way, for fixed t, the FΓ−|E|T log |z| is superharmonic
on C. We will still refer to this extension as the “free energy”.

We complexify the magnetization MΓ as a meromorphic function on C2 by ap-
plying (2.7) to complex values of z and t. By (2.9), we have

FΓ(z, t) = −T
2
logZΓ(z, t)−

T

2
logZΓ(z, t) = −T

2
logZΓ(z, t)−

T

2
logZΓ(z, t).
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If ∂
∂h denotes the complex (Wirtinger) partial derivative (as opposed to the real

partial derivative used in (2.7)), we have ∂
∂hZΓ(z, t) = 0. Therefore,

−2
∂

∂h
FΓ(z, t) = −T ∂ logZΓ(z, t)

∂h
=MΓ(z, t)

for all (z, t) ∈ C2.

2.4. Thermodynamic limit. For finite graphs, the partition function Z is a Lau-
rent polynomial with non-negative coefficients, so the free energy F = −T logZ is
real analytic in the physical region – there are no phase transitions. To observe
phase transitions, one should pass to a thermodynamic limit. Already in the origi-
nal paper by Lee & Yang [LY], the phase transitions were explicitly related to the
asymptotic distribution of the zeros of the partition functions. In this section we
will give a more rigorous account of these classical results.

Assume that we have a “lattice” given by a “hierarchy” of graphs Γn of increasing
size (corresponding to finer and finer scales of the matter)12 with partition functions
Zn, free energies Fn and magnetizations Mn. To pass to the thermodynamic limit
we normalize these quantities per bond.13 Let us say that our hierarchy of graphs
has a thermodynamic limit if

(2.10)
1

|En|
Fn(z, t) → F (z, t) for any z ∈ R+, t ∈ (0, 1).

In this case, the function F is called the free energy of the lattice. For many14

lattices (e.g. Zd), existence of the thermodynamic limit can be justified by van
Hove’s Theorem [vH, R3]. For the DHL, existence of the thermodynamic limit was
proved in [BZ3] using the Migdal-Kadanoff RG Equations (1.7). (We include their
proof in §2.6.)

When combined with the Lee-Yang Theorem, existence of the thermodynamic
limit (2.10) will allow us to extend the limiting free energy F (z, t) and also the
limiting magnetization M(z, t) to all z ∈ C for any t ∈ (0, 1):

Proposition 2.2. Assume that a hierarchy of graphs has a thermodynamic limit.
Then for any t ∈ (0, 1), the limit (2.10) in z exists in L1

loc(C) and the zeros of
the partition functions Zn are asymptotically equidistributed with respect to some
measure µt on the unit circle T. Moreover, the limiting free energy F (z, t) admits
the following electrostatic representation:

(2.11) F (z, t) = −2T

∫

T

log |z − ζ| dµt(ζ) + T ( log |z|+ 1

2
log |t| ) for a.e. z ∈ C,

so F (z, t)− T log |z| is superharmonic in z on the whole plane C, and is harmonic
in Cr suppµt.

12At this moment, the terms “lattice” and “hierarchy” are used in a purely heuristic sense.
Formally speaking, we just have a sequence of graphs with |Γn| → ∞.

13Viewing |E| as the “volume” of the system, the normalized quantities get interpreted as
“specific” free energy and magnetization.

14Note that the DHL is not in this class—instead, dynamical techniques are used to justify its

classical thermodynamic limit.
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Furthermore, the magnetizations
1

|En|
Mn converge locally uniformly on C r T,

and the limiting magnetization M admits the following Cauchy integral representa-
tion:

(2.12) M(z, t) = −2z

∫

T

dµt(ζ)

z − ζ
+ 1 for z ∈ Cr suppµt,

so M(z,t) is holomorphic in z on Cr suppµt.

Proof. We will fix some t ∈ (0, 1) and will consider all the functions in the z-variable
only. Let zni stand for the zeros of the Zn. Let us clear up the denominators of

the Laurent polynomials Zn to obtain ordinary polynomials Z̃n = zdnZn (where
dn = |En|). They have the same zeros as the Zn, so by the Lee-Yang Theorem, they

do not vanish on D. Hence they admit well defined roots φn := Z̃
1/dn
n on D that

are positive on the real line.
Since the polynomials Z̃n have positive coefficients, we have:

(2.13) |φn(z)| ≤ φn(1) ≤ exp

{
− 1

Tdn
Fn(1)

}
≤ C for any z ∈ D̄,

where the last bound follows from existence of the thermodynamic limit.
By Montel’s Theorem, the sequence of functions φn is normal on D. Since it

converges on (0, 1), it converges locally uniformly on D to a holomorphic function
φ. Hence the free energies d−1

n Fn = −T (log |φn|−log |z|) converge locally uniformly
on D∗ to the harmonic function F := −T (log |φ| − log |z|).

By the basic symmetry z 7→ 1/z, we have d−1
n Fn → F locally uniformly on CrD̄.

Moreover, by the same symmetry and (2.13), the functions d−1
n Fn are uniformly

bounded from above globally on C. By the Compactness Theorem for superhar-
monic functions (see [Ho, Thm 4.1.9]), the function F admits a superharmonic
extension to the punctured plane C∗ and

(2.14)
1

dn
Fn → F in L1

loc(C).

Let δz stand for the unit mass located at z, and let µn ≡ µnt =
1

2|E|
∑

δzni .

Since
1

2π
log |ζ| is the fundamental solution of the Laplace equation, (2.9) implies

that

(2.15) − 1

4πT

∆Fn
dn

=
1

2dn

∑
δzni − 1

2
δ0,

where the Laplacian ∆ is understood in the sense of distributions.
Since the distributional Laplacian is a continuous operator, (2.14) implies that

d−1
n ∆Fn(·, t) → ∆F (·, t) in the weak topology on the space of measures. Together

with (2.15), this implies that the Lee-Yang zeros are equidistributed with respect
to measure

µ ≡ µt := − 1

4πT
∆F (·, t) + 1

2
δ0.

Let un(z) ≡ unt (z) and u(z) ≡ ut(z) stand for the electrostatic potentials of
µn and µ respectively. For z ∈ C r T, the kernel ζ 7→ log |z − ζ| is a continuous
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function on T depending continuously (in the uniform topology) on z. It follows
that un(z) → u(z) locally uniformly on Cr T . But by (2.9),

1

dn
Fn = −2T un(z) + T (log |z|+ 1

2
log |t|).

Since (2.14) implies that for some subsequence nk,
1

dnk

Fnk
(z) → F (z) a.e., repre-

sentation (2.11) follows.
Taking (−2) times the ∂/∂h-derivative (where h = −T log z), we obtain repre-

sentation (2.12).
�

The basic symmetry of the Ising model implies that the free energy is an even
function of the field h, while the magnetization is odd. In terms of the (z, t)-
variables, F & M are respectively even & odd under the involution ι (which is
also clear from explicit representations (2.11) and (2.12)). If the magnetization
has different limits at z = 1 from above and below, M+(1) > 0 and M−(1) =
−M+(1) < 0, then one says that the first order phase transition occurs (at h =
0), and call M+(1) the spontaneous magnetization of the model. The following
statement makes physical relevance of the Lee-Yang zeros particularly clear:

Corollary 2.3. Assume the distribution µt is absolutely continuous on the unit
circle and its density ρt(φ) = 2πdµt(φ)/dφ is Hölder continuous at φ = 0. Then
the first order phase transition at h = 0 occurs if and only if ρt(0) 6= 0, and the
corresponding spontaneous magnetization M+(1) is equal to ρt(0).

Proof. Formula (2.12) with dµt = ρtdφ/2π can be also written as follows:

M(z, t) = −2

(
1

2πi

∫

T

ρt(ζ)dζ

ζ − z
− 1

2πi

∫

T

ρt(ζ)dζ

ζ

)
− 1.

By the Sokhotsky Theorem (see [Kre, Theorem 7.6]), the jump at z = 1 (from inside
to outside of T) of the Cauchy integral in parentheses is equal to −ρ(0). Hence the
jump of M (from inside to outside) is equal to 2ρt(0). On the other hand, it is
equal to 2M+(1). �

Remark 2.2. If the limiting distribution µt has a density ρt(φ) that is real-analytic
in a neighborhood of φ = 0, then (2.11) allows for a analytic continuation of F (z, t)
in a neighborhood of z = 1 by a deformation of contours.

For the Zd Ising model, d > 1, Isakov [Isa] has shown that no such analytic
continuation exists at sufficiently low temperatures. Thus, for these models ρt(φ)
cannot be real-analytic φ = 0 for low temperatures.

2.5. Diamond Hierarchical Lattice (DHL) and Migdal-Kadanoff renor-
malization. Let us start with the simplest possible graph Γ0: just two vertices, a
and b, connected with one edge. The space ConfΓ0

consists of four configurations
with the following energies:

H

(
⊕

|
⊕

)
= −J − h, H

(
⊕

|
⊖

)
= H

(
⊖

|
⊕

)
= J, H

(
⊖

|
⊖

)
= −J + h,
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c

Γ3

a

d

b

Γ2

Γ2 Γ2

Γ2

Figure 2.1. Graph Γ3 built from four copies of Γ2.

and the following Gibbs weights:

U = W

(
⊕

|
⊕

)
= z−1t−1/2,

V = W

(
⊕

|
⊖

)
=W

(
⊖

|
⊕

)
= t1/2,(2.16)

W = W

(
⊖

|
⊖

)
= zt−1/2.

They sum up to the following partition function:

(2.17) Z ≡ ZΓ0
= U + 2V +W =

z2 + 2tz + 1

z
√
t

.

Let us now replace the interval Γ0 with a diamond Γ1 with vertices a, b, c, d (so
that it shares with Γ0 the vertices a and b), see Figure 1.1. Restricting that the
spins at a and b are both + and summing over the four spin configurations (+,+)
(+,−) & (−,+), and (−,−) at the vertices c and d yields a sum of four conditional
partition functions (two of which are equal):

U1 := ZΓ1|++ = U4 + 2U2V 2 + V 4 = (U2 + V 2)2

Similarly

V1 := ZΓ1|+− = ZΓ1| −+ = U2V 2 + 2UV 2W + V 2W 2 = V 2(U +W )2,

W1 := ZΓ1| −− = V 4 + 2V 2W 2 +W 4 = (W 2 + V 2)2.

The full partition function of Γ1 is equal ZΓ1
= U1 + 2V1 +W1.

Replacing each edge of the diamond with Γ1, we obtain a lattice Γ2 with 16
edges. Inductively, replacing each edge of the diamond with the lattice Γn−1, we
obtain the lattice Γn with 4n edges,15 see Figure 2.1.

All lattices Γn share four vertices, a, b, c and d, with the original diamond. Re-
stricting the spins at {a, b} we obtain three conditional partition functions, Un, Vn

15This description of the DHL is “dual” to the one given in the Introduction, §1.2.
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and Wn as follows:

,

⊖

⊖

⊕

⊕
= Zn

⊖

⊕⊖

⊕
Un := Zn Wn := ZnVn := Zn,

The total partition function is equal to

Zn = ZΓn
= Un + 2Vn +Wn.

Similarly to the above formulas for U1, V1 and W1, we have:

Migdal-Kadanoff RG Equations:

Un+1 = (U2
n + V 2

n )
2, Vn+1 = V 2

n (Un +Wn)
2, Wn+1 = (V 2

n +W 2
n)

2.

Proof. Let us check the first equation (the others are similar). There are four spin
configurations at the vertices (c, d): (+,+), (+,−) & (−,+) and (−,−), as shown
in Figure 2.2. By the multiplicativity of the partition function (Lemma 2.1), the
corresponding conditional partition functions are equal respectively to U4

n, U
2
nV

2
n

(twice) and V 4
n . Summing these up, we obtain the desired equations.

⊕
⊕

⊕

⊕

⊕

=

= U4
n

Zn+1 ++ 2Zn+1 Zn+1⊕
⊕

⊕
⊖ ⊖

⊕

⊕
⊖

+ 2U2
n V

2
n + V 4

n .

Un+1 = Zn+1

⊕

Figure 2.2. Derivation of the Migdal-Kadanoff Equations.

�

Let us consider the following homogeneous degree 4 polynomial map R̂ : C3 → C3

(2.18) R̂ : (U, V,W ) 7→ ((U2 + V 2)2, V 2(U +W )2, (V 2 +W 2)2)

called the Migdal-Kadanoff Renormalization. By the Migdal-Kadanoff RG Equa-
tions, the conditional partition functions of Γn are given by the orbits of this map,
(Un, Vn,Wn) = R̂n(U, V,W ). The full partition function is obtained by the R̂n-
pullback of the linear form Z = U + 2V +W :

(2.19) Zn = Z ◦ R̂n.
The renormalization operator R̂ descends to a rational transformation R : CP2 →
CP2. In the affine coordinates u = U/V , w =W/V , it assumes the form:

(2.20) R : (u,w) 7→
(
u2 + 1

u+ w
,
w2 + 1

u+ w

)2

,
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where the external squaring stands for the squaring of both coordinates, (u,w)2 =
(u2, w2). According to (2.16), these coordinates are related to the “physical” (z, t)-
coordinates as follows:

(u,w) = Ψ(z, t) =

(
1

zt
,
z

t

)
.(2.21)

In (z, t)-coordinates, the renormalization transformation assumes the form:

(2.22) R : (z, t) 7→
(
z2 + t2

z−2 + t2
,

z2 + z−2 + 2

z2 + z−2 + t2 + t−2

)
.

The iterates (zn, tn) = Rn(z, t) are related to (Un, Vn,Wn) by means of (2.16):

Un = z−1
n t

−1/2
n , etc. Physically, they are interpreted as the renormalized field-like

and temperature-like variables.

2.6. Existence of the thermodynamic limit for the DHL.

Proposition 2.4. The thermodynamic limit exists for the DHL.

The following is adapted from [BZ3, Sec. 3]:

Proof. The basic symmetry of the Ising model implies that Fn(z, t) = Fn(1/z, t)
for every n ≥ 0. Thus, it suffices to prove that (2.10) holds for every (z, t) ∈
(0, 1]× (0, 1).

One can check that (0, 1]×(0, 1) is invariant under R. Let (z0, t0) ∈ (0, 1]×(0, 1)
and let (zn, tn) := Rn(z0, t0). For any n ≥ 0

Un = (U2
n−1 + V 2

n−1)
2 = U4

n−1(1 + z2n−1t
2
n−1)

2.

By induction, we have

Un = U4n

0

n−1∏

j=0

(
1 + z2j t

2
j

)2 4n−1−j

.

Meanwhile,

Zn = Un + 2Vn +Wn = Un
(
1 + 2zntn + z2n

)
.

Since U0 = z−1
0 t

−1/2
0 , we have

Zn = (z−1
0 t

−1/2
0 )4

n
n−1∏

j=0

(
1 + z2j t

2
j

)2 4n−1−j (
1 + 2zntn + z2n

)
.

For the DHL we have |En| = 4n. Using that z0 = e−h/T and t0 = e−2J/T , we find

1

|En|
Fn(z, t) = − T

4n
logZn

= −h− J − T

2

n−1∑

j=0

1

4j
log(1 + z2j t

2
j )−

1

4n
log
(
1 + 2zntn + z2n

)
.(2.23)

Therefore,

F (z, t) = lim
n→∞

1

|En|
Fn(z, t) = −h− J − T

2

∞∑

j=0

1

4j
log(1 + z2j t

2
j ),(2.24)

where we have used that (zn, tn) ∈ (0, 1] × (0, 1) for each n ≥ 1 to conclude that
the last term from (2.23) converges to 0 and that the sum in (2.24) converges. �
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Together, Propositions 2.2 and 2.4 imply that the limiting distribution µt of Lee-
Yang zeros exists for the DHL at each t ∈ (0, 1). Our proof of the main theorem will
not need this fact and will thus give an alternate proof that the limiting distribution
(and hence the thermodynamic limit) exists.

2.7. Basic Symmetries. By the basic symmetry of the Ising model, the change
of sign of h interchanges the conditional partition functions Un and Wn keeping Vn
and the total sum Zn invariant. Consequently, the RG transformation R̂ commutes
with the involution (U, V,W ) 7→ (W,V,U), which is also obvious from the explicit
formula (2.18). Accordingly, the transformation R commutes with the permutation
(u,w) 7→ (w, u), while R commutes with (z, t) 7→ (z−1, t).

All these transformations have real coefficients, so all of them commute with the
corresponding complex conjugacies: (U, V,W ) 7→ (Ū , V̄ , W̄ ), etc.

Finally, there is an extra “accidental” symmetry of the DHL: the generating di-
amond Γ1 is symmetric under reflection across the vertical axis. It results in the
squared terms in the Migdal-Kadanoff RG Equations that makes the LY distribu-
tions µt symmetric under the half-period translation φ 7→ φ + π. It will play an
important role in §8.2.

3. Structure of the RG transformation I: Invariant cylinder

We will now begin to explore systematically the RG dynamics. Its generator was
represented above in several coordinate systems, in particular, as a transformation
R (2.20) in the affine coordinates (u,w) and as a transformation R (2.22) in the
physical coordinates (z, t). From a physical point of view we are primarily interested
in the latter. However, R possess better global dynamical properties. For these
reasons we will treat both mappings in parallel. In order to help keep track of the
various corresponding objects in these two different coordinate systems, we have
included a table of notation in Appendix G.

Since R and R represent the same map in different coordinates, the correspond-
ing change of variables (2.21) should be equivariant, i.e., the following diagram
must commute:

CP2 R
//

Ψ
��

CP2

Ψ
��

CP2 R
// CP2

(3.1)

wherever the maps are well defined. And this is indeed true and can be verified
directly using the explicit formulas for the maps.

In this section we will describe basic features of R (viewed statically) on the
invariant cylinder (that supports the Lee-Yang zeros) and of R on the corresponding
invariant Möbius band.

3.1. Invariant cylinder and Möbius band. Let us consider the round cylinder
C = T × I naturally sitting in C2. It is obvious from (2.22) that C is invariant
under R.

Remark 3.1. Note that the whole bi-infinite cylinder Ĉ = T × R is also invariant
under R, and in fact, R(Ĉ) ⊂ C. (Here the upper cylinder (t > 1) corresponds to
the anti-ferromagnetic region.)
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We keep identifying the unit circle T with R/2πZ, so that points (z, t) (z ∈ T)
of the cylinder C will often be written in the angular coordinate as (φ, t), where
z = eiφ, φ ∈ R/2πZ. Let Tt = T × {t} be the horizontal sections of the cylinder.
We will use special notation for the bottom and the top sections:

B = T0 T = T1.

We will also use special notation C1 := C r T and C0 := C r B respectively for the
topless and the bottomless cylinder.

The cylinder is foliated by the vertical intervals

Iφ = {(φ, t) : 0 ≤ t ≤ 1}.
The interval I0 = {φ = 0} plays a distinguished role, both physically and dy-
namically. Physically, it corresponds to the vanishing magnetic field. Dynami-
cally, it is singled out by the property of being invariant under R. Its endpoints
β0 = (0, 0) ∈ B and β1 = (0, 1) ∈ T are superattracting fixed points for R| I0, and
there is a unique repelling fixed point βc = (0, tc) ∈ I0. This is exactly the critical
point of the Ising model16 mentioned in the introduction and marked on Figure 1.2.
Orbits of all points β ∈ I0 below βc converge to β0, while orbits of all points above
it converge to β1.

Let us now switch to the affine coordinates (u,w) = Ψ(z, t) from (2.21). Consider
a topological annulus

(3.2) C0 = {(u,w) ∈ C2 : w = ū, |u| ≥ 1}.
in C2, and let C stand for its closure in CP2. Let T = {(u, ū) : |u| = 1} be the
“top” circle of C, while B be the slice of C at infinity. Let C1 = C r T.

Though the change of variables Ψ is not globally invertible, it is nearly such on
the cylinder C:
Proposition 3.1. (i) Ψ restricts to a diffeomorphism C0 → C0;

(ii) C = Ψ(C) is an R-invariant Möbius band, and B is an R-invariant circle,
a “median” of the band (given as the unit circle in the coordinate ζ = w/u).

(iii) R acts on C0 as u→
(
u2 + 1

2Reu

)2

, and it acts on B as ζ 7→ ζ4;

(iv) The map Ψ : B → B is 2-to-1, and Ψ : C1 → C1 continuously semiconju-
gates R to R.

Proof. It is obvious from (2.21) that Ψ maps C0 smoothly to C0. Moreover, (φ, t)
can be recovered from (u, v) = Ψ(φ, t) as the polar coordinates of u−1 = teiφ. This
yields (i).

Let us use coordinates (ξ = 1/u, ζ = w/u) near the line at infinity {ξ = 0}.
In these coordinates, the map Ψ assumes the form ξ = tz, ζ = z2, which makes
obvious its continuity. Hence it maps C onto C.

Moreover, the circle B is mapped to the circle B = {ξ = 0, |ζ| = 1} by ζ = z2.
So, topologically C is obtained from the cylinder C by identifying the antipodal
points z and −z on B. This makes the Möbius band.

Invariance of C and B follow from the semi-conjugacy or directly from (2.20). Ex-
pression (iii) is straightforward and property (iv) follows from the semi-conjugacy Ψ.

16We hope it will be clear from the context whether the term “critical” is used in the physical

or dynamical sense.
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(We will soon see that indeterminate points for iterates of R form a dense set in
T , this is why we omit it in (iv).) �

In the coordinate u on C, the interval I0 becomes the real ray I0 = {u ∈ R, u ≥
1} and the fixed points β1, βc, β0 on I0 become fixed points b1 = {u = 1}, bc,
b0 = {ζ = 1} for R.

3.2. Decomposition R = f ◦ Q and structure of f on the cylinder. To un-
derstand further the geometric structure (of the first iterate) of the renormalization
R, it is convenient to decompose it as f ◦Q, where Q(z, t) = (z2, t2) and

(3.3) f(z, t) =

(
z + t

z−1 + t
,
cosφ+ 1

cosφ+ s

)
, s =

1

2
(t+ t−1).

As a reflection of the basic symmetry of the Ising model, f commutes with the
involution σ : (φ, t) 7→ (−φ, t).

The cylinder C is invariant under both Q and f . However, we should be careful:
f is not well defined on the whole cylinder; it has a point of indeterminacy α =
(π, 1) ∈ T ∩Iπ which decisively influences the dynamics. When we approach α from
inside the cylinder at angle ω ∈ [−π/2, π/2] with the leaf Iπ, the map f converges
to the point

(3.4) (φ, t) = (2ω, sin2 ω) := G(ω) ∈ C
(see [BZ3, p. 419] and also calculations in Appendix B). Thus, the point α blows
up to the blow-up locus

(3.5) G =

{
t = sin2 φ/2 ≡ 1− cosφ

2

}
.

Note that G touches the top T at α itself, and touches the bottom B at β0 (see
Figures 3.1 and 3.2). It divides the cylinder into two pieces: C− (below G) and C+
(above it).

The interval Iπ (that ends at the point of indeterminacy α) is critical: it collapses
under f to the fixed point β0.

In the angular coordinate, we have:

(3.6) Df =
2

η2

(
η 0
0 1− t

)
·
(

1 + t cosφ − sinφ
−t(1− t) sinφ (1 + t)(1 + cosφ)

)
,

where η = 1 + 2t cosφ+ t2 ∈ [0, 4]. It follows that

(3.7) Jac f =
4(1− t)(1 + cosφ)

η2
≥ 0,

and Jac f = 0 only on the critical interval Iπ and the top of the cylinder T . Thus,
f is an orientation preserving local diffeomorphism on C1 r Iπ. (In fact, the same
is true on C r Iπ.)

Note that f |B : z 7→ z2 while f |T = id. This drop in the degree is caused by the
point of indeterminacy in the following way. Let us consider the zero level Lee-Yang
locus S = {Z = 0} ∩ C, where Z is the partition function (2.17):

(3.8) S ≡ S0 = {z2 + 2tz + 1 = 0} ∩ C = {t = − cosφ : φ ∈ [π/2, 3π/2] }.
It has two branches over I (symmetric with respect to Iπ) each of which is mapped
diffeomorphically onto Iπ (see Figure 3.1).
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f

S

0
3π
2

π 0π

G

Figure 3.1. The map f : C → C.

The curve S divides C into two domains: Λs (containing Iπ r {α}) and Λr

(containing I0). The domain Λs r Iπ is composed of two topological triangles
mapped diffeomorphically17 onto the corresponding triangles of C− r Iπ, namely,
the right-hand side triangle of Λs r Iπ is mapped onto the left-hand side triangle
of C− r Iπ,18 see Figure 3.2. On the other hand, Λr is mapped diffeomorphically
onto the whole C r Iπ. Accordingly, we have two diffeomorphic branches of the
inverse map, the “singular” branch f−1

s : C− r Iπ → Λs and the “regular” one,
f−1
r : C r Iπ → Λr.
In particular, we conclude that the map f has degree 2 over int C− and degree 1

over int C+. So, f : C1 → C1 is not a proper map.
A path γ : [0, 1] → C is called proper if it connects the bottom of the cylinder to

its top without passing through ∂C in between.19 A crucial property of the cylinder
dynamics is that f−1 acts properly on proper paths:

Lemma 3.2. If γ : [0, 1] → C is a proper path then the full preimage f−1γ contains
two proper paths, δ1 and δ2. These two paths can meet only at α. Moreover, if
γ crosses G only once, then f−1γ = δ1 ∪ δ2 := δr ∪ δs, where δr = f−1

r γ is the
“regular” lift of γ while δs = f−1

s γ is the “singular” lift ending at α.20

Proof. Since the endpoints of γ belong to different components of ∂C, we can orient
it so that γ(0) ∈ B. This initial point has two preimages on B; let p be either of
them. We will show that there is a proper path δ ⊂ f−1γ that begins at p.

Let α0 = (π, 0) ∈ B stand for the bottom point of the critical interval Iπ (which
collapses to β0). If p = α0 then γ(0) = β0 and the interval Iπ is a desired path δ.21

So, assume p 6= α0. Then f : C → C is a local diffeomorphism near p, so there is
a local lift δ of γ that begins at p. Continuing lifting it as far as possible, we obtain
a lift δ(λ), 0 ≤ λ < λ∗ ∈ (0, 1], that cannot be extended further.

What can go wrong at λ∗? If x := γ(λ∗) 6∈ T ∪ G then x would have a disk
neighborhood U ⊂ int C such that f : f−1(U) → U were a covering map (of degree
1 or 2), and the lift would admit a further extension. So, x ∈ T ∪ G.

17Each of these assertions is proved by verifying that the the mapping is a proper local diffeo-

morphism between simply connected spaces.
18The map is quite peculiar on the boundary of Λs r Iπ as it blows up α to the G-boundary

of (C− r Iπ) while collapses Iπ to β0.
19An open path γ1 : (0, 1) :→ int C1 or a half-open path γ1 : [0, 1) :→ C1 that extends to a

proper path γ : [0, 1] → C will also be called “proper”.
20In case γ(1) = α, both lifts end at α.
21If an initial piece of γ lies in C− then there is a lift δ′ of γ that begins at α0. This possible

extra lift is disregarded in our discussion.
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0 2π

α0

β0

f

G

β0

α

C+
Iπ

γ

C−

Λr

δr
δs

Λs S

Figure 3.2. Cylinder C shown in (φ, t) coordinates. The left-
hand side triangle of Λs r Iπ is mapped onto the right-hand side
triangle of C− r Iπ. The proper path γ is lifted by f to two paths,
the regular lift δr and the singular lift δs. The singular lift δs
reaches T at α.

If x ∈ T r {α} then λ∗ = 1 and x has a relative half-disk neighborhood U ⊂ C
such that f−1(U) is a half-disk neighborhood of f−1x = x mapped homeomorphi-
cally onto U . In this case we let δ(1) = x and obtain the desired lift.

If x ∈ G r {α} then x has a neighborhood U ⊂ int C such that f−1U = Ur ⊔ Us
where Ur = f−1

r (U) is a disk homeomorphically mapped onto U , while Us =
f−1
s (U ∩ C−) is a “wedge centered at α” homeomorphically mapped onto U ∩ C−.
Then for all λ near λ∗,

(3.9) either δ(λ) = f−1
r (γ(λ)) ⊂ Ur or δ(λ) = f−1

s (γ(λ)) ⊂ Us.22

But in the former case, δ(λ) can be extended beyond λ∗, contrary to our assumption.
In the latter case, δ(λ) is forced to converge (as λ → λ∗) to the center α of the
wedge Us. This gives us the desired proper path terminating at α.

Finally, if x = α then λ∗ = 1 and α can be the only accumulation point for
δ(λ) as λ → 1 (for, if y ∈ C r {α} is another accumulation point then γ(λ) would
accumulate on f(y) 6= α as λ → 1). Thus, δ(λ) → α as λ → 1, and we obtain a
proper path again.

Remark that if δ 6= Iπ then the path δ(λ) cannot meet Iπ r {α}. Indeed, under
this assumption, β0 6∈ γ, while Iπ collapses to β0.

So, we have constructed two proper paths, δ1 and δ2. They cannot meet at any
point of CrIπ since f is a local homeomorphism over there. By the above remark,
they cannot meet at any point of Iπ r {α} either. Hence α is their only possible
meeting point.

22Note that the curve γ(λ) can cross G infinitely many times at λ → λ∗. If this happens then

δ(λ) = f−1
r (γ(λ)) for λ near λ∗.
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Assume now that γ crosses G only once, and let γ(λ∗) ∈ G be this intersection
point. Assume first that γ(0) 6= β0. Then by the previous argument, the arc γ(λ),
0 ≤ λ < λ∗, has two lifts δr(λ) and δs(λ) as in (3.9). Then δs(λ), 0 ≤ λ ≤ λ∗, is
a proper path terminating at α (the singular lift of γ), while δr(λ) extends further
to a proper path parameterized by the full interval [0, 1] (the regular lift of γ).

Thus, for λ < λ∗, both preimages of γ(λ) are captured by the above lifts δr(λ)
and δs(λ), while for λ > λ∗, the only preimage of γ(λ) is δr(λ). We conclude that
f−1(γ) = δr ∪ δs.

Finally, if γ(0) = β0 then γ(λ) ∈ C+ for λ > 0, so such γ(λ) has only one
preimage. This preimage is captured by the lift δr that begins at β0. It follows that

f−1(γ) = δr ∪ f−1(β0) = δr ∪ Iπ := δr ∪ δs.
�

Figure 3.2 shows C in (φ, t) coordinates, a proper path γ that crosses G in only
one point, and the regular and singular lifts δr and δs of γ under f .

If η is not a full proper path, but merely a proper path in C− (connecting B to
G without passing through ∂C− in between) we will also call the lift of η under f−1

s

the “singular lift” of η.

3.3. Structure of R on the cylinder. The above properties of f immediately
translate into the following properties of the renormalization operator R:

(P1) Symmetries: As we have already mentioned in §2.7, the Basic Symmetry
of the Ising model implies that R commutes with the involution ι : (z, t) 7→
(z−1, t). On the other hand, since R = f ◦ Q, we have: R ◦ ρ = R, where
ρ : (z, t) 7→ (−z, t). It follows that the basins of the top and the bottom
of C are invariant under the Klein group (Z/2Z) × (Z/2Z) comprising id
and three involutions, ι, ρ and ι ◦ ρ. These symmetries are clearly visible
on Figure 1.2 as it is23 π-periodic and is invariant under reflections in the
axes φ = 0, π, φ = ±π/2.

(P2) R has two points of indeterminacy, α± = (±π/2, 1) ∈ T . Each of them
blows up onto the singular curve G. (See Appendix B for detailed formulae.)

(P3) Formula (3.7) implies that the critical locus of R|C comprises the bottom
B, the top T , and two vertical intervals, I±π/2, terminating at the points of
indeterminacy. These intervals collapse under R to the fixed point β0 ∈ B.
R is an orientation preserving local diffeomorphism on the complement of
the critical set, C \

(
I±π/2 ∪ T ∪ B

)
.

(P4) R is postcritically finite in the following sense: C \
(
I±π/2 ∪ T ∪ B

)
is back-

ward invariant, and R is a local diffeomorphism on this set. (Note: while
postcritically finite maps typically have rather simple dynamics, R is not
postsingularly finite, since images of the curve G are not eventually periodic,
leading to dynamical complexity of R.)

(P5) R|B : z 7→ z4, while R| T : z 7→ z2. Moreover, the bottom circle is
uniformly superattracting, namely, letting R(z, t) = (z′, t′), we have: t′ =
O(t2) for t near 0. The top circle is non-uniformly superattracting, namely,
near the top we have

τ ′ = O

(
τ2

cos2 φ

)
= O

(
τ2

ǫ2

)
, τ = 1− t, ǫ = π/2− φ modπZ,

23or rather, its 2π-periodic unfolding
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0

1

Figure 3.3. The mapping R : C → C, the regions Λ± in grey,
and the region Π = C r Λ± in white (above).

so that, the superattraction rate explodes near the points of indeterminacy.
See Figure 1.2 for a computer image of the basins of attraction for B and T .

(P6) The preimage Q−1(S) comprises two curves S± that are tangent to T at the
indeterminacy points α± and are symmetric with respect to I± respectively.
The domains below them are called the (primary) central tongues Λ±, see
Figure 3.3. The vertical intervals I±π/2 cut the corresponding tongues Λ±

into two topological triangles. Each of these (open) triangles is mapped
diffeomorphically by R onto the appropriate triangle of C− r Iπ. The
inverse diffeomorphisms are called singular branches of R−1.

(P7) The complement Π := C r Λ+ ∪ Λ− consists of two domains each of which
is mapped diffeomorphically onto the cut rectangle C r Iπ. The inverse
diffeomorphisms are called regular branches of R−1.

(P8) R has degree 4 over C− and it has degree 2 over C+.
(P9) By Lemma 3.2, every proper path γ in C has at least 4 proper lifts δi.

These lifts can meet only at the indeterminacy points α±. If γ crosses G at
a single point, then R−1γ = ∪ δi. Two of these lifts (contained in Λ±) are
“singular”: they terminate at the points α±; the other two are “regular”.

(P10) R acts with degree 4 on closed curves: If γ is any closed curve on C wrapping
once around C, then R(γ) is a closed curve wrapping four times around C.

Proposition 3.3. For any n ≥ 0 the Lee-Yang locus at level n is given by

Sn = (Rn)∗S0.(3.10)

Proof. Let S0 = {U + 2V +W = 0} ∩C and note that S0 = Ψ∗S0. It follows from
(2.19) that Sn = (Rn ◦ Ψ)∗S0. On C1 we obtain (3.10) from the semi-conjugacy
Rn ◦Ψ = Ψ ◦ Rn. The result extends by continuity to all of C. �

3.4. Structure of R on the Möbius band. Because of the conjugacy Ψ : C0 →
C0 from Proposition 3.1, the structural properties (P1-P10) for R : C → C discussed
in §3.3 have immediate analogs for R : C → C. Particularly important is
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(P9′) Every proper path γ in C0 lifts under R to at least 4 proper paths in C0.
If γ crosses G at a single point, then R−1γ = ∪ δi.

(Here a path in C0 is called proper if it goes from T to ∞).
Also, we have:

• The principal LY locus S in C (see (3.8)) is turned into the the vertical line
S = {Reu = −1} in C. (This is seen directly from the formula (2.17) for
the partition function). We will refer to S as the principal LY locus in the
affine coordinates.

• The indeterminacy points α± ∈ T for R are turned into indeterminacy
point ±i ∈ T for R.

• The blow-up locus G (3.5) is turned into the parabola

(3.11) G = {u : |u| = Reu+ 2} = {x+ iy : x =
1

4
y2 − 1}

(use u−1 = teiφ). See Figure 6.3.

Let us rotate the LY locus S around the circle T. We obtain a family of lines
Sφ = ei(φ−π)S tangent to T at eiφ. Let Scφ = {e−i(φ−π)U +2V + ei(φ−π)W = 0} be

the corresponding complex line in CP2. By Corollary 4.5, the pullback R∗(Scφ) is a
complex algebraic curve of degree 4. By Bezout’s Theorem, it intersects the conic
L1 = {uw = 1} (which is the complexification of the circle T) at 8 points counted
with multiplicity.

Lemma 3.4. (i) If φ 6= π (i.e., Sφ 6= S), then the conic L1 intersects the pullback

R∗(Scφ) transversally at four transverse double points (±eφ/2 and the indeterminacy

points ±i). So, each intersection has multiplicity 2.
(ii) If φ = π (i.e., Sφ = S), then L1 intersects R∗(Scφ) tangentially at two first

order tangential double points (the indeterminacy points ±i). So, each intersection
has multiplicity 4.

Proof. (i) By Lemma D.3, the map R is a Whitney fold at ±eiφ/2. By Lemma D.4,
the germ of R∗(Scφ) at ±eiφ/2 is a transverse double point transversely intersected
by the critical locus L1.

To understand the germ of R∗(Scφ) at an indeterminacy point a ∈ {±i}, let

us blow it up and lift R to a map R̃ : C̃P
2 → CP2, see Appendix A.2. Since

φ 6= π, Scφ intersects the blow-up locus G = R̃(Eexc) transversely at two points.

If φ 6= ±π/2, these two points are regular values for R̃ (Appendix D.1.2). Hence,

the curve R̃∗(Scφ) intersects the exceptional divisor Eexc transversely at two points.

Projecting the corresponding germs to CP2, we obtain two branches of R∗(Scφ) at a.

If φ = ±π/2, then the intersection of Scφ with G at b0 ∈ L0 is not a regular

value for R̃. According to Appendix B.1.1, the point p ∈ Eexc at slope χ = −1
satisfies R̃(p) = b0. A simple calculation yields that DR̃(p) is tangent to G at b0
and therefore transverse to Scφ. Thus, R̃∗(Scφ) is smooth in a neighborhood of p,

with the tangent direction given by KerDR̃(p), which is transverse to Eexc. Thus,

R̃∗(Scφ) still intersects the exceptional divisor Eexc transversely at two points, and
we proceed as before.

(ii) By Lemma D.3, the blow-up map R̃ : L̃1 → L1 is a Whitney fold at the

intersection point ã = L̃1∩Eexc. Hence the germ of R̃∗(Sφ) has a transverse double
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point at ã and intersects Eexc generically. Its projection to CP2 is a pair of regular
curves tangent to L1 at a (see Lemma D.5). �

Remark 3.2. The above lemma is reflected in the geometry of the initial LY loci
illustrated on Figure 1.3. The locus S1 = R−1S0 looks like two tangent parabolas
near the indeterminacy points α± (part (ii) of the lemma). The next locus, S2 =
R−1S1, comprises 32 branches meeting transversely at the top, as part (i) asserts.

4. Structure of the RG transformation II: Global properties in CP2

The Lee-Yang Theorem places special emphasis of the dynamics of R on the
cylinder C. However, it is instructive to understand the global dynamics of R on
the projective space CP2, which has important consequences for the dynamics of
R|C. In this section we will describe basic global properties of R, along with those
of R : CP2 → CP2.

4.1. Semiconjugacy Ψ. The mapping Ψ given by (2.21) is a degree two rational
map CP2 → CP2. In homogeneous coordinates [Z : T : Y ] in the domain (with
z = Z/Y, t = T/Y ) and [U : V : W ] in the image (with u = U/V, w = W/V ), it
assumes the form

U = Y 2, V = ZT, W = Z2.

A generic point [U : V : W ] has two preimages under Ψ. The critical locus of Ψ
is the union of the vertical axis {Z = 0} and the line at infinity {Y = 0}. Under
Ψ, the former collapses to an R-fixed point e = [1 : 0 : 0], while the latter maps
onto the vertical axis {U = 0}. Since e does not lie on this axis, the intersection
γ = [0 : 1 : 0] of the two critical lines must be an indeterminacy point for Ψ (and
in fact, this is the only one).

This collapsing line {Z = 0} and the associated indeterminacy point γ created by
the change of variable Ψ is what makes the physical coordinates (z, t) less suitable
for describing the global structure of the renormalization.

4.2. Indeterminacy points for R and R. In homogeneous coordinates on CP2,
the map R has the form:

(4.1) R : [U : V :W ] 7→ [(U2 + V 2)2 : V 2(U +W )2 : (V 2 +W 2)2)]

which is just (2.18) with (U, V,W ) interpreted as the homogeneous coordinates. We
find two points of indeterminacy: a+ := [i : 1 : −i] and a− := [−i : 1 : i]. They
lie on the Möbius band C and correspond under Ψ|C to the indeterminate points
α± ∈ C that we discussed in §3.1.

If we now write R in homogeneous coordinates we obtain

R : [Z : T : Y ] 7→
[Z2(Z2 + T 2)2 : T 2(Z2 + Y 2)2 : (Z2 + T 2)(T 2Z2 + Y 4)].

(4.2)

We find the indeterminate points α± = (±i, 1) ∈ C, two symmetric points (±i,−1),
and two additional points of indeterminacy, 0 = (0, 0) and γ = [0 : 1 : 0] (here all
the points except the last one are written in the physical coordinates z = Z/Y, t =
T/Y ). In this way, when we turn R into R by the change of variable Ψ we create
two accidental points of indeterminacy, 0 and γ, which makes the global properties
of the map more awkward.
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One can resolve all the indeterminacies of R using suitable blow-ups. We will
only need resolutions of α±, which are described in Appendix B.

4.3. Superattracting fixed points and their separatrices.

4.3.1. Description in terms of R (4.1). We will often refer to L0 := {V = 0} ⊂ CP2

as the line at infinity. It contains two symmetric fixed points, e = (1 : 0 : 0) and
e′ = (0 : 0 : 1). In local coordinates (ξ = W/U, η = V/U) near e, the map R
assumes form

(4.3) ξ′ =

(
ξ2 + η2

1 + η2

)2

∼ (ξ2 + η2)2, η′ = η2
(

1 + ξ

1 + η2

)2

∼ η2,

so |Rx| ≤ 2|x|2 for small x = (ξ, η). This shows that e is superattracting:

|Rnx| ≤ |2x|2n .
By symmetry, e′ is superattracting as well. Let Ws(e) and Ws(e′) stand for the
attracting basins of these points.

Moreover, the line at infinity L0 = {η = 0} is R-invariant, and the restriction
R|L0 is the power map ξ 7→ ξ4. Thus, points in the disk {|ξ| < 1} in L0 are
attracted to e, points in the disk {|ξ| > 1} are attracted to e′, and these two basins
are separated by the unit circle B. We will also call L0 the fast separatrix of e and
e′.

Let us also consider the conic

(4.4) L1 = {ξ = η2} = {V 2 = UW}
passing through points e and e′. It is an embedded CP1 that can be uniformized by
coordinate w = W/V = ξ/η. Formulas (4.3) show that L1 is R-invariant, and the
restriction R|L1 is the quadratic map w 7→ w2. Thus, points in the disk {|w| < 1}
in L1 are attracted to e, points in the disk {|w| > 1} are attracted to e′, and these
two basins are separated by the unit circle T. We will call L1 the slow separatrix
of e and e′.

If a point x near e (resp. e′) does not belong to the fast separatrix L0, then its
orbit is “pulled” towards the slow separatrix L1 at rate ρ4

n

, with some ρ < 1, and
converges to e (resp. e′) along L1 at rate r2

n

, with some r < 1.
The second formula of (4.3) also shows that the strong separatrix L0 is transver-

sally superattracting: all nearby points are pulled towards L0 uniformly at rate r2
n

(see also the proof of Lemma D.3). It follows that these points either converge to
one of the fixed points, e or e′, or converge to the circle B.

Given a neighborhood Ω of B, let

(4.5) Ws
C,loc(B) = {x ∈ CP2 : Rnx ∈ Ω (n ∈ N) and Rnx→ B as n→ ∞}

(where Ω is implicit in the notation, and an assertion involving Ws
C,loc means that

it holds for arbitrary small suitable neighborhoods of B).
We conclude:

Lemma 4.1. Ws(e) ∪Ws(e′) ∪Ws
C,loc(B) fills in some neighborhood of L0.

As the weak separatrix L1 is concerned, formula (D.1) from the proof of Lemma D.3
shows that it is transversally superattracting away from the indeterminacy points
a±. On the other hand, the latter act as strong repellers. We will see in §10 that
this competition makes T a non-uniformly hyperbolic attractor.
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Figure 4.1. Critical locus for R shown with the separatrix L0 at infinity.

4.3.2. Description in terms of R. In the physical coordinates, the superattracting
fixed points become η = (0, 1) and η′ = [1 : 0 : 0]. The pullback of the line at
infinity L0 under the semi-conjugacy Ψ comprises two lines, L0 = {t = 0} and
{z = 0}, where the latter is the blow-up of the fixed point e under Ψ−1. These
two lines form the fast separatrix of the fixed points (recall that the latter collapses
to η = (0, 1) under R), which is an annoying artifact of the physical coordinates.
A related nuisance is that L0, unlike L0, is not transversally superattracting any
more. Namely, it is superattracting away from the origin 0, but the latter blows
up to the whole line {z = 0}. Still, we will sometimes refer to L0 itself as the “fast
separatrix”, as long as it does not lead to confusion.

The slow separatrix of the fixed points is the line {t = 1}.
The restrictions of R to the separatrices L0 and L1 become the power maps

z 7→ z4 and z 7→ z2 respectively. The invariant circles on these lines (separating
the basins of the fixed points) become B = T × {0} and T = T × {1}, which are
the bottom and the top of the physical cylinder C that we discussed in §3.

Lemma 4.1 implies:

Lemma 4.2. Ws(η) ∪Ws(η′) ∪Ws
C,loc(B) fills in some neighborhood of L0 r {0}.

4.4. Critical locus. The critical locus of R is described in Appendix, §D. Besides
the separatrices L0 and L1, it comprises the line L2 that collapses to the low
temperature fixed point b0, and two symmetric pairs of lines, L3 and L4. The
latter wander under the dynamics.

The critical locus is schematically depicted on Figure 4.1, while its image, the
critical value locus, is depicted on Figure 4.2.

In terms of the physical coordinates, the critical locus comprises:

• Ψ−1L0: the fast separatrix L0 ∪ {z = 0};
• Ψ−1L1: the slow separatrix L1 and its companion {t = −1}
(mapped to L1 under R);

• Ψ−1L2: two collapsing lines, z = ±i;
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b0 = R(L2)

e = [1 : 0 : 0]

e′ = [0 : 0 : 1]

L1

0 = [0 : 1 : 0]

R(L±

3 )

R(L±

4 )
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Figure 4.2. Critical values locus of R.
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Figure 4.3. The LY cylinder C situated between the strong sep-
aratrix L0 and the weak separatrix L1. The collapsing lines at
z = 0,±i are shown in grey and the indeterminate points α±,0, γ
are depicted by stars. The superattracting fixed point η′ = (0,∞)
is “symbolically” shown at a finite location.

• Ψ−1L3: two conics zt = ±i;
• Ψ−1L4: two lines z = ±it (symmetric to the above conics).

4.5. Topological degree. The topological degree degtop(f) of a rational mapping

f : Pk → Pk is the number of preimages under f of a generic point ζ ∈ Pk.

Proposition 4.3. We have degtop(R) = degtop(R) = 8.

Proof. This can be seen for R by taking, e.g., a point ζ = (u, v) ∈ C2 far away, and
hence close to the separatrix L0. Such a point has 8 preimages under R, since the
transverse degree of R at L0 is equal to 2, while deg(R|L0) = 4.
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Similarly for R, consider a generic point ζ sufficiently close to, but not on, the
separatrix L0. �

4.6. Algebraic degrees and pullbacks of curves. The reader can consult Ap-
pendix A.3 for needed background in elementary algebraic geometry.

4.6.1. Case of R. Since R is given in homogeneous coordinates by relatively prime
equations of degree 4, we have degR = 4.

The notion of algebraic stability is essential to understanding pullbacks of curves
(considered as divisors) under iterates of rational mappings, see Appendix A.3.

Proposition 4.4. The mapping R : CP2 → CP2 is algebraically stable.

Proof. The only collapsing curve is L2, whose orbit lands on the low-temperature
fixed point b0. �

It follows that degRn = (degR)
n
= 4n, and hence we have:

Corollary 4.5. If D is an algebraic curve of degree d, then the pullback (Rn)∗D
is a divisor of degree d · 4n.

4.6.2. Case of R. Since R is given in homogeneous coordinates by relatively prime
equations of degree 6, we have degR = 6. In particular, for any algebraic curve
X we have R∗X is a divisor of degree 6 · degX. The degrees of pullbacks under
iterates of R are less organized:

Observation 4.6. The mapping R : CP2 → CP2 is not algebraically stable.

Indeed, R maps the lines Z = ±iT to the point of indeterminacy γ = (0 : 1 : 0)
since the first and third coordinates of (4.2) contain the factor (Z2 + T 2).

Remark 4.1. In this case, algebraic instability results in a drop of degree for the
second iterate of R. We have deg(R2) = 28 < 36 = (degR)

2
, since the common

factor of (Z2 + T 2)4 appears in the expression for R2, which must be canceled
(compare Remark A.1).

Remark 4.2. The relationship between dynamical degrees of semi-conjugate rational
maps was studied by Dinh-Nguyên [DN]. If the semi-conjugacy is generically finite
(like Ψ) their work implies that the two mappings have equal dynamical degrees in
each codimension. In particular,

δ(R) := lim
n→∞

(degRn)
1/n

= lim
n→∞

(degRn)
1/n

= degR = 4.

It also gives an alternative proof that degtop(R) = degtop(R), which we saw in
Prop. 4.3.

Remark 4.3. Let Sc = {U + 2V + W = 0} ⊂ CP2. By (2.19), the Lee-Yang-
Fisher locus of level n is given by Scn := {Zn(z, t) = 0} = Ψ−1(R−nSc), which
has degree 2 · 4n. Meanwhile, R−n(Sc) = R−n(Ψ−1Sc) contains, besides Scn, some
“junk” components that collapse to the indeterminacy point γ under some iterate
Rk, k = 0, 1, . . . , n− 1. So, the commutative diagram (3.1) should be applied with
caution. (This was not a danger for the Lee-Yang zeros Sn ⊂ C, as explained in
Proposition 3.3.)
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5. Proof of the Lee-Yang Theorem for the DHL

In this section we will give an easy proof of the Lee-Yang Theorem for the DHL
by means of “enumerative dynamics”.

Theorem 5.1. The locus Zn(z, t) = 0 intersects any complex line Πt := C × {t},
t ∈ [0, 1), in 2 · 4m distinct points on the unit circle T.

Proof. By (2.5), the partition function Zn is a symmetric Laurent polynomial in z
of degree 4n, so it has 2 · 4n zeros on every complex line in question. Meanwhile,
Proposition 3.3 gives that Sn = (Rn)∗S0, so Property P9 supplies us with 2 · 4n
such zeros on the unit circle of Πt. Hence they account for all of the zeros. �

Let us formulate the corresponding statement in the Migdal coordinates. In
these coordinates, the horizontal complex lines Πt turn into the conics

Pt := {uw = t−2}.
A complex line L = {au+ bw+ c = 0} is called Hermitian if it is invariant under

the antiholomorphic involution (u,w) 7→ (w̄, ū).24 The slice of such a line by the
real plane {w = ū} is a real line (otherwise it would be a single point).

Theorem 5.2. Let t ∈ [0, 1) and let L be any Hermitian complex line crossing the
top T = T of the cylinder C. Then the pullback (Rn)∗L intersects the horizontal
complex line Pt in 2 · 4n simple points, all on the cylinder C.

Proof. By Corollary 4.5, (Rn)∗(L) has degree 4n, so by Bezout Theorem, it has
2 · 4n intersection points with the conic Pt. On the other hand, L ∩ C comprises
two vertical intervals on the cylinder C. By property (P9) from §3.3, (Rn)∗(L)∩C
comprises at least 2 × 4n vertical curves on C (connecting the top T = T to the
bottom B at infinity). They have at least 2 ·4n different intersections with the circle
{|u| = t−1} = Pt ∩ C. Hence all the intersection points of (Rn)∗(L) with Pt are
captured on the cylinder C, and all of them are simple. �

6. Algebraic cone field

In this section we will construct a horizontal invariant cone field on the cylinder.
It appears as the tangent cone field to a pair of transverse algebraic foliations
obtained by translating the principal Lee-Yang locus around the cylinder or the
Möbius band. In the affine coordinates on the Möbius band, these foliations assume
a particular simple linear form.

6.1. Algebraic cone fields. Let us consider the Möbius band C introduced in
§3.1,

intC = {(u,w) ∈ C2 : u = w and |u| > 1} ≈ Cr D̄.

Recall that Sψ stands for the line tangent to T at eiψ. We define an algebraic
horizontal cone field Kah(u) on intC as follows. For any u ∈ Cr D̄, there are two
tangent lines Sψ1

and Sψ2
passing through u. Then, Kah(u) is the open cone25

bounded by Sψ1
and Sψ2

that does not contain T (see Figure 6.1).
This construction can be described in terms of the principal LY locus S =

{Reu = −1} on C (see §3.4). The line S is a concatenation of two rays, S+ =

24Equivalently, b = ā, c ∈ R r {0} or |b| = |a|, c = 0.
25Here a “cone” comprises two symmetric wedges. Also, more precisely one should think of

Kah(u) as the tangent cone at u.
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T

u

Kah(u)
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Sψ2

Figure 6.1. An algebraic horizontal cone Kah(u).

Sψ1
Sψ2

ω Kah(ω)

Figure 6.2. A horizontal cone Kah(ω).

{u ∈ S : Imu > 0} and S− = {u ∈ S : Imu < 0}, meeting at −1 ∈ T. Rotating
these rays around the origin, we obtain two linear foliations Φ± of intC (comprised
of the leaves S±

θ = eiθS±). The cone Kah(u) is bounded by (the tangent lines to)
the leaves of these foliations passing through u.

Described in this way, the construction can be immediately transferred to the
cylinder C. Rotating the principal LY locus S around the cylinder, we obtain
two transverse foliations of int C. Then the horizontal cone field is formed by the
tangent cones Kah(ω) bounded by the tangent lines to the two leaves meeting at ω
(see Figure 6.2). Clearly Kah(ω) = DΨ−1(Kah(u)), where u = Ψ(ω).

Remark 6.1. In fact, this cone field extends to the bottom B of C, so it is well
defined on the topless cylinder C1. However, it degenerates to a line field at the
top.

A smooth path γ(t) in C is called horizontal if it goes through the cones Kah(x),
i.e. γ′(t) ∈ Kah(γ(t)) whenever γ(t) ∈ intC. (The same definition applies to the
cylinder C.)
Lemma 6.1. The blow-up locus G (respectively G) is horizontal.

Proof. See Figure 6.3. �

Let us now define the vertical cones as the complements to the horizontal ones,
Kav(u) = TuC rKah(u). A smooth path γ(s) is called vertical if it goes through
the vertical cones, i.e., γ′(s) ∈ Kav(x). (The same definitions apply to the cylinder
C.) We call a path strictly vertical if it goes through the intKav(u).

Lemma 6.2. If γ is a smooth proper vertical path in C, then R−1γ comprises four
proper paths (and similarly, for proper paths in C).
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Kah(u)
G

T

Figure 6.3. The blow-up locus G is horizontal.

Kav(u)

u

R−1(Sψ)

Figure 6.4. Illustration to the proof of invariance of the cone field.

Proof. Obviously, vertical paths are transverse to horizontal ones – so, by Lemma
6.1, they are transverse to the blow-up locus G. Combined with Property (P9′),
this yields the assertion. �

Given a cone K in a linear space E, let PK ⊂ PE stand for its projectivization.
Let us say that a cone field K(u) is strictly forward invariant if

DR(PK(u)) ⋐ intPK(Ru).

Proposition 6.3. The horizontal cone fields Kah(u) and Kah(u) are strictly for-
ward invariant under the corresponding dynamics, R and R.

Proof. Equivalently, the vertical cone field Kav(u) is strictly backward invariant.
Since the cones are tangent to the pair of foliations Φ±, this is equivalent to the
property that the pullbacks R−1(S±

ψ ) of the Φ±-leaves are strictly vertical.

By Lemma 6.2, each pullback R−1(S±
ψ ) comprises four disjoint proper paths in

C. As the line Sψ is the concatenation of two rays S±
ψ , the pullback R−1(Sψ)

comprises eight disjoint proper paths γi = γi,ψ in intC.
To prove the desired, it suffices to show that for any angles ψ and θ, each path

γi,ψ has at most one intersection point with any line Sθ, and the intersection is
transverse. In so, γi could not cross Sθ through the horizontal cone Kah(u), for it
would be disjoint from the whole closed vertical cone clKav(u) (viewed as a subset
of C). But the latter contains T, so γi would fail to land on T (see Figure 6.4).
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Let Scψ be the complexification of Sψ. Since R
∗(Scψ) is a complex algebraic curve

of degree 4 (by Corollary 4.5), its slice by the complex line Scθ consists of 4 points
counted with multiplicity. We will show that the intersection points that lie in
intC are transverse and belong to distinct radial components of R−1(Sψ). Let us
consider several cases.

Case 1 (generic). Let θ 6= ψ/2, π/2 modπ. Then Sθ does not meet R−1(Sψ)
on T. Since R is even, both pullbacks R−1(S±

ψ ) are symmetric with respect to

the origin. Hence the rays comprising R−1(S±
ψ ) come in symmetric pairs γi, γ

′
i,

i = 1, . . . , 4. We will show that one ray from each symmetric pair intersects Sθ
somewhere on C1.

Consider one such symmetric pair γi, γ
′
i. If one (and hence both) of the rays

meets Sθ at infinity (on B), then we’re done. Otherwise, one ray from the pair
(say γi) near infinity is separated by Sθ from T. Then, since γi lands on T, it must
intersect Sθ.

Since the γi are pairwise disjoint, this gives us 4 distinct intersection points
of R−1(Sψ) with Sθ, Since the total number of intersection points counted with
multiplicity is at most 4, we have accounted for all of them. Thus, each γi intersects
Sθ exactly once and the intersection is transverse (while the γ′i are disjoint from Sθ).

Case 2. Let θ = ψ/2 or π/2 modπ, but ψ 6= π mod 2π. By Lemma 3.4 (i),
the algebraic curve R∗(Scψ) has a double point at eiθ, and Sθ intersects it non-
tangentially with multiplicity 2. It must intersect two other branches γi in C1, and
thus we have accounted for all four intersection points. The conclusion follows.

Case 3. Finally, let θ = ψ/2 = π/2 modπ (this is the most degenerate case, but
it occurs exactly when Sψ = S is the principal LY locus, see Figure 1.3). In this case,

eiθ = e±iπ/2 is one of the two indeterminate points a± and all four branches γi meet
at eiθ. Then, Scθ intersects R∗(Scψ) at this point with multiplicity 4 (as described

Lemma 3.4 (ii)). It accounts for all intersection points, so no intersections occur in
intC. �

Remark 6.2. Eric Bedford has informed us that a similar algebraic method for
constructing an invariant cone field (for certain birational maps) had been earlier
used in [BD, §5].

Corollary 6.2 and Proposition 6.3 imply:

Corollary 6.4. If γ is a proper vertical path in C, then R−1γ comprises four proper
strictly vertical paths (and similarly, in C).
6.2. Modified algebraic cone field. The algebraic cone field we have just con-
structed has a disadvantage that it degenerates near the top. We will now modify
it near the top so that it will become non-degenerate everywhere away from the
indeterminacy points α±.

Recall the local coordinates τ = 1 − t and ǫ = ±π
2 − φ around α± that were

introduced in §3.3 (P5). Given a small threshold τ̄ > 0, let us consider the following
annular neighborhood of the top:

(6.1) V ≡ Vτ̄ = {x ∈ C : τ ≤ τ̄}.
Given η > 0, let us consider two parabolas Y±

η = {τ = ηǫ2} centered at the
indeterminacy points α±.
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Figure 6.5. V ′ is the union of all shaded regions. Note that the
figure is not to scale.

Consider two parabolic regions P±
η below the curves Y±

η (see Figure 6.5), and
let

(6.2) V ′ ≡ V ′
η,τ̄ = Vτ̄ r (P+

η ∪ P−
η ).

For a small threshold ǭ > 0, let us consider the following regions in V:
U ≡ Uǭ = {x ∈ V : |ǫ(x)| < ǭ} and U ′ = {x ∈ V ′ : |ǫ(x)| < ǭ}.

For the remainder of the construction, we let τ̄ = η ǭ2 so that the regions U and
U ′ meet the parabolas Y± at their bottom, see Figure 6.5. To be definitive, we fix
η = 1/18, so the only free parameter left in our disposal is ǭ.

Note that for x ∈ Y±, the slope of the lines that bound the algebraic cone Kah(x)
is equal (in absolute value) to

(6.3) sa(x) =
√
τ(2− τ) ∼

√
2τ = |ǫ|/3, and sa(x) ≤ |ǫ|/3.

Lemma 6.5. For ǭ > 0 sufficiently small, we have:

(a) R(U) ∩ U = ∅;
(b) R−1(U) is contained in a small neighborhood of the points

(φ = πk/4, τ = 0) ∈ T with k = ±1,±3.

Proof. a) By blow-up formula (B.4), the image R(U) is contained in a small neigh-
borhood of the singular curve G, which is disjoint from U .

b) By (a), there are no points of U in R−1U . But in C r U , the map R is
continuous, so R−1(U) is localized near R−1(α±).

�

For x ∈ C, let us define a continuous horizontal cone field Kh(x) ≡ Khǭ (x) whose
boundary lines have slopes with the absolute value s(x) such that:

(o) Kh(x) ⊃ Kah(x) everywhere;
(i) Kh(x) = Kah(x) in the white region C r V ′ (see Figure 6.5);
(ii) s(x) ∼ |ǫ(x)|/3 in the grey region U ′;

(iii) s(x) = s0 :=
√
τ̄(2− τ̄) ∼ ǭ/3 in the black region V r U = V ′ r U ′.

Conditions (o)–(ii) are compatible due to (6.3). For a cone field satisfying these
three conditions, we have s(x) = s0 on the horizontal boundary of the black region
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and s(x) ∼ ǭ/3 on the vertical one. Hence it can be extended to the black region
satisfying (iii).

Note that in C r V, we have sa(x) =
√
τ(2− τ) ≥ s0. Hence

(6.4) s(x) ≥ s0 ∼ ǭ/3 in C r U .
Lemma 6.6. For sufficiently small ǭ > 0, the cone field Kh is strictly forward
invariant:

(6.5) DR(Kh(x)) ⋐ Kh(Rx).
Proof. For x ∈ CrV ′, we make use of the invariance of the algebraic cone field and
conditions (o) and (i):

DR(Kh(x)) = DR(Kah(x)) ⋐ Kah(Rx) ⊂ Kh(Rx).
So, assume x ∈ V ′. The cones Kh(x) are bounded by two lines spanned by the

tangent vectors v± = (1,±s(x)). Let us estimate the absolute value s′ of the slope
of DR(v±).

Select ǭ so small that (B.8) applies in U . For x ∈ U ′, it yields:

s′ ≤ |ǫ|τ(τ + ǫ2/3)

σ2(τ + 2ǫ2/3)
≤ |ǫ|τ

σ2
<
∣∣∣τ
ǫ

∣∣∣ < ǭ/18 < s0.

By Lemma 6.5, Rx 6∈ U , so property (6.4) ensures (6.5).
Let x = (φ, τ) ∈ V ′ r U ′. Then for ǭ sufficiently small, we have:

| cosφ| ≥ ǭ/2, | tg φ| < 4/(3ǭ), and τ ≤ τ̄ ≤ ǭ2/18.

Letting (a, b) = DR(v±), we obtain from (B.7):

a ≥ 2− 2 tg φ · ǭ/3 ≥ 10/9 > 1(6.6)

and

(6.7) |b| ≤ 2τ2| tg φ|
cos2 φ

+
τ ǭ

3 cos2 φ
≤ 16

τ̄2

ǭ3
+ 2

τ̄

ǭ
≤
(

16

182
+

2

18

)
ǭ <

ǭ

6
.

So, the slope s′ = |b/a| < s0 as well. Due to property (6.4), this implies (6.5) in
case Rx 6∈ U .

Finally, let x ∈ V ′ r U ′ and Rx = (ǫ′, τ ′) ∈ U . Then Lemma 6.5 b) gives
| cosφ| > C−1 > 0 and | tg φ| < C, independent of ǭ. Estimate (6.7) simplifies to

|s′| ≤ |b| = O(τ2 + τ ǭ) = o(τ) = o(
√
τ ′) as ǭ→ 0.

But s(Rx) ≥
√
τ ′ as follows from condition (o). This concludes the proof. �

The horizontal cone field Kh extends continuously to the indeterminacy points
as degenerate cones Kh(α±) = {dτ = 0}. Obviously, this continuous extension is
invariant.

We will also call an smooth path γ(t) in C horizontal if at each point γ(t) ∈ int C
we have γ′(t) ∈ Kh(γ(t)). In the remainder of the paper, all horizontal paths will
considered with respect to respect to Kh (and not Kah), unless otherwise specified.

Remark 6.3. One obtains a pushed forward cone field Kh := DΨ Kh on C that is
invariant under R and non-degenerate away from a±.
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6.3. Vertical cone fields and laminations. In this section we develop a language
adopted, for definiteness, to the modified cone field Kh on the cylinder C, but a
similar language, with obvious adjustments, can be applied to the algebraic cone
field Kah, as well as the corresponding cone fields on the Möbius band C.

We let Kv(x) = TxC r Kh(x) be the complementary vertical cone field. (In
particular, Kv(α±) = {dφ 6= 0} is the complement to the horizontal line.)

Let K(x) ⊂ Kv(x) be a continuous cone field on C. Let us define the pullback
DR∗(K) as follows. Let y = Rx. When DRx is well defined and invertible (i.e.,
x 6∈ B ∪ T ∪ I±π/2, we let DR∗(K)(x) = DR−1

x (K(y)). When DRx is well defined
but is not invertible, we let DR∗(K)(x) = KerDRx. Finally, for x ∈ {α±} we let
DR∗(K)(x) = Kv(α±).

It is easy to see that the pullback is continuous (and is contained in Kv).

Corollary 6.7. The vertical cone field Kv is backward invariant: DR∗(Kv) ⊂ Kv.

In this setting, “vertical paths” are understood in the sense of the vertical cone
field Kv rather than Kav. So, by definition, a vertical path26 is a a smooth path γ(s)
in C such that γ′(s) ∈ Kh(γ(s)). Being a graph over a temperature interval, it can
be parameterized accordingly: φ = γ(t). Moreover, γ′(s) is finite except possibly
at the indeterminacy points α± = γ(1) (if γ terminates at one of them).

A vertical lamination F in C is a family of vertical paths (the leaves of the
lamination) which are disjoint in the topless cylinder C1 (but are are allowed to
meet on T ) that has a local product structure. The latter means that for any path
γ0 ∈ F and any point x0 = (γ0(t0), t0) ∈ C1 there exists an ǫ > 0 such that any leaf
γ ∈ F passing near x0 can be locally represented as a graph over (t0−ǫ, t0+ǫ), and
this graph depends C1-continuously on the transverse parameter φ = γ(t0). The
supp(F) is the union of the leaves of the lamination.

A vertical lamination is called proper if all its leaves are proper.
For instance, a finite family of disjoint proper vertical paths form a proper vertical

lamination.
In case when suppF is open in C1, the lamination F is called a strictly vertical

foliation (of its support). For instance, the “genuinely vertical” foliation on the
cylinder C1 is formed by the intervals Iφ, φ ∈ R/2πZ.

Lemma 6.6 implies that the pullbacks (Rn)∗(F) of a (proper) vertical lamination
are (proper) vertical.

We will mostly be dealing with laminations whose leaves begin on the bottom
of the cylinder (in fact, mostly with proper laminations), and will use the bottom
angle φ ∈ Z/2πZ as the transverse parameter, γ = γφ.

7. Central line field and dominated splitting

In this section we will use the cone field constructed in §6 to prove that R :
C → C is projectively hyperbolic, or admits a dominated splitting. We will start with
constructing an invariant vertical line field.

26In the remainder of the paper, all vertical paths will be considered with respect to Kv (and

not Kav) unless otherwise specified.
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7.1. Central line field. A central line field L on C is an R-invariant continuous
tangent line field L(x) ⊂ Kv(x), x ∈ C r {α±}. Here “invariance” means that
DRx(L(x)) ⊂ L(Rx) whenever x 6∈ {α±} ∪ R−1{α±}.
Proposition 7.1. There exists a unique central line field on C. Moreover, if L(x) ⊂
Kv(x) is any vertical line field then

(DRn)∗L → Lc

uniformly and exponentially on compact subsets of C r {α±}.
7.1.1. Hyperbolic metric. To prove this proposition, we will make use of the “pro-
jective hyperbolic metric” on the vertical cones. Any interval I = (a, b) ⊂ R can
be viewed as the hyperbolic line endowed with the hyperbolic metric

distI(x, y) = log
y − a

x− a
+ log

b− x

b− y
, a < x < y < b.

Since cross-ratios are projective invariants, the hyperbolic metric is invariant under
Möbius isomorphisms φ : I → J . Moreover, it gets contracted under inclusions: if
I ⋐ J then

distJ(x, y) ≤ λ distI(x, y), x, y ∈ I,

where λ < 1 depends only on the hyperbolic diameter of I in J . Putting these two
properties together, we obtain the following “Schwarz Lemma” for projective maps:

Lemma 7.2. Let φ : I → J be a Möbius transformation with φ(I) ⋐ J . Then

distJ(φ(x), φ(y)) ≤ λ distI(x, y), x, y ∈ I,

where λ < 1 depends only on the hyperbolic diameter of φ(I) in J .

Due to projective invariance, the above discussion can be carried to any intervals
I, J in the projective line PR1.

7.1.2. Contraction of the projective cone field. As the cones Kv(x) represent in-
tervals in the projective tangent lines, they can be endowed with the hyperbolic
metrics dx.

Lemma 7.3. For any neighborhood U of the indeterminacy points {α±}, there exist
C > 0 and λ > 1 such that for any x ∈ C r U

diam(DRn)∗(PKv)(x) ≤ Cλ−n,

where the diam stands for the angular size of the cones.

Proof. By Lemma 7.2, the differential DR−1 : PKv(Rx) → PKv(x) contracts
the hyperbolic metric by a factor µ(x) < 1 depending only on the hyperbolic di-
ameter of DR∗(PKv)(x) in PKv(x). (For a critical point x, the projective cone
DR∗(PKv)(x) collapses to a point, and we let µ(x) = 0). By continuity of the cone
fields, this factor is uniform away from U . Since the α± blow up to the curve G
that does not contain α±, the orbit of x can visit U with frequency bounded by
1/2 (provided U is sufficiently small). Hence the hyperbolic diameter of the cones
(DRn)∗(PKv)(x) decay exponentially with rate O(µn/2). Since the projective in-
tervals PKv(x) have angular size bounded away from π, the diam(DRn)∗(PKv)(x)
are O of their hyperbolic size, and the conclusion follows. �
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7.1.3. Proof of Proposition 7.1. Let us take a vertical line field L on C and pull it
back by the dynamics: Ln = (DRn)∗L. By Lemma 7.3, for any m ≤ n we have:

dist(Ln(x),Lm(x)) ≤ Cλ−m, x ∈ C r U .
Hence the Ln uniformly and exponentially converge to a limit, which is the desired
central line field Lc. ⊔⊓

7.2. Dominated splitting. We say that the horizontal cone field Kh and central
line field Lc give a dominated splitting of the map R : C → C if for any neighborhood
U of the indeterminacy points α±, there exist constants c > 0 and λ > 1 such that
for any two tangent vectors vh ∈ Kh(x) and vc ∈ Lc(x) of unit length we have:

(7.1) ‖DRn
xv

h‖ ≥ cλn‖DRn
xv

c‖, x ∈ C r U .
(In other words, horizontal vectors grow exponentially faster that the central ones.)

Remark 7.1. For diffeomorphism, the splitting is usually given by two sub-bundles
of the tangent bundle (see [Pu]). However, such a definition is not suitable for the
non-invertible case when the unstable sub-bundle may not exist. That is why we
give a definition in terms of cone fields. Of course, in the invertible case, both
definitions are equivalent.

Lemma 7.4. For any x ∈ C r {α±} and i ≥ 3, if v1, v2 ∈ DRi(Kh(x)) satisfy
v1 − v2 ∈ Lc(Rix), then ‖v1‖ ≍ ‖v2‖.
Proof. Let U be a neighborhood of {α±} chosen sufficiently small so that if x ∈ U
then Rnx 6∈ U for n = 1, 2. Lemma 7.2 implies that DRi(PKh(x)) has uniformly
bounded hyperbolic diameter for i ≥ 3. Let L1 and L2 be any two lines through
DRi(PKh(x)) and let θ(L1, L2), θ(L1,Lc), and θ(L2,Lc) be the angles between
them and between each line and Lc ≡ Lc(x). The uniform bound on the hyperbolic
diameter implies that that there is some constant C > 0 so that

θ(L1, L2) ≤ C · θ(Lj ,Lc), j = 1, 2.

The result then follows from basic trigonometry. �

Corollary 7.5. For any neighborhood U of {α±} and any x ∈ C r U , if vh1 , vh2 ∈
Kh(x) are unit tangent vectors then ‖DRnvh1 ‖ ≍ ‖DRnvh2 ‖.
Proof. Since x 6∈ U , the projection of vh1 onto vh2 along Lc will have length com-
parable to the length of vh2 . Thus, the result follows for n ≥ 3 from Lemma 7.4.
If n ≤ 2, the result follows from the fact that DR can only contract a horizontal
vector by a bounded amount (Lemma B.3). �

Note that Corollary 7.5 implies that condition (7.1) is in fact independent of the
particular choice of vh.

Proposition 7.6. The horizontal cone field Kh and central line field L give a
dominated splitting of the map R : C → C.
Proof. Since a single iterate of R can only contract horizontal vectors by a bounded
amount (Lemma B.3), it suffices to consider n ≥ 3. Let xn := Rnx be the orbit of
any x ∈ C r U . Let vh(xn) be the unit vector on the boundary of DR3(Kh(xn−3))
pointing “northeast” and let vc(xn) be the unit central vector pointing “north”.
By definition, the vector

(7.2) wn = vh(xn) + vc(xn)
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will satisfy (DR3)∗wn ∈ Kv(Rn−3x).
We pull back wn under the dynamics and decompose it as

(DRn)∗wn := w = wh + wc

with wh parallel to the unit vector on the boundary of Kh(x) pointing “northeast”
and wc ∈ Lc(x). By Proposition 7.1,

(7.3) ‖wc‖ ≥ cλn‖wh‖.
But

wn = DRn(wh) +DRn(wc) with DRn(wh) ∈ DR3(Kh(xn−3)), DRn(wc) ∈ Lc.
Since DRn(wh) and vh(xn) differ by an element of Lc(xn), Lemma 7.4 gives

‖DRn(wh)‖ ≍ ‖vh(xn)‖ = 1,

and hence ‖DRn(wc)‖ = ‖wn − DRn(wh)‖ = O(1). We see that ‖DRn(wh)‖
‖DRn(wc)‖ is

bounded from below, and hence (7.3) can be written as

‖DRn(wh)‖
‖DRn(wc)‖ ≥ cλn

‖wh‖
‖wc‖

But this is just the homogeneous form of the dominated splitting condition (7.1).
Since this condition is independent of the particular choice of vectors wh and wc,
we are done. �

7.2.1. Central curves. Let us say that a smooth curve is central if it is tangent (on
C r {α±}) to the central line field Lc.
Proposition 7.7. Through any point x ∈ Cr{α±} passes a vertical central curve.

Proof. It follows from the Peano Existence Theorem (see [W]) that continuous line
fields are integrable, so we can find a central curve through any point x ∈ Cr{α±}.
Since the central line field is transverse to the genuinely horizontal foliation, this
curve is a graph over the t-axes, and for standard reasons can be extended in both
ways to the boundary of the cylinder. This is the desired vertical central curve.

If x ∈ {α±}, then one can take I± as the desired central curve. (In fact, there
are whole central tongues Λ± filled with vertical central curves landing at α± – see
§12.1). �

Remark 7.2. At this stage we do not know yet that there exists a unique central
curve through a given x. In fact, as we have just mentioned, this is not the case
for the indeterminacy points α± (and hence for their preimages). However, we will
prove in §12.1 that the uniqueness holds on C1.

8. Horizontal expansion

In this section we will prove that the map R : C1 → C1 is horizontally expanding,
in the following sense:

• R has an invariant horizontal cone field Kh(x) on C1;
• There exist constants c > 0 and λ > 1 such that

‖DRn(x)(v)‖ ≥ cλn‖v‖, n = 0, 1, . . .(8.1)

for any x ∈ C1 and v ∈ Kh(x). Moreover, λ is called a rate of expansion.
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Theorem 8.1. The map R : C1 → C1 is horizontally expanding on C1 with the rate
λ = 2 with respect to the horizontal cone field Kh from §6.2.

We will give two proofs of Theorem 8.1 coming from two different perspectives:
(1) Global Complex Dynamics on CP2 and (2) Combinatorics and Mathematical
Physics. These two proofs both rely on the same principle and their connection
will be explained at the end of the section.

8.1. Global Approach. Let us consider the solid cylinder

SC := {(z, t) : |z| ≤ 1, t ∈ [0, 1]}.
It is foliated by the horizontal leaves

Π∗
t := {(z, t) : |z| ≤ 1, t ∈ [0, 1]},

each of which contained in a horizontal complex projective line Πt obtained as the
closure in CP2 of {(z, t) : z ∈ C}.

Because R : CP2 → CP2 is not algebraically stable (Observation 4.6), it will
be better to switch to the mapping R : CP2 → CP2, which is algebraically stable
(Proposition 4.4). This won’t affect the proof of Theorem 8.1 because R : C0 → C0
and R : C0 → C0 are conjugate by means of ψ : C0 → C0. (Meanwhile, both maps
are obviously expanding on B and B, respectively.)

In the (u,w) coordinates, the horizontal complex lines Πt correspond to the

conics Pt = {uw = t−2} and the leaves of the solid cylinder become

P ∗
t := {(u,w) ∈ Pt : |w| ≤ t−1}, t ∈ [0, 1],

where the closures are taken in CP2. The bottom leaf P ∗
0 becomes the closed unit

disk D in the coordinate ζ = w/u on the line at infinity L0.
Recall that the cylinder C itself (or rather, the Möbius band) is given by

C = {w = ū, |u| ≥ 1},
where the closure is taken in CP2, and the “topless” Möbius band by C1 = C \ T,
where T = {w = ū, |u| = 1}; See §3.1. The leaf P ∗

t intersects C by the round
circle St = {|w| = t−1}. All the leaves P ∗

t meet at the attracting fixed point
e = (1 : 0 : 0), which is the center ζ = 0 of the disc P ∗

0 .
Let us now consider the central projection from the origin to the line L0 at

infinity:

π : CP2 \ {[0 : 1 : 0]} → L0 (u,w) 7→ ζ = w/u.

Lemma 8.2. For any t ∈ (0, 1), the map ψn = π◦Rn sends P ∗
t to P ∗

0 as a branched
covering of degree 2 · 4n.
Proof. We fix some t ∈ (0, 1), and skip it from the notation, so P ∗ ≡ P ∗

t , etc.
The fundamental homology class of B is a generator for the first homology

H1(C1,Z) ∼= Z. Since t 6= 0, P ∩ C1 is a horizontal curve of degree two in C1,
meaning that its homology class is twice that of B. Since C1 is invariant and R acts
with degree 4 on its first homology (Property (P10) from §3.3), Rn(P ∩ C1) is a
horizontal curve of degree 4n · 2 in C1. This implies that ψn = π ◦Rn : P ∩C1 → B
is a covering map of degree 4n · 2.

BecauseR is algebraically stable, Lemma A.6 gives that the push-forward (Rn)∗P
is a divisor of degree 4n · 2. Bezout’s Theorem gives 4n · 2 intersections of (Rn)∗P
with the complexification of any radial line L := {arg u = φ modπ}. Meanwhile,
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since Rn(P ∩ C1) is a horizontal curve of degree 4n · 2 in C1, this forces all 4n · 2
intersections between (Rn)∗P and L to take place in C1. They are therefore dis-
joint from the indeterminate points a± = ±(i,−i) and the origin (0, 0). Hence,
Rn : P → RnP is a branched cover of some degree m > 0 and π : Rn(P ) → L0 is a
branched covering of degree deg(RnP ). The composition ψn = π ◦Rn : P → L0 is
therefore a branched cover of degree

mdeg(RnP ) = deg((Rn)∗P ) = 4n · 2.
We find that ψn : P → L0 is a rational map between two Riemann spheres

of degree 2 · 4n (commuting with the natural antiholomorphic involutions) that
restricts to a covering map between the circles P ∩C → B (the fixed points loci for
the involutions) of the same degree. By the Argument Principle, any point ζ ∈ P ∗

0

has at least 2 · 4n preimages in the disk P ∗.
�

Remark 8.1. The symmetry R(−u,−w) = R(u,w) implies that Rn(P ) is covered
at least twice by P , so that the degree m in the proof of Lemma 8.2 is at least 2.
We do not know if m can be higher than 2 for some values of t ∈ (0, 1) or if it can
grow with n. These details will not be needed in the proof.

Let us now consider the fixed point e = (1 : 0 : 0) at the center of both the disks
Pt and P0. Obviously, ψn(e) = e.

Lemma 8.3. The map ψn : P ∗
t → P ∗

0 has branching of degree 2n+1 at e.

Proof. We will work in the local coordinates (v = V/U, w = W/U) near e. The
curve Pt becomes the parabola w = 1

t2 v
2 and the leaf P ∗

t is parameterized by

s 7→
(
s, 1
t2 s

2
)
, with |s| ≤ t. The central projection becomes π(v, w) = w.

In these coordinates, the map (v′, w′) = R(v, w) assumes the form

(8.2) v′ = v2
(
1 + w

1 + v2

)2

∼ v2, w′ =

(
w2 + v2

1 + v2

)2

∼ v4(1 + (w/v)2)2.

Let (vn(s), un(s)) := Rn
(
s, 1
t2 s

2
)
. Equation (8.2) implies inductively that vn(s)

and wn(s) vanish to order 2n and 2n+1, respectively, at s = 0. The result follows,
since ψn = π ◦Rn : P ∗

t → P ∗
0 is given by wn(s). �

Lemma 8.4. A Blaschke product B : C → C all of whose zeros lie in the unit disc
and vanishing at the origin to order k expands the Euclidean metric on the circle
T at least by k.

Proof. Under these circumstances, B(z) = zkB̃, where B̃ is another Blaschke prod-
uct all of whose zeros lie in the unit disc. In the angular coordinate z = eiφ it
assumes a form

φ 7→ kφ+ h(φ),

where h′(φ) > 0 since B̃ is orientation preserving on the circle. The assertion
follows. �

First Proof of Theorem 8.1. If t = 0, then R : B → B is conjugate to z 7→ z4, so
that Rn expands the cylinder metric along B by at least 4n.

Suppose t ∈ (0, 1). Let us uniformize P by the Riemann sphere so that the P ∩C
becomes the unit circle T = {|ξ| = 1}. Lemma 8.2 implies that in this coordinate,
the map ζ = ψn(ξ) is a branched cover from the unit disc to itself. It is a classical
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fact that such a mapping is a Blaschke product, all of whose zeros lie in the unit
disc. By Lemma 8.3, it vanishes of order 2n+1 at the origin. By Lemma 8.4, it
expands the circle metric at least by factor 2n+1. Hence Rn expands the cylinder
metric along P ∩ C at least by c 2n+1 with some c > 0.

Clearly, it suffices to prove (8.1) for unit vectors. The discussion in the previous
paragraph implies that it holds for vectors tangent to P ∩ C. If N is any small
neighborhood of the indeterminate points a±, then Corollary 7.5 implies that (8.1)
holds for any unit vector in v ∈ Kh(x), x ∈ C1 \N .

Finally, if x ∈ N , then Lemma B.3 gives that one iterate of R can contract the
horizontal length only by a bounded factor and the result follows. �

8.2. Combinatorial Approach. We will now present another proof of Theo-
rem 8.1 that is based on a combinatorial interpretation of the DHL and the Lee-Yang
Theorem with Boundary Conditions. The notation is from §2.1.

Second Proof of Theorem 8.1. Recall that the partition function of the Ising model
on Γn is given as

(8.3) Zn =
∑

σ

e−Hn(σ)/T =
∑

σ

t−I(σ)/2z−M(σ),

where M(σ) and I(σ) are the magnetic moment (2.1) and interaction (2.2) of the
configuration σ. Let σ+ ≡ +1 and σ− ≡ −1. Clearing denominators we obtain the
modified partition function

(8.4) Žn(z) := tI(σ−)z4
n

Zn(z) =

N∑

j=0

ajz
j ,

with N = 2 · 4n. Recall the basic symmetry of the Ising model

aN−j = aj , j = 0, 1, . . . N ; a0 = aN = 1.

which is obtained under the involution σ 7→ −σ and from the invariance I(σ) =
I(−σ).

The generating graph Γ is symmetric under reflection across the vertical line
through the marked vertices a and b. This allows us to factor27 the conditional
partition functions Un and Wn as

Un = U2
n Wn = W2

n,

where Un and Wn correspond to the conditional partition functions of the right (or
left) half of Γn, having the same boundary conditions as Un and Wn.

Both halves of Γn have valence 2n−1 at a and b. In particular, if σ(a) = σ(b) =
+1, there are at most 4n/2− 2n edges both of whose endpoints have spin −1. This
gives that Un has no terms in z of degree greater than 4n/2 − 2n. Similarly, Wn

has no terms in z of degree lower than −4n/2 + 2n.

27Vn also factors, but will not use it.
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Clearing denominators, one obtains

Ǔn(z) := tI(σ+)/2z4
n/2 Un(z) =

N0∑

j=0

a+j z
j and

W̌n(z) := tI(σ−)/2z4
n/2−2n Wn(z) =

N0∑

j=0

a−j z
j ,

where N0 = 4n − 2n. It follows from the Lee-Yang Theorem with Boundary Con-
ditions that the zeros b1, . . . , bN0

of W̌n(z) all lie in D.
The basic symmetry of the Ising model appears as the following symmetry be-

tween Ǔn and W̌n:

a−N0−j
= a+j , j = 0, 1, . . . , N0.

Consequently,

W̌n(z) =

N0∏

j=1

(z − bj) and Ǔn(z) =

N0∏

j=1

(1− bjz) =

N0∏

j=1

(1− b̄jz),

using also that Ǔn(z) has real coefficients.
Since z2n =Wn/Un = W2

n/U
2
n, we obtain the Blaschke Product

zn =
Wn

Un
=
z2

n

W̌n

Ǔn
= z2

n
N0∏

j=1

z − bj
1− b̄jz

(8.5)

having all of its zeros in D and a zero at z = 0 of multiplicity 2n.
The remainder of the proof continues as in §8.1. �

Remark 8.2. The two proofs of Theorem 8.1 are related by observing that

Ψ : Πt → Pt, given by (v, w) = Ψ(z, t) = (zt, z2)

gives the parameterization of Pt in which Pt∩C becomes the unit circle, as required
in the first proof. The composition ψn ◦Ψ : Πt → L0 is then given by

ψn ◦Ψ(z, t) =
Wn(z, t)

Un(z, w)
= z2n.

Moreover, this accounts for why the degree of (8.5) is half the degree of ψn ◦Ψ(z, t).
In particular, it explains why the multiplicity of z = 0 in (8.5) is only 2n instead
of 2n+1.

9. Low temperature dynamics: basin of B and its stable foliation

The bottom circle B is superattracting within C by Property (P5) from §3.3, so
there is an open set Ws(B) ⊂ C1 consisting of points whose orbits converge to B,
called the basin of attraction of B. Obviously, Ws(B) is completely invariant under
R|C1.
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9.1. Density.

Lemma 9.1. Any horizontal curve γ ⊂ C1 intersects Ws(B) in a dense open set.
In particular, Ws(B) is a dense open subset of C.
Proof. Since Ws(B) is open in C, its intersection with γ is open in γ. To prove
density, it suffices to prove that any horizontal curve γ′ ⊂ γ intersects Ws(B). Ac-
cording to Theorem 8.1 there is some iterate n so that lh(Rnγ′) > 2π. This implies
that Rnγ′ intersects Iπ

2
\ {α+} ⊂ Ws(B). Since Ws(B) is backward invariant, γ′

also intersects Ws(B). �

9.2. Low temperature cylinder C∗. Recall that tc is the height of the real re-
pelling fixed point βc in the invariant line {φ = 0}, and let β′

c = (π, tc),

C∗ = {(φ, t) ∈ C : t ≤ tc}.
We will call C∗ r {βc, β′

c} the low temperature cylinder.
Let us begin with a simple observation:

Lemma 9.2. The basin Ws(B) contains the low temperature cylinder C∗r{βc, β′
c}.

Proof. We will check that points x ∈ C∗ r {βc, β′
c} converge to the bottom B at

least as fast as they do on the low temperature interval (β0, βc) ⊂ I0.
For x = (φ, t) ∈ C, we let t(x) = t. Since the function

y 7→ y + 1

y + s

is increasing or constant on (−1, 1] for s ≥ 1, (3.3) gives that t(Rx) ≤ t(R(0, t(x))),
with equality attained only if x ∈ I0, Iπ.

Let tn = t(Rnx) and let qn = t(Rn(0, t0)). By the above observation, if x ∈
C∗ r {βc} then t1 < tc, and furthermore, tn+1 ≤ qn → 0 as n → ∞. Thus,
C∗ r {βc} ⊂ Ws(B). �

9.3. Complex stable lamination of B in C2. In C2, the circle B is hyperbolic,
with a complex one-dimensional transverse stable direction (the t-direction) and
a real one-dimensional transverse unstable one (the unstable direction within the
plane t = 0).

Given an ǫ > 0, the ǫ-local basin Ws
C,ǫ(B) is the set of points ζ ∈ C2 that

are ǫ-close to B and whose orbits converge to B while remaining ǫ-close to B.
Alternatively, we can use any forward invariant open set containing B to define a
local stable set Ws

C,loc(B), with the specific open set that is used implicit in the
notation.

Similarly, for x = (φ, 0) ∈ B, a local stable manifold Ws
C,loc(x) ≡ Ws

C,loc(φ) is
a 1-dimensional holomorphic curve containing x consisting of all points ζ near x
whose orbits are forward asymptotic to the orbit of x, while remaining close to the
orbit of x.

In this subsection we will construct the local stable lamination28 of the bottom
circle B in C2 and will show that the leaves Ws

C,loc(φ), φ ∈ T, of this lamination
are holomorphic curves filling in a topological real 3-manifold contained within
Ws

C,loc(B).

28Here, a lamination is a family of disjoint holomorphic curves that has a local product struc-

ture, in a sense similar to that given in §6.3.



LEE-YANG ZEROS 49

In the case of diffeomorphisms, the construction of the stable laminations for
hyperbolic sets is a standard background of the general theory, see [HPS, PM, Sh].
However, we have not been able to find an adequate reference in the non-invertible
case (notice, however, the remark in [PM, p. 79]), so we will give a direct argument
in our situation.

We will make use of the simple structure of the postcritical locus near B (compris-
ing two lines {t = ±π/2} collapsing to the fixed point β0) and of the holomorphic
λ-lemma. This is similar to the method used in [HP, §2.4] and [R, §4].
Proposition 9.3. For sufficiently small ǫ > 0, local stable manifolds Ws

C,loc(x),

x ∈ B, are holomorphic curves whose union
⋃
x∈B Ws

C,loc(x) form a lamination

supported on the local basin of Ws
C,loc(B). Moreover,

⋃
x∈B Ws

C,loc(x) is a topological
real 3-manifold.

Proof. Let Q ⊂ B be the set of iterated preimages of 1 under z 7→ z4. We will
construct a family of analytic discs Dz through the set Q in such a way that each
disc intersects B in exactly one point z ∈ Q and so that Dz is obviously the stable
disc of z. We will furthermore verify that each Dz can be expressed as the graph
of a function z = η(t) for all t in an appropriate small disc Dρ.

This family of discs provides a holomorphic motion of Q, parameterized by Dρ:

h : Q× Dρ → C.

Then, the λ-Lemma [Ly, MSS] for holomorphic motions immediately gives that h
extends to the closure providing a continuous mapping h̄ : B × Dρ → C.

Recall that the line t = 0 is superattacting away from the origin. Therefore,
choosing 0 < a < 1 and C > 0 we can easily further restrict ρ > 0 so that |tn| ≤ Can

for any choice of (z, t) ∈ ∪z∈QDz. (Here tn = t(Rn(z, t)).) Therefore, points in the
closure, and in particular, points in the image of B × Dρ under (φ, t) 7→

(
h̄(φ, t), t

)

converge at least geometrically to B.
Given (φ, 0) ∈ B, the stable leaf Ws

C,loc(φ) is parameterized by t→
(
h̄(φ, t), t

)
for

|t| < ρ. The union of all stable leaves, which is given by the image of B×Dρ under
(φ, t) 7→

(
h̄(φ, t), t

)
, is the desired lamination. It is contained within Ws

C,loc(B) by
the discussion in the previous paragraph.

We now construct the holomorphic motion h : Q× Dρ → C.
Consider a neighborhood ∆δ,ρ of B of the form

∆δ,ρ = {(z, t) ∈ C2 : 1− δ < |z| < 1 + δ, |t| < ρ}
Let ∂v∆δ,ρ be the vertical boundary |z| = 1 ± δ and ∂h∆δ,ρ the horizontal

boundary |t| = ρ.

Lemma 9.4. We can choose δ, ρ > 0 sufficiently small so that

(1) The complex vertical cone-field |dt(v)| > |dz(v)| is backward invariant under
R.

(2) R(∂v∆δ,ρ) is entirely outside of ∆δ,ρ and R(∂h∆δ,ρ) is entirely contained
within |t| < ρ.

Proof. On B we have

DR =

[
4z3 0
0 0

]
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so that, by continuity the (1, 1) term of DR dominates the remaining terms in any
sufficiently small neighborhood of B. This is sufficient for the desired invariance of
the conefield in (1).

We now further restrict ∂h∆δ,ρ so that (2) holds. However, this again follows
easily by continuity because on t = 0 we have that R is given by z 7→ z4 which
maps the boundary of any annulus of the form 1 − δ < |z| < 1 + δ well outside of
the annulus and because the line t = 0 is superattracting. �

We will call an analytic disc D in ∆δ,ρ admissible if:

(1) D intersects B in a single point,
(2) ∂D intersects ∂∆δ,ρ only in the vertical boundary ∂v∆δ,ρ, and
(3) The tangents to D lie within the vertical cone-field Lemma 9.4 above.

These properties are chosen to ensure that any admissible disc can be written as
the graph z = η(t) for some analytic function η : Dρ → C.

Let D1 := {1} × Dρ, which is clearly a stable disc and admissible. We now
inductively define admissible stable discs Dz over any z ∈ Q. Suppose that z is an
n-th preimage of 1. By the induction hypothesis, there is an admissible stable disc
Dz′ over z′ = z4. Within ∆δ,ρ the critical points of R consist of points on the line
{t = 0} and on the collapsing lines {z = ±i} both of which map to {t = 0}. At any
such critical point, the image of DR spans the tangent direction to {t = 0} and is
therefore transverse to Dz′ . Thus, R−1(Dz′) is a finite union of analytic discs. Let
Dz be the component of R−1(Dz′) ∩∆δ,ρ containing z. By properties (1) and (2)
from the lemma, we see that since Dz′ was an admissible disc, so is Dz.

Continuing in this way one defines a family of admissible stable discs over every
z ∈ Q. The result is the desired holomorphic motion h : Q× Dρ → C.

The map (φ, t) 7→
(
h̄(φ, t), t

)
is clearly an immersion of B × Dρ into C2 with

image
⋃
x∈B Ws

C,loc(x). Shrinking ρ slightly, if necessary, this immersion can be
made into an embedding. �

The λ-Lemma gives the following regularity for
⋃
x∈B Ws

C,loc(x). Globally, it is

just a topological manifold, however each slice with t = t0 for |t0| < ρ is the image
of the unit circle B under a quasiconformal homeomorphism with dilatation

K ≤ ρ+ |t0|
ρ− |t0|

.

9.4. Stable foliation of B in the cylinder. Let us now consider the slices of the
local stable manifolds by the cylinder,

Ws
loc(x) ≡ Ws

loc(φ) = Ws
C,loc(φ) ∩ C, x = (φ, 0), φ ∈ T.

They are real analytic curves that form a foliation of a neighborhood of B in C.
Note that the Ws

loc(±π/2) are arcs of the collapsing intervals I±π/2.
We will now globalize this foliation. Let Ws

n(φ) stand for the lift of Ws(4nφ, 0)
that begins at (φ, 0). Since R(Ws

loc(φ)) ⊂ Ws
loc(4φ), we have:

Ws
loc(φ) ≡ Ws

0(φ) ⊂ Ws
1(φ) ⊂ Ws

2(φ) ⊂ . . .

By Property (P4), for φ 6= ±π/2, each Ws
n(φ) is a real analytic curve, while

Ws
n(±π/2) = I±π/2 for all n ≥ 1. Hence the sets

Ws(φ) =
∞⋃

n=0

Ws
n(φ).
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are real analytic curves for all φ ∈ T. They are called the global stable manifolds of
the points x = (φ, 0) ∈ B.29 Note that Ws(±π/2) = I±π/2, while Ws(0) = [β0, βc).

By construction, R(Ws(φ)) ⊂ Ws(4φ), and, in fact, Ws(φ) is the lift of Ws(4φ)
by R that begins at (φ, 0) ∈ B (compare Lemma 3.2).

Lemma 9.5. The stable manifolds Ws(φ) are strictly vertical curves.

Proof. The stable manifolds Ws(x) are tangent to the KerDR(x). From represen-
tation R = f ◦Q in §3.2 we see that the KerDR(x) = KerDQ(x) are orthogonal to
B. Hence the local stable manifolds Ws

ǫ (x) go through the vertical algebraic cones
Kv(x) (for ǫ > 0 sufficiently small), so they are strictly vertical. Since the cone field
Kv(x) is backward invariant (see Cor. 6.7), the global stable manifolds Ws(x) are
strictly vertical as well. �

9.5. Stable tongues. We will now describe “tongues” in Ws(B) connecting from
the bottom of C to the top of C. The reader may wish to refer to Figure 1.2, where
many of these tongues are visible in blue (dark). It may also be helpful to recall the
combinatorial description of R : C → C from §3.2 and §3.3, including the Primary
Central Tongues Λ± defined in §3.3 (P6).

A tongue Υ attached to a “tip” x ∈ T is a domain in C bounded by two proper
vertical paths meeting only at x. Note that Υ meets B in an interval BΥ, called
its bottom. A tongue is called stable if it is contained in Ws(B) and is foliated by
proper stable manifolds Ws(φ), (φ, 0) ∈ BΥ (terminating at x). A stable tongue is
maximal if it is not a proper subset of another stable tongue.

Proposition 9.6. There are two maximal stable tongues Υ(α±) attached to the
indeterminacy points α± respectively. They are symmetric with respect to the col-
lapsing intervals I±π/2 and have positive angles at the tip.

Proof. By the blow-up formula (3.4) points x approaching α± at angle ω from I±π/2
are mapped to the point G(ω) = (2ω, sin2 ω). This curve intersects the critical level
{t = tc} at two points G(±ωc) with ωc > 0. Moreover,

G[−ωc, ωc] ⊂ C∗ r {βc, β′
c} ⊂ Ws(B).

Hence there is a region U under the arc G[−ωc, ωc] (comprised of two symmet-
ric topological triangles) foliated by stable manifolds Ws(φ) (see Figure 9.1). By
Lemma 3.2, this region lifts by R to two stable tongues Υ′(α±) attached to α±. By
construction, each Υ′(α±) has angle 2ωc > 0 at the tip. The desired tongues Υ(α±)
are the maximal stable tongues containing Υ′(α±). (As such, they are unique and
also have positive angle at the tip.) By ±π/2-symmetry of the basin Ws(B) (see
Property (P1) in §3.3), they are symmetric with respect to the corresponding axes
I±π/2. �

The above tongues Υ(α±) will be called the primary stable tongues of Ws(B).
For n ∈ N, let

(9.1) An = R−n{α±} = {(φn,k, 1)}2
n−1
k=0 , where φn,k =

±π/2 + 2πk

2n
.

29This terminology is not completely standard, as usually the global stable manifold of x is
defined as the set of all points that are forward asymptotic to the orbx. In our situation, it would

be ∪R−nWs(4nφ), which is disconnected.
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R

0

α+α−

0

1

G(−ωc)

1

tc

G

−π β0 π

G(ωc)

Υ′(α−) Υ′(α+)

U

Figure 9.1. Topological triangles foliated by stable manifolds
(below) and the corresponding stable tongues attached to the in-
determinacy points α± (above).

and let A = ∪An be the pre-indeterminacy set. By the end of §9.6 we will see
that there are infinitely many maximal stable tongues attached to each α ∈ A. We
begin with the following:

Proposition 9.7. There is a family of maximal stable tongues {Υk(α)}α∈A,k∈K(α)

where Υk(α) is attached to α for each α ∈ A and either K(α) = {0, . . . , k(α)} for
some k(α) ≥ 0 or K(α) = N.

The family {Υk(α)}α∈A,k∈K(α) is pairwise disjoint and satisfies:

(i) Υ0(α±) ≡ Υ(α±);
(ii) If α 6= α± then Υk(α) is a regular lift of some Υj(R(α));
(iii) If α = α± but k > 0 then Υk(α) is a singular lift of some Υj(β) with β ∈ A;
(iv) The union

⋃
α∈A,k∈K(α) Υk(α) is backward invariant;

(v) The union of the bottoms of all the tongues is an open set of full Lebesgue
measure in B.

Proof. Lemmas 9.5, 6.1, 3.2, and Corollary 6.7 imply that the lifts of stable tongues
by R are stable tongues. So, taking all possible lifts of the principal tongues Υ(α±)
by the iterates of R, we obtain an infinite family of stable tongues attached to each
point of A.

Since the stable manifolds are disjoint, the stable tongues with different tips
are disjoint. If one of these tongues overlaps with a principal tongue Υ(α±) then it
must be contained in it, by maximality of the latter. It follows that any two tongues
in the family are either disjoint or nested. Keeping only the maximal tongues, we
obtain the desired family of tongues.
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All the properties of this family are straightforward except the last one. This one
follows from ergodicity of the map z 7→ z4 with respect to the Lebesgue measure
on T, which implies that ∪R−n(BΥ±

) has full measure. �

Proposition 9.8. The family of stable tongues {Υk(α+)}k∈K(α+) is contained in
the central tongue Λ+, and their bottoms form an open set of full Lebesgue measure
in the bottom of Λ+ (= (π/4, 3π/4)). Moreover, each of these tongues has positive
angle at its tip. The same property is valid for α−.

Proof. Let us say that a topological rectangle Π ⊂ C− is a singular stable rectangle
if it is bounded by an interval on B, an arc of G, and two proper vertical paths in
C−, and is foliated by stable leaves.30 For instance, the intersection of any stable
tongue Υk(α+) with C− is singular stable rectangle (by Lemmas 9.5 and 6.1).

Let Πk be the family of maximal singular stable rectangles. Proposition 9.7 (v)
implies that their bottoms have full measure in B.

Any singular stable rectangle lifts to a stable tongue attached to the indetermi-
nacy points α+ with positive angle at the tip (equal to |ω1 − ω2| where G(ωi) are
the upper vertices of Π). Lifting the rectangles Πk, we obtain the desired family of
tongues. �

The above discussion does not imply that there are infinitely many stable tongues
Υk(α) attached to each α ∈ A: this will be justified in the following piece.

9.6. Long hairs growing from T . Let us recall dynamics on the invariant interval
I0 (see §3.1). Let

I+
0 = {(φ, t) ∈ I0 : t > tc}, Iδ0 = {(φ, t) ∈ I0 : t ≥ tc + δ}.

The interval I+
0 is the stable manifold of the high temperature fixed point β1 ∈ T .

In this section it will be convenient to orient I+
0 so that it begins at β1.

We say that a sequence of curves γk stretch along I+
0 if for any δ > 0 there is

k0 such that the curves γk, k ≥ k0, contain arcs that can be represented as graphs
φ = γk(t) over Iδ0 such that γk → 0 in C1(Iδ0).

Let us consider a sequence of preimages βk ∈ T of β1 converging to β1, say
βk = (2π/2k−1, 1). Let γk stand for the lift of I+

0 by Rk that begins at βk.

Lemma 9.9. The curves γk are pairwise disjoint, and the orbits of points x ∈ ∪γk
converge to β1. Moreover, the curves γk stretch along I+

0 .

Proof. The first assertion is obvious. The last one follows from the Dynamical
λ-Lemma (see [PM, pp. 80-85]) applied near the hyperbolic fixed point β1. �

Proposition 9.10. There are infinitely many maximal stable tongues Υk(α±).
Each of them sticks at a positive angle out of the top T .

Proof. Let γ′k be the curves γk translated horizontally by π. They stretch along
the interval I+

π = {(φ, t) ∈ Iπ : t > tc} and hence (for k sufficiently big) intersect
the singular curve G transversally near the top.

By the symmetry R(φ + π) = R(φ) (see Property (P1)), the orbits of points
x ∈ ∪γ′k converge to β1. So, ∪γ′k is disjoint from the basin Ws(B), and hence the
singular stable rectangles from the proof of Proposition 9.8 can meet G only in
between the curves.

30We allow one of the vertical sides to degenerate to β0, making Π degenerate to a triangle.
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Υ(α+) Υ(α−)

0 2π

G

α+ φ α−

(2ω, sin2 ω)

2ω 2ωW s(φ)

Iπ

π

Figure 9.2. The primary stable tongues.

By Proposition 9.7 there is at least one maximal stable tongue attached to each
α in A, with A a dense subset of T . Therefore, there is a tongue Υ(αk) “squeezed”
in between any pair of curves γ′k and γ′k+1. Then the corresponding rectangles
Υ(αk) ∩ C− are contained in disjoint (for k big enough) maximal rectangles Πk.
The latter lift to disjoint maximal stable tongues Υk(α±). This proves the first
assertion.

The second one follows as well since any singular stable rectangle Π is separated
from Iπ by some curve γ′k, hence the corresponding tongue (the singular lift of Π)
meets the top non-tangentially. �

Corollary 9.11. For any α ∈ A there are infinitely many maximal stable tongues
Υk(α) attached at α.

Proof. Since there are infinitely many maximal stable tongues attached at α±, this
follows from Proposition 9.7, Part (ii). �

Corollary 9.12. The stable tongues Υk(α±) have angles 0 < ωk(α±) < π at their
tips. All other stable tongues Υk(α), α 6= α±, have cusps at their tips.31

Proof. The angles ωk(α±) are positive by Propositions 9.6 and 9.10. Since
∑
ωk(α+) =∑

ωk(α−) ≤ π, each of the angles is also strictly smaller than π.
By Property (ii) of Proposition 9.7, the other stable tongues Υk(α) are regular

pullbacks of the Υk(α±). Since R is transversely super-attracting at T (away from
α±) and expanding along T , these pullbacks have cusps at the tips. �

9.7. Regularity.

Proposition 9.13. Fs(B) is a C∞ foliation of Ws(B).
Since the leaves of Fs(B) are integral curves of the central line field Lc, it suffices
to prove the following proposition.

Proposition 9.14. The sequence Bn(x) := 1
4nDRn(x) converges uniformly on

compact subsets of Ws(B) at super-exponential rate to a C∞ matrix-valued function
B(x). Moreover, Lc(x) = kerB(x).

31This is a reason why the tongues do not appear to reach T on Figure 1.2.
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Proof of Proposition 9.14. It suffices to prove the statement in any neighborhood
of B, since one can use the invariance

4Bn(x) = Bn−1(Rx)DR(x) and 4B(x) = B(Rx)DR(x),(9.2)

to extend the result to any compact subset of Ws(B). For example, kerB(x) =
R∗ kerB(Rx) follows automatically from (9.2) at the regular points of R and is a
simple check near the critical points I±π/2.

For x ∈ C∗ we have

tn ≤ Cq2
n

(9.3)

with C > 1 and 0 < q < 1. It is noteworthy that C ≡ C(ǫ) and q ≡ q(ǫ) can be
chosen uniformly on the region Cǫ∗ := {x ∈ C : t(x) < tc − ǫ} for any ǫ > 0.

Note that A(x) := 1
4DR(x) is real-analytic and, by (B.6), it satisfies

A(φ, 0) = A0 :=

[
1 0
0 0

]
.

It follows from (9.3) that

|A(Rnx)−A0| < C0q
2n(9.4)

for any x ∈ Cǫ∗.
By the chain rule

Bn(x) = A(Rn−1x)A(Rn−2x) · · ·A(x).
Moreover, Equation (9.4) is sufficient for Bn(x) to converge uniformly (and super-
exponentially fast) to some continuous B(x) on Cǫ∗ for any ǫ. It satisfies B(φ, 0) =
A0 and also 4B(x) = B(Rx)DR(x).

Since B is superattracting, there is some forward invariant neighborhood N of
B so that for any x ∈ N , any v ∈ Lc(x) has its length contracted under DR by
a definite factor, thus satisfying v ∈ kerB(x). Moreover, since B(φ, 0) = A0 we
can trim this neighborhood, if necessary, so that rankB(x) = 1 and thus Lc(x) =
kerB(x) for all x ∈ N .

We now show that B(x) is C∞ in C∗. The proof depends on the superattacting
nature of B. Let R = (R1,R2). Then, R2 vanishes quadratically in t when t = 0,
giving that for any multi-index β there is some Mβ such that

|∂βR2(φ, t)| ≤





t2

C2Mβ if β2 = 0
t
CMβ if β2 = 1

Mβ if β2 ≥ 2

(9.5)

for all (φ, t) ∈ C∗. Furthermore, since A(x)−A0 vanishes at t = 0, we have that

‖∂βA‖ < Cβ t if β2 = 0.(9.6)

We’ll first observe that B(x) is C1. It is a consequence of the following estimates

‖DRn(x)‖ ≤ λn,(9.7)

|∂xtn| ≤ µnq2
n

, and(9.8)

‖∂xA(Rnx)‖ ≤ C1ν
nq2

n

.(9.9)

for appropriate λ, µ, ν, and C1.
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The first follows a bound ‖DR(x)‖ ≤ λ on C∗ and the chain rule. Meanwhile
(9.8) follows from induction on n, since the chain rule and (9.5) give

∂xtn = ∂φR2(φn−1, tn−1)∂xφn−1 + ∂tR2(φn−1, tn−1)∂xtn−1(9.10)

≤ t2n−1

C2
Mφ · ∂xφn−1 +

tn−1

C
Mt · ∂xtn−1.

Equation (9.9) follows from similar use of the chain rule, together with (9.6), (9.8),
and (9.7).

Then (9.9) is sufficient for the series

∂xB(x) = ∂xA(x)A(Rx)A(R2x) · · ·+A(x)∂xA(Rx)A(R2x) · · ·+ · · ·(9.11)

to converge uniformly on Cǫ∗ for any ǫ > 0.

To prove the convergence of higher derivatives of B(x) we will use

Lemma 9.15. For x ∈ Cǫ∗ and any multi-index α = (α1, α2) 6= 0 we have

‖∂αRn(x)‖ < λnα,(9.12)

|∂αtn| < µnαq
2n , and(9.13)

‖∂αA(Rnx)‖ < Cαν
n
αq

2n ,(9.14)

for suitable λα, µα, να > 1 and Cα > 0.

Proof. The proof is similar to that for (9.7-9.9) except that in place of the chain
rule we will use the the Faà di Bruno formula [CS] to estimate the higher partial
derivatives of a composition.

If

h(x1, . . . , xd) = f(g(1)(x1, . . . , xd), . . . , g
(m)(x1, . . . , xd))

and |α| :=∑αi, it gives:

∂αh =
∑

1≤|β|≤|α|

∂βf

|α|∑

s=1

∑

ps(α,β)

α!

s∏

j=1

(∂ljg)
kj

(kj !)(lj !)|kj |
.(9.15)

Each β and kj is a n-dimensional multi-index and each lj is a d-dimensional multi-
index. The final sum is taken over the set

ps(α,β) = {(k1, . . . ,ks; l1, . . . , ls) : |ki| > 0,

0 ≺ l1 ≺ · · · ≺ ls,

s∑

i=1

ki = β and

s∑

i=1

|ki|li = α.}

Here, ≺ denotes a linear order on the multi-indices (its details will not be important
for us), η! :=

∏
ηi!, and for a vector z we have zη =

∏
zηii .

We will not need the precise combinatorial details of this formula. For example,
(9.12) follows directly from the existence of a polynomial expression for ∂αh in the
partial derivatives of f and g.

Suppose that both f and g are functions of two variables. Then, all that we will
need to prove (9.13) and (9.14) is that the Faà di Bruno formula gives an expression
of the form

∂αh =
∑

i

Ki ∂βi
f

β1
i∏

j=1

∂γi,j
g(1)

β2
i∏

j=1

∂ηi,j
g(2),(9.16)
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having two additional properties:

(1) 1 ≤ βi, γi,j , ηi,j ≤ α for every i, j and, if either γi,j = α or ηi,j = α, then
|βi| = 1; and

(2) Ki ≥ 1 for every i.

Here, each βi = (β1
i , β

2
i ).

The proof of (9.13) is done by an inductive use (9.16) similar to the usage of the
chain rule for the first derivatives (9.10). It is the key step, so we’ll prove it here
and omit a proof of (9.14), which is simpler.

We already have (9.13) when |α| = 1. Therefore, can suppose that it holds for
all β satisfying |β| < |α| in order to prove it for α. Equation (9.16) gives

∂αtn =
∑

i

Ki ∂βi
R2(xn−1)

β1
i∏

j=1

∂γi,j
φn−1

β2
i∏

j=1

∂ηi,j
tn−1.(9.17)

Let µα := max(Nα, Pα), where

Nα :=
1

q2

∑

i

KiMβi

and Pα is the maximum of

β1
i∏

j=1

λγi,j

β2
i∏

j=1

µηi,j

taken over all i in (9.17).
Equation (9.13) follows for n = 1, since µα ≥ Nα ≥ 1

q2Mα ≥ 1
q2 |∂αt1|.

We now suppose that (9.13) is true for the (n− 1)-st iterate in order to prove it
for the n-th iterate. By the definition of µα, it suffices to show that each term in
(9.17) has absolute value bounded by

q2
n

KiMβi




β1
i∏

j=1

λγi,j

β2
i∏

j=1

µηi,j



n−1

.(9.18)

If β2
i ≥ 2, then the factor of q2

n

results from at least two factors of |∂ηi,j
tn−1| in

the i-th term from (9.17) and the induction hypothesis. Otherwise, sufficient extra

factors of q2
n−1

come from from tn−1 < Cq2
n−1

and (9.5). �

Using a generalization of the product rule, we have

∂αB(x) =
∑

α=α0+α1+···

α!

α0!α1!α2! · · ·
∂α0

A(x) · ∂α1
A(Rx) · ∂α2

A(R2x) · · ·(9.19)

where the sum is taken over all partitions of α into a sum α0+α1+ · · · . We apply
(9.14) to each |αi| ≤ |α| and take appropriate maxima to find

|∂αn
A(Rnx)| < D1ν

nq2
n ≤ D2

for each n and suitable ν > 1, D1 > 0, and D2 > 0.
There are no more than n|α| partitions α = α0 + α1 + · · · for which n is the

maximal index with |αi| > 0. Each such term in the sum (9.19) can be bounded
by Kνnq2

n

, since there are at most |α| terms in the product for which αi 6= 0,
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each of which is bounded by D2, and the last one is bounded by D1ν
nq2

n

. Thus,
we bound the sum (9.19) by

∑

n

n|α|Kνnq2
n

,

which is convergent.
Thus the series (9.19) for ∂αB(x) converges uniformly on Cǫ∗ for any ǫ > 0. Since

the multi-index α was arbitrary, we conclude that B(x) is C∞ on C∗. �

9.8. “Böttcher coordinate” on Ws(B) and convergence of foliations. Since
the map R : C → C has degree 4 in the first homology of C1, the normalized pullback

φ1 : C1 → T, φ1 =
1

4
φ ◦ R : C1 → T

is a well defined map of degree 1. Iterating the pullback, we obtain a sequence of
degree 1 maps

φn : C1 → T, φn =
1

4n
φ ◦ Rn : C1 → T.

By Proposition 9.7,

dφn(x) = dφ(Rnx) ·Bn(x) → (1, 0) ·B(x) := ω(x), x ∈ B,
where ω is a closed C∞-smooth 1-form on Ws(B) with period 1. Hence ω = dΦ
where Φ : W(B) → T is a C∞ map of degree 1. Moreover,

(9.20) Φ| B ≡ φ, and Φ(Rx) = 4Φ(x).

Since dΦ vanishes on the stable leaves Ws(x) (x ∈ B) and does not vanish transver-
sally, it is a defining function for the stable foliation.

The function Φ plays the role of the Böttcher coordinate on the basin of the
bottom.

Instead of the angular coordinate φ, we can do the same construction with a
more general function:

Lemma 9.16. Let ψ : C1 → T be a C∞-map of degree l tangent to lφ at the bottom
(i.e., ψ(φ, t) = lφ+ o(t) as t→ 0). Then

ψn :=
1

l · 4nψ(R
nx) → Φ(x) super-exponentially fast as n→ ∞,

in the C1-topology on compact subsets of Ws(B).

Proof. The same reason as above shows that dψn → dΦ super-exponentially fast in
the C1-topology on compact subsets of Ws(B). The assertion follows, since the ψn
agree with φ on B. �

If ψ is a defining function for some foliation F onWs(B), then the ψn are defining
functions for the pullbacks (Rn)∗(F), and Lemma 9.16 gives a strong sense in which
these pullbacks converge to the stable foliation of the bottom Fs(B).

Let us finally mention that the Böttcher coordinate Φ can be extended continu-
ously to a degree 1 map Φ̃ : C1 → T satisfying Böttcher functional equation (9.20),
see Remark 12.1 below.
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10. High temperature dynamics: basin of the top of the cylinder

Property (P5) from §3.3 states that the top T of the cylinder C is non-uniformly
superattracting. In this section we will prove that there is set of positive measure
attracted to T ,

W s(T ) = {x ∈ C : Rnx→ T },
that supports a “stable bouquet” Fs(T ) consisting of curves emanating from almost
all points of T .

Near the top, we will make use of the local coordinate τ , and near the indeter-
minacy points – of the local coordinates (τ, ǫ), see (P5). We say that “x is τ -below
y” if τ(x) < τ(y) (so, x is, in fact, above y on the cylinder C).

Recall the neighborhoods V ′ ≡ V ′
τ̄ ,η of T r {α±} obtained by removing the

parabolic regions P±
η from the Vτ̄ neighborhood of the top (see §6.2.) Let q ∈ (0, 1).

By property (P5), if η and τ̄ are sufficiently small then

(10.1) τ(Rx) < q τ(x) ∀ x ∈ V ′.

Let Ws
η,τ̄ (T ) be the set of points whose orbits converge to T while remaining in

V ′
τ̄ ,η and let Ws

η(T ) be the set of points whose orbits eventually land in V ′
τ̄ ,η for

some τ̄ and stay there (note that this property is independent of τ̄). Then, points
of Ws

η(T ) are attracted to T with exponential rate O(qn). We will show below that
this set supports a “stable bouquet” Fs

η(T ) consisting of curves emanating from
almost all points of T and that it has positive two-dimensional Lebesgue measure.

10.1. Vertical bouquet Fs(T ). A bouquet of curves in C is a family of curves that
are disjoint on C1 (which may or may not be a lamination). The curves comprising
the bouquet are called its leaves.

In the following proposition, horizontal and vertical curves γ are understood in
the sense of the cone fields Kh and Kv. Vertical curves are oriented by the local
coordinate τ . Note that for sufficiently small η, the boundary of V ′ is horizontal
because the tangent lines to the parabolas Y±

η have slope 2ηǫ which can be made
less than ǫ/3.

Proposition 10.1. For any sufficiently small η > 0, the basin W s
η (T ) supports an

invariant bouquet Fs(T ) ≡ Fs
η(T ) by smooth vertical paths landing transversely at

almost all points of T .

Proof. A vertical curve γ is called semi-proper if it begins on T . If additionally, γ
lands on the τ -upper boundary of V ′, it is called proper.

Let
V ′
n = {x : Rkx ∈ V ′, k = 0, . . . , n− 1}.

Let γ0 ≡ γ0x ⊂ V ′ be the proper genuinely vertical interval containing x ∈ V ′ ≡ V ′
τ̄ ,η.

For each n > 0 and x ∈ V ′
n, we will inductively construct a semi-proper vertical

curve γn = γnx ⊂ V ′
n containing x ∈ V ′

n. Assume we have already constructed
curves γn−1

y for all y ∈ V ′
n−1. Then for x ∈ V ′

n, we define γnx as the regular

lift of γn−1
Rx truncated (if needed) by the τ -upper boundary of V ′. Since the cone

field Kv is backward invariant, we obtain a semi-proper vertical curve. Since the
boundary of V ′ is horizontal and x ∈ V ′, the whole curve γnx is contained in V ′.
Since γn−1

Rx ⊂ V ′
n−1, we conclude that γnx ⊂ V ′

n.
Let now x ∈ Ws

η,τ̄ =
⋂V ′

n, so that the curves γnx exist for all n ∈ N. Since each
of them contains x, they all have a definite height τ0 ≥ τ(x). Since R is horizontally
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expanding, the curves γnx exponentially converge in the uniform topology to a curve
γx containing x and of height ≥ τ0. Moreover, being vertical, the curves γnx are
uniformly Lipschitz, so γx is Lipschitz as well.

The results of §7 gives that the intersections ∩DR−n(Kv(Rnx)) converge ge-
ometrically to the central line field Lc(x). Thus, γx is tangent to Lc(x) at x.
Similarly, at any y ∈ γx we have that γx is tangent to Lc(y). Since the Lc is a
continuous line field, the entire curve γx is C1.

It lands at T transversely since the vertical cone field Kv is non-degenerate on
T r {α±}. (Note that the curves γx do not land at α± since they are vertical while
∂V ′ is horizontal.)

So, the basin Ws
η,τ̄ supports an invariant bouquet by smooth vertical paths

landing transversely at T . Pulling it back by the dynamics, we obtain a similar
bouquet supported on the whole basin Ws

η . To complete the proof we need to show
that the leaves of this bouquet land at almost all points of T .

Let ǫn(φ) = ǫ(Rn(φ)) (where φ is considered to be a point on T ). Since the
doubling map R : φ 7→ 2φ preserves the Lebesgue measure on T , the Borel-Cantelli
Lemma implies that for a.e. φ ∈ T , eventually we have: ǫn(φ) > qn/4. Hence for
a.e. φ ∈ T , there exists c = c(φ) > 0 such that

(10.2) ǫn(φ) > c qn/4, n ∈ N.

Let h(φ) = min{τ̄ , ηǫ2/2}, so that any vertical curve γ based at φ ∈ T of τ -height
≤ h(φ) is necessarily contained in V ′. (To check it, note that a vertical curve that
begins at ǫ0-distance from α+ goes τ -below the parabola τ = (ǫ20−ǫ2)/4, and hence
reaches the boundary parabola Y+ = {τ = ηǫ2} at least at τ -height ηǫ20/(1 + 4η).)

Let us now slightly modify the above construction of semi-proper vertical curves.
Let γ0φ ⊂ V ′ be the proper vertical (straight) interval based at φ ∈ T . For each

n > 0 we will inductively construct a family of semi-proper vertical curves γnφ ⊂ V ′

based at φ ∈ T . Assume we have already constructed curves γn−1
φ . Then we define

γnφ as the regular lift of γn−1
2φ truncated (if needed) by the τ -upper boundary of V ′.

Since the cone field Kv is backward invariant, we obtain a family of semi-proper
vertical curves.

We will now show that if φ satisfies (10.2) then the curves γn = γnφ have a definite

height (depending on φ but independent of n). Indeed, by construction, one of the
curves Rk(γn), k = 0, 1, . . . , n, is proper. But the height of Rn(γn) is bounded by
qnτ̄ which is eventually smaller than

η

2
c2qn/2 ≤ min{ η

2
ǫ2n, τ̄} = h(φn).

Hence there is k0 = k0(φ) (independent of n) such that all the curves Rkγn are
not proper for k > k0. It follows that one of the curves Rkγn, k = 0, 1, . . . , k0, is
proper, and hence, it has a definite height. Then the same is true for the curve γn.
This completes the proof. �

10.2. Positive measure of Ws(T ). Let

Ws,o
η (T ) := {x ∈ Ws

η(T ) : the curve γx ∈ Fs
η containing x extends beyond x}.

It is a completely invariant subset of Ws
η(T ) consisting of points x ∈ Ws

η whose
orbits Rnx converge to T within the interiors of the corresponding leaves γRnx.

Let
π : C → B = T, (φ, t) 7→ φ
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be the natural projection onto the bottom of the cylinder.
Given a horizontal curve ξ, let dlh ≡ dlhξ = π∗(dφ) stand for the horizontal length

on it, i.e., the pullback of the standard Lebesgue measure on T to ξ under π. So, if
ξ projects injectively onto the horizontal axis (or equivalently, if lh(ξ) ≤ 2π) then
lh(X) = |π(X)| for any measurable set X ⊂ ξ (where |Y | stands for the Lebesgue
measure of Y ⊂ T). In general,

(10.3) lh(X) =

∫
|(π|X)−1(φ)|dφ ≤ deg(π|X) |π(X)|,

where deg(π|X) = maxφ∈T |(π|X)−1(φ)|.
By Theorem 8.1, R expands the horizontal length: there exists λ > 1 and c > 0

such that for any horizontal curve ξ ⊂ V ′ and any measurable set X ⊂ ξ, we have:

(10.4) lh(RnX) ≥ cλn lh(X).

Remark 10.1. In fact, λ = 2 but we will keep notation “λ” to distinguish it from
the combinatorial appearance of “2”. Note also that in region V ′ (which we are
concerned with in this section) expanding property (10.4) can be easily derived
from Lemma B.4.

Lemma 10.2. For any η ∈ (0, 1/2) and δ > 0, there exists a threshold τ̄ > 0 with
the following property. Let ξ be a horizontal curve in the strip Vτ̄ with lh(ξ) < 2π.
Then all points of ξ, except for a set of horizontal length < δ, belong to Ws,o

η (T ).

Proof of Lemma 10.2: Making η and τ̄ sufficiently small, we can assume if γ ⊂ V ′
2τ̄ ,η

is any vertical curve then the vertical length32 of Rγ is at least a factor of q < 1/4
smaller than the vertical length γ. This slightly stronger condition than (10.1)
follows from (B.7) and (B.8).

Let

ξn =

{
x ∈ ξ : |ǫ(Rkx)| ≥ 2

√
τ̄

η
· 2−k for 0 ≤ k ≤ n− 1 and |ǫ(Rnx)| < 2

√
τ̄

η
· 2−n

}
,

(10.5)

and let Xn = Rn(ξn). Note that the sets ξn are pairwise disjoint.
Using (10.1), one can inductively show that ξ r ∪ξn ⊂ Ws

η(T ). Let us now

estimate lh(∪ξn). By the definition of Xn

|π(Xn)| ≤ 8
√
τ̄ /η 2−n.

Making use of (10.3), we obtain:

lh(Xn) ≤ 8
√
τ̄ /η deg(π|Xn) 2

−n.

Together with (10.4), this implies

lh(ξn) ≤ 8
√
τ̄ /η deg(π|Xn) 2

−n c−1λ−n.

We will show that

(10.6) deg(π|Xn) ≤ 2n.

32The vertical length of Rγ is defined as the total length of its projection onto the vertical

interval I0.
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Indeed, in this case lh(ξn(x)) ≤ 8
√
τ̄ /η c−1λ−n, hence

(10.7) lh(∪ξn) =
∞∑

n=0

lh(ξn(x)) ≤ 8

√
τ̄

η

λ

c(λ− 1)
,

which can be made arbitrarily small if τ̄ is selected small enough.

Let us prove (10.6). For x ∈ ξn, let xk = Rkx, and let φ = π(xn). Let
γn ≡ γn(x) ⊂ Iφ be the genuine vertical interval connecting xn to T , and let
γk ≡ γk(x) be its lifts that connect xk to T . Since xk ∈ V ′ for k < n, and the
region V ′ lies above the tongues Λ± (defined by Property P6 and Figure 3.3), the

lifts γk are regular, i.e., they lie in the regular lifts Ijk of the interval Iφ (where the

lift Ijk terminates at the point (φ + 2πj)/2k of T , j = 0, 1, . . . , 2k − 1). But each

lift Ijk is vertical since the vertical cone field Kv is backward invariant. Hence each

Ijk crosses the horizontal curve ξ at most once. Hence, given φ = π(xn), there are
at most 2n points x ∈ ξn such that π(xn) = φ, and (10.6) follows.

It remains to prove that ξ r ∪ξn is actually a subset of Ws,o
η (T ). We will show

that the leaf γx ∈ Fs
η(T ) through any x ∈ ξ r ∪ξn extends beyond x by a definite

amount. It suffices to verify that this holds for each of the curves γnx used in the
proof of Proposition 10.1 to construct γx.

There is a constant K > 0 so that if τ(x) ≤ τ̄ and

|ǫ(x)| ≥ 2

√
τ(x)

η
,

then any proper vertical curve γ in V ′
2τ̄ ,η containing x extends beyond x by at least

K|ǫ(x)|2.
To see it, let x̃ be the point where γ reaches the τ -upper boundary of V ′

2τ̄ ,η. If
τ(x̃) = 2τ̄ , then we are done. So, we can suppose that x = (ǫ, τ) and x̃ = (ǫ̃, τ̃) are
near α+ and ǫ, ǫ̃ > 0. If ǫ̃ ≥ 3/4ǫ, then τ̃ ≥ (9/16)ηǫ2 so that τ̃ − τ ≥ (5/16)ηǫ2.
Otherwise, ǫ̃ ≤ 3/4ǫ. Since the vertical cones Kv(x) have slope dτ/dǫ ≥ ǫ(x)/3 this
forces that τ̃ − τ ≥ (1/16)ǫ2.

For any x ∈ ξ r ∪ξn, consider the orbit xi = Rix. By (10.5), one finds that

|ǫ(xi)| ≥ 2

√
τ̄

η
· 2−i ≥ 2

√
τ(xi)

η
,(10.8)

so that any proper vertical curve in V ′
2τ̄ ,η through xi extends beyond xi by at least

K|ǫ(xi)|2 ≥ 4−iKτ̄/η.
We now inductively prove that for every n the curve γnxi

extends beyond xi by

at least 4−iKτ̄/η. This holds when n = 0, since γ0xi
is the proper genuinely vertical

interval in V ′
2τ̄ ,η through xi. Now suppose that it is true at step n in order to check

for step n+ 1. Suppose that some γn+1
xi

extends beyond xi by less than 4−iKτ̄/η.

It implies that γn+1
xi

is not proper, hence R : γn+1
xi

→ γnxi+1
is a homeomorphism.

Since R contracts the vertical lengths of vertical curves in V ′
2τ̄ ,η by at least q < 1/4,

this would then imply that γnxi+1
extends beyond xi+1 by less than 4−(i+1)Kτ̄/η,

contradicting the induction hypothesis.
In particular, each of the curves γnx ≡ γnx0

extends beyond x by at least Kτ̄/η,
implying that γx does as well.

�
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Remark 10.2. In the above proof we could replace the 2−n in (10.5) with σ−n for
any σ > 1, so long as we choose η sufficiently small that q < σ−2, allowing (10.8)
(with 2−i replaced by σ−i) to hold. In particular, choosing σ = 4 would let us use
the more obvious degree bound by 4n instead of the more delicate (10.6).

Corollary 10.3. For any η ∈ (0, 1/2) and δ > 0, there exist a threshold τ̄ > 0 such
that

areaWs
η,τ̄ (T ) ≥ (1− δ) areaVτ̄ .

Moreover, all the points in Ws
η,τ̄ get attracted to the top of the cylinder exponentially

at rate O(qn), where q = q(η) → 0 as η → 0.

Proof. For each τ ∈ (0, τ̄) let ξτ = {x : τ(x) = τ}. Applying Lemma 10.2, we find
a subset of ξτ of horizontal measure > (2π − δ) that converges to T exponentially
at rate O(qn). An application of the Fubini Theorem completes the proof. �

Corollary 10.4. For any t > tc, the Lebesgue measure of Ws(T ) ∩ Tt is positive.
Moreover, as t→ 1, the Lebesgue measure of Ws(T ) ∩ Tt tends to 2π.

Proof. The point (0, t) ∈ Tt is in Ws(β1), so, after some finite number of iter-
ates, the horizontal curve Rn(Tt) contains a point arbitrarily close to β1 ∈ V ′

τ̄ ,η.
Lemma 10.2 gives that Rn(Tt)∩Ws(T ) has positive horizontal measure of Rn(Tt).
SinceWs(T ) is backward invariant, Tt∩Ws(T ) also has positive horizontal measure
in Tt.

The statement about the horizontal measure of Ws(T ) ∩ Tt tending to 2π as
t→ 1 follows immediately from Lemma 10.2. �

The proof of Lemma 10.2 actually gives a slightly better statement, which we
record here for later use.

For a curve ξ, let τ(ξ) = supx∈ξ τ(x).

Lemma 10.5. For any η ∈ (0, 1/2), there exist τ̄ > 0 and C > 1 such that Ws,o
η (T )

forms at least 3/4 of the horizontal length of any horizontal curve ξ with τ(ξ) ≤ τ̄

and lh(ξ) ≥ C
√
τ(ξ).

Proof. By (10.7),

lh(ξ rWs
η(T )) ≤ 8√

η

λ

c(λ− 1)

√
τ(ξ) ≤ 1

4
C
√
τ(ξ),

where we let C =
32√
η

λ

c(λ− 1)
. �

11. Intertwined basins of attraction

Recall the sets Ws,o
η (T ) from §10.2. We let

(11.1) Ws,o
0 (T ) :=

⋂

η>0

Ws,o
η (T ).

Note that Ws,o
0 (T ) is a completely invariant set whose orbits get attracted to T

superexponentially fast.
In this section we will prove the following result:

Theorem 11.1. The union of the basins Ws(B) and Ws,o
0 (T ) is a set of full area

in the cylinder C.



64 PAVEL BLEHER, MIKHAIL LYUBICH AND ROLAND ROEDER

Together with Lemma B.4 we find

Corollary 11.2. Almost every point in Ws(T ) has characteristic exponent log 2.

11.1. Distortion control. If I and J are intervals, the distortion of a C1 diffeo-
morphism f : I → J is given by

Dist(f, I) := sup
x,y∈I

log

∣∣∣∣
f ′(x)

f ′(y)

∣∣∣∣ .(11.2)

The key fact we will use is that a bound on the distortion of f : I → J gives a
bound relating m(f(S))/m(J) to m(S)/I for any measurable set S ⊂ I. (Here, m
denotes the Lebesgue measure.) We refer the reader to [PM] for more background
on distortion.

We will apply distortion control to horizontal curves. If ξ is a horizontal curve, we
interpret (11.2) according to the parameterizations of ξ and Rn(ξ) by the horizontal
coordinate φ.

To prove Theorem 11.1, we will construct a family of horizontal curves on which
R is expanding with bounded distortion. Without the indeterminacy points, this
would be straightforward from partial hyperbolicity.

We will remove the union of two wedges extending downward from α±:

∆κ̄ = {x ∈ C : τ(x) ≥ κ̄|ǫ(x)|}.
Lemma 11.3. Given any κ̄ > 0, there is a family Hx of “admissible” horizontal
curves centered each x ∈ C with the following property:

If the orbit of x ∈ C r {α±} avoids the wedge regions ∆κ̄, then there is a neigh-
borhood U of α± and a sequence of times ni ≡ ni(x) ∈ Z+ such that Rnix remains
outside of U and for any curve ξ ∈ Hx we have:

(i) ξ ∈ Hx projects onto the horizontal interval of radius r(x) ≍ disth(x, {α±})
centered at x;

(ii) The image Rniξ overflows some curve ηi ∈ HRnix;

(iii) If η̃i is the restriction of ηi to one half of its radius, then, the inverse branch
R−ni : η̃i → ξ is uniformly exponentially contracting with bounded distortion (with
the contracting factor going to 0 as ni → ∞).
Moreover, the genuinely horizontal intervals

{Jx = (φ, t) : t = t(x), |φ− φ(x)| < r(x)}
are admissible.

11.2. Proof of Theorem 11.1. Let us first derive Theorem 11.1 from Lemma 11.3.
Take a small η ∈ (0, 1/2) and let Xη be the complement of Ws(B) ∪ Ws,o

η (T ).
Assume area(Xη) > 0. By the Lebesgue and Fubini Theorems, there is a point
x ∈ Xη which is a density point for the slice of Xη by any genuinely horizontal
interval J = Jx centered at x.

By Proposition 9.6, we can choose κ̄ sufficiently large so that the wedge regions
∆κ̄ are entirely contained in Ws(B). Since x 6∈ Ws(B), the orbit xn := Rnx avoids
∆κ̄, allowing us to apply Lemma 11.3.

Let S ⊂ N be the subsequence of times ni ≡ ni(x) given by Lemma 11.3.
We can choose a further subsequence S′ ⊂ S along which xn converges to some
y ∈ C r {α±}. We will keep the same notation ni for this subsequence.
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Now, let J be the genuinely horizontal interval radius r(x). Since J is admissible,
for any ni ∈ S′ there is an admissible curve ηi ∈ Hxni

centered at xni
such that

the inverse branch R−ni : η̃i → J is contracting (exponentially in ni) with bounded
distortion.

Suppose y 6∈ T . Then, the curves η̃i are part of a compact family of curves, each
of which intersects Ws(B) in a dense open set, by Lemma 9.1. This implies that
Ws(B) occupies a definite portion of each η̃i. Since R−ni : η̃i → J has a bounded
distortion, the basin Ws(B) occupies a definite portion of R−ni(η̃i), which can be
made an arbitrarily small neighborhood of x ∈ J by taking ni sufficiently large.
This contradicts the choice of x as a density point of Xη on J .

If y ∈ T , then let us consider τ̄ > 0 and C > 1 from Lemma 10.5. Since η̃i
is a horizontal curve (with respect to the algebraic cone field Kah), the horizontal
length of γ := η̃i ∩ Vτ̄ is at least

√
τ̄ for ni ∈ S′ sufficiently big, since it lies above

one of the parabolas Sψ. Since γ is near T and bounded away from α±, Lemma B.4
gives that the horizontal length of γ′ := Rγ is at least that big. But τ(γ′) = O(τ̄2),

so lh(γ′) ≥ C
√
τ(γ′). By Lemma 10.5, Ws,o

η (T ) occupies at least 3/4 of γ′.
Since γ is bounded away from α±, the single iterate R : γ → γ′ has bounded

distortion (as does its inverse). Therefore, R−(ni+1) : γ′ → J is exponentially
contracting with bounded distortion. Hence, by taking sufficiently large i, the
basin Ws,o

η (T ) occupies a definite portion of the arbitrarily small neighborhoods

R−(n+1)(γ′) ⊂ J of x, contradicting again the choice of x.
The contradictions show that area(Xη) = 0 for any η > 0, and the conclusion

follows. ⊔⊓

11.3. Proof of Lemma 11.3. Let us formulate a stronger, complex version of
Lemma 11.3. Here “horizontal holomorphic curves” are understood in the sense of
the complex extension of the horizontal cone field Kah constructed in Appendix C.

Let π(z, w) = z.

Lemma 11.4. Given any κ̄ > 0, there is a family Hx of “admissible” horizontal
holomorphic curves centered at each x ∈ C with the following property:

If the orbit of x ∈ C r {α±} avoids the wedge regions ∆κ̄, then there is a neigh-
borhood U of α± and a sequence of times ni ≡ ni(x) ∈ Z+ such that Rnix remains
outside of U and for any curve ξ ∈ Hx we have:

(i) ξ ∈ Hx projects under π on a complex disc of radius r(x) ≍ disth(x, {α±})
centered at π(x).

(ii) The image Rniξ overflows some curve ηi ∈ HRnix;

(iii) If η̃i is the restriction of ηi to one half of its radius, then, the inverse branch
R−ni : η̃i → ξ is uniformly exponentially contracting with bounded distortion (with
the contracting factor going to 0 as ni → ∞).

Moreover, the genuinely horizontal discs

{Dx = (φ, t) : t = t(x), |φ− φ(x)| < r(x)}.
are admissible.

Proof. If x ∈ CrU , then Hx will consist of all horizontal holomorphic curves ξ that
project under π onto the round disc of constant radius r(x) = r1 (to be specified
below) centered at π(x). If x ∈ U , then Hx will consist of the restrictions to half
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their radius of all horizontal holomorphic curves that project under π onto a round
disc of radius a|ǫ(x)|, where a > 0 will be specified below.

Since R is horizontally expanding (Theorem 8.1), there is an N such that DRN

expands horizontal vectors v ∈ Kah(x), x ∈ C r {α±}, by a definite factor.
We can choose a neighborhood U ⊂ C of {α±} sufficiently small so that each

of the preimages R−iU for 1 ≤ i ≤ N is in the neighborhood V ′ of T in which
Lemma B.4 gives that each iterate of R expands horizontal vectors. Therefore, if
x ∈ C r U there exists n(x) ≤ N so that DRn(x) expands any v ∈ Kah(x) and
Rix 6∈ U for 0 ≤ i < n(x).

Proposition C.4 gives C > 0 so for any sufficiently small a > 0 and any x ∈ U
with |κ(x)| < κ̄ there is an iterate n(x) so that if ξ is an horizontal holomorphic
curve centered at x of radius a|ǫ(x)| and ξ0 is the subdisc of radius a|ǫ(x)|/2, then
Rn(x)ξ0 is horizontal and projects under π onto a disc has a definite radius ≥ Ca.
We further restrict U so that |ǫ(x)| < C for any x ∈ U . It ensures that Rn(x)ξ0 will
be larger than any curve ξ of radius a|ǫ(x)| that is based at any x ∈ U .

Since the cone-field Kah is defined in a definite complex neighborhood of C r U ,
on which DR has bounded expansion, we can choose r0 sufficiently small for any
horizontal holomorphic curve ξ centered at x ∈ C r U of radius ≤ r0 we have that
Riξ is in the domain of definition of Kah for 1 ≤ i < n(x). In particular, Rn(x)ξ
will be horizontal. By continuity, we can also require that r0 be sufficiently small
so that Rn(x) is uniformly expanding on any such curve ξ.

If we choose a sufficiently small so that C · a < r0 and choose r1 = C · a, it will
guarantee the overflowing property (ii).

The above gives a sequence of further times ni(x) and curves ηi ∈ HRni(x)x

so that Rni+1−niηi is horizontal and overflows ηi+1. Consequently, the inverse
R−ni(x)ηi → ξ is well-defined (and hence univalent) for each i.

The Koebe Distortion Theorem gives that the restriction R−ni(x) η̃i → ξ of
each inverse branch to the disc of half the radius will have bounded distortion. By
construction, DRni(x) is exponentially expanding at the center of ξ, therefore the
inverse branch is exponentially contracting.

It follows from the proof of Proposition C.4 that ifRni(x)x ∈ U , thenRni+1(x)x 6∈
U . Therefore, passing to a subsequence, we can suppose that Rni(x)x 6∈ U for
each i. �

Remark 11.1. The whole proof of Lemma 11.4 goes through in the purely real way
except one problematic point: the distortion control in (iii). In fact, with some extra
work it should be possible to do it as well, using the property that the horizontal
non-linearity of R behaves like 1/ǫ near the indeterminacy points α±.

12. Central foliation, its holonomy and transverse measure

In what follows all laminations in question will be assumed strictly vertical. Given
a lamination F and τ ∈ (0, 1), we let Fτ be the slice of F by the truncated cylinder
Cτ = T× [0, 1− τ ].

12.1. Central foliation. Recall that central foliation is a strictly vertical foliation
invariant under R∗.

Theorem 12.1. The map R has a unique central foliation.
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Proof. According to Proposition 7.7, through each x ∈ C r {α±} is a central curve
extending in both directions to the boundary of the cylinder. Taking the union
of all such curves through every point on C1, we obtain an invariant family Fc of
strictly vertical C1-curves filling in the whole cylinder C1.

However, for a continuous vector field, there may exist many integral curves
through a given point, so Fc may fail to be a foliation. What saves the day is
that R is horizontally expanding (Theorem 8.1). Namely, assume that there exist
two integral curves, γ1 and γ2, through a point x ∈ C1. Let us take two points
yi ∈ γi on the same height, and connect them with a (genuinely) horizontal interval
δ = [y1, y2]. By Theorem 8.1, the curves δn := Rn(δ) are almost horizontal,
and lh(δn) → ∞. Hence the horizontal projections of the δn eventually cover the
whole circle T, and in particular, they intersect the critical interval Iπ/2. Hence δ
intersects (Rn)∗(Iπ/2) at some point y.

But the interval Iπ/2 r {α+} is contained in the basin of B, where Fc coincides
with the stable foliation Fs(B), which is a C∞ foliation (Proposition 9.13). Pulling
it back, we conclude that there is a unique integral curve Wc(y) through y, and Fc

is a C∞ foliation near it. But Wc(y) is squeezed in between the curves γ1 and γ2,
and hence must merge with them at x – contradiction.

This proves that the line field Lc is uniquely integrable, so the family Fc of all
integral curves forms the central foliation. Since any such foliation must be formed
by integral curves to Lc, it is unique. �

Recall from the Introduction that the holonomy transformations gt : B → Tt ≡
T× {t}, t ∈ [0, 1), are defined by the property that x and gt(x) belong to the leaf
of Fc.

Remark 12.1. By means of the holonomy along the central foliation to the bottom of
C, we can now obtain a continuous extension Φ̃ : C1 → T of the Böttcher coordinate
that was constructed in §9.8 (namely, let Φ̃(φ, t) = g−1

t (φ)). Since Fc isR-invariant,

Φ̃ also satisfies the Böttcher functional equation Φ̃(R(φ, t)) = 4Φ̃(φ, t). However,

Φ̃ has weak regularity outside of Ws(B): for example, it is not even absolutely
continuous (see Corollary 12.10 below).

12.2. Central tongues. Recall a notion of a tongue from §9.5. A tongue is called
central if it is bounded by two central leaves (and hence it is saturated by intermedi-
ate leaves of the central foliation Fc). For instance, the primary central tongues Λ±

from Property (P6) in §3.3 are central tongues in this sense (as they are bounded
by R-lifts of Iπ, which are central leaves).

Recall also the pre-indeterminacy set A = ∪An (9.1).

Proposition 12.2. There is one maximal central tongue Λ(α) attached to each
pre-indeterminacy point α ∈ An, which is the regular pullback of one of the tongues
Λ± ≡ Λ(α±) by Rn. This family of tongues is dense in C, and any central tongue
is contained in one of these.

Proof. Obviously, regular lifts of central tongues are central tongues. Lifting the
Λ±, we obtain a family of central tongues Λ(α) attached to points α ∈ A. These
tongues are pairwise disjoint as they are attached to different points of T . Moreover,
a central tongue Λ(α) with α ∈ An has the bottom of length π/22n+1. Since
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|An| = 2n+1, we have:
∑

|BΛ(α)| =
∞∑

n=0

π

2n
= 2π,

so the bottoms of these tongues have full measure in B. Hence this family of tongues
is dense in C. So, there is no room for enlarging these tongues, nor for fitting any
extra tongue in between. �

12.3. Orbits of typical leaves. Given x ∈ C1, for each n ≥ 0 let γn(x) ∈ Fc be
the leaf containing Rnx. Invariance of Fc gives Rγn(x) ⊂ γn+1(x). Note that we
can have Rγn(x) ( γn+1(x) if γn(x) meets T at α±.

Proposition 12.3. For almost every x ∈ C has either:

(i) there exists N ≥ 0 so that for all n ≥ N : γn(x) meets T away from α±,
Rγn(x) = γn+1(x), there are non-trivial intervals of points on γn converging
superexponentially to B and to T , or

(ii) γn(x) ⊂ Ws(B) for all n ≥ 0.

Proof. According to Theorem 11.1, almost every x ∈ C is in Ws(B) ∪Ws,o
0 (T ). It

will be helpful later if we also assume that x 6∈ T .
If x ∈ Ws,o

0 (T ), then for any τ̄ , η > 0 there exists N ≥ 0 so that Rnx ∈ Ws
τ̄ ,η(T )

for all n ≥ N . (See §10.2.) For such n, some portion of γn agrees with a curve from
the stable lamination of Ws

τ̄ ,η(T ) constructed in the proof of Proposition 10.1. In
particular, γn meets T away from α±, and hence R(γn) = γn+1.

Any leaf of Fc intersects Ws(B) in a non-trivial interval. Meanwhile, Rnx has
orbit superattracted to T , so all points on γn above Rnx 6∈ T have orbits that
converge superexponentially to T .

Now suppose x ∈ Ws(B). Let B0 = ∪R−n(BΥ±
), where BΥ±

are the bottoms
of the primary stable tongues. By Proposition 9.7, B0 has full Lebesgue measure.
Since z 7→ z4 preserves Lebesgue measure, the Poincaré Recurrence Theorem gives
that the set of points B′

0 ⊂ B0 whose orbits return infinitely many times to B0 has
full Lebesgue measure in B0. Hence it also has full measure in B.

For any x ∈ B′
0, there is an infinite sequence of times ni for which Rnix ∈ B0,

implying γni
(x) ⊂ Ws(B). Then, because of the invariance R(γn(x)) ⊂ γn+1(x),

we have γn(x) ⊂ Ws(B) for all n.
Therefore, it suffices to prove that almost every point ofWs(B) is in⋃x∈B′

0
γ0(x).

However, this follows since Fc is C∞ on Ws(B) and that B′
0 has full Lebesgue

measure in B. �

12.4. Convergence. Given a metric space M , the Hausdorff metric on the space
of closed subsets of M is defined as follows: distH(X,Y ) is the infimum of ǫ > 0
such that X is contained in the ǫ-neighborhood of Y , and the other way around.

We say that a sequence of strictly vertical laminations Fn converges to a lami-
nation F if they converge in the Hausdorff metric on subsets of the space C0[0, 1].
Convergence is called exponentially with rate r ∈ (0, 1) if there exists C > 0 such
that

distH(Fn, F) ≤ Crn.

Theorem 12.4. For any strictly vertical lamination F , the pullbacks Fn := (Rn)∗F
converge exponentially (with the same rate) to the central foliation Fc of R.
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Proof. Given any γ0 ∈ Fc, let γi be the curve from Fc containing Riγ0 for i =
1, . . . , n. Let ηn be any leaf from F . We choose a sequence of iterated preimages
ηn−1, . . . , η0, so that ηi−1 is obtained from ηi under the same inverse branch of R as
γi−1 is obtained from γi. Let h0 be the shorter of the two segments on B connecting
from γ0 to η0. By construction, lh(h0) ≤ π/4n.

For any t ∈ [0, 1], let ht be the genuinely horizontal curve from γ0(t) to η0(t)
chosen so that γ0[0, t]∪ht∪η0[0, t] and h0 are homotopic (relative to their endpoints)
on C. Then, their iterates under Rn are also homotopic. The horizontal length of
any vertical curve in C is bounded by some constant K. Therefore, since Rnγ0[0, t]
and Rnη0[0, t] are vertical, we have that lh(Rnht) ≤ lh(Rnh0) + 2K ≤ π + 2K.

Using horizontal expansion, Theorem 8.1, we have lh(ht) ≤ Cλ−n · lh(Rnht) for
appropriate C > 0 and λ > 1. Since lh(Rnht) ≤ π + 2K, we have lh(ht) ≤ Dλ−n.
Therefore, given any γ0 ∈ Fc there is some η0 ∈ Fn that is Dλ−n close within
C0[0, 1].

After switching the roles of γ0 and η0, the same proof shows that given any
η0 ∈ Fn there is some γ0 ∈ Fc that is Dλ−n close within C0[0, 1]. �

Corollary 12.5. The sequence of Lee-Yang loci Sn converges exponentially to the
central foliation Fc.

We have a better convergence at low temperatures. For any ǫ > 0 let Fn
ǫ and

Fc
ǫ the truncations of Fn and Fc to the cylinder T× [0, tc − ǫ].

Proposition 12.6. For any ǫ > 0 we have exponential convergence

dist1H(Fn
ǫ ,Fc

ǫ ) ≤ C(ǫ)λn

where dist1H denotes the Hausdorff metric on subsets of C1[0, tc − ǫ].

Proof. Given any γ ∈ Fc, let η ∈ Fn be the curve constructed in the proof of
Theorem 12.4. Let t ∈ [0, tc − ǫ]. By Lemma 7.3, η′(t) is exponentially close to
Lc(η(t)). Since γ(t) and η(t) are exponentially close and Lc is Hölder in Ws(B) (see
Proposition 9.13) γ′(t) = Lc(γ(t)) and Lc(η(t)) are also exponentially close. �

12.5. Holonomy and the transverse measure.

12.5.1. Regularity of the holonomy.

Proposition 12.7. All holonomy transformations gt, 0 ≤ t < 1, are uniformly
1
2 -Hölder continuous homeomorphisms. If y = gt(x) ∈ Ws(B) then gt is a C∞

local diffeomorphism near x.

Proof. Let us take an interval J ⊂ B, and let Jt = gt(J). Since R(z) = z4 on
B, there is an n ∈ N such that Rn(J) covers T at least once, but no more than
four times. Then the same is true for Rn(Jt). Hence the horizontal length of both
intervals Rn(J) and Rn(Jt) is squeezed in between 2π and 8π. It follows that
l(J) ≍ 4−n, while l(Jt) = O(2−n) with from Theorem 8.1. Hence l(Jt) = O(l(J)σ)
with σ = 1

2 .
Since the gt : T → Tt are continuous bijections on a compact space, they are

homeomorphisms. The last assertion follows from C∞ smoothness of the foliation
Fc|Ws(B) = Fs(B) (Proposition 9.13). �

At the top of the cylinder, the holonomy degenerates to the Devil Staircase:
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Proposition 12.8. As t → 1, the holonomy maps gt uniformly converge to the
map g1 that collapse the bottoms BΛ(α) of the central tongues to their tips α ∈ A.

Proof. Indeed, all the leaves that begin on the bottom BΛ(α) of the central tongue
Λ(α) merge at its tip α ∈ T . �

12.5.2. Balanced transverse measure. Recall also that a transverse invariant mea-
sure µ for F is a family of measures µt, t ∈ [0, 1), such that µt = (gt)∗(µ0).
Obviously, it is uniquely determined by µ0. It can be evaluated not only on gen-
uinely horizontal sections but on all local transversals to Fc, in particular, on all
almost horizontal curves.

The transverse measure µ for which µ0 is the normalized Lebesgue measure
dφ/2π will be called balanced. For t ∈ [0, 1), we let

Ot = {x = (φ, t) ∈ C : x ∈ Ws(B)}, Kt = T rOt.

Remark that Kt has positive Lebesgue measure for any t > tc and that its measure
tends to 2π as t → 1. This follows from the fact that Ws(T ) ∩ Tt ⊂ Kt and
Corollary 10.4. Meanwhile, Lemma 9.1 gives that Ot is a dense open set, hence Kt

is nowhere dense.
Let us also use a special notation for the horizontal expansion factor:

(12.1) λh(x) :=
∂(φ ◦ R)

∂φ
(x),

equal to the upper-left entry of the Jacobi matrix DR. Note that the transverse
measure dµ = ρ dφ/2π is transformed by the rule

(12.2)
∂(R∗µ)

∂µ
= λh(x)

ρ(Rx)
ρ(x)

, x ∈ Ws(B).

Proposition 12.9. Let µ be the balanced transverse measure on the central foliation
Fc. For any t ∈ [0, 1), the measure µt is absolutely continuous and µt(Ot) = 1. Its
density ρt is positive and C∞ on each component of Ot. Moreover, for any almost
horizontal curve γ we have the transfer rule:

(12.3) µ(R(γ)) = 4µ(γ), or equivalently: 4ρ(x) = λh(x) ρ(Rx), x ∈ Ws(B).
Proof. By Proposition 9.7 (v), µ is supported on the union of stable tongues Υk(α),
hence µt(Ot) = 1. By the second assertion of Proposition 12.7, µt has a positive
C∞ density on Ot.

Property (12.3) is obviously satisfied for the Lebesgue measure on B. By holo-
nomy invariance of µ, it is satisfied for any almost horizontal curve. The equivalent
formulation in terms of the density ρ comes from (12.2). �

Corollary 12.10. The holonomy maps gt : B → Tt are absolutely continuous,
while the inverse maps g−1

t are not for t > tc.

Proof. Absolute continuity of gt is equivalent to absolute continuity of the push-
forward measure µt = (gt)∗µ0, so Proposition 12.9 implies the first assertion.

On the other hand, by Theorem 10.3, the complement to the stable tongues on
any section Tt, t > tc, has positive measure, while on the bottom B, it has measure
zero (by Proposition 9.7 (v)). This yields the second assertion. �

At the top, the transverse measure becomes purely atomic:
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Proposition 12.11. As t → 1, the distributions µt weakly converge to the distri-
bution µ1 supported on the pre-indeterminacy set A that assigns to a point α ∈ An

weight 1/4n+1.

Proof. This follows from Proposition 12.8, taking into account that µ0(BΛ(α)) =

1/4n+1. �

12.6. High-temperature hairs and critical temperatures. As usual, we pa-
rameterize each γ ∈ Fc by temperature t. Every γ ∈ Fc r {I±π/2} maps by R
homeomorphically onto R(γ), so there are temperatures 0 < t−γ ≤ t+γ ≤ 1 so that

γ ∩Ws(B) = γ[0, t−γ ) and

γ ∩Ws(T ) = γ(t+γ , 1] or γ[t
+
γ , 1].

We call hγ := γ ∩ Ws(T ) the high-temperature hair contained in γ. Recall the
notion of Cantor bouquet introduced in §10.1.
Proposition 12.12. Ws(T ) is a Cantor bouquet containing all of the bouquets
that were constructed in §10.1.

We call eγ := γ(t+γ ) the endpoint of hγ and cγ := γ([t−γ , t
+
γ ]) the critical temper-

atures of γ. Let

E :=
⋃

γ

eγ and C :=
⋃

γ

cγ

Each is an R invariant set.

Proposition 12.13. The set of critical temperatures C has zero Lebesgue measure.

Proof. By construction, the high temperature hair through any x ∈ Ws,o
0 (T ) ex-

tends below x. Therefore, C lies in the complement of Ws(B)∪Ws,o
0 (T ) so that it

has measure 0 by Theorem 11.1. �

Corollary 12.14. The set of endpoints to the high-temperature hairs E has zero
Lebesgue measure.

12.7. Summary of the proof of Main Theorem (dynamical version). At
this point we have completed the proof of the Main Theorem (dynamical version).
Let us summarize: In §7 we proved that R : C1 → C1 admits a dominated splitting
and in §8 we proved that R : C1 → C1 is horizontally expanding. Together, these
properties give that R : C1 → C1 is partially hyperbolic. In §12.1 we proved that
there is a unique central foliation Fc. In §9.7 we proved that Fc is C∞ in Ws(B).
The assertion that Fc is not absolutely continuous on Ws(T ) is proved in Corollary
12.10.

The assertion that the pullback (Rn)∗γ of a proper vertical curve γ on C consists
of 4n proper vertical curves was proved in Lemma 6.2 and that (Rn)∗γ converges
exponentially fast to Fc was proved in §12.4.

Finally, the assertions about Ws(B) being open and dense in C, Ws(T ) being of
positive area, and their union being of full area in C are proved in §9, §10, and §11,
respectively. �

13. Lee-Yang Distributions, Critical exponents, and Local Rigidity

Now, having plowed hard in the RG dynamical cylinder, let us collect the physics
harvest:
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13.1. Lee-Yang Distributions. Recall from §1.3 that the Lee-Yang locus Sn of
level n is equal to the pullback (Rn)∗S0 of the principal LY locus S ≡ S0 (3.8). By
Theorem 12.4, these loci converge exponentially fast to the central foliation Fc.

Moreover, on the bottom B the Lee-Yang zeros are obviously asymptotically
equidistributed with respect to the Lebesgue measure µ0. It follows that on the
circle Tt, they are asymptotically equidistributed with respect to the measure
(gt)∗(µ0) = µt, which is the balanced transverse measure for Fc.

13.2. Critical Exponents. Let x = (z, t) ∈ C rWs(B) (so that the density ρt of
the transverse measure µt vanishes at x). If

(13.1) µt(J) ≍ |J |σh+1 for a horizontal interval J containing x on its boundary,

then σh = σh(x) is called the horizontal critical exponent of the transverse measure
at x (on the left- or right-hand side of x, depending on J – if we do not specify the
side, it means that the critical exponent exists on both sides).

Let additionally, x lie on the boundary point of Fc(x)∩Ws(B) (in other words,
let all points on the central leaf Fc(x) below x converge to the bottom of the
cylinder). If

(13.2) ρ(y) ≍ dist(x, y)σ
v

for y ∈ Fc(x) below x,

then σv is called the vertical critical exponent of the transverse measure at x.
Let x be a periodic point for R of period p with multipliers λu > λc. Here

the unstable multiplier λu corresponds to the eigenvector of DRp
x in the horizontal

cone Kh(x), while the central multiplier corresponds to the eigenvector tangent
to the central leaf Fc(x). The inequality between the multipliers follows from
the dominated splitting. Also, λu > 1 because of the horizontal expansion. The
corresponding characteristic exponents at x are defined as

χu(x) =
1

p
log λu, χc(x) =

1

p
log λc.

Proposition 13.1. Let x be a periodic point for R of period p with the character-
istic exponents χu and χc. Then

(13.3) σh(x) =
log 4

χu
− 1.

Moreover, if x is a boundary point of some component J of the basin Ot, then

(13.4) ρt(y) ≍ dist(x, y)σ
h

, y ∈ J near x.

If x is the boundary point of Fc(x) ∩Ws(B) and χc(x) > 0, then

(13.5) σv(x) =
log 4− χu

χc
.

Proof. Given a horizontal interval J ∋ x, let us apply to it an iterate Rn that
stretches J to a horizontal curve that wraps around the cylinder at least once but
at most four times. Then both lh(Rn(J)) and µ(Rn(J)) are comparable with 1.

On the other hand, lh(Rn(J)) ≍ exp(nχu)|J | while µ(Rn(J)) = 4nµt(J). Hence
µt(J) ≍ |J |σ+1 with exponent σ = log 4/χu − 1. This proves (13.3).

Let us prove (13.4). Iterating the transfer rule (12.3), we obtain:

(13.6) 4nρ(y) = λhn(y) ρ(Rny), where λhn(y) =

n−1∏

k=0

λh(Rky).
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Let y ∈ J be a point near x. Because of the horizontal expansion, we can find an
iterate Rn such that disth(Rnx,Rny) ≍ 1. Then ρ(Rny) ≍ 1, while λhn(y) ≍
exp(nχu(x)). Incorporating these into (13.6), we obtain:

ρ(y) ≍ exp(n(χu − log 4)).

On the other hand, dist(x, y) ≍ exp(−nχu(x)), and (13.4) follows.
To prove (13.5), take a point y ∈ Fc(x) below x. Then y ∈ Ws(B) since x lies

on the boundary of Fc(x) ∩ Ws(B). Hence we can find an iterate Rn such that
distc(Rnx,Rny) ≍ 1. However, in this case x repels y at exponential rate with
exponent χc, so dist(x, y) ≍ exp(−nχc(x)), and (13.5) follows. �

Corollary 13.2. The horizontal and vertical critical exponents at the fixed point
βc = (0, tc) ∈ I0 are equal to σh(βc) = 0.0643 . . . and σv(βc) = 0.162 . . ..

Proof. DR(βc) has eigenvalues λu = 4
t2c+1 and λc =

8tc(1−t
2
c)

(t2c+1)3 , corresponding to

the purely horizontal and vertical directions. The result then follows from (13.4),
(13.5), and tc = 0.296 . . .. �

One can define the critical exponents at a point x ∈ Ws(T ) in a weak sense:

σh(x) = lim
|J|→0

log µ(J)

log |J | − 1, σv(x) = lim
y→x

log ρ(y)

log dist(x, y)

(if the limits exist), where the meaning of J and y ∈ Fc(x) ∩Ws(x) are the same
as in formulas (13.1), (13.2). These critical exponents can be expressed in terms of
the unstable and central Lyapunov exponents

χh(x) = lim
n→∞

1

n
log λhn(x), χc(x) = lim

n→∞

1

n
log λcn(x)

by the same formulas as in the case of periodic points:

Proposition 13.3. Let x ∈ CrWs(B) be a point with the unstable Lyapunov expo-
nent χu. Then the horizontal critical exponent σh(x) exists in the weak sense and
is given by formula (13.3). Moreover, if x is a boundary point of some component
J of the basin Ot, then

(13.7) σh(x) = lim
log ρt(y)

log dist(x, y)
as y → x, y ∈ J.

If x is the boundary point of Fc(x) ∩ Ws(B) and the central Lyapunov exponent
χc(x) exists and positive, then the vertical critical exponent σv(x) exists in the weak
sense and is given by formula (13.5).

The proof mimics that of Proposition 13.1.

Corollary 13.4. For every x ∈ CrWs(B) at which σh(x) exists we have σh(x) ≤ 1.
Moreover, equality holds at Lebesgue almost every such x.

Proof. Theorem 8.1 gives that R is horizontally expanding with rate λ = 2, imply-
ing the upper bound. The second statement follows by combining Corollary 11.2
with Proposition 13.3. �
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13.3. Summary of the proof of Main Theorem (physical version). We have
now completed the proof of the Main Theorem (physical version). Let us summa-
rize: The assertion that the limiting distribution of Lee-Yang zeros µt(φ) exists, is
absolutely continuous with respect to the Lebesgue measure (for 0 ≤ t < 1), and
the properties of its density and its degeneration as t → 1 follow from the discus-
sion on §13.1 and the properties of the balanced transverse measure established in
§12.5. Finally, the statement about the critical exponent σ ≡ σh is established in
Corollary 13.2. �

Remark 13.1. As mentioned in §2.6, existence of the limiting distribution µt (with-
out absolute continuity or any of the other properties discussed above) follows
directly from existence of the thermodynamic limit for the Ising Model on the DHL
(Proposition 2.4) combined with Proposition 2.2.

13.4. Local Rigidity. Recall the notion of local rigidity introduced in §1.2.
Proposition 13.5. The Lee-Yang zeros for the DHL are locally rigid at any point
where the limiting density is positive ρ(φ, t) > 0.

Proof. The Lee-Yang zeros φnk (t) of level n on Tt are the solutions to

hnt (φ) :=
1

2 · 4n f1 ◦ R
n(φ, t) =

πk

4n
+

π

2 · 4n , k = 0, 1, . . . 2 · 4n − 1,(13.8)

where f1 : C1 → T is the first coordinate of the mapping f given in (3.3). Notice
that f1 is a degree 2 map tangent to 2φ on B.

Fix a point x = (φ∗, t) ∈ Ws(B) and a closed horizontal interval Jt ⊂ Ot
containing x in its interior.

By Lemma 9.16, the maps hnt converge in the C1 topology on Jt to the Böttcher
coordinate Φt(·) ≡ Φ(·, t). Since ∂Φ/∂φ 6= 0, the maps hnt are invertible on Jt for
sufficiently large n. Let gnt : J0 → Jt be the inverse (where J0 := hnt (Jt) ⊂ B). Since
the holonomy map gt is the inverse of Φt, we conclude that (gnt )

′ → g′t uniformly
on J0.

For each n, let φnl be the Lee-Yang zero that is closest to φ∗. We will show that
the rescaled Lee-Yang zeros

snk =
2 · 4n
2π

ρt(φ∗)
(
φnl+k − φnl

)
,(13.9)

converge locally uniformly to the integer lattice Z.
After fixing k, φnl+k and φnl will be in Jt for all n sufficiently large. The Mean

Value Theorem gives

φnl+k − φnl = (gnt )
′(ψnk )

2πk

2 · 4n ,(13.10)

where ψnk is between πl
4n + π

2·4n and π(l+k)
4n + π

2·4n .
Equation (13.9) becomes

snk = k · (g−1
t )′(φ∗) · (gnt )′(ψnk ),(13.11)

since ρt(φ∗) = (g−1
t )′(φ∗). For fixed k

limψnk = Φt(φ∗) = (gt)
−1(φ∗).

Thus, (gnt )
′(ψnk ) → g′t((gt)

−1φ∗) giving that snk → k. �
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14. Periodic Leaves

Let us distinguish between two distinct types of leaves γ ⊂ Fc that are periodic
under R. We say that a periodic leaf γ is regular if γ ∩ T is a periodic point. If γ
is a periodic leaf that is not regular, then γ ∩ T is in the preindeterminacy set A.

Associated to any periodic point x1 ∈ T is a regular periodic leaf meeting T
at x1. Meanwhile, associated to any periodic point x0 ∈ B there is a periodic leaf
meeting B at x0, which need not be regular—since almost every point in B is in the
union of the stable tongues, it is quite common to obtain a singular periodic leaf
from a periodic x0 ∈ B.

The periodic points x0 and x1 at the bottom and top of a regular periodic
leaf γ are horizontally repelling and vertically (super) attracting. They have real-
analytic (super) stable manifolds Ws(x0), Ws(x1), which extend slightly below B
and above T , respectively. The high-temperature hair hγ = Ws(x1)∩C and the low-
temperature hair lγ := Ws(x0)∩C are both real-analytic and non-trivial. Therefore,
the smoothness of a regular periodic leaf γ is determined within its critical points
cγ = γ r (hγ ∪ lγ).

Proposition 14.1. Suppose that γ ∈ Fc is a regular periodic leaf of prime period
k > 1. Then, γ is not real-analytic.

The assumption that k > 1 is necessary, since the vertical interval I0 is a regular
periodic leaf of period 1. The assumption that γ is a regular periodic leaf is also
necessary, because there are many periodic leaves contained entirely within Ws(B)
that are real-analytic.

Proof. We suppose that γ is a regular periodic leaf, of prime period k > 1, that
is real-analytic. Let x0 and x1 be the periodic points at the bottom and top of γ,
respectively. We extend γ analytically slightly below x0 and above x1 and then take
a complexification γC, chosen sufficiently small so that it is an embedded complex
disc.

Let xc = γ(t−γ ) be the periodic point “at the bottom of cγ”. It has one-
dimensional central direction and one-dimensional unstable direction, with mul-
tipliers 1 ≤ λc < λu. Any small piece of γ containing xc in its interior will be a
central manifold Wc

loc(xc). Similarly, an open disc from γC containing xc will form
a complex analytic central manifold Wc

C,loc(xc).

Consider the case that xc is vertically repelling: λc > 1. Let ρ0 : D → Wc
C,loc(xc)

be a local linearizing coordinate, i.e. ρ0(λcx) = Rk(ρ0(x)). It can be globalized to
form a non constant ρ : C → CP2 satisfying ρ(λcx) = Rk(ρ(x)) that is given by

ρ(x) := lim
n→∞

Rn·k(ρ0(x/λ
n
c )).

Suppose Rl(ρ0(x∗/λ
n
c )) lands on an indeterminacy point for some x∗ ∈ C. After

taking appropriate blow-ups at the indeterminate point, R extends to some holo-
morphic R̃. (See Appendix A.2.) The image under Rl(ρ0(x/λ

n
c )) of some complex

disc D containing x∗ lifts to the blown-up space via the proper transform, inter-
secting the exceptional divisor in a single point. We define the next iterate on this
disc using R̃. This definition coincides with Rl+1(ρ0(x/λ

n
c )) on Dr{x∗} and gives

a holomorphic extension through x∗.
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A global central “manifold” W ≡ Wc
C,glob(xc), invariant under Rk, is given

by ρ(C). A-priori, W can be wild, possibly accumulating on itself and/or intersect-
ing itself countably many times. However, we will show that W can be compactified
to form an algebraic curve.

Given x, y ∈ C, let x ∼ y if ρ(x) = ρ(y) and there exist neighborhoods Nx and
Ny such that the images ρ(Nx) and ρ(Ny) coincide. If x and y are both regular
points of ρ, this definition coincides with requiring that ρ(x) = ρ(y) and that
there be a biholomorphism h : Nx → Ny so that ρ|Nx

= ρ|Ny
◦ h. (In fact, ∼ is

obtained by extending this description at regular points to all of C×C by taking the
closure.) We will now show that Ŵ = C/ ∼ can naturally be given the structure

of a Riemann surface in such a way that the map ρ̂ : Ŵ → W that is induced by ρ
and the projection π : C → Ŵ are holomorphic.

We will use local sections of π to define charts on Ŵ. Let S ⊂ C be the set of
critical points of ρ. Suppose w0 ∈ Ŵ and r ∈ π−1(w0)\S. Then, the corresponding
local section of π defines a chart in a neighborhood of w0.

Now suppose s ∈ π−1(w0) ∩ S. Let Ns be a small neighborhood of s such that
Ns ∩ S = {s}. Then there is a sequence of blowups over ρ(s) so that ρ lifts to a

mapping ρ̃ : Ns → C̃P2 whose image ρ̃(Ns) is a smooth holomorphic disc intersect-
ing the exceptional divisor over ρ(s) in a single point. Then, ρ̃ : Ns → ρ̃(Ns) is
given by z 7→ zd, for some integer d ≥ 0, in suitable local coordinates on Ns and
on ρ̃(Ns). Therefore, the identifications made by ∼ in Ns are the same as those
by z 7→ zd. We can now make Ns smaller, if necessary, so that Ns is a round
disc in the z coordinate. We define a chart on the neighborhood π(Ns) of w0 by
w 7→ ((π|Ns

)−1(w))d. By the previous discussion, the resulting map is well-defined
and a homeomorphism from π(Ns) to a disc.

Because of the description of ∼ away from critical points of ρ, any two such charts
are holomorphically compatible away from at most two possible bad points, which
would correspond to the centers of the discs π(Ns) in the second construction. Since
the charts differ by a homeomorphism, the result extends holomorphically across
these points. This gives Ŵ the structure of a Riemann surface such that π and the
induced map ρ̂ are holomorphic.

Because of the identifications we’ve made, the action of Rk : W → W can be
lifted (in the natural way) to R̂k : Ŵ → Ŵ . Notice that π(0) ∈ Ŵ is a repelling

fixed point under R̂k so that Ŵ is non-hyperbolic.
Let Û = {x ∈ Ŵ : ρ̂ maps a neighborhood of x into γC}, which is non-empty

since ρ(D) ⊂ γC. Let U = ρ̂(Û) ⊂ γC. The identifications we’ve made when

forming Ŵ imply that ρ̂ : Û → U is biholomorphic. Consider the larger Riemann
surface V := Ŵ ∪ρ̂ γC, where x ∈ Ŵ and y ∈ γC are identified if ρ̂(x) = y with some

neighborhood of x in Ŵ mapping by ρ̂ into γC. The natural inclusion ι : Ŵ → V
is holomorphic. Since Ŵ is not hyperbolic, ι can omit at most two points of V .
This implies that γC \U consists of at most two points. In particular, there are no
omitted points in γC\{x0, x1} near x0 and x1. So, there are two punctured discs U0

and U1 ⊂ γC having x0 and x1 as their punctures, respectively, and two punctured
discs Û0 and Û1 ⊂ Ŵ mapped biholomorphically by ρ̂ to U0 and U1, respectively.

Since β0 is the only point in L0 having an iterated preimage under R outside of
L0, it is the only point that can possibly be in W ∩ L0. By assumption, x0 6= β0,
so there is no point in Ŵ mapping to x0. Thus, the puncture in Û0 corresponds to
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an actual puncture in Ŵ. Let Ŵ0 ≡ Ŵ ∪ {w0} be the Riemann surface obtained

by filling in this puncture. Both ρ̂ and R̂k extends to Ŵ0, with ρ̂(w0) = x0 and

R̂k(w0) = w0.

Since Ŵ is non-hyperbolic with at least one puncture, Ŵ0 is biholomorphic to
either C or CP1. In either case, R̂k : Ŵ0 → Ŵ0 has a degree. (If Ŵ0

∼= C, the
action of R̂k is polynomial, since any point has finitely many preimages under R̂k.)

Since w0 is totally invariant under R̂k, with a neighborhood mapped to itself with
degree 2k, we see that Rk : Ŵ0 → Ŵ0 has degree 2k.

If there were a point w1 ∈ Ŵ0 filling the puncture in Û1, it would satisfy
ρ̂(w1) = x1, and the local degree of R̂k at w1 would be 2k. However, if x1 ∈ W,
there must be iterated preimages of x1 under Rk in W converging to xc, violat-
ing that the total degree of R̂k : Ŵ0 → Ŵ0 is 2k. Therefore, the puncture in
Û1 corresponds to an actual puncture in Ŵ0. We let Ŵ0,1 ≡ Ŵ0 ∪ {w1} be the
Riemann surface obtained by filling this puncture. The parameterization ρ̂ extends
holomorphically to Ŵ0,1.

Since Ŵ is non-hyperbolic and has two punctures, it is biholomorphic to the
twice punctured Riemann sphere. Therefore, Ŵ0,1 is biholomorphic to the Rie-

mann Sphere and W = ρ̂
(
Ŵ0,1

)
= W ∪ {x0, x1} is a compact analytic curve.

Chow’s Theorem (see, e.g., [GH]) gives that W is therefore algebraic. Since it is
parameterized by a connected curve, W is irreducible.

One local branch of W at x0 is Ws
C,loc(x0), which intersects L0 perpendicularly.

If W had degree 1, then it would intersect T at the single point (φ0, 1), where
x0 = (φ0, 0). Since φ0 has prime period k > 1 under angle quadrupling, it has
prime period 2k under angle doubling. This contradicts that W intersects T at x1,
a point of prime period k.

Therefore, Bezout’s Theorem gives a second intersection of W with L0. It cor-
responds to some disc in Ŵ , disjoint from Û0, whose image under ρ̂ intersects L0.
Such an intersection point must then have iterated preimages under Rk converg-
ing to xc. However, the only point of B having iterated preimages outside of B is
the fixed point β0. We conclude that W intersects L0 at β0. Meanwhile, W does
not contain either of the invariant separatrices {z = 1} and {t = 0} since it is
irreducible and contains the point xc that is on neither separatrix. Therefore, the
dynamics near β0 would result in infinitely many branches, which is impossible.

Suppose that xc is vertically neutral. Then, within Wc
loc,C(xc) is some repelling

petal P for the parabolic point xc. Then there is some open H ⊂ C containing a
left half-space with Fatou coordinate ρ0 : H → P a conformal isomorphism that
satisfies ρ0(x+ 1) = Rk(ρ0(x)). We define ρ : C → CP2 by

ρ(x) = lim
n→∞

Rn·k(ρ0(x− n)).

The composition extends through indeterminate points of R in the same way as in
the repelling case.

Then, ρ(C) ⊂ CP2 is forward invariant under Rk and contains P, which is an
open subset of γC. As in the repelling case, one can compactify ρ(C) to form
a periodic algebraic curve. This again leads to an intersection with β0, and a
contradiction. �
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Remark 14.1. Artur Avila has shown that for almost all points x = (φ, 1) on the
top T , the leaf landing at x is not real analytic [Av].

Proposition 14.2. Suppose that γ is a regular periodic leaf (of prime period k > 1)
containing no vertically neutral periodic points. Then, γ has a finite degree of
smoothness.

Proof. Let γm = γ([0, tm]) be the maximal real-analytic piece of γ extending from
B. By Proposition 14.1, γm ( γ, with xm := γ(tm) a periodic point of prime
period k.

By hypothesis, λc(xm) 6= 1. Furthermore, xm cannot be vertically attracting,
since the stable manifold Ws(xm) would be a real-analytic curve within γ that
extends above and below xm. Therefore, xm is vertically repelling.

Suppose that xm is linearizable. Then, R is conjugate to the linear map (u, v) 7→
(λuu, λcv). Any central invariant manifold has the form

u =

{
C1v

α if v ≥ 0, and

C2v
α if v < 0,

where α = log(λu)/ log(λc). By the choice of xm, the central manifold that is
formed by γ is not analytic at xm, therefore it does not correspond to C1 = C2 = 0
or, if α ∈ N, to C1 = C2. In the remaining cases, the central manifold is not of
class Cr, where r − 1 < α ≤ r.

Since λc, λu > 1, we are in the Poincaré domain, with the only obstruction to
linearization being a resonance of the form λrc = λu for some r ∈ N. Thus, if xm
is not linearizable, the Poincaré-Dulac Theorem gives that in some neighborhood
U ⊂ C of xm, R is real-analytically conjugate to the normal form

(u, v) 7→ (λuu+ avr, λcv)

with a 6= 0. (See, e.g. [IY].)
Any central manifold is given by u = g(v). Invariance gives:

avr = g(λcv)− λug(v) = g(λcv)− λrcg(v)

Differentiating r and r + 1 times, respectively, one finds

ar!/λrc = g(r)(λcv)− g(r)(v), and(14.1)

0 = λcg
(r+1)(λcv)− g(r+1)(v).(14.2)

By (14.2), either g(r+1)(v) ≡ 0, or it is undefined at v = 0. In the former case,
substitution of g(r)(v) ≡ C into (14.1) gives a contradiction. Thus, the central
manifold is not of class Cr+1. �

Since the leaves of Fc are obtained by integrating the continuous line field Lc(x),
they are all at least C1 smooth. In fact, the regular periodic leaves have a slightly
better smoothness:

Proposition 14.3. Any regular periodic leaf γ ∈ Fc is C1+δ for some δ > 0.

Proof. It suffices to show that the line field Lc is Hölder on γ with exponent δ.
Replacing R with an iterate of itself (keeping the same notation) we can assume

that γ is invariant. Below, the inverse map R−1 will stand for (R|γ)−1.
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For any x, y ∈ γ and two parallel tangent lines X ∈ Kv(x), Y ′ ∈ Kv(y) we have
a Lipschitz estimate:

dista(DR−1X,DR−1Y ′) ≤ M dist(x, y),

where dista denotes the angular distance.
On the other hand, Lemma 7.3 implies that there exists σ ∈ (0, 1) so that for

any vertical lines Y ′, Y ∈ Kv(y) we have

dista(DR−1Y ′, DR−1Y ) ≤ σ dista(Y
′, Y )

Putting the last two estimates together, we obtain

dista(DR−1X,DR−1Y ) ≤ σ dista(X,Y ) +M dist(x, y)

for any X ∈ Kv(x), Y ∈ Kv(y). Iterating this estimate in the backward time we
obtain33:
(14.3)

dista(DR−nX,DR−nY ) ≤ Mdn(x, y)

1− σ
, where dn(x, y) = max

0≤k≤n−1
dist(R−kx,R−ky),

as long as dista(X,Y ) < d/(1− σ). (We can always start with parallel X and Y ).

Let now K be a Lipschitz constant for R|γ, and let K1 > max(K, 1). Take two
nearby points α, β,∈ γ and find n such that

K−n
1 ≤ dist(α, β) < K

−(n−1)
1 .(14.4)

Letting x = Rnα, y = Rnβ, we obtain

(14.5) dn(x, y) ≤ Kn dist(α, β) ≤ K1κ
n, where κ = K/K1 < 1.

By (14.3), we have
dista(DR−nX,DR−nY ) = O(κn).

But according to Proposition 7.1, DR−nX is exponentially close to the tangent
line Lv(α) to γ at α, and likewise DR−nY is exponentially close to the tangent line
Lv(β). Hence

dista(Lv(α),Lv(β)) = O(ηn) for some η ∈ (0, 1).

Together with (14.4), this implies that

dista(Lv(α),Lv(β)) ≤ C dist(α, β)δ, with δ =
logK1

log(1/κ)
.

�

Remark 14.2. The above argument applies to any vertical leaf whose forward orbit
stays away from the points of indeterminacy α±. The problem with other leaves is
that the Lipschitz estimate for R|γ may fail for leaves γ passing through α because
of the big expansion near the α±.

Appendix A. Elements of complex geometry

We are primarily interested in rational maps between complex projective spaces
in two dimensions. However, in order to understand the behavior near indetermi-
nate points, we will need a discussion at somewhat greater generality. Much of the
below material can be found in with greater detail in [Da, De, GH, Shaf].

33The simplest way to see it is to notice that the iterates are bounded by the fixed point of

the linear map x 7→ σx+Md.
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A.1. Projective varieties and rational maps. Let π : Ck+1 r {0} → CPk

denote the canonical projection. Given z ∈ CPk, any ẑ ∈ π−1(z) is called a lift of z.

One calls V ⊂ CPk a (projective) algebraic hypersurface if there is a homogeneous
polynomial p̂ : Ck+1 → C so that

V = z ∈ CPk : p̂(ẑ) = 0.

More generally, a (projective) algebraic variety is the locus satisfying a finite number
projective polynomial equations. Any algebraic variety V has the structure of a
smooth manifold away from a proper subvariety Vsing ⊂ V and the dimension of
V r Vsing is called the dimension of V .

A rational map R : CPk → CPl is given by a homogeneous polynomial map
R̂ : Ck+1 → Cl+1 for which we will assume the components have no common
factors. One defines R(z) := π(R̂(ẑ)) if R̂(ẑ) 6= 0, and otherwise we say that z

is an indeterminacy point for R. Since R̂ is homogeneous, the above notions are
well-defined. Because the components of R̂ have no common factors, the set of
indeterminate points I(R) is a projective variety of codimension greater than or
equal to two.

Given two projective varieties, V ⊂ CPk and W ⊂ CPl, a rational map R : V →
W is the restriction of a rational map R : CPk → CPl such that R(V r I(R)) ⊂W .
As above, I(R) ⊂ V is a projective subvariety of codimension greater than or equal
to two in V . If I(R) = ∅, we say that R is a (globally) holomorphic (regular) map.

A rational mapping R : V → W between non-singular varieties is dominant if
there is a point z ∈ V r I(R) such that rankDR(z) = dimW .

We will call a subvariety U ⊂ V a collapsing variety34 if dim(R(U)) < dim(U).

Lemma A.1. Let R : V → W be a dominant rational map between projective
manifolds of the same dimension. If z is not an indeterminate point for R and not
on any collapsing variety for R, then R is locally surjective at z.

It is a consequence of the Weierstrass Preparation Theorem—see for example, [De,
Ch. II, §4.2] or [GH, Ch. 0.1].

A.2. Blow-ups. A non-singular variety of dimension two is called a projective sur-
face. Matters are simpler for maps R : V → W between projective surfaces since
I(R) is finite in this case. (We will refer to such maps as “rational surface maps”.)

Given a pointed projective surface (V, p), the blow-up of V at p is another pro-

jective surface Ṽ with a holomorphic projection π : Ṽ → V such that

• Lexc(p) := π−1(p) is a complex line CP1 called the exceptional divisor;

• π : Ṽ r Lexc(p) → V r {p} is a biholomorphic map.

See [GH, Shaf].
The construction has a local nature near p, so it is sufficient to provide it for

(C2, 0). The space of lines l ⊂ C2 passing through the origin is CP1 by definition.

Then C̃2 is realized as the surface X in C2×CP1 given by equation {(u, v) ∈ l} with
the natural projection (u, v, l) 7→ (u, v). In this model, points of the exceptional
divisor Lexc = {(0, 0, l) : l ∈ CP1} get interpreted as the directions l at which the
origin is approached.

34Algebraic geometers call such a variety “exceptional”. However this term has a conflicting
meaning in complex dynamics, where the “exceptional set of R” consists of the largest proper

algebraic variety that is completely invariant under R.
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Any line l ⊂ C2 naturally lifts to the “line” l̃ = {(u, v, l) : (u, v) ∈ l} in C̃2

crossing the exceptional divisor at (0, 0, l).35 Moreover, C̃2 r l̃ is isomorphic to C2.
Indeed, let φ(u, v) = au + bv a linear functional that determines l. It is linearly
independent with one of the coordinate functionals, say with v (so a 6= 0). Then

(u, v, l) 7→ (φ, κ := v/φ)

is a local chart that provides a desired isomorphism. In particular, two charts
corresponding to the coordinate axes in C2 provide us with local coordinates (u, κ =
v/u) and (v, κ = u/v) which are usually used in calculations.

The value of this construction lies in the fact that it can be used to resolve the
indeterminacy of a rational map, as follows:

Theorem A.2 (See [Shaf], Ch. IV, §3.3). Let R : V → W be a rational surface

map. Then there exists a sequence of blow-ups Vm
πm−−→ · · · π2−→ V1

π1−→ V so that
R lifts to a globally holomorphic map R̃ : Vm → W making the following diagram
commute36

Vm

π

��

R̃

!!

C

C

C

C

C

C

C

C

V
R

// W.

(A.1)

Here, π = π1 ◦ · · · ◦ πm.

Any analytic curve D on V lifts to an analytic curve D̃ := π−1(D r {p}) on Ṽ ,
known as the proper transform of D, which tends to have milder singularities than
D:

Theorem A.3. Let D be an irreducible curve on a non-singular projective surface

V . Then, there exist a sequence of blow-ups Vm
πm−−→ · · · π2−→ V1

π1−→ V so that the
proper transform of D̃ of D is a non-singular curve on Vm.

See [Shaf, Ch. IV, §4.1].

A.3. Divisors. Divisors are a generalization of algebraic hypersurfaces that behave
naturally under dominant rational maps. We will present an adaptation of material
from from [Da, Ch. 3], [F, §3], and [Shaf] suitable for our purposes.

A divisor D on a projective surface V is a collection of irreducible hypersurfaces
C1, . . . , Cr with assigned integer multiplicities k1, . . . , kr. One writes D as a formal
sum

D = k1C1 + · · ·+ krCr.(A.2)

Alternatively, D can be described by choosing an open cover {Ui} of V and rational
functions gi : Ui → C with the comparability property that gi/gj is a non-vanishing
holomorphic function on Ui∩Uj 6= ∅. Taking zeros and poles of the gi counted with
multiplicities, we obtain representation (A.2).

These two equivalent descriptions of divisors allow us to pull them back and
push them forward under rational maps: If f : V →W is a dominant holomorphic

35This turns C̃2 into a line bundle over CP1 known as the tautological line bundle.
36As with diagram (3.1), commutativity is only at points where all maps are defined.
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map, and D = {Ui, gi} is a divisor on W . The pullback f∗D is the divisor on V
given by {f−1Ui, f

∗gi} ≡ {f−1Ui, gi ◦ f}.
If f : V → W is a proper holomorphic map and D is an irreducible curve

on V we define its push-forward f∗D to be the divisor that assigns multiplicity37

degtop(f |D : D → f(D)) to the image curve f(D). (If f collapses D to a point, we
assign multiplicity 0.) This definition extends linearly to arbitrary divisors on V
expressed in form (A.2).

If R : V → W is a rational map having indeterminacy, we use Theorem A.2 to
define the pull-back and push forward of divisors by

R∗D1 := π∗R̃
∗D1 R∗D2 := R̃∗π

∗D2(A.3)

where D1 and D2 are divisors on W and V , respectively.
Alternatively, one can pull-back D under R : V r I(R) → W . Since I(R) is a

finite collection of points, the result (in terms of local defining functions) can be
extended trivially to obtain a divisor R∗D on all of V . Since the trivial extension
of a divisor is unique, this alternative definition agrees with the previous one.

Any hypersurface C can be triangulated as a singular cycle, thus to any divisor D
is an associated fundamental class [D] ∈ H2(V ). Representing D by local defining
functions allows us to associate a cohomology class (D) ∈ H2(V ) called its Chern
class; see [F]. Furthermore, [D] is the Poincaré dual of (D).

These classes are natural satisfying [f∗D1] = f∗[D1] and (f∗D2) = f∗(D2) for
any holomorphic map f : V →W . For a rational map R : V →W , we again have

[R∗D1] = R∗[D1] and (R∗D2) = R∗D2,(A.4)

using (A.3) at the level of homology and cohomology and also Poincaré duality.

A.4. Composition of rational maps. The algebraic degree of a rational map
R : CPk → CPl, denoted degR, is the degree of the coordinates of its lift R̂ :
Ck+1 → Cl+1.

The following statement appears in [Si, Prop. 1.4.3]:

Lemma A.4. Let R : CPk → CPl and S : CPl → CPm be rational maps. Then,
deg(S ◦ R) = deg(S) · deg(R) if and only if there is no algebraic hypersurface

V ⊂ CPk that is collapsed by R to an indeterminate point of S.

Remark A.1. To understand this phenomenon geometrically (for simplicity, in di-
mension two: k=l=m=2), let us consider the algebraic curve G to which the in-
determinacy point γ blows up under S. Then any line L must intersect G, and
hence S−1L passes through γ. It follows that V ⊂ R−1(S−1L). On the other hand,
V 6⊂ (S ◦ R)−1L (unless L ⊃ G, which may happen only for a special line). But
according to Lemma A.5 below,

degS · degR = deg(S−1(R−1L)), deg(S ◦R) = deg(S ◦R)−1L

So, components of V , possibly with multiplicities, account for the degree deficit.

37Note that it is possible for a non-generic point of f(V ) to have more than degtop(f : V → W )

preimages under f |V .
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A.5. Degree of divisors in CP2. Associated to any homogeneous polynomial p :
C3 → C is a divisor Dp given by {Ui, p ◦σi}, where the {Ui} form an open covering

of CP2 that admits local sections σi : Ui → C3 r {0} of the canonical projection
π. Furthermore, every divisor can be described as a difference D = Dp − Dq for
appropriate p and q. The following simple formula describes the pull-back:

R∗Dp = DR̂∗p ≡ Dp◦R̂.(A.5)

The degree of a divisor D = Dp − Dq is degD = deg p − deg q. Any complex
projective line L on which p does not identically vanish intersects the divisor Dp

exactly degDp times (counted with multiplicity), providing an alternative geometric
definition of degDp.

More generally, Bezout’s Theorem asserts that two divisors D1 and D2 intersect
degD1 · degD2 times in CP2, counted with appropriate intersection multiplicities.
Suppose that D1 and D2 are irreducible algebraic curves assigned multiplicity one.
Then, an intersection point z is assigned multiplicity one if and only if both curves
are non-singular at z, meeting transversally there. See [Shaf, Ch. IV].

There is an alternative, homological, definition for degD. Namely, any algebraic
curveD represents a class [D] ∈ H2(CP

2). Moreover, H2(CP
2) = Z and is generated

by the class [L] of any line L. Then we have

[D] = degD · [L](A.6)

Lemma A.5. Given a dominant rational map R : CP2 → CP2 and any divisor D
on CP2 we have:

deg(R∗D) = degR · degD, and(A.7)

deg(R∗D) = degR · degD.(A.8)

In particular, deg(R∗L) = deg(R∗L) = degR for any projective line L ⊂ CP2.

Proof. Equation (A.7) follows immediately from (A.5). To obtain (A.8) we make
use of the homological interpretation of degree (A.6). By (A.4), the push-forward
of divisors R∗ preserves homology, so it suffices to check (A.8) for any complex
projective line L.

We choose L disjoint from I(R) and we can assume that [0 : 0 : 1] 6∈ R(L). Let
ι : CP1 → CP2 be the inclusion of L into CP2 and pr : CP2 → CP1 the central
projection onto the line at infinity L∞ from the center [0 : 0 : 1]. Note that both
i∗ and pr∗ induce isomorphisms on the second homology.

We consider the composition pr ◦R ◦ ι : CP1 → CP1. By Lemma A.4,

deg(pr ◦R ◦ ι) = deg pr · degR · deg ι = degR,

since the image of ι avoids I(R) and the image of R ◦ ι avoids I(pr) = {[0 : 0 : 1]}.
Thus,

pr∗ ◦R∗[L] = pr∗ ◦R∗ ◦ ι∗[CP1] = deg(pr ◦R ◦ ι)[CP1] = degR · [CP1]

Since pr∗ : H2(CP
2) → H2(CP

1) is an isomorphism we find [R∗L] = degR · [L∞].
�

Remark A.2. Formulas (A.7) and (A.8) generalize to other varieties using the fact
that pull-back and push-forward (under suitable maps) preserve linear equivalence
of divisors, see [Da, Ch. 3 §5.2] and [F, §3.3].
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A.6. Iteration of rational maps. A rational mapping R : CP2 → CP2 is called
algebraically stable if there is no integer n and no collapsing hypersurface V ⊂ CP2

so that Rn(V ) is contained within the indeterminacy set of R, [Si, p. 109]. By
Lemma A.4, R is algebraically stable if and only if degRn = (degR)n. Together
with Lemma A.5, this yields:

Lemma A.6. If R is a dominant algebraically stable map and D is any divisor on
CP2 we have:

deg((Rn)∗D) = (degR)n · degD
deg((Rn)∗D) = (degR)n · degD

Appendix B. Renormalization near the indeterminacy points

B.1. Blow-ups. Below we calculate blow-ups for the renormalization in the affine
coordinates (u, v) and in the angular coordinates (φ, t).

B.1.1. Affine coordinates. Let us represent R as Q ◦ g where

g : (u,w) 7→
(
u2 + 1

u+ w
,
w2 + 1

u+ w

)

and Q : (u,w) 7→ (u2, w2). The indeterminacy points for R and g are the same,
a± = ±(i,−i). Because of the basic symmetry (u,w) 7→ (w, u), it is sufficient to
carry the calculation at a+ = (i,−i). In coordinates ξ = u−i and χ = (w+i)/(u−i),
we obtain the following expression for the map g̃ : C̃P

2 → CP2 near Lexc(a+):

(B.1) u =
ξ + 2i

1 + χ
, w =

χ2ξ − 2iχ

1 + χ
.

So Lexc(a+) = {ξ = 0} is mapped by g̃ biholomorphically onto the line

(B.2)

{
u =

2i

1 + χ
, w = − 2iχ

1 + χ

}
= {u− w = 2i}.

In other words, g blows up the indeterminacy point a+ to line (B.2). Notice that
this line connects a+ to the low-temperature fixed point b0 = (1 : 0 : 1) at infinity.
Its slice by the Hermitian plane C = {w = ū} (corresponding to the cylinder C) is
the horizontal line {Imu = 1}.

The lift R̃ of R to Lexc(a+) is given by R̃ = Q◦g̃, and hence obtained by squaring

the expressions for u and w in (B.1). The image of Lexc(a+) under R̃ is given by
G := Q({u− w = 2i}) = {(u− w)2 + 8(u+ w) + 16 = 0}.

B.1.2. Angular coordinates. (compare [BZ3, p. 419]). We will now calculate the
blow-up of R at the indeterminacy points α± in the angular coordinates (φ, t) on C.
As before, it suffices to consider α+. We let ǫ = π

2 − φ and τ = 1− t, and κ = τ/ǫ.
In the blow-up coordinates (ǫ, κ) we find:

(z′, t′) =

(−i+ κ− ǫ− ǫκ2/2

i+ κ− ǫ− ǫκ2/2
,

1− 2ǫκ

1 + κ2 − ǫ(2κ+ κ3)

)
+O(|ǫ|2),(B.3)

where the constant in the residual term depends on an upper bound on κ.
Thus

φ′ = −i log(z′) = −2 arcctg(κ− ǫ+ ǫκ2/2) +O(|ǫ|2).(B.4)
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Taking the limit as ǫ→ 0, we find:

(φ′, t′) =

(
−2 arcctg κ,

1

1 + κ2

)
(B.5)

Letting ω be the (complexified) angle between the collapsing line Iπ/2 and the line
with slope κ = − ctgω, we come up with expression (3.4) for the blow-up locus G.
(Notice that the blow-up loci for the maps f and R = f ◦Q coincide, since Q is a
local diffeomorphism.)

Recall that point α = (π, 1), which mapped by R to the high temperature fixed
point β1.

Lemma B.1. Let c > 0. If ζ = (ǫ, τ) ∈ C2 is sufficiently close to one of the
indeterminacy points α± with the slope κ = τ/ǫ sufficiently small and |ǫ−κ| ≥ c|ǫ|,
then

disth(R(x), α) ≍ |ǫ− κ|,
with the constant depending on c.

Proof. Indeed, under our assumptions, formula (B.4) implies |φ′ − π| ≍ |κ− ǫ|. �

B.2. The differential DR. Formula (3.6) implies the following explicit expression
for the differential DR at x = (φ, t) ∈ C:

(B.6) DR =
4

ζ2

(

ζ 0
0 1− t2

)(

1 + t2 cos 2φ − sin 2φ
−t2(1− t2) sin 2φ (1 + t2)(1 + cos 2φ)

)(

1 0
0 t

)

where ζ(x) = 1 + 2t2 cos 2φ+ t4.
Expanding it in τ = 1− t near T , we obtain:

DR =

(

2 +O(τ) −2 tg φ+O(τ)
−2τ2 tg φ (cosφ)−2 +O(τ3) 2τ(cosφ)−2 +O(τ2)

)

.(B.7)

In the ǫ = ±π/2 − φ coordinate near an indeterminacy point α± we obtain the
following asymptotic expression for the differential R : (ǫ, τ) 7→ (φ′, τ ′):

(B.8) DR ∼ 2

σ4

(
(ǫ2 + τ)σ2 −ǫσ2

−ǫτ2 τǫ2

)

where σ =
√
ǫ2 + τ2.

B.3. Horizontal stretching near T . Let us define the horizontal expansion fac-
tor λhmin(x) at x ∈ C r {α±} as

λhmin(x) = inf
v∈Kh(x)

D(π ◦ R)(v)

Dπ(v)
,(B.9)

where π(φ, t) = φ. Equivalently, consider an almost horizontal curve ξ through
x = (φ, t) naturally parameterized by the angular coordinate (by means of (π|ξ)−1).
Let

χ ≡ χξ = π ◦ R ◦ (π|ξ)−1.

Then
λhmin(x) = inf

ξ
χ′
ξ(φ).

The n-th horizontal expansion factor λhmin,n(x) is defined similarly, by replacing

D(π ◦ R) with D(π ◦ Rn) in (B.9).
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Lemma B.2. There exists λ0 > 0 so that for any x = (ǫ, τ) ∈ C r {α±} near one
of the indeterminacy points α± we have λhmin(x) ≥ λ0.

Moreover, given a slope κ̄ > 0, there exists λ1 > 0 such that if x = (ǫ, τ) also
satisfies |κ| ≡ |τ/ǫ| ≤ κ̄, then

λhmin(x) ≥ λ1

∣∣∣∣
κ+ ǫ

ǫ

∣∣∣∣ .

Proof. Take a horizontal vector v = (1, s) ∈ Kh(x) with slope s. By definition of

the horizontal cone field Kh, |s| ≤ max{
√
2τ , |ǫ|/3} (see §6.2, items (ii)-(iii) in the

definition of Kh). Applying the asymptotical expression (B.8), we obtain

χ′(φ) = D(π ◦ R)(1, s) = 2
ǫ2 + τ − sǫ

|σ|2

≥ 2

|σ|2 min{ǫ2 + τ − |ǫ|
√
2τ , (2/3)ǫ2 + τ} ≥ λ0

ǫ2 + τ

ǫ2 + τ2
≥ λ0.

The second to last estimate follows from positive definitiveness of the quadratic
form ǫ2 + τ − ǫ

√
2τ in ǫ and

√
τ . Finally,

ǫ2 + τ

ǫ2 + τ2
=

|κ+ ǫ|
|ǫ|(κ2 + 1)

≥ 1

κ̄2 + 1

∣∣∣∣
κ+ ǫ

ǫ

∣∣∣∣ ,

and the second estimate follows. �

Lemma B.3. There exists λ2 > 0 so that for any x ∈ Cr{α±} we have λhmin(x) ≥ λ2.

Proof. Away from {α±} this is true since the horizontal cones are transverse to the
critical lines I±π/2. Near {α±}, it follows from Lemma B.2. �

We now estimate horizontal expansion of vectors (and hence curves) taken with
respect to the algebraic cone field Kah. It will be useful to consider both upper and
lower bounds:

λahmin(x) = inf
v∈Kah(x)

D(π ◦ R)(v)

Dπ(v)
, and λahmax(x) = sup

v∈Kah(x)

D(π ◦ R)(v)

Dπ(v)
.

The n-th expansion factors λahmin,n(x) and λ
ah
max,n(x) are defined similarly. Note that

λahmin(x) ≥ λhmin(x), since Kah(x) ⊂ Kh(x). In particular the estimate of Lemma
B.2 also applies to λahmin(x).

Lemma B.4. For any δ > 0 there exist η > 0 and τ̄ > 0 such that for any x ∈ V ′

we have:

(2− δ) < λahmin(x) < λahmax(x) < (2 + δ).

Proof. The slope a vector v ∈ Kah(x) is bounded by
√
2τ , where τ = τ(x).

Near the indeterminacy points α± we can use (B.8) to bound from below the

horizontal stretching of the boundary tangent vector v = (1,±
√
2τ):

2
ǫ2 + τ − |ǫ|

√
2τ

ǫ2 + τ2
< D(π ◦ R)(1, s) < 2

ǫ2 + τ + |ǫ|
√
2τ

ǫ2 + τ2
.

Since x ∈ V ′, we have
√
2τ <

√
2η|ǫ| which gives:

(1−
√
2η)(ǫ2 + τ) ≤ ǫ2 + τ ± |ǫ|

√
2τ ≤ (1 +

√
2η)(ǫ2 + τ).
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Hence

2(1−
√
2η) ≤ D(π ◦ R)(1, s) ≤ 2(1 +

√
2η),

which can be made arbitrary close to 2 if one’s η is chosen sufficiently small.
Now suppose that v is based ǭ-away from α±. Then tg φ ≤ 2/ǭ and (B.7) implies:

2(1− 2
√
2τ/ǭ)(1 +O(τ)) ≤ D(π ◦ R)(1, s) ≤ 2(1 + 2

√
2τ/ǭ)(1 +O(τ)),(B.10)

which can be made arbitrary close to 2 by choosing τ small enough. �

Appendix C. Complex extension of the cone fields

C.1. Terminology and notation. Let Cc := (C/2π)×C be the complexification
of the full cylinder (R/2π)× R.

A real horizontal cone field over C is given as

K(x) = {v = (dt, dφ) ∈ TxC : |dt| < s(x) |dφ|} ⊂ TxC(C.1)

for an appropriate slope function s(x) ≥ 0.
The cones K(x) can be complexified to the complex cones Kc(x) ⊂ TxCc by means

of the same formula (C.1) where dφ and dt are interpreted as complex coordinates in
TxC. Notice that Kc(x) is obtained by rotating K(x) by multiplications v 7→ eiθv.
Since R commutes with this action, invariance of a real cone field K(x) implies
invariance of its complexification.

So, let us complexify the cone fieldKah(x) (for x ∈ C). (We will typically omit the
superscripts c from the complexification, to simplify the notation.) We can further
extend this cone field to a neighborhood of C in Cc by extending continuously the
slope function s. By continuity, the extension of Kah is invariant away from the top.
However, for the application to distortion control in §11, we will need an extension
that is invariant on a suitable “pinched” neighborhoods of the α±.

C.2. Complex extension of Kah. Define an extension of Kah ≡ Kah,c to Cc by
letting sa(ζ) =

√
|1− t2| =

√
|τ(2− τ)|. (When τ is real this coincides with (6.3).)

For ρ > 0, let

Ccρ := {(φ, t) ∈ Cc : | Imφ| < ρ, −ρ < Re t < 1 + ρ, and | Im t| < ρ}.(C.2)

To ensure invariance of the cone field Kah, we will need to appropriately “pinch”
Cc near the points of indeterminacy α±. Given θ > 0, let

N (θ) := {(ǫ, τ) : | arg ǫ (modπ)| < θ and | arg τ (mod 2π)| < θ} ∪ {|ǫ| < 1

2
|τ |)}.

(Note that in the first set, ǫ is allowed to be negative, while τ is not.) Furthermore,
let

Ccρ(θ) := {ζ = (ǫ, τ) ∈ Ccρ : ζ ∈ N (θ) whenever |ǫ| < ρ and |τ | < ρ}.
Proposition C.1. There exist ρ > 0 and θ > 0 sufficiently small so that if ζ ∈
Ccρ(θ) then

DR(Kah(ζ)) ⊂ Kah(Rζ).(C.3)

Proof. Since Kah(x) is invariant on the real cylinder C and non-degenerate on any
K ⋐ C1, the extension is invariant on a complex neighborhood of K. Thus, we need
only find ρ > 0 and θ > 0 sufficiently small so that (C.3) holds at points in Ccρ(δ)
with |τ | < ρ.
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For c slightly above
√
2, consider the following auxiliary complex conefield

K̂(ζ) = {v = (dt, dφ) ∈ TζCc : |dt| < c
√

|τ ||dφ|} ⊂ TζCc.(C.4)

If ρ > 0 is sufficiently small, then we have Kah(ζ) ⊂ K̂(ζ) for all ζ ∈ Ccρ. Hence

it is sufficient to verify that if ζ ∈ Ccρ(θ) with |τ(ζ)| < ρ, then we have R(K̂(ζ)) ⊂
Kah(Rζ). It will be shown in Lemmas C.2 and C.3 below. By symmetry, it suffices
to work near α+.

Lemma C.2 (Invariance near α±). There exist ρ > 0 and θ > 0 with the
following property. For any point ζ =

(
π
2 − ǫ, 1− τ

)
with |τ | < ρ and |ǫ| < ρ lying

in the pinched neighborhood N (θ) of α+ we have: DR(K̂(ζ)) ⋐ Kah(Rζ).
Proof. According to the blow-up formula (B.5), if ρ is sufficiently small then ζ is

mapped by R to a point with τ ′ ≈ κ2

1 + κ2
, where κ = τ/ǫ.

Let v = (1, s) be a complex tangent vector based at (τ, ǫ) with v ∈ cl(K̂(ζ)), i.e.,

|s| ≤ c
√

|τ |. We want to show that the slope s′ of the image vector DR(v) satisfies

|s′| <
√

|τ ′(2− τ ′)| ≈ |κ|
|1 + κ2|

√
|2 + κ2|.

Equation (B.8) from the Appendix B gives us the matrix A := (ǫ2+τ2)2

2 DR to
lowest order terms in ǫ and τ :

Av =

[
(τ + ǫ2 − sǫ)(τ2 + ǫ2)

−ǫτ2 + sǫ2τ

]

Thus

s′ ≈ ǫτ(sǫ− τ)

(τ2 + ǫ2)(τ + ǫ2 − sǫ)
=

|κ|
|1 + κ2|

sǫ− τ

τ + ǫ2 − sǫ

so that DR(K̂(ζ)) ⋐ Kah(Rζ) is equivalent to:
∣∣∣∣

sǫ− τ

τ + ǫ2 − sǫ

∣∣∣∣ <
√
|2 + κ2| whenever |s| ≤ c

√
|τ |.

The condition (ǫ, τ) ∈ N (θ) with θ sufficiently small implies
√
2 ≤

√
|2 + κ2|, so

it suffices to show that∣∣∣∣
sǫ− τ

τ + ǫ2 − sǫ

∣∣∣∣ <
√
2 whenever |s| ≤ c

√
|τ |.(C.5)

Because DR maps cones to cones, we need only check that the boundary of K̂(ζ)

is mapped into Kah(Rζ). Thus, we substitute s = eiθc
√
|τ | into (C.5) obtaining:

∣∣∣eiθc
√
|τ |ǫ− τ

∣∣∣ <
√
2
∣∣∣τ + ǫ2 − eiθc

√
|τ |ǫ
∣∣∣ for all θ ∈ R/2πZ.(C.6)

For real ǫ, τ > 0, and θ = 0, this inequality is equivalent to positivity of a certain
quadratic forms in (ǫ,

√
τ), which is straightforward to check.

For complex variables, let us square both sides:

|τ |2 − 2c
√

|τ |Re(eiθτǫ) + c2|τ ||ǫ|2 + 4Re(τǫ2)− 4c
√
|τ ||ǫ|2Re(eiθǫ) + 2|ǫ|4 > 0.

The hypothesis (ǫ, τ) ∈ N (θ) with θ sufficiently small gives 4Re(τǫ2) > γ|τ ||ǫ|2,
where γ < 4 is arbitrary close to 4. The other two terms with real parts we can
replace with absolute values obtaining:

|τ |2 − 2c|τ |3/2|ǫ|+ (c2 + γ)|τ ||ǫ|2 − 4c|τ |1/2|ǫ|3 + 2|ǫ|4 > 0
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In the variables u = |τ |1/2 and v = |ǫ|, this reduces to positivity of the real quartic
form

u4 − 2cu3v + (c2 + γ)u2v2 − 4cuv3 + 2v4 > 0.(C.7)

When γ = 4 and c =
√
2 this becomes

v4
(
x2(x−

√
2)2 + (2x−

√
2)2
)
> 0,

where x = u
v , which is obviously true. Positivity of (C.7) for γ close to 4 and c

close to
√
2 then follows by continuity. �

Lemma C.3 (Invariance away from α±). There exist ρ > 0 and τ̄ > 0 such that

for any ζ = (φ, 1− τ) with |τ | < τ̄ and |φ± π
2 | ≥ ρ we have DR(K̂(ζ)) ⊂ Kah(Rζ).

Proof. We select ρ > 0 as in Lemma C.2. Then for |φ ± π
2 | ≥ ρ formula (B.7)

implies

DR =

(
2 +O(τ) O(1)
O(τ2) O(τ)

)
,

with the coefficients depending on ρ. Applied to a tangent vector v = (1, s) ∈ TζCc
with |s| = c

√
|τ | we find that DR(v) has slope |s′| = O(|τ |3/2) = o(|τ |) = o(

√
|τ ′|),

which is less than
√

|τ ′(2− τ ′)| for τ (and hence τ ′) sufficiently small. �

Lemmas C.2 and C.3 complete to proof of Proposition C.1. �

C.3. Stretching of horizontal holomorphic curves. We now consider how
holomorphic curves ξ that are horizontal with respect to Kah are stretched un-
der R.

Let π(z, t) = z. If ξ is a horizontal holomorphic curve with π(ξ) a round disc
D(z, r) centered at z, we will say that rh(ξ, x) = r. More generally, we let rhmin(ξ, x)
stand for the supremum of the radii of the disks D(z, r) centered at z that can be
inscribed into π(ξ) ⊂ C and rhmax(ξ, x) the infimum of the discs D(z, r) that can be
circumscribed about π(ξ). They measure the “horizontal size” of ξ at x.

Proposition C.4. Fix any κ̄ > 0. There is a C > 0 so that for any sufficiently
small a > 0 and any x ∈ C r {α±} sufficiently close to α± and satisfying |κ(x)| ≤ κ̄,
there is an iterate N ≡ N(x) so that, if ξ is any horizontal holomorphic curve based
at x with

rh(ξ, x) = a|ǫ(x)|,
then the subdisc ξ0 ⊂ ξ of radius rh(ξ0, x) = a|ǫ(x)|/2 will have Riξ0 in the domain
of definition of Kah for i = 1, · · · , N and rhmin(RNξ0,RNx) ≥ C · a.

The proof of Proposition C.4 will be the consequence of several lemmas.
Throughout the following lemmas we will suppose that a > 0 is sufficiently small

so that a holomorphic disc ξ centered at x with rh(ξ, x) = a|ǫ(x)| is entirely within
the domain of definition for Kah. This is possible by Proposition C.1.

Lemma C.5. If ξ is any horizontal holomorphic curve centered at x ∈ C r {α±}
of radius rh(ξ, x) = a|ǫ(x)|, then the restriction of R to the subdisc ξ0 ⊂ ξ of radius
rh(ξ0, x) = a|ǫ(x)|/2 has bounded horizontal distortion.
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Proof. Let r = rh(ξ0, x). The function χξ0 = π◦R◦(π|ξ0)−1 extends to a univalent
function in the disk D(φ, 2r), since ξ0 is the restriction of ξ to half of its radius.
The conclusion then follows from the Koebe Distortion Theorem. �

In particular, we will have rhmin(Rξ0,Rx) ≍ rhmax(Rξ0,Rx) and also there is a
uniform constant d ≥ 1/4 so that rhmin(Rξ0,Rx) ≥ d λhmin(x)r

h(ξ0, x).

Recall the point α = (π, 1), which is mapped by R to the high temperature fixed
point β1 = (0, 1).

Lemma C.6. Given κ > 0 there exists C0 > 0 so that for any a > 0 we have the
following property. If ξ and ξ0 ⊂ ξ are as in Lemma C.5 and are based at a point
x ∈ C r {α±} in an appropriately small neighborhood of α± with a bounded slope:
|κ(x)| ≤ κ, then

rhmin(Rξ0,Rx) ≥ C0 · a disth(Rx, α).
Proof. Let x = (ǫ, τ).

Let us select c = c(a) in such a way that any horizontal curve ξ of size ≥ aǫ cen-
tered in one of the parabolic sectors {|κ−ǫ| ≤ c|ǫ|} near α± crosses the correspond-
ing curve S±. The image Rξ of such a curve crosses Iπ, so that rhmax(Rξ,Rx) ≥
disth(Rx, α). This is sufficient, since rhmin(Rξ0,Rx) ≍ rhmax(Rξ0,Rx).

On the other hand, if |κ − ǫ| ≥ c|ǫ| then disth(Rx, α) ≍ |κ − ǫ| by Lemma B.1.
Then, Lemmas B.2 and C.5 imply that

(C.8) rhmin(Rξ0,Rx) ≥ dλhmin(x)r
h(ξ0, x) ≥ C̃0 · a |κ− ǫ| ≍ disth(Rx, α).

�

We now set up a complex neighborhood of β1 designed so that suitable holomor-
phic curves ξ near β1 can regrow to definite size: Let

Vc ≡ Vcτ̄ := {(φ, t) ∈ Ccρ : |τ | ≤ τ̄ , | Imφ| < τ̄} and

Uc ≡ Ucǭ := {(φ, t) ∈ Vc : |ǫ(φ)| < ǭ}.
They are complex versions of the regions V and U from §6.2. We will take τ̄
sufficiently small relative to ǭ > 0 so that Vc r Uc lies in the domain of definition
of the complex extension of Kah.

Choosing τ̄ sufficiently small compared to ǭ, we can ensure that R is uniformly
horizontally expanding on any horizontal holomorphic curve ξ ⊂ VcrUc. (It follows
by continuity from (B.10).)

Lemma C.7. Given 0 < rmin < rmax there exists C1 > 0 so that for any b > 0
and any x ∈ V r U ⊂ C there is an iterate n(x) with the following property. If
η ⊂ Vc r Uc is a horizontal holomorphic curve centered at x with

rmin ≤ rhmin(η, x) < rhmax(η, x) < rmax and rhmin(η, x) ≥ bdisth(x, β1)

then Riη ⊂ VcrUc for 0 ≤ i ≤ n(x) and rhmin(Rn(x)η,Rn(x)x) ≥ C1 · b. Moreover,
C1 depends only on rmax/rmin.

Proof. The standard distortion estimates near the hyperbolic fixed point β1 show
that the discs Riη grow at the same rate as the horizontal distances between any
point of Riη and β1. The iterate n(x) is chosen as the maximum of those integers
k for which Rjη ⊂ Vc r Uc for all j ≤ k. �
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Proof of Proposition C.4: Equation (B.8) gives thatDR expands horizontal vectors
based at such points by at most O(1/|ǫ(ζ)|). So, we can assume that a is sufficiently
small so that Rξ is in the domain of definition of Kah. Moreover, using (B.3) we
can choose κ ≤ κ so that if ξ is centered at x with |κ(x)| ≤ κ then Riξ ⊂ Vc r Uc
for i = 1, 2.

Lemma C.5 gives that R has bounded horizontal distortion on the subdisc ξ0 ⊂ ξ
of radius a|ǫ(x)|/2.

If |κ(x)| ≥ κ then Lemma B.2 implies that λhmin(x) ≥ K/|ǫ(x)|. Together with
bounded distortion, this is sufficient to give that rhmin(Rξ0,Rx) ≥ C · a.

If |κ(x)| ≤ κ then Lemma C.6 gives that rhmin(Rξ0,Rx) ≥ C0 · a disth(Rx, α).
There is some C̃0 > 0 so that after one further iterate we have

rhmin(R2ξ0,R2x) ≥ C̃0 · a disth(R2x, β1).

Since the horizontal distortion of R2 is also bounded on ξ0, there is a uniform bound
on rhmax(R2ξ0,R2x)/rhmin(R2ξ0,R2x). Lemma C.7 then gives M further iterates so
that RM+2ξ ⊂ Vc r Uc and

rhmin(RM+2ξ0,RM+2x) ≥ C · a.
�

Appendix D. Critical locus and Whitney folds

D.1. Critical locus.

D.1.1. Six lines and a conic. The Jacobian of R̂ : C3 → C3 (2.18) is equal to

detDR̂ = 32V (UW − V 2) (U +W )2 (U2 + V 2) (W 2 + V 2),

so its critical locus comprises 6 complex lines (where we count {U +W = 0} only
once, without multiplicity) and the cone {UW = V 2}. They descend to 6 complex
lines and one conic on CP2:

L0 := {V = 0} = line at infinity,

L1 := {UW = V 2} = conic {uw = 1},
L2 := {U = −W} = {u = −w},
L±
3 := {U = ±iV } = {u = ±i},

L±
4 := {W = ±iV } = {w = ±i}.

(Here the curves are written in the homogeneous coordinates (U : V : W ) and in
the affine ones, (u = U/V,w = W/V ).) The configuration of these curves is shown
in Figure 4.1.

The following general lemma shows that this coincides with the critical locus of
R on CP2. It is a consequence of Euler’s Theorem for Homogeneous Functions.

Lemma D.1. Let R̂ : Cm+1 → Cm+1 be a homogeneous polynomial, and let R :
CPm → CPm be the corresponding rational map of the projective space. Let ẑ ∈
Cm+1 be such that R̂(ẑ) 6= 0 (so that z := π(ẑ) is not a point of indeterminacy of

R). Then ẑ is a critical for R̂ iff z is critical for R.
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D.1.2. Critical points on the exceptional divisor. To complete the picture, we need
to take an account of the critical points hidden inside the points of indeterminacy,
a±. To make them visible, we blow up CP2 at a± and lift R to a holomorphic map

R̃ = Q ◦ g̃ : C̃P
2 → CP2.

By symmetry, it is enough to analyze the blow-up of a+. Jacobian of g̃ (B.1) on
the exceptional divisor {ξ = 0} is equal to 2i(χ− 1)/(χ+ 1)2, so g̃ has two critical
points on it, χ = −1 and χ = 1, which are the intersections of the exceptional
divisor with the collapsing line L̃2 and the separatrix L̃1 respectively (recall that L̃

stands for the lift of L to C̃P
2
). The first critical point is mapped by R̃ to the low

temperature fixed point b0, while the second one is mapped to (−1,−1), which is
a preimage of the high temperature fixed point b1.

Also, points χ = ∞ and χ = 0 are mapped by g̃ to the coordinate lines {u = 0}
and {w = 0} respectively which are critical for the squaring map Q. It creates two
more critical points on the exceptional divisor, its intersections with the critical
lines L̃+

3 and L̃−
4 .

D.2. Complex Whitney folds. To simplify calculations near the critical points, it
is convenient to bring R to a normal form. A complex Whitney fold is a generic and
the simplest one (see [AGV]). Let R : (C2, 0) → (C2, 0) be a germ of holomorphic
map with a critical point at 0. The map R (and the corresponding critical set) is
called a complex Whitney fold if

(W1) The critical set L is a non-singular curve near 0;
(W2) DR(0) has rank 1 and KerDR(0) is transverse to L;
(W3) The second differentialD2R(0) is not vanishing in the direction of KerDR(0).

Lemma D.2. A Whitney fold can be locally brought to a normal form (u,w) 7→
(u,w2) in holomorphic coordinates.

Proof. Properties (W1) and (W2) imply that L′ = R(L) also a non-singular curve
near 0, so we can select local coordinates in such a way that both L and L′ coincide

with the axis {w = 0}. Let (u′, w′) = R(u,w). Property (W2) implies ∂u′

∂u (0) 6= 0,
allowing us to replace the local coordinates in the domain of R with (u′, w). This
brings R to a fibered map u′ = u, w′ = ψ(u,w) for some ψ.

Since {w = 0} is in the critical locus of R,

ψ(u,w) = p2(u)w
2 + p3(u)w

3 + . . . .

Property (W3) gives p2(0) 6= 0, so we can select a local branch of the square root

w
√
p2(u) + p3(u)w + . . . as a local coordinate replacing w. This brings R to the

desired form. �

Lemma D.3. All critical points of R̃ except the fixed points e, e′, the collapsing
line L̃2, and two points {±(i, i)} = L̃3 ∩ L̃4, are Whitney folds.

Proof. Let us treat the components of the critical locus one by one.

Separatrix L0. In affine coordinates ξ = W/U , η = V/U , the map R near
L0 = {η = 0} looks like this:

ξ′ =

(
ξ2 + η2

1 + η2

)2

= ξ4(1 +O(η2)),
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η′ = η2
(

1 + ξ

1 + η2

)2

= η2(1 + ξ)2(1 +O(η2)),

which shows that L0 is a fold outside the fixed point e (ξ = 0) and the collapsing
line L2 (ξ = −1). (The other fixed point e′ lies at infinity, ξ = ∞.)

Separatrix L̃1. In local coordinates (u, τ = uw− 1), the map R near L1 = {τ =
0} looks like this:

u′ =

(
u2 + 1

u+ (τ + 1)/u

)2

= u2
(
1 +O

(
τ

u2 + 1

))
,

(D.1) τ ′ =
τ2

(u+ w)2

(
−2 +

τ2

(u+ w)2

)
,

which shows that L1 is a fold outside the indeterminacy points {u = ±i} = L1 ∩
{u+ w = 0} (and outside the fixed points e and e′ at infinity).

Let us now analyze the intersection ã+ = (u = i, χ = 1) of L̃1 with the ex-
ceptional divisor L+

exc (the intersection with L−
exc is symmetric). Let us use local

coordinates (ξ = u − i, λ = χ − 1) near ã+. Representation (B.1) of g̃ near L+
exc

gives:

u = i+
1

2
(ξ − iλ) +

i

4
λ2 − 1

4
ξλ+ . . . ,

w = −i+ 1

2
(ξ − iλ) +

i

4
λ2 +

3

4
ξλ+ . . . ,

so the vanishing direction for Dg̃(ã+) is dξ = idλ. On the other hand, in these
coordinates the (proper transform of the) separatrix {uw = 1} assumes the form
ξ + iλ+ ξ2λ = 0, so it is a non-singular curve tangent to {dξ = −i dλ} at ã+. This
yields conditions (W1) and (W2). Moreover, at the kernel direction dξ = i dλ, the
second differential assumes the form (0, i dλ2), so it is non-vanishing.

Thus, ã+ is a Whitney fold for g̃. Since the squaring map Q is non-singular at
(i,−i), it is a a Whitney fold for R̃ = g̃ ◦Q as well.

Lines L̃3
±

and L̃4
±
. These lines intersect the line at infinity at the fixed points

e and e′, so we need to analyze only their affine parts. The map g̃ is non-singular
on these lines (including their intersections with the exceptional divisors), and it
maps them isomorphically onto the coordinate axes {u = 0} and {w = 0}. Outside
the origin 0, these axes are Whitney folds for the squaring map Q. Hence the lines

L̃3
±

and L̃4
±

are folds for R̃ outside points {±(i, i)} = g̃−1(0) = L̃3 ∩ L̃4. �

D.2.1. Double points. A double point of a holomorphic curve X is a point a ∈ X
such that the germ of X at a consists of two regular branches, X1 and X2, meeting
at a. A double point is called transverse if the branches Xi intersect transversely
at a. Otherwise, it is called tangential.

We say that a regular curve L intersects a curve X transversely at the double
point a ∈ X if it intersects transversely both branches Xi. Such intersection has
multiplicity 2.

Lemma D.4. Let R be a Whitney fold at a, and let X be a germ of regular holo-
morphic curve with the first order tangency to the critical value locus R(L) at R(a).
Then the pullback R∗X has a transverse double point at a intersecting L transver-
sally.
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Proof. In the normal coordinates, the pullback under R of a regular curve w =
cu2(1 + O(u)), c 6= 0, tangent to R(L) = {w = 0} is a pair of regular curves
w = ±√

cu(1 +O(u)). �

Lemma D.5. Let π : (M̃, Eexc) → (M,a) be the blow-up of M at a, and let

p̃ ∈ Eexc. Let X̃ ⊂ M̃ be a holomorphic curve with a transverse double point at
p̃ that intersects Eexc transversely. Then X = π(X̃) is a holomorphic curve in M
with a (first order) tangential double point at a.

Proof. Let us use the local coordinates (u, v,m = v/u) from the definition of the
the blow-up. In these coordinates, the pencil of lines m − m0 = λu, λ ∈ CP1

centered at (0, 0,m0) ∈ Eexc projects to the pencil of parabolas v = (λu+m0)u in
M tangent to the line v = m0u. �

Appendix E. Extra bits of stat mechanics

E.1. The Lee-Yang Theorem. To prove the Lee-Yang Theorem, we need to con-
sider a more general, anisotropic, Ising model. It is convenient to assume that Γ is
a complete graph without loops (connecting a vertex to itself), but to allow some of
the coupling constants vanish. The model is parameterized by a symmetric matrix
J = (Jv,w)(v,w)∈E of couplings between the atoms and by a vector h = (hv)v∈V

of interaction strengths of the external field with the atoms. Then the energy of a
spin configuration σ : V → {±1} assumes the form

−H(σ) =< Jσ, σ > + < h, σ > .(E.1)

The original graph of interest corresponds to the subgraph Γ′ ⊂ Γ containing only
the edges with Jv,w 6= 0. In the ferromagnetic model, Jv,w ≥ 0.

Let us consider the “support” of a configuration σ,

V(σ) = {c ∈ V : σ(v) = −1},
and let

E(σ) = {(v, w) ∈ E : v ∈ V(σ), w ∈ V r V(σ)}.
Let l(J) and l(h) be the the sums of all components of J and h respectively. We
will work with a modified Hamiltonian

−Ȟ(σ) = −H(σ)− l(J)− l(h) = −2
∑

(v,w)∈E(σ)

Jv,w − 2
∑

v∈V(σ)

hv.

Let us introduce the temperature-like and field-like variables:

tv,w = e−2Jv,w/T and ζv = e−2hv/T .

Given subsets X ⊂ V and Y ⊂ E , we will use notation

ζX =
∏

v∈X

ζv, tY =
∏

(v,w)∈Y

tv,w.

In this notation, we obtain the following expression for the modified Gibbs weights:

W̌ (σ) = exp(−Ȟ(σ)/T ) =W (σ) tE/2 ζV/2 = tE(σ) ζV(σ)

and for the modified partition function:

(E.2) Ž = tE/2 ζV/2 Z =
∑

σ

tE(σ) ζV(σ).
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Obviously, the modification does not affect the roots of the partition function (mod-
ulo clearing up the denominator), so we can work with Ž instead of Z.

Remark also that Lemma 2.1 on multiplicativity of the partition function natu-
rally extends to this level of generality.

Lemma E.1. Fix arbitrary tv,w ∈ [−1, 1] and let Γ′ ⊂ Γ be the subgraph containing

only the edges with tv,w 6= ±1. Suppose Γ′ is connected. If Ž(ζ1, . . . , ζn) = 0 and
|ζi| ≥ 1 for i = 1, . . . , n − 1, then |ζn| ≤ 1, where the inequality is strict unless
|ζi| = 1 for i = 1, . . . , n− 1.

Proof. To simplify notation and to emphasize dependence on n = |V|, we let
Pn ≡ Ž. We will carry induction in n.

For n = 2, we have

P2(z1, z2) = 1 + t1,2ζ1 + t2,1ζ2 + ζ1ζ2,

which implies

ζ2 = −1 + t1,2ζ1
t2,1 + ζ1

.

The assumption that Γ′ is connected, implies that t1,2 = t2,1 ∈ (−1, 1). Therefore,

this is a Möbius map sending Cr D to D.

We now pass from n to n+1. After relabeling the vertices, we can suppose that
Γ′ \ {vn+1} is connected. Observe that

Pn+1(ζ1, . . . , ζn+1) = Pn(u1, . . . , un) + ζ1 . . . ζn+1 Pn(v1, . . . , vn),

where ui = ti,n+1ζi, vi = ti,n+1/ζi.

Remark E.1. This formula is directly related to the Basic Symmetry of the Ising
model which is ultimately responsible for the Lee-Yang Theorem.

If Pn+1 = 0 then

(E.3) ζn+1 = − 1

ζ1 . . . ζn

Pn(u1, . . . , un)

Pn(v1, . . . , vn)
.

If ζi ∈ Ĉ r D̄ for i = 1, . . . , n, then |vi| ≤ 1. Since Γ′ \ {vn+1} is connected, the
Induction Assumption gives that Pn(v1, . . . , vn) 6= 0. Hence the right-hand side of

(E.3) is a well-defined holomorphic function in the polydisk ∆n := (Ĉ r D̄)n. On
its Shilov boundary

∂s∆n = Tn ≡ {|ζi| = 1, i = 1 . . . , n}}
we have ui = v̄i. Since Pn has real coefficients, we conclude that |ζn+1| = 1 on Tn.
By the Maximum Principle, |ζn+1| ≤ 1 in ∆n, with equality only on Tn, and we
are done. �

General Lee-Yang Theorem ([YL, LY]). Fix Jv,w ∈ [0,+∞], and assume hv/hw > 0.
Then, all zeros of the partition function Z(ζ1, . . . , ζn) lie on the unit torus Tn.

Proof. Recall that Γ′ ⊂ Γ is the subgraph containing only the edges with Jv,w 6= 0.
By Lemma 2.1, the partition function Z(ζ1, . . . , ζn) is the product of partition func-
tions associated to each of the connected components of Γ′. Therefore, it suffices
to prove the result in the case that Γ′ is connected.

Because hv/hw > 0 for all v and w, we have that

(1) |ζv| = |e−2hv/T | = 1 for all v,
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(2) |ζv| = |e−2hv/T | < 1 for all v, or
(3) |ζv| = |e−2hv/T | > 1 for all v.

Lemma E.1 rules out (2) and (3). This lemma is applicable since tv,w = e−2Jv,w/T ∈
[0, 1], with tv,w = 1 iff Jv,w = 0. �

To obtain the classical Lee-Yang Theorem, corresponding to Hamiltonian with
magnetic moment M given by (1.1), one sets hv ≡ h. To get the result for Hamilton-
ian with magnetic moment M given by (2.1), obtained by summing over magnetic
moments of edges, one sets hv = h · |v|/2, where |v| is the valence of the vertex v.

Many extensions and new proofs of this theorem have appeared since the 1950s:
see Asano [A], Suzuki and Fisher [SF], Heilmann and Lieb [HL], Ruelle [R2, R4],
Newman [N], Lieb and Sokal [LS], Borcea and Brändén [BB] and further references
therein. The proof given above is based upon the original idea of Lee and Yang
[LY], compare [R3, Thm 5.1.2].

E.2. The Lee-Yang Theorem with Boundary conditions. The Lee-Yang The-
orem with Boundary Conditions, stated in §2.1, is a consequence of the following
more general statement:

General Lee-Yang Theorem with Boundary Conditions. Fix Jv,w ∈ [0,+∞],
assume that the subgraph Γ′ ⊂ Γ containing only the edges with Jv,w > 0 is con-
nected, and assume hv/hw > 0 for all v and w.

Suppose U ⊂ V is given by {m + 1, . . . , n} with 1 < m < n and let σU ≡ +1.
Then all of the zeros of the conditional partition function Z

+(ζ1, . . . , ζm) lie in the

open polydisc ∆m = (Ĉ r D)m.

Proof. Let ηi = ζi
∏n
j=m+1 ti,j for 1 ≤ i ≤ m, so that |ηi| ≤ |ζi|. Then, the

(modified) conditional partition function

ŽΓ|σU
(ζ1, . . . , ζn) = tE/2ζ(VrU)/2

ZΓ|σU
(ζ1, . . . , ζn)

satisfies

ŽΓ|σU
(ζ1, . . . , ζn) = Ž(η1, . . . , ηm),(E.4)

where Ž is the (modified) partition function corresponding to ΓrU . (Since σU ≡ +1
no ζi appears on the left hand side of (E.4) for m ≤ i ≤ n.)

Lemma 2.1 gives that Ž(η1, . . . , ηm) factors into a product of (modified) partition
functions of each of the connected components of Γ′ \ U . We will check that each
of these factors is non-vanishing if |ζi| ≤ 1 for any 1 ≤ i ≤ m.

Let Υ be one of the connected components of Γ′ \ U . Without loss of generality,
we can suppose Υ has vertices {1, . . . , j} with 1 ≤ j ≤ m, so that Υ corresponds to
a factor ŽΥ(η1, . . . , ηj) of Ž(η1, . . . , ηm). Since Γ′ is connected, one of the vertices
of Υ (say vertex 1) is connected in Γ′ to one of the vertices (say vertex n) from U .
Therefore, t1,n < 1, implying |η1| < |ζ1|.

Since hv/hw > 0 for all v and w, if |ζi| ≤ 1 for any 1 ≤ i ≤ m, then |ζi| ≤ 1 for
all 1 ≤ i ≤ m. In this case, |ηi| ≤ 1 for 1 ≤ i ≤ m and |η1| < 1 so that Lemma E.1
gives ŽΥ(η1, . . . , ηj) 6= 0.

�

Remark E.2. The same statement holds if we assign σU ≡ σ0 > 0 and the classical
Lee-Yang Theorem can be obtained from it by taking a limit σ0 → 0.
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E.3. The Lee-Yang zeros in the 1D Ising model. By means of the well-known
“Transfer Matrix technique” (see [Ba]), one can find explicitly the Lee-Yang zeros of
the 1D Ising model. Let Γn be the linear chain with n+1 vertices {0, 1, . . . , n}. For
simplicity, we will consider periodic boundary conditions: σ(n) = σ(0) (so that our
graph is the circle Z/nZ). This assumption does not affect the thermodynamical
limit.

The Hamiltonian of this lattice is:

Hn(σ) = −
n−1∑

i=0

{Jσ(i)σ(i+ 1) +
h

2
(σ(i) + σ(i+ 1)}.

Two neighboring spins {σ(i), σ(i + 1)} contribute the following factor to the
Gibbs weight (compare (2.16)):

W (++) = e(J+h)/T =
1

tz
, W (+−) =W (−+) = e−J/T = t, W (−−) = e(J−h)/T =

z

t
,

which can be organized into the Transfer Matrix

W =

(
(tz)−1 t

t t−1z

)
.

We see that the partition function Zn =
∑
σ exp(−Hn(σ)/T ) can be expressed as

Zn =
∑

σ

W (σ1, σ2) ·W (σ2, σ3) · · ·W (σn, σ1) = trWn = τn1 + τn2 ,

where τ1,2 are the eigenvalues of W .38

Thus, the zeros of the partition functions are solutions of the equation

τn1 + τn2 = 0,

or

(E.5)
τ2
τ1

= eiαk , αk =
π

n
+

2πk

n
; k = 0, 1, . . . , n− 1.

The eigenvalues τ1,2 are the roots of the quadratic equation

τ2 − pτ + q = 0, where p =
1

t
(z +

1

z
) =

2

t
cosφ, q =

1

t2
− t2.

This gives

2 cosαk =
τ2
τ1

+
τ1
τ2

=
p2

q
− 2 =

4 cos2 φk
1− t4

− 2,

so

(E.6) (1− t4) cos2
αk
2

= cos2 φk, where zk = eiφk .

Together with (E.5), this gives expression (1.3) for the zeros of the partition func-
tion.

Since the angles αk are equidistributed with respect to the Lebesgue measure
dα/2π on the circle, the distribution ρtdφ of the Lee-Yang zeros is obtained by

pushing this measure to the interval [−1, 1] by cos,39 scaling it by
√
1− t4, and

then pulling it back to the circle by cos. The calculation gives expression (1.4):

ρt(φ) =
1

2π

∣∣∣∣
dα

dφ

∣∣∣∣ =
1

2π

∣∣∣∣
d

dφ
arccos

(
cosφ√
1− t4

)∣∣∣∣ =
| sinφ|

2π
√
1− t4 − cos2 φ

.

38Different boundary conditions would result in Zn = aτn1 + bτn2 for appropriate a and b.
39which gives the “Chebyshev measure” dx/

√
1− x2 on [−1, 1]
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Figure E.1. The Migdal interaction.

E.4. Diamond model as anisotropic regular 2D lattice model. The diamond
model can be viewed as the Ising model on the regular 2D lattice with a special
anisotropic choice of the interaction parameters. Namely, let us consider a 2n ×
(2n + 1) rectangle

∆n = {(i, j) ∈ Z2 : 0 ≤ i ≤ 2n − 1, 0 ≤ j ≤ 2n}
in Z2, with the Hamiltonian

(E.7) Hn(σ) = −
∑

|x−y|=1

J(x, y)σ(x)σ(y)−
∑

x∈∆n

h(x)σ(x),

where

h(i, j) =





h if 0 < j < 2n,

h

2
if j = 0, 2n.

The interaction parameters J(x, y) are defined as follows.

Representing any j = 0, 1, . . . , 2n in the dyadic arithmetics,

j =

n∑

k=0

jk2
k, jk ∈ {0, 1},

let

o(j) = min{k : jk 6= 0} if j > 0; o(0) = n.

Let us partition each horizontal level ∆n(j) = {(i, j) ∈ ∆n} into 2n−o(j) intervals
[s2o(j), (s + 1)2o(j)) of length 2o(j), s = 0, 1, . . . , 2n−o(j) − 1. Let ∼

j
denote the

corresponding equivalence relation.
Now we let

J(x, y) =





J if y − x = ±(0, 1);

∞ if y − x = ±(1, 0) and x ∼
j
y.

0 otherwise.

In other words, within a horizontal level ∆n(j), non-equivalent sites do not interact,
while the equivalent neighbors interact with infinite strength. Infinite interaction
J(x, y) is interpreted as condition σ(x) = σ(y), so that the equivalent sites x and y
can be identified. This leads to the diamond graph Γn. (Figure E.1 illustrates the
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4×5 rectangle, with the vertical solid lines representing interaction J and horizontal
dash lines representing the infinite interaction.) Moreover, the Hamiltonian (E.7)
takes the form of (1.2):

Hn(σ) = −J
2

∑

(x,y)∈Ev
n

σ(x)σ(y)− h

2

∑

(x,y)∈Ev
n

(σ(x) + σ(y)),

where Evn is the set of vertical edges.
Thus, we have obtained the diamond model.

E.5. Gibbs states. The thermodynamic limit of the Gibbs distributions for DHL
was studied by Griffiths and Kaufman [GK] and by Bleher and Zalys [BZ2]. As
noticed in [GK], there are uncountably many non-isomorphic injective limits of
the hierarchical lattice Γn as n → ∞, which give rise to uncountably many non-
isomorphic infinite hierarchical lattices. In [BZ2], limit Gibbs states on the infinite
hierarchical lattices are constructed. It is proven that for any non-degenerate in-
finite hierarchical lattice, if T < Tc and h = 0 then there exist exactly two pure
infinite Gibbs states, in the sense of Dobrushin-Lanford-Ruelle, while if T ≥ Tc or
h 6= 0 then the infinite Gibbs state is unique.

Appendix F. Open Problems

Problem F.1 (Critical exponents for the low-temperature intervals). A con-
sequence of Theorem 11.1 and Corollary 11.2 is that unstable Lyapunov exponents
χu exist at almost every point of C1. However, the union of all endpoints of the
intervals from Ot = Ws(B) ∩ Tt, taken over all t ∈ [tc, 1), has measure zero. Thus,
we do not know that “most endpoints” have Lyapunov exponents. Do Lyapunov
exponents and hence, by Proposition 13.3, weak critical exponents exist at the
endpoints of the intervals from Ot?

Problem F.2 (Principal stable tongues). Consider the principal stable tongues
Υ±. Are Υ± bounded by high-temperature hairs of some positive length?

If this is the case, the discussion from Problem F.1 gives that for high enough
values of t, the critical exponents σh = 1 at the endpoints of the intervals formed
by Υ± ∩ Tt.

The question can be asked for any of the stable tongues.

Problem F.3 (Endpoints of hairs). Recall the set E of endpoints to the high-
temperature hairs that constructed in §12.6. According to Corollary 12.14, E has
Lebesgue measure zero.

(a) What is the Hausdorff dimension of E ?
(b) Do any of the high-temperature hairs contain their endpoints, i.e. is there

any endpoint within Ws(T )?
(c) Is Ws(T ) a “straight hairy brush” in the sense of [AO]? One consequence

would be that the endpoints of the high-temperature hairs must accumu-
late from both sides to every point on every high-temperature hair. In
particular, this would give a negative solution to Problems F.2 and F.1(b).

These questions are partly motivated by the structure of the Devaney hairs for
the exponential maps, see [DT, McM, Kar].
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Problem F.4 (Control of expansion). Do we have

lim sup
log d(φ ◦ Rn)(v)

n
≤ 4(F.1)

for any v ∈ K(x) based at any x ∈ C1? This bound would give continuity in φ of
the density ρt(φ) by an estimate similar to the proof of Propositions 13.1 and 13.3.
Notice, however that it does not hold for the first iterate: One can see from (B.8)
that if x approaches α± at a definite slope τ/ǫ = κ̄, then the horizontal expansion
of vectors in Kh(x) blows up like 1/τ .

Problem F.5 (Critical temperatures and regularity). Given γ ∈ Fc, there are
0 < t−c (γ) ≤ t+c (γ) ≤ 1 so that points on γ below t = t−c (γ) are in Ws(B) and points
above t = t+c (γ) are in Ws(T ). We call the points on γ having t−c (γ) ≤ t ≤ t+c (γ)
the γ-critical temperatures.

(a) Is there a unique γ-critical temperature tc(γ) := t−c (γ) = t+c (γ) on each
γ ∈ Fc?

(b) The union of γ-critical temperatures over all γ ∈ Fc is invariant under R.
Is there a “natural” invariant measure νcrit supported on this set? What is
the entropy of this measure?

(c) It is a consequence of Propositions 9.3 and 10.1 that each leaf γ ∈ Fc is
real analytic below t−c (γ) and C1 above t+c (γ). Does γ have only finite
smoothness within the range of γ-critical temperatures?

(d) Proposition 14.1 gives a partial answer to the previous question for periodic
leaves. A natural open question here is whether a periodic leaf can contain
a neutral periodic point?

Cylinder maps having property (a) on almost every leaf are constructed in [BM,
§3]. To ask questions (a) and (c) for almost every leaf in our situation, one must
first choose a transverse invariant measure on Fc. With respect to µt, almost
every leaf is in the union of stable tongues and the result is trivial. The question is
more interesting with respect to the transverse measure induced on Fc by Lebesgue
measure on T .

Appendix G. Table of notation

In the course of this paper various objects appear in parallel in two coordinate
systems: the “physical coordinates” (z, t) and the affine coordinates (u, v) 7→ [u :
1 : v].40 They are related by the semi-conjugacy Ψ from §3. We have attempted
(not fully consistently) to use similar notation for corresponding objects, roughly
using calligraphic and Greek symbols in the physical coordinates and the corre-
sponding non-calligraphic and Latin symbols in the affine coordinates. For reader’s
convenience, some of the notation is collected in the following table:

40If not to count homogeneous coordinates (U : V : W ) and angular coordinates (φ, t) as

systems in their own right.
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Object Physical coordinates Affine coordinates
(z, t) = (u,w)

Renormalization map R R
Invariant cylinder C = T× [0, 1] C = {w = ū, |u| ≥ 1}
Topless cylinder C1 = T× [0, 1) C1 = {w = ū, |u| > 1}
Horizontal/vertical algebraic cone field Kah/av Kah/av

Modified horizontal/vertical cone fields Kh/v Kh/v

Strong separatrix L0 = C× {t = 0} L0 = line at infinity
Weak separatrix L1 = C× {t = 1} L1 = {uw = 1}
Bottom of the cylinder B = T× {0} B ⊂ L0, |w/u| = 1
Top of the cylinder T = T× {1} T = {w = u , |u| = 1}
Main indeterminacy pts α± = (±i, 1) a± = ±(i,−i)
Accidental indeterminacy pts γ,0 none
Low temp fixed point β0 = (1, 0) b0 = [1 : 0 : 1] ∈ L0

Critical temp fixed point βc ≈ (1, 0.2956) bc ≈ (3.3830, 3.3830)
High temp fixed point β1 = (1, 1) b1 = (1, 1)

Attracting fixed points in CP2 η = (0, 1), η′ = (∞, 0) e = (∞, 0), e′ = (0,∞)
Principal LY locus S = {z2 + 2tz + 1 = 0} S = {u+ w = −2}
Blow-up locus G = {z2 + 4zt− 2z + 1 = 0} G = {(u− w)2 + 8(u+ w) + 16 = 0

= {t = sin2 φ/2}

The following is further notation specific to C:

Object Physical coordinates Initially defined in
Topless cylinder C1 §3.1
Bottomless cylinder C0 §3.1
Low temperature cylinder C∗ §9.2
Primary stable tongues Υ(α±) §9.5
Secondary stable tongues Υnk (α) §9.5
Basins of attraction for T with prescribed control Ws

η(T ), Ws
0(T ) §10.2, §11

Central foliation Fc §12
Horizontal critical exponent σh §13.2
Vertical critical exponent σv §13.2
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[Ho] L. Hörmander. The analysis of linear partial differential operators I. Springer-Verlag, Berlin-
New York 1983.

[HPS] M. Hirsch, C. Pugh, and M. Shub. Invariant Manifolds. Lecture notes in mathematics,
Volume 583. Springer-Verlag, Berlin-New York 1977.

[HP] J. H. Hubbard and P. Papadopol. Newton’s method applied to two quadratic equations in
C2 viewed as a global dynamical system. Memoirs of the American Mathematical Society,
191(891), 2008.

[I] Y. S. Ilyashenko. Diffeomorphisms with intermingled attracting basins. Funktsional. Anal. i
Prilozhen., 42(4):60–71, 112, 2008.

[IKS] Y. S. Ilyashenko, V. A. Kleptsyn, and P. Saltykov. Openness of the set of boundary pre-
serving maps of an annulus with intermingled attracting basins. J. Fixed Point Theory Appl.,

3(2):449–463, 2008.
[IY] Y. Ilyashenko and S. Yakovenko. Lectures on analytic differential equations, volume 86 of

Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.

[Kan] I. Kan. Open sets of diffeomorphisms having two attractors, each with an everywhere dense
basin. Bull. Amer. Math. Soc. (N.S.), 31(1):68–74, 1994.
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