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Abstract: 

Injury to the nervous system induces localized damage in neural structures and neuronal death 

through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate 

dendritic fields necessary for interneuronal communication. Excitotoxicity and other secondary 

biochemical events contribute to morphological changes in neurons following injury. Evidence 

suggests that various transcription factors are involved in the dendritic response to injury and 

potential therapies. Transcription factors play critical roles in the intracellular regulation of 

neuronal morphological plasticity and dendritic growth and patterning. Mounting evidence 

supports a crucial role for epigenetic modifications via histone deacetylases, histone 

acetyltransferases, and DNA methyltransferases that modify gene expression in neuronal injury 

and repair processes. Gene regulation through epigenetic modification is of great interest in 

neurotrauma research, and an early picture is beginning to emerge concerning how injury 

triggers intracellular events that modulate such responses. This review provides an overview of 

injury-mediated influences on transcriptional regulation through epigenetic modification, the 

intracellular processes involved in the morphological consequences of such changes, and 

potential approaches to the therapeutic manipulation of neuronal epigenetics for regulating gene 

expression to facilitate growth and signaling through dendritic arborization following injury. 
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Introduction 

 

The plasticity of dendritic growth and response to injury are surprisingly understudied areas, 

while the intrinsic and extrinsic factors that affect dendritic growth and targeting during 



development are more fully understood. Upon injury to the adult central nervous system (CNS) 

many aspects of development are reintroduced, including the release of glial and neuronal 

neurotrophic factors [1, 2], morphological and physiological cellular responses to micro-

environmental changes, and the structural reorganization of neuronal networks, that provide 

means of recovery of lost or limited function after injury. At the most basic level, all cells in the 

CNS respond to extrinsic cues through intracellular signaling cascades that influence cell-

specific genes involved in these cellular responses to injury [3]. The involvement of epigenetic 

changes within neurons, and how they affect neuronal morphology and repair after injury, are 

now of great scientific interest. 

Transcription factors are essential for the initiation of target gene transcription for the 

further production of transcription factors or the translation of other genes that play roles in the 

retraction, regrowth, and reorganization of dendritic branches [4-6]. Much of what we know about 

the roles transcription factors play in these processes stem from limited studies on the actions of 

a handful of key factors. Likewise, the injury-induced plasticity of neuronal extensions is often 

studied in the context of cellular responses to extracellular events and biochemical interactions 

that influence neuronal behavior through intracellular signaling cascades and changes in gene 

expression through epigenetic modulation. 

Following CNS injury, the primary mechanical insult and especially the temporo-spatial 

spread of secondary biochemical inflammatory, oxidative, and other events, cause glial, vascular, 

and neuronal damage and death surrounding the injury site, [7-9] and induce surviving cells to 

produce and release a variety of cytokines, chemokines, neurotransmitters, and trophic factors [10-

12]. These released agents signal local cells to trigger a variety of responses to the changing 

microenvironment induced by injury. Glia and neurons secrete powerful trophic factors like glial 

cell line-derived neurotrophic factor [2], brain-derived neurotrophic factor (BDNF) [12], and nerve 

growth factor (NGF) [1]. Upon production and secretion into the extracellular matrix, these 



factors act primarily locally on receptors bound within the membranes of the neuronal soma and 

dendrites. 

Influence of injury on dendritic morphology and structural dynamics 

After injury to the CNS, local neurons may undergo initial, necrotic, or delayed programmed cell 

death in response to the primary insult and secondary injury processes. In addition, neurons that 

do not ultimately die may undergo extensive morphological alterations including dendritic and 

somatic atrophy [13-16], as well as synaptic and dendritic remodeling [17]. 

By 1 week after thoracic spinal cord injury (SCI), neurons in the cord show atrophic 

dendritic arbors in addition to reduced soma size [18]. Several weeks following CNS injury, 

surviving neurons continue to exhibit the atrophic attributes of reduced dendritic length [19] and 

soma area. Loss of afferent input to neurons as a result of injury may be the cause of dendritic 

atrophy following SCI [19], though intracellular signaling and cellular degradation pathways like 

autophagy are known to be acutely activated [20] and may result in morphological changes.  

Transcription factor involvement in dendritic plasticity 

Research over the past decade has uncovered many mechanisms by which dendrites grow and 

dendritic fields are maintained. Different neuronal types exhibit different morphologic 

orientations of dendritic patterning likely based on their location, local microenvironment, and 

function within the CNS. This knowledge is important for understanding the dendritic response 

to injury, as well as appreciating particular responses to pharmacological or other agents aimed 

at modulating neuronal morphology and plasticity to improve repair and recovery in trauma and 

disease. Investigations into the genetic influence and types of transcription factors that regulate 

the intrinsic capacity of neurons to grow and respond to extrinsic stimuli have been pivotal to 

broadening knowledge of these topics. 

 Much work in answering basic questions regarding transcription factor control over 

neuronal morphological plasticity has involved studies using Drosophila as a model, especially 



concerning dendritic regulation. As the Drosophila nervous system is simple compared to 

vertebrates, primary transcriptional mediators of neuronal fate and dendritic patterning have been 

successfully identified. The development of subclasses of multipolar dendritic neurons is 

controlled by a combination of key transcriptional regulators. These dendritic arborization (da) 

neurons appear to be coordinated in development to some extent by the level of cut gene 

expression [21]. Cut is a homeodomain protein and transcription factor involved in regulating the 

complexity of dendritic arbors [21]. Neurons with small and non-complex dendritic arbors express 

no Cut (Class I) or low levels of Cut (Class II). Higher expression levels of Cut result in 

increasingly greater complexity of dendritic fields (Classes III and IV) [22, 23]. The mammalian 

version of Cut, known as CCAAT-displacement protein (CDP), is interchangeable with Cut in 

Drosophila neurons with similar results [22].  CDP, also known as Cux1, is located in mature 

cortical pyramidal neurons among other neurons of the mammalian CNS [24], where it is 

suggested to modulate the post-mitotic morphological characteristics of neurons including 

dendritic patterning. Cut may stimulate the development of actin-rich filopodia-like extensions 

that may contribute to dendritic branching dynamics. Part of this influence could stem from its 

inhibition of p27Kip1 expression and modulation of RhoA signaling [25]. 

 Another transcription factor studied in Drosophila that is conserved in mammals is the 

protein Abrupt. Abrupt is a BTB-zinc finger protein of the Knot/Collier family of proteins that 

contributes to the transcriptional regulation of dendritic arborization in class I da neurons [26-28]. 

Specifically, Abrupt dose-dependently diminishes dendritic branching [27], thereby likely 

coordinating with Cut to establish the class I-specific lack of a dendritic arbor in post-mitotic 

neurons. However, any role of potential mammalian homologs of Abrupt remains unclear. 

Another transcription factor that influences dendritic complexity in Drosophila, Spineless, has a 

mammalian homolog, aryl-hydrocarbon (dioxin) receptor (AHR); however, AHR does not 

appear to affect dendritic development in mammalian neurons the way it does in Drosophila [29]. 



 Though somewhat less understood, other transcription factors play known roles in the 

dendritic patterning of mammalian neurons. Evidence suggests that the basic helix-loop-helix 

transcription factors neurogenin-2 and NeuroD affect dendritic morphological organization in 

cortical pyramidal neurons and granule neurons, respectively [30-32]. Others, such as activating 

transcription factor-3 (ATF-3) and signal transduction and transcription-3 (STAT3) are better 

characterized and induce a variety of responses in neurons during development and in response 

to injury and treatment.  

ATF-3 is a transcription repression protein, targeted by neuronal cyclic AMP-response 

element binding (CREB) protein signaling, that promotes neuroprotection and prevents the 

dendritic damage caused by neurotoxicity and the oxygen-glucose starvation induced by 

ischemic injury [33, 34]. It is known that ATF-3 regulates gene expression through dimerizing or 

interacting with other transcription factors in the leucine zipper family like Fos/Jun [35, 36], which 

allows binding to Ap1 and CRE/ATF promoters [37, 38]. Upon injury, ATF-3 is upregulated in 

many neurons in the CNS [39, 40] and peripheral nervous system [41, 42]. Upon overexpression, 

ATF-3 stimulates enhanced neurite outgrowth in vitro, suggesting that the transcription factor 

increases growth plasticity in neurons, although the exact transcriptional mechanism remains 

unclear. Some genes regulated by ATF-3 in neuronal cells include heat shock protein 27 (Hsp27) 

[43] and c-Jun [38], the latter of which is involved in ATF-3-mediated neurite growth [44]. It could 

be that ATF-3 acts in concert with other transcription factors and modulates the expression of 

various genes to stimulate such neuronal responses. The mechanisms by which ATF-3 regulates 

neuronal responses to injury and regrowth require further study.  

STAT3, among other members of the STAT transcription factor family, is also induced 

by injury to the nervous system [45, 46]. In vitro and in vivo evidence suggests that activation of 

STAT3 by phosphorylation at Tyr 705 is protective in injured neurons [45, 46]. Phosphorylation of 

STAT3 and other STAT proteins occurs primarily through the activation of Janus kinases (JAKs) 



by cell receptor binding by neurotransmitters, hormones, neurotrophic factors, or other 

extracellular signaling proteins. A primary cellular function for JAK-STAT signaling is to 

influence gene expression [47]. Upon activation, JAKs are phosphorylated and this leads to the 

phosphorylation and dimerization of STAT proteins. STAT dimers localize to the nucleus, bind 

DNA, and serve in the regulation of gene transcription. Among the many physiological functions 

of JAK-STAT signaling are cell survival [48, 49], axon growth [50], differentiation, and proliferation 

[51, 52]. After CNS injury, JAK-STAT signaling and STAT3 expression appear to play roles in 

neuronal plasticity and regrowth. Specifically, upon neurite damage, STAT3 expression and 

activity increase in regenerating neurons [53]. STAT3 activation is also involved in neuronal 

differentiation and neurite outgrowth in the presence of trophic factors, including NGF and 

BDNF [54]. STAT3 activation by Trk receptor-activation by neurotrophins may be a point of 

interaction between multiple intracellular signaling pathways, including phosphatidylinositol-3-

kinase (PI3K) and extracellular-related kinase (Erk) in addition to JAK signaling [54]. 

Epigenetic modifications following central nervous system injury 

In normal CNS development and function, appropriate gene expression through epigenetic 

regulation is of great consequence. Even minor fluctuations in neuronal activity can, and may be 

necessary, to impart extended modification of gene expression [55]. As such, when insulted by 

trauma or through other means, dramatic changes in intraneuronal processes occur that can result 

in chronic dysregulation of function and altered neuron metabolism, and can instigate necrotic 

and programmed cell death. The term “epigenetics” is traditionally applied to the system of 

regulation of heritable changes of gene expression separate from those of DNA itself. However, 

epigenetics now covers a broad set of processes and events that regulate chromatin structure and 

function. Non-replicating neurons are unique in that epigenetic modifications are not inherited. 

Therefore, the specific term “neuroepigenetics” has been suggested to cover such epigenetic 

events that occur within the CNS [56]. 



 After injury to the brain or spinal cord, projections of neurons involved in neuron-neuron 

interaction and communication as well as the surrounding glia are lost or damaged. In cells that 

survive the initial trauma, a complex orchestration of events involving histone-modifying 

enzymes and transcription factors unfold to mediate drastic changes in gene expression that 

allow for the specific cell type to respond to temporal changes in tissue pathology post-injury. 

Chromatin remodeling is highly important in the regulation of neuronal degeneration, plasticity, 

and regrowth by controlling critical transcriptional processes in neurons and glia [57-59]. In 

general, at least 8 major epigenetic modifications affect chromatin remodeling in cells (Fig. 1). 

Some of the best-studied enzyme-mediated epigenetic responses include histone lysine 

acetylation and deacetylation [60]. The acetylation of lysine residues on histone N-termini is 

accomplished via the activity of histone acetyl transferases (HATs). Histone acetylation by 

HATs neutralizes the positive charges on histone tails that promotes chromatin unfolding and 

enhances access of the transcription factors involved in gene regulation. Alternatively, histone 

deacetylases (HDACs) eliminate these acetyl groups, compress chromatin, and repress 

transcription. As described in a recent review by Lv et al. [61], overall spinal cord levels of 

acetylation are downregulated in rat models of SCI, and giving valproic acid (VPA), a class I 

HDAC inhibitor, increases acetylation and enhances the recovery of function [61-63]. Whether or 

not these effects of VPA are the result of the direct influence on chromatin modification is 

unclear, as VPA modulates various intracellular signaling pathways and has its own 

neuroprotective effects [64]. Nevertheless, the evidence suggests that epigenetic modulation 

through increased histone acetylation has a positive influence on the functional ability and other 

effects of various cellular events in animal models of SCI.  

The role of Class II HDACs, including HDAC4, 5, 6, and 7, is less understood. However, 

research suggests that specific Class II HDACs have a positive impact on specific neuronal 

functions and synaptic plasticity. Knock-out of HDAC4 in mice reduces hippocampal neuron 



functions and synaptic plasticity, negatively impacting learning and memory [65]. Interestingly, 

HDAC5 knock-out does not have similar effects, suggesting HDAC-specific influences on 

neuronal behavior and morphology. Such findings have important consequences for the 

development and application of therapeutics targeting HDAC activity and epigenetic regulation. 

It would appear that broadly targeting HDAC inhibition after CNS injury should be cautioned 

against, as increased activity in some HDACs, such as those in Class I, may be detrimental while 

some Class II HDACs may prove beneficial when active in certain neuronal populations. As 

Class II HDACs are known to be activated via Ca2+ signaling in neurons, and such signaling is a 

well-understood process in neuronal responses to brain and spinal cord injury, a better 

understanding of HDACs and other epigenetic modulators is needed for optimal therapeutic 

development for modifying such events under these pathological conditions. 

Another prominent epigenetic alteration involves direct DNA modification by chemical 

methylation [66]. DNA methyltransferases (Dnmts) are responsible for DNA methylation through 

methyl group transfer from S-adenyl methionine to a cytosine residue to form 5-methylcytosine. 

During DNA replication, Dnmt1 regulates transfer of the DNA methylation pattern from the 

parent DNA strand to the new daughter strand. Other Dnmts, Dnmt3a and Dnmt3b are known as 

de novo Dnmts as they set in place new patterns of methylation of unmodified DNA [67]. In 

mature post-mitotic cells, such as CNS neurons, Dnmt expression is downregulated but still 

expressed, which suggests a role in CNS neuronal functions [68, 69]. In fact, some of the highest 

DNA methylation levels occur in brain tissue [67]. 

 Crosstalk between DNA methylation mechanisms and histone modifications also occur in 

regulating transcription. As noted earlier, epigenetic modification of histones that cause 

loosening of histone-associated DNA, such as acetylation of the N-terminus of histone tails, 

enhance transcriptional access by transcription proteins and machinery, and Dnmts can interact 

with histone-modifying enzymes to repress the expression of genes. For example, Dnmt1 and 



Dnmt3a have been observed to interact with and bind the histone methyltransferase SUV39H1 

that methylates histone 3 and lysine 9 (H3K9) and reduces gene expression [70]. It has also been 

shown that Dnmt1 and Dnmt3b bind HDACs to repress transcription in associated DNA regions 

through enhanced DNA compaction and by repressing access by transcriptional proteins [71]. 

Overall, the relationship between Dnmts and histone-modifying enzymes generally results in the 

transcriptional repression of specific DNA regions. 

 Experimental traumatic brain injury (TBI) modifies the distribution and expression of 

Dnmt1, as well as DNA methylation at both the cellular and organ levels [72, 73]. A recent study 

suggests that DNA hypomethylation and hypermethylation changes occur in both neurons and 

glia. These changes appear to be dependent on specific DNA regions, and thus the gene regions 

with which the methylation patterns are associated. In specific neuronal populations, epigenetic 

changes in Dnmt expression and DNA methylation as well as HDAC expression have been 

documented, which suggest subpopulation-specific neuronal responses to blast-type brain injury 

[72, 74]. Blast-injury, among other forms of experimental TBI, causes mild forms of brain damage 

and diffuse axonal injury. A recent study has shown that controlled cortical impact injury causes 

local as well as widespread cortical neuronal dendrite degeneration and loss [75]. The mechanisms 

underlying such events are not well understood, but may, at least in part, result from intracellular 

transcriptional modulation due to epigenetic changes induced by injury. 

Additional extrinsic factors in the CNS may also influence neurite plasticity, both during 

development and following injury. Recent research has demonstrated an increase in Nogo-A, a 

myelin-associated molecule, following mild TBI [76]. Nogo-A is best known for its inhibitory 

effects on axonal and dendritic arbor growth and plasticity [77, 78]. The upregulation of Nogo-A 

has been implicated in the inhibition of axonal arborization in a stroke model of brain injury [79]. 

Its action in these models may serve to stabilize hippocampal dendrites and axons following 

insult [80]. Nogo-A exerts its effects through binding and stimulating intracellular signaling 



events through Nogo receptors (NgRs) [81]. Evidence suggests that NgRs also play a role in 

dendritic plasticity, recent research showing that loss of NgR2 modifies the dendritic spine 

morphology of pyramidal CA1 neurons [82], which can be damaged following TBI. NgRs act to 

modify cytoskeletal organization via activation of the RhoA family of GTPases [83]. These 

GTPases, especially Rac1, are known to play roles in dendritic plasticity mediated through 

epigenetic modifications [84, 85]. Rac1 controls dendritic spine plasticity under normal conditions 

through cofilin interaction and the modulation of actin polymerization within the spines, and 

reduction in Rac1 by epigenetic changes, likely through H3K9 and H3K27 methylation [86], 

increases plasticity by dysregulating this process [85]. Given that Nogo can influence such 

downstream processes, future research into the influence of Nogo expression and activity on 

epigenetic modifications in injured neurons will be an area of particular interest.  

Cell signaling, epigenetics, and transcription factors involved in dendrite morphology and 

function 

Of the various transcription factors that play roles in neuronal structural stability, degeneration, 

and repair, only a few have been studied in the context of epigenetic modification-mediated 

effects on dendritic morphology. In particular, the events surrounding intracellular signaling 

cascades and transcription factor modulation have received the greatest emphasis. Due to the 

long history of assessment of their influence on neuronal morphology and behavior in normal 

and pathologic conditions, neurotrophins have often been used in and linked to research on the 

progression and outcome of transcriptional and epigenetic events that affect dendritic plasticity 

in neuronal populations. 

A prime example, BDNF, has long been associated with neuritogenesis and dendritic 

plasticity [87, 88]. In addition, BDNF exhibits extensive transcriptional control throughout neurons 

and locally within the dendrites and spines, which can have important effects on dendritic and 

synaptic plasticity [89]. BDNF enhances the growth of proximal dendrites through transcriptional 



modulation by CREB [90]. MAPK signaling appears to be important in the activity of BDNF in 

this context. BDNF also regulates the transcription of immediate-early genes in central neurons 

and CCAAT/enhancer binding protein (C/EBP)-NeuroD transcription factors, which influence 

dendritic differentiation [91] (Fig. 2). Knock-down of TrkB/C or C/EBP retards dendritic 

maturation, indicating that BDNF signaling via this transcriptional mechanism is critical for the 

proper development of dendritic arbors [91]. 

Conversely, endogenous transcriptional regulation can also influence BDNF expression 

and local physiological and morphological effects on neurons. Endogenous BDNF is known to 

play a role in the regulation of pro-growth and plasticity programs within normal, injured, and 

developing neurons [92, 93]. Recent research has shown that the epigenetic chromodomain protein 

and transcription corepressor chromodomain Y-like (CDYL) protein negatively regulates the 

transcription and expression of BDNF, which directly influences the extent of dendrite 

morphological change [94]. Evidence suggests that CDYL interacts with the catalytic subunit 

EZH2 of the partner factor, polycomb repressive complex 2, to recruit H3K27 methyltransferase 

to the BDNF promoter to mediate this inhibition (Fig. 2). Like other epigenetic methylation 

processes, this series of events leads to reduced BDNF transcription and expression. Other recent 

studies have demonstrated that acetylation at lysine 9 of histone 3 by the HAT p300/CBP-

associated factor (P/CAF) near the promoter of the bdnf gene increases its expression, and this 

action is associated with a regenerative response in injured neurons [95]. Supporting such a role, 

pharmacological inhibition of HDACs is followed by a concomitant elevation in P/CAF activity, 

leading to increased neurite outgrowth [96]. Aside from the influences of direct insult on neurons, 

specific activity-associated dendritic plasticity, such as that suggested to occur during post-

traumatic stress disorder, can also be induced in neurons by epigenetic modifications that alter 

BDNF expression [97]. Taken together, neuronal transcriptional regulation both by and of BDNF 

are likely important for overall dendritic growth, maturation, and plasticity. 



Aside from the influence of neurotrophins on transcriptional effects involved in dendritic 

plasticity under stress, other studies have focused on the link between intracellular signaling 

pathways, transcriptional regulation, and epigenetic modification. Still, the evidence available in 

the literature linking epigenetics to neurite growth and plasticity is limited. Some evidence 

suggests that epigenetic factor interactions can regulate the post-translational modification of 

proteins such as histones, which can impact neurite properties and processes. 

DNA methylation in the brain is elevated following ischemia, while downregulating 

Dnmt1 and reducing DNA methylation appear to confer neuroprotective benefits under these 

conditions [98, 99]. Application of the neurotrophin NGF stimulates neurite outgrowth from rat 

pheochromocytoma (PC12) cells via Dnmt3b recruitment of HDAC to the T-cadherin promoter 

[100]. As T-cadherin negatively controls neurite growth, this reduces T-cadherin expression and 

promotes neurite growth [101]. As such, it appears that Dnmts can influence histone post-

translational modification and subsequently, neurite outgrowth; however, more details and 

broader implications of such possibilities require further investigation in the context of in vivo 

neural injury models.  

After SCI, the levels of Dnmt3a, Dnmt3b, and DNA methylation are decreased in the 

spinal cord, but are elevated by administration of folic acid, a promoter of neurite growth and a 

source of methyl groups for Dnmts [102]. This indicates that folic acid-mediated regeneration may 

occur through DNA methylation. The mechanism underlying this requires further research. Other 

evidence also suggests a possible role for elevated DNA methylation mediated by folic acid 

following SCI; this lends support to a proposed mechanism of epigenetic hypermethylation-

mediated neuronal regeneration [103]. This is interesting, as DNA hypermethylation is mainly 

linked to the repression of gene expression. 

Whole tissues were used in the in vivo studies above, which means that the observed 

methylation outcomes could have resulted from glial cells rather than neurons. As glia and 



immune cells are prime players in CNS injury responses, DNA methylation in such cells could 

influence damage from inflammation and the immune response and the reduced ability of 

neurons to regenerate [104]. Also, such results could be explained by a spatiotemporal difference 

between brain and spinal cord neuronal responses to differing injuries. Such variables need to be 

investigated further to better clarify the role of glial cells, and injury- and tissue-specific 

neuronal responses in modulating epigenetic events that affect axon and neurite outgrowth. As 

discussed, transcription factors require access to gene promoters to function in gene expression 

regulation, and many are known to be directly or indirectly involved in dendrite and neurite 

plasticity. Epigenetic changes that result from injury or therapeutic modalities certainly impact 

the ability of transcription factors to access and influence gene expression, and affect feedback 

and feed-forward mechanisms for further transcription factor and neurotrophin production that 

can promote dendrite and synaptic plasticity. The coming years will yield exciting results that 

will expand our understanding of how these varying complex processes in the nervous system 

interact to influence the dynamics of dendrite plasticity in neural injury and disease, and as 

importantly, how these dynamics can be accounted for in optimizing therapeutic development 

and application.  

Conclusions and future directions 

As shown in this review, understanding the gene expression and transcription factor responses of 

neurons to injury and neurotrophic therapy could help optimize such treatments by providing a 

foundation for predicting upstream translational and post-translational events that could lead to 

effective dendritic plasticity and establish functional interneuronal signaling after CNS injury. In 

many ways, our understanding of the dendritic responses to injury and treatment is relatively 

immature compared to that available on neuroprotection and axonal regeneration. This is 

especially true concerning the epigenetic modulation and regulation of gene transcription and the 

specific influences of these events in neurons, as well as in glial cells that may affect neuronal 



morphology following CNS injury. In the coming years, a clearer picture of key epigenetic and 

transcriptional events and regulators will unfold, and this will help to connect our understanding 

of trophic signaling in neurons and the intracellular signaling cascades that help modulate 

cytoskeletal and morphological plasticity in affected neurons after CNS injury. During this 

period, the development of new ideas and potential methods of treatment, including small-

molecule mimetics of neurotrophins, may improve the efficacy of inducing neuronal dendritic 

arborization and protection against dendritic atrophy. The study of dendritic plasticity in the CNS 

following injury and treatment has come a long way in the last few decades, but still has some 

way to go until we can effectively use the knowledge for therapeutic means.  
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Figure Legends 

 

Figure 1. Cartoon of general cellular epigenetic modifications and transcriptional 

outcomes. Examples of histone lysine acetylation and methylation sites associated with 

transcriptional regulation are labeled in red. 



 

Figure 2. Examples of extrinsic and intracellular transcriptional regulation of neurotrophic 

influence on dendritic morphology. (1) BDNF can signal through MAPK and other 

mechanisms to promote transcription of immediate-early (IE) genes, and transcription factors 

such as NeuroD to mediate dendrite morphological plasticity. (2) Transcriptional regulation 

through epigenetic modulation of BDNF that could influence dendritic plasticity. 




