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Abstract

We previously demonstrated that skeletal structure and strength phenotypes vary considerably in
heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting
that the HS rat model represents a unique genetic resource for dissecting the complex genetic
etiology underlying bone fragility. The purpose of this study was to identify and localize genes
associated with bone structure and strength phenotypes using 1524 adult male and female HS rats
between 17 to 20 weeks of age. Structure measures included femur length, neck width, head
width; femur and lumbar spine (L3-5) areas obtained by DXA,; and cross-sectional areas (CSA) at
the midshaft, distal femur and femoral neck, and the 5™ lumbar vertebra measured by CT. In
addition, measures of strength of the whole femur and femoral neck were obtained. Approximately
70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping,
with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes
were estimated across the entire genome for each rat using a multipoint haplotype reconstruction
method, which calculates the probability of descent at each locus from each of the 8 HS founder
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strains. The haplotypes were then tested for association with each structure and strength phenotype
via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for
structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes
on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold
(FDR=5%; P<3 x 1075). Importantly, most QTLs were localized to very narrow genomic regions
(as small as 0.3Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and
previously shown to have roles in skeletal development and homeostasis.

Keywords
Heterogeneous stock rat; Bone structure; Bone strength; Genes; Osteoporosis

Introduction

Osteoporosis is a common, genetically complex disorder characterized by reduced bone
mineral density (BMD), abnormal bone microarchitecture and compromised bone strength
leading to increased susceptibility to fracture risk [1]. Bone mineral density (BMD),
structure and strength are the major determinants of skeletal fracture [2-4]. As much as 80%
of the variability of BMD and about one-third of the variance in the risk of fracture is due to
heritable factors [5-8]. Although BMD by DXA is most often used for predicting fracture
risk in humans, it is not an adequate measure to capture several important aspects of bone
strength. The genetic basis of fracture susceptibility depends on coordination of bone
density, morphology, structure and tissue-quality, all of which contribute to bone strength.
Identification and characterization of genes underlying bone structure and strength,
particularly at the most common sites of fracture, will ultimately lead to better diagnosis,
prevention and treatment of osteoporosis and other high bone-fragility conditions.

Previously, we identified several quantitative trait loci (QTLSs) linked to bone structure and
strength phenotypes in inbred F344, LEW, COP and DA rats [9-12]. However, most of these
QTLs are large (20-30 cM) and harbor hundreds of potential candidate genes. It is a
formidable challenge to narrow these critical QTL regions to a small chromosomal segment
containing a few genes. To address this issue, in this study we exploited a unique rat model,
the heterogeneous stock (HS) rat, developed by the National Institutes of Health (NIH) in
1984 [13]. These rats were derived from eight inbred founder strains: Agouti (ACI/N),
Brown Norway (BN/SsN), Buffalo (BUF/N), Fischer 344 (F344/N), M520/N, Maudsley
Reactive (MR/N), Wistar-Kyoto (WKY/N) and Wistar-Nettleship (WN/N) [13-14].
Importantly, the descendants of these rats represent a unique, genetically random mosaic of
the founding animals’ chromosomes due to recombination that has accumulated over 50
generations, enabling the fine mapping of QTLs to very small genomic regions. Recently,
these rats have been successfully used for high-resolution mapping for diabetes and fear-
related behavior phenotypes [15-16].

In a previous study, we demonstrated that bone structure and strength phenotypes vary
considerably among the HS founder strains [17]. Recently, using the sequence data from
these strains and genotypes for a dense SNP marker map in the HS offspring population, we
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identified several QTLs and underlying genetic variants for multiple bone phenotypes [18];
however, no single genetic variants explaining associations with bone phenotypes were
detected, consistent with the complex genetic architecture of skeletal phenotypes observed
previously both in humans and animal models [18-19]. The purpose of this study is to
identify and localize QTLs for bone structure and strength phenotypes using high-resolution
mapping in the HS rat offspring at the most common skeletal fracture sites. We anticipate
that using this approach the bone structure and strength QTLs will be localized to much
smaller genomic regions than QTLs detected using inbred rat crosses. Ultimately, this will
allow us to identify a smaller set of potential candidate genes underlying these QTLs, and
contribute to a better understanding of the complex genetic architecture of the fracture risk
phenotypes in the rat model and in human.

Materials and Methods

Animals

We used 1524 HS rats (male n=728; female n=796) in this study. The HS rats were bred and
grown at the Autonomous University of Barcelona. The rats were housed in cages in pairs
(males) and trios (females) and maintained with food and water available ad libitum. The HS
rats were raised over 2.5 years in batches of approximately 250 animals in accordance with
the Spanish legislation on “Protection of Animals used for Experimental and Other
Scientific Purposes” and the European Communities Council Directive (86/609/EEC).

Euthanasia and specimen collection

HS rats were euthanized between 17 and 20 weeks of age by ether inhalation. The lower
limbs and lumbar vertebrae (L3-5) were dissected from these animals. The lower limbs on
the right side were immediately frozen after harvest wrapped in saline soaked gauge in
plastic Ziplock bags at —20°C for subsequent biomechanical testing. To prevent dehydration
and any adverse effect on the mechanical properties, we kept the muscle attached to the
limbs during the storage period until testing. The lower limbs on the left side and lumbar
vertebrae (L3-5) were stripped of muscle, transferred to 70% ethyl alcohol and stored at 4°C
for bone structure analyses.

Dual energy X-ray absorptiometry (DXA)

The left femur and lumbar vertebrae 3-5 (L3-5) of the HS rats were scanned using DXA
(PIXImus Il mouse densitometer; Lunar Corp., Madison, WI, USA) with ultra-high
resolution (0.18 x 0.18 mm/pixel). The machine was calibrated prior to each DXA scanning
session using a phantom supplied by the manufacturer. During scanning dissected femurs
were positioned with anterior surface facing up and the distal end on left side whereas L3-5
were oriented anterior surface facing up on a standardized platform in air. After completion
of the scan of each bone, mutually exclusive region of interest (ROI) boxes were drawn
manually around the bones from which femur area (mm?2) and lumbar area (mm?)
measurements were obtained. The intra-specimen % coefficient variation for area was less
than 1%.
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Femur length, femoral head and neck width measurements

The femur size parameters were measured using digital calipers accurate to 0.01 mm, with a
precision of £ 0.005 mm (Mitutoyo, Aurora, IL). The femur length (mm) was measured
from the end of the medial condyle to the end of the greater trochanter. The maximum
transverse diameter (mm) of the femoral head and the shortest transverse distance (mm) of
the femoral neck were considered as the width of the femoral head and neck, respectively.

Peripheral quantitative computed tomography (pQCT)

The left femurs were placed in plastic tubes filled with 70% ethyl alcohol and centered in
the gantry of a Norland Stratec XCT Research SA+pQCT (Stratec Electronics, Pforzheim,
Germany) machine. Single slice measurements of 0.26 mm thickness and a voxel size of
0.07 mm were taken for the femur: one slice through femoral midshaft and one slice
approximately 1 mm below the growth plate of distal femur. L5 vertebrae were scanned in
cross-section at the caudo-cranial center of the vertebral body. For femoral neck, five
consecutive scans perpendicular to the neck axis were obtained 0.25 mm apart from each
other starting at the base of the femoral head and ending at the greater trochanter. For each
slice, the X-ray source was rotated through 180° of projection. Total (trabecular and cortical)
cross-sectional area (CSA; mm?) from each slice for femur and L5 spine were measured
using the thresholds of 500 and 900 mg/cm?3. For femoral neck, CSA were measured from
the average values of all five slices.

Biomechanical testing

Genotyping

The frozen right femurs were brought to room temperature slowly in a saline bath. The
femurs were tested in three-point bending by positioning them with anterior surface facing
up and the distal end as close to the left supporting point as possible on the lower supports
(15 mm span for female and 20 mm span for male) of a three-point bending fixture and
applying load at the midpoint using a material testing machine (Alliance RT/5, MTS
Systems Corp., Eden Prairie, USA). For femoral neck, the proximal end of the femurs was
mounted vertically in a special chuck that clamped the femoral shaft to the lower platen of
the same material testing machine. The bones were held in place by a small (1N) preload,
and then load was applied directly downward at a crosshead speed of 20 mm/min onto the
mid-femur and femoral head at room temperature in monotonic axial compression until
fracture. Force and displacement measurements were collected every 0.05 second. From the
force vs. displacement curves, we measured the phenotypes that are critical for different
aspects of bone fragility - ultimate force (Fy; N), stiffness (S; N/mm), work to failure (W;
mJ) and ultimate displacement or elongation (E; mm) in TestWorks software, version 4.06.
Fy reflects the strength of the bone or maximum load that the bone can support before
failing; S is the slope of the curve represents the bone brittleness; W reflects the amount of
energy the specimen can absorb prior to fracture and E is the reciprocal of brittleness. The
phenotypes, together, best reflect the clinical aspect of skeletal fragility.

DNA was extracted from liver tissues from 8 original founders and 1524 HS rats using
standard protocols. To reconstruct the genome of each HS rat, genotypes for over 900,000
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SNPs for each rat were selected from an Affymetrix rat custom SNP array
(www.affymetrix.com) as described previously [19]. We used only high quality informative
(SNP call rate more than 0.99, polymorphic SNPs and no missing genotyping) markers. The
average spacing between adjacent SNPs is 12.5 kb, with a maximum gap size of 1 Mb. The
maximum density is 15 SNPs in a 10kb window. In addition, there are 19 larger gaps (1-3.8
Mb) on the autosomes (chromosome 1 to chromosome 20) and 12 larger gaps on
chromosome X, with a maximum gap of 4.8 Mb. The set of SNPs were pruned to
approximately 70,000 high quality SNPs which covered the HS rat genome with a mean
linkage disequilibrium coefficient between neighboring SNPs of 0.95.

Measurements of intra- and inter-observer errors

The structure and strength phenotypes were measured in batches consisting approximately
250 samples involving multiple individuals, therefore, we analyzed the intra- (measurement
of a phenotype across multiple samples by an individual) and inter-observer (measurement
of a phenotype across multiple samples by different individuals) variations for these
measurements. We found that the intra-observer % of coefficient of variations (CV) for
femur length (<4%), neck width (<13%), head width (<9%), lumbar area (<18%), femur
work to failure (<34%), femur elongation (<32%) and femur neck ultimate force (<23%)
were comparable to inter-observer variations of these measurements (<6%, <12%, 7%,
<16%, <39%, <25% and <20%, respectively), suggesting that the quality of these
phenotypic measurements was consistent across all samples in this study.

Statistical genetic analysis

Results

Haplotypes were constructed for each rat across the genome using the multipoint haplotype
reconstruction method HAPPY (http://www.well.ox.ac.uk/happy) [20] as described
previously [19]. A mixed model approach was employed to test for association between
each haplotype and the bone phenotype of interest. VVariance components to correct for
pedigree relationships were estimated using the EMMA package for the R statistical
software [21]. The test for association was conducted for each phenotype via a mixed model,
adjusting for age, sex, body weight and batch as described previously [19]. An overall
significance threshold of P<3 x 1076 (~log;gP=5.5) was used, corresponding to the most
stringent of the 5% FDR levels established by permutation for each of the bone structure and
strength phenotypes, and applying a Bonferonni correction for the number of traits
considered. All models were fitted using the statistical language R (R-Development-Core-
Team 2004) [22]. For each QTL meeting the significance threshold, the resampling-based
model inclusion probability (RMIP) was obtained as a measure of robustness; QTLs with
RMIP values above 0.3 were further explored for candidates of interest. A 95% confidence
interval for the position of each QTL detected was obtained as described previously [9,23].

QTL mapping results were obtained throughout the genome for the structural measurements
of femur length, neck width, head width and lumbar area (Figure 1A-1D). Results for femur
work to failure, elongation and femur neck ultimate force are shown in Figure 1E-1G.
Several QTLs reaching the genome-wide FDR and RMIP significance thresholds were
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observed in the HS rat sample, and are included in Table 1. Candidate genes within the 95%
confidence intervals (ClI) for these QTLs are listed in Table 2.

Genome-wide significant association results of femur and femoral neck structure

On chromosome 20 at position 34 Mb, significant linkage was detected for femur length
with a —logP value of 6.72 (p=1.9 x 10~7; Figure 2A and Table 1). The CI for this QTL
spanned 2.8 megabase (Mb). On chromosome 8, a QTL was identified which was linked to
femur head width with a —logP value of 6.56 (p=2.7 x 10~7; Figure 2B) spanning less than
one megabase. On chromosome 3, a QTL was identified which was linked to femur neck
width with a —logP value of 9.75 (p=1.7 x 10710; Figure 2C) spanning 2.8 megabase. In
addition, a QTL encompassing 0.8 Mb for femur neck width with a —logP value of 8.55
(p=2.7 x 1079; Figure 2D) was detected on chromosome 17.

Genome-wide significant association results of lumbar spine structure

The only significant QTL for lumbar area was detected on chromosome 12 at position 22
Mb, with a —logP value of 16.39 (p=4.0 x 10717; Figure 3A and 4B) spanning 0.5 Mb
chromosomal region.

Genome-wide significant association results of femur and femoral neck strength

We observed two genome-wide significant QTLs for femur strength phenotypes, one each
for femur work to failure (Figure 3B and 4A) and femur elongation (Figure 3C) on
chromosomes 5 and 11, respectively. The CI for the QTL region on chromosome 5 spans
approximately 2.5 Mb whereas the QTL region on chromosome 11 spans 2.9 Mb. In
addition, a QTL was identified for femoral neck ultimate force between 46-47 Mb position
on chromosome 10 (Figure 3D) spanning 0.3 Mb region. In the same region on chromosome
10, a QTL for femur length was also observed with a significant —logP value of 6.46 (p=3.8
x 1077).

Discussion

In this study, we detected and localized QTLs for several key bone structure and strength
phenotypes in HS rats at most common skeletal fracture sites. Importantly, most of these
loci were localized to very small genomic regions, as small as 0.5 Mb up to 3 Mb, compared
to the F2 design used previously for QTL mapping. This approach also allowed us to
identify a narrowed list of positional candidate genes underlying each QTL, which can then
be analyzed in future functional studies. Such a direct translation from gene identification to
functional work is not possible in the traditional F2 design which typically identifies a QTL
region harboring hundreds of potential candidate genes.

A critical factor for identification of genes underlying any complex trait such as skeletal
fragility is replication of QTLs across studies. If chromosomal regions truly harbor gene/s
for a trait, independent studies involving sufficiently large samples will most likely detect
the same QTL for that particular trait. Importantly, the genomic resolution of replicated
QTLs could be enhanced, thereby narrowing the number of positional candidate genes, by
employing a genetically random mosaic model of the founder animals rather than using
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traditional two-strain parental crosses. Indeed, several chromosomal regions previously
identified in our inbred F2 studies were replicated in HS rats. For example, we detected
association with femur work to failure in the HS rats on chromosome 5 (LOD 6.54) (Figure
3B and 4A), which overlapped with multiple QTLs in our F344 X LEW and COP X DA F2
crosses for femur structure and strength phenotypes [10,12]. This QTL in HS rat is syntenic
to human chromosome 1p32.2-p33 and close to the location of the tissue-nonspecific ALP
gene, which is important for skeletal mineralization. In addition, lumbar area QTL identified
in HS rats on chromosome 12 (LOD 16.39) (Figure 3A and 4B) overlapped the QTLs in
COP X DA F2 cross for spinal BMD and trabecular area [9,10,58]. This QTL in HS rats is
homologous to human chromosome 7g11 (Figure 3A), which was linked to hip and spine
BMD and femoral neck geometry [55-57]. Importantly, using HS rats, we were able to fine-
map these regions to 1-3 Mb resolution, enabling us to identify a much smaller number of
potential candidate genes on these overlapped chromosomes (Table 2). Notably, 2 genes
(Hip1 and Por) underlying the QTL on chromosome 12 have been previously reported to
have important roles in skeletal development and homeostasis. Hipl, a member of
Huntingtin interactin protein, plays an important role in the clathrin trafficking network.
Hipl deficient mice have developmental abnormalities and growth defects including severe
spinal abnormalities and dwarfism [40,41]. Por is the primary electron donor for
cytochromes P450. Mutations in Por in humans lead to severe malformations including
defects in craniofacial and long bones development [42]. In addition, deletion of Por
recapitulates the human skeletal defects in mouse model, indicating this gene is important
for proper bone development [43].

The genes underlying QTLs identified in this study might act alone or in combination to
influence bone structure and strength phenotypes in different manner. For example, a single
gene might affect multiple bone phenotypes or a cluster of genes may act together to modify
a single bone phenotype. Also, the pleiotropic gene/s may contribute not only to different
bone phenotypes but also influence phenotypes at different skeletal sites even within a given
bone. Indeed, we detected several QTLs in HS rats that overlapped the QTLs in F344 X
LEW and COP X DA F2 crosses for different bone phenotypes. The head width QTL in HS
rats on chromosome 8 (LOD 6.56) (Figure 2B) overlapped with femur BMD and femoral
neck strength QTLs in COP X DA cross [9,10]. The femur length and femur neck ultimate
force QTLs identified in HS rats on chromosome 10 (LOD 6.41) (Figure 3D) overlapped the
QTLs for spine BMD in both F344 X LEW and COP X DA F2 crosses [9,44]. This region
was also coincided with the position of the femur BMC QTL that we reported previously in
HS rat [19]. Similarly, the femur length QTL identified in HS rats on chromosome 20 (LOD
6.72) (Figure 2A) overlapped the QTL for femur BMD in COP X DA F2 cross [9]. The QTL
region for femoral head width on chromosome 8 in HS rat is syntenic to human chromosome
6913-14 (Figure 2B). This region was previously linked to osteoarthritis QTL and hand-foot
malformation [49,52]. A locus for otosclerosis, a common form of hearing impairment
caused by abnormal bone homeostasis of the otic capsule, was mapped to the 6g13-16
region [59]. In addition, 6q14.2-14.3 region harbors gene for cleft lip and palate, a defect of
craniofacial development in human [60]. The distal peaks of QTLs for ALP and OC in
baboon were mapped close to human orthologous 6¢13 region [61]. The femur length QTL
on chromosome 10 in HS rat is homologous to the human chromosomes 1g42-44 and
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17p11.2 which were linked to rheumatoid arthritis QTL and hip BMD, respectively (Figure
3D) [45,46]. The susceptibility loci for split-hand/foot malformation with long-bone
deficiency, a rare severe limb deformity condition were detected at 1g42.2-943 and 6q14.1
[62]. Furthermore, a locus for Kenny-Caffey syndrome, an osteosclerotic bone dysplasia
was identified at 1g42-943 [63]. Amplification and overexpression of genes in 17p11.2-p12
leads to osteosarcoma [64]. QTLs for developmental components of the craniofacial
complex were mapped to baboon ortholog of human chromosome 17p12 [65]. The neck
width QTL on chromosome 17 in HS rat is homologous to the human chromosomes
10p12.1-p13, where Paget's disease locus was mapped [66-68]. The QTL for the femur
length on chromosome 20 in HS rats is syntenic to 6g21-22 where spine and heel BMD
QTLs were detected (Figure 2A) [47,48]. In addition, this human region was linked to
osteoarthritis and rheumatoid arthritis QTLs [45,49]. Mutation in a locus of 621 harboring
OSTM1 gene was found to be linked to human malignant infantile osteopetrosis and
craniometaphyseal dysplasia with severe craniofacial involvement shows hmozygosity at
6021-g22.1 locus in human [69,70]. Among all the genes detected underlying QTL on
chromosome 10, several genes have previously shown to play important functions in bone
growth and remodeling (Table 2). Cops3 is an oncogene residing in the human chromosomal
region 17p11.2-p12 - the copy number and expression level of Cops3 was significantly
associated with the development of osteosarcoma, the most common primary malignancy of
bone [29,30]. Drg2, a GTP binding protein, overexpression of which in transgenic mice
leads to increased number and activity of osteoclasts and bone loss [31]. Map2k3 is
increased by RANKL, which in turn aids in osteoclastogenesis from bone marrow precursor
cells [39]. NIrp3, a member of the NLR family of cytosolic receptors, mediates bone loss at
sites of infection by apoptotic cell death of osteoblasts [36]. Mutations in NIrp3 are
responsible for neonatal-onset multisystem inflammatory disease, exhibiting growth
retardation, osteopenia and increased osteoclastogenesis [37], suggesting that this gene is
important for postnatal skeletal growth and bone remodeling. Rail encodes a nuclear protein
containing a zinc finger homeodomain and regulates cell growth, cell cycle regulation, lipid
metabolism, neurological development and behavioral functions [32-33]. Mutation of Rai
leads to craniofacial and skeletal anomalies (short extremities) in Smith-Magenis syndrome
[32]. Both the copy number and expression level of Rasd1 were significantly associated with
the development of osteosarcoma [29]. In addition, using an integrative genetics approach,
Rasd1 was identified as a strong candidate gene for a BMD QTL in mice [34]. Srebfl
activates genes that regulate lipid biosynthesis, and polymorphism in this gene was found to
be associated with a higher risk of osteonecrosis of the femoral head in the Korean
population [35]. Shmt1 and Top3a are oncogenes and contribute to the development of
osteosarcoma [29,38].

Two novel chromosomal regions linked to bone structure and strength phenotypes were
identified in HS rats (Table 1) not found in our F2 studies. On chromosome 3, a QTL was
identified for neck width (Figure 2C) and on chromosome 11 we detected a QTL for femur
strength (Figure 3C). The QTL region for femoral neck width on chromosome 3 in HS rat is
syntenic to human 9933-34 (Figure 2C), where linkage to neck BMD and osteoarthritis and
rheumatoid arthritis QTLs were detected previously [45,50,51]. KBG syndrome, a postnatal
short stature, macrodontia, facial and hand anomalies and delayed bone age was associated
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with 9931.2-g33.1 [71]. The femur elongation QTL on chromosome 11 in HS rats is
syntenic to human chromosome 3q11-13 and 3g12-26 (Figure 3C), where femur and hip
structural QTLs and QTL for rheumatoid arthritis were observed [45,53,54]. QTLs for
developmental components of the craniofacial complex were mapped to baboon ortholog of
human chromosome 3g11-13 [65]. Three genes (Gsn, Hspa5 and Lmx1b) underlying the
QTL on chromosome 3 play important roles in bone and teeth development (Table 2). A
haplotype in Gsn (gelsolin) was associated with the hip bone phenotypes, and mRNA and
protein expressions of Gsn in peripheral blood monocytes were lower in female Caucasians
with low hip BMD [28]. Hspa5 (heat shock 70kDa protein 5) or GRP-78, an endoplasmic
reticulum chaperone protein localized on the plasma membrane in preosteoblasts, is
responsible for cellular uptake of Dmp1 for its internalization to the nucleus during bone and
tooth development [27]. Lmx1b is required for patterning and morphogenesis of the mouse
calvaria and is necessary for dorsal-ventral patterning during limb development in mice
[24-26].

Several novel genes underlying QTLs discovered in this study were not previously directly
linked to any bone phenotype but they code for proteins for various cellular structures and
trafficking pathways — such as membrane proteins (Impgl, Senp6, Lrrc48, Dcbld2, Jmjd4
and Gabrr3), membrane trafficking (Gapvdl, Llgl1 and Tom1l2), cytoskeletal proteins
(Stom, Mprip and Tom1l2) and cell junction proteins (Myo6, Myol15a and Dchld?2) that
might be important for overall bone homeostasis (Table 2). Also, genes that act as
transcription factors or cofactors (Rhbdd2, Zbtb34/43 and Msl312), G-protein coupled
receptors (Gpr15, Mprip, Myo6 and Myol15a), small GTPase (Arl6 and Arl5b) and calcium
binding proteins (Flii and Fkbp6) were identified (Table 2). These genes might play role in
connection between skeletal metabolism and other systems functions.

There are some limitations in this study. Although, rat skeleton is very similar to human
bone with peak bone mass gain or bone loss due to aging, and rat models have served as a
highly predictive model for fracture risk in humans, a potential drawback is rat skeleton
lacks the Haversian remodeling system found in human. Also, we could not identify any
specific sequence variants in the HS founder strains that fully accounted for structure and
strength QTLs identified in this study. In the future, full sequence information of HS
offspring will shed light on the complex genetic interactions among the different haplotype
variants underlying these phenotypes in these animals. Furthermore, while QTLs for bone
structure and strength phenotypes in the HS rat were localized to very small genomic
regions, further functional studies are necessary to identify the causative genes from these
narrowed lists of candidate genes.

In this study, we demonstrated that HS rats are a powerful resource for fine mapping of
QTLs for bone structure and strength phenotypes. These phenotypes, along with BMD, are
complex in nature in the rat, just as they are in humans and are likely due to multiple
variants inherited from different founders as well as interactions among these variants. The
number of founder rat lines used in the generation of the HS population and the number of
recombination events accumulated over many generations, allowed us to more accurately
detect the correct QTL position. Most importantly, this approach allows us to delineate a
much smaller chromosomal QTL interval and thus generate a narrower list of potential
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candidate genes than the traditional F2 approach — which is a cross of only two founder rat
lines. In the future, sequencing studies in the HS offspring in these narrowed regions, along
with analysis of the founder strain sequence data, will enable us to dissect the complex
genetic architecture underlying the structure and strength phenotypes in the HS rats.
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Highlights

We detected QTLs for bone structure and strength phenotypes in HS rats at the
most common skeletal fracture sites

Several chromosomal regions previously identified in our inbred F2 cross were
replicated in HS rats

Most QTLs in HS rats were localized to very narrow genomic regions

HS rat model allowed us to identify a narrower list of potential candidate genes
than the traditional F2 approach

We demonstrated that HS rats are a powerful resource for fine mapping of QTLs
for bone structure and strength phenotypes
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Genome-wide plots for femur length (A), femur neck width (B), femur head width (C),
lumbar area (D), femur work to failure (E), femur elongation (F), and femur neck ultimate
force (G). The —log10P values plotted on the Y-axis versus chromosome position on the X-
axis. For comparability with other mapping studies, QTL results are shown at each position
regardless of the conservative RMIP threshold (0.3) employed to select the most robust
QTLs for our report. The dashed horizontal lines indicate the threshold value for genome-
wide significance corresponding to FDR=5% (p<3 x 1076).
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Chromosome 17 (Mb)

Association results for femur length on chromosome 20 (A), femur head width on
chromosome 8 (B), femoral neck width on chromosome 3 (C) and femoral neck width on
chromosome 17 (D). The —logP values are plotted on the Y-axis vs. the chromosomal
position (MB) on the X-axis. The dashed horizontal lines indicate the threshold value for
genome-wide significance corresponding to FDR=5% (p<3 x 107%). Corresponding human
syntenic regions and associated QTLs for bone phenotypes are indicated.
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on the Y-axis vs. the chromosomal position (MB) on the X-axis. The dashed horizontal lines
indicate the threshold value for genome-wide significance corresponding to FDR=5% (p<3
x 107%). Corresponding human syntenic regions and associated QTLs for bone phenotypes

are indicated.
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Mapping results on chromosome 5 (A) for femur work to failure and on chromosome 12 (B)

for lumbar area, indicating evidence for QTLs from the HS analysis (solid line) and an F2

intercross (F344 X LEW or COP X DA\) reported previously (dotted line). Black triangles

along the x-axis correspond to the positions of microsatellite markers typed on each
chromosome for the particular F2 intercross.
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