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Abstract

Disease progression rates among patients with amyotrophic lateral sclerosis (ALS) vary greatly. 

While the majority of affected individuals survive three – five years following diagnosis, 

subgroups undergo a more rapidly progressing form, surviving less than one year, or slower 

progressing forms surviving for nearly 50 years. Genetic heterogeneity and environmental factors 

pose significant barriers in investigating patient progression rates. Similar to humans, variation in 

survival within the mSOD1 mouse has been well-documented, but different progression rates have 

not been investigated. In the present study, we identified two subgroups of B6SJL mSOD1G93A 

mice with different disease progression rates; fast (FPG) and slow progression groups (SPG), as 

evidenced by differences in the rate of motor function decline. In addition, increased disease-

associated gene expression within the FPG facial motor nucleus confirmed the presence of a more 

severe phenotype. We hypothesized that a more severe disease phenotype could be the result of 1) 

an earlier onset of axonal disconnection with a consistent degeneration rate; or 2) a more severe or 

accelerated degenerative process. We performed a facial nerve transection axotomy in both 

mSOD1 subgroups, prior to disease onset, as a method to standardize the axonal disconnection. 

Instead of leading to comparable gene expression in both subgroups, this standardization did not 

eliminate the severe phenotype in the FPG facial nucleus, suggesting the FPG phenotype is the 
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result of a more severe or accelerated degenerative process. We theorize that these mSOD1 

subgroups may be representative of the rapid and slow disease phenotypes often experienced in 

ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is the most common adult motoneuron (MN) 

degenerative disease that affects voluntary muscle movement and ultimately leads to 

respiratory failure and other pulmonary complications (Wijesekera and Leigh, 2009; 

Naganska and Matyja, 2011; Brooks et al., 2000). Initial symptoms often go unnoticed 

which delays diagnosis and makes identification of disease onset nearly impossible. Once 

symptoms have become apparent, the disease is often already entering final stages and 

severe MN degeneration has already occurred. Genetic studies have determined that a small 

portion of ALS cases are inherited, familial (fALS), while a majority (80-90%) are sporadic 

(sALS). Although mean survival is three – five years after diagnosis, subgroups of patients 

present with very rapid or slow disease progression rates, with life expectancies ranging 

from 1.5 years to more than 18 (Grohme et al., 2001, Ratovitski et al., 1999; Czaplinski et 

al., 2006).

While the etiology of ALS remains unknown, findings generated within the past few 

decades have advanced our understanding of the disease. The majority of these discoveries 

can be attributed to the first ALS mouse model developed in 1994, which overexpresses a 

common human mutant gene (mSOD1G93A) encoding the enzyme, superoxide dismutase 1 

(SOD1; Gurney et al., 1994; Saeed et al., 2009). mSOD1 mice display three distinct phases 

of disease, pre-symptomatic, symptomatic, and end-stage, which have been classically 

defined and consistently used throughout the literature. These phases are used as a point of 

reference for indicating the general phase of disease being studied, which is useful when 
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making comparisons across different mouse models that vary greatly in their age-related 

disease course (Gurney et al., 1994; Chiu et al., 1995). mSOD1G93A mice appear to develop 

normally into adulthood and display a normal phenotype until approximately 90-100 days of 

age, when motor impairments become detectible, signifying symptom onset and defining the 

end of the pre-symptomatic stage. The progression of motor deficits throughout the 

symptomatic stage is accompanied by MN cell death that continues into end-stage where the 

MN loss reaches 50% in the ventral horn of the spinal cord (Chiu et al., 1995). Brainstem 

nuclei, such as the trigeminal, hypoglossal, and facial motor nuclei, are also affected but 

display significant MN loss during the late symptomatic stage or at end-stage (Nimchinsky 

et al., 2000; Chiu et al., 1995; Haenggeli and Kato, 2002; Niessen et al., 2006). While the 

pathology is well-documented, there is relatively high variability with regard to symptom 

onset and/or survival in the mSOD1G93A mouse on the B6SJL hybrid background, 

compared to other background strains (Knippenberg et al., 2010; Haulcomb et al., 2014; 

Heiman-Patterson et al., 2011; Hamson et al., 2002; Heiman-Patterson et al., 2005). It has 

been suggested that this variability could be comparable to that which occurs among the 

ALS patient population, including fALS cases in which the same gene mutation is inherited 

(Abe et al., 1996; Maeda et al., 1997). Attempts have been made to identify potential causes 

of the various disease progression rates experienced by patients, such as environmental 

influences or potential genetic modifiers, however, this work is confounded by the 

heterogeneity inherent within the ALS population. Thus, we theorize that the B6SJL 

mSOD1G93A mouse model is potentially useful for investigating disease progression rates.

According to the target disconnection (TD) theory of ALS, the initial pathology of the 

disease appears to be denervation of muscle endplates within the early pre-symptomatic 

stage (Fischer et al., 2004; Dadon-Nachum et al., 2011; Dupuis and Loeffler, 2009). 

Decreases in muscle mass and fiber diameter in mSOD1 mice follow and are likely a result 

of the loss of functional motor units (Marcuzzo et al., 2011). While compensatory axonal 

sprouting is evident, it appears to be inadequate as neuromuscular junction (NMJ) loss 

continues (Schaefer et al., 2005). By the time the mSOD1 mouse reaches the symptomatic 

stage, significant MN loss has already occurred (Chiu et al., 1995). Recent research in our 

laboratory supports the TD theory of ALS pathogenesis. Utilizing the facial motor nucleus, a 

homogenous population of MN (Ashwell, 1982), we observed a reliable and measureable 

molecular pattern which occurs throughout mSOD1 disease progression (Haulcomb et al., 

2014). We successfully confirmed that this expression pattern in the mSOD1 facial nucleus 

is in response to disease-induced TD. By performing a facial nerve transection axotomy, 

prior to disease onset, we successfully replicated the disease-induced gene expression profile 

(Mesnard et al., 2011; Haulcomb et al., 2014). Thus, TD via axotomy provides a 

standardized experimental paradigm when superimposed on the mSOD1 mouse.

In the current study, we focused on investigating disease progression rates in the B6SJL 

mSOD1G93A mouse. We hypothesize that distinct mSOD1 subgroups exist with different 

disease progression rates and, by using behavioral assessment and molecular analysis, we 

can identify these subgroups, thereby, providing a model to study the rapid and slow disease 

phenotypes often experienced by ALS patients.
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The present study revealed two subpopulations of mSOD1 mice with differing disease 

progression rates; a fast progression group (FPG) and slow progression group (SPG). 

Enhanced progression of motor deficits and increased disease-induced molecular expression 

within the facial motor nucleus of the FPG, together, suggest a more severe disease 

phenotype in comparison to that of the SPG. In order to investigate the theory that a slower, 

less severe, disease progression rate coincides with prolonged target innervation or delayed 

TD onset, we performed a facial nerve axotomy to standardize the onset of axonal TD 

between the FPG and SPG. The facial nerve axotomy was performed on all mSOD1 mice 

within the pre-symptomatic stage prior to any disease-induced axonal TD. Subsequent 

analysis of the molecular profile within the axotomized facial motor nucleus, revealed that 

TD onset standardization did not lead to comparable gene expression changes between the 

two subgroups. These findings suggest that an earlier onset of the initial pathology, does not 

solely account for the differences in mSOD1 subgroups and that what distinguishes the 

groups is likely additional underlying disease mechanisms ultimately resulting in a more 

severe or accelerated degenerative process. Thus, the mSOD1 subgroups identified within 

this study present a unique opportunity to investigate the mechanisms responsible for the 

differences in disease susceptibility.

Materials and Methods

Animals

For all experiments, B6SJL WT (#100012; n = 31) and B6SJL transgenic mSOD1G93A high 

copy number (B6SJL-Tg(SOD1-G93A)1Gur; #002726; RRID:IMSR_JAX:002726; n = 32) 

mice were purchased from Jackson Labs (Bar Harbor, ME) at seven weeks of age. We used 

large groups of mice for the behavioral assessments as suggested by the recently updated 

guidelines for preclinical animal research in ALS (Ludolph et al., 2010; Ludolph et al., 

2007).

All animal procedures were performed in accordance with institutional and National 

Institutes of Health guidelines on the care and use of laboratory animals for research 

purposes and approved by the Institutional Animal Care and Use Committee (IACUC). Mice 

were housed under a 12 hour light/dark cycle in autoclaved microisolator cages and 

provided autoclaved pellets and autoclaved drinking water ad libitum. The facility that 

housed the mice was equipped with a laminar flow system in order to maintain a pathogen-

free environment. Mice were permitted to acclimate to their environment for one week 

before any procedures or testing was performed. Female mice were used for all experiments 

because of their reduced aggressive behavior, relative to males, during group housing.

Surgical Procedures

At 56 days of age, mice were fully anesthetized with 3% isoflurane inhalation and 

maintained at 2% isoflurane throughout the procedure. The right facial nerve was exposed at 

the level of the stylomastoid foramen and completely transected proximal to the bifurcation 

of the posterior and anterior auricular branches, as described previously (Serpe et al., 1999). 

Successful transections were verified by complete, unilateral loss of vibrissae movement and 

eye blink reflex on the ipsilateral side.
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While both WT and mSOD1 mice received a right facial nerve axotomy and underwent 

behavioral analysis, only the mSOD1 mice, euthanized at 112 days of age, were assessed for 

facial motor nuclei mRNA expression as a secondary measure of disease severity among 

different mSOD1 subpopulations. The facial motor nuclei samples used for mRNA analysis 

of the mSOD1 subpopulations included the right, axotomized facial motor nucleus 

(surgically disconnected from muscular targets at 56 days of age) and the left, diseased 

facial motor nucleus (disconnected from muscular targets via disease-related mechanisms at 

an undetermined time point) were separately acquired from the same group of mice, as 

previously described (Haulcomb et al., 2014).

Behavioral Assessment

WT and mSOD1 mice (n = 31 and 32, respectively) were evaluated for motor deficiency 

three times per week, beginning at 79 days of age and ending at 112 days of age. A 

combination of six behavioral assessments were administered to analyze the onset and 

progression of motor impairments (Fig. 1). Tests were administered by the same animal 

handler and at the same time per testing day, approximately six hours into the light cycle. 

The order that the mice were tested was rotated every testing day and the mouse strain and 

identification information was coded by an uninvolved investigator prior to the onset of 

testing.

The extension reflex test assessed the mouse's ability to engage extensor or anti-gravity 

muscles in response to a tail suspension (elevation of 13cm, for five seconds; Feng et al., 

2008; Irwin, 1968; Fig. 1A,G). We developed a scoring system that corresonded to the 

degree of limb extension. The scores were as follows: 7 = complete fore- and hind-limb 

extension; 6 = complete fore-limb extension, but only partial hind-limb extension; 5 = 

partial fore- and hind-limb extension; 2 = partial fore-limb extension, with no hind-limb 

extension, i.e. hind-limbs remained retracted; 0 = no fore- or hind-limb extension, thus, all 

limbs remained completely retracted.

The paw-grip endurance test was used as a measure of appendicular muscluar endurance 

(Combs and D'Alecy, 1987; Feng et al., 2008; Fig. 1B,H). Directly following the extension 

reflex test, mice were lowered onto the top of a plastic rodent cage lid (20cm × 46cm). After 

instinctively gripping the plastic grid with all four paws, the lid was rotated by the animal 

handler from the horizontal position to a vertical position for five seconds, then returned to 

the horizontal position. Capabilities for this task and the corresponding test scores were 

developed and are as follows: 5 = successfully grasps with fore- and hind-paws for five 

seconds; 4 = graps with fore- and hind-paws temporarily (less than five seconds), but grip 

release is suspected as an intentional drop as evidenced by all four paws releasing 

simultaneously and no attempt to grasp as the mouse falls; 3 = grasps with fore- and hind-

paws temporarily, but release appears to be unintentional as mouse hangs by one or more 

paws or an obvious attempt is made to catch themselves as they slide down past the cage lid 

grid; 1 = grasps with fore-paws only for less than five seconds; 0 = unable to maintain grip 

with paws; thus, once lid is rotated vertically, the mouse falls instantaneously.

The balance beam test was administered to evaluate overall muscle strength and 

coordination as well as general vestibular and proprioceptive functioning (Feeney et al., 
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1982; Combs and D'Alecy, 1987; Feng et al., 2008; Fig. 1C,I). We modified this test such 

that it assessed not only the ability of the mouse to remain on the beam, but also the ability 

to lift itself onto the beam. The wooden beam was constructed out of a thin piece of wood, 

2.5cm wide and 76cm long, positioned at an elevation of 13cm. Versi-dry paper (Thermo 

Scientific Nalgene, #62065-00) covered the beam and was replaced as necessary to protect 

the wood. Each mouse was suspended by the tail and consistently positioned by the animal 

handler near and at a level slightly below the beam. At this position, the mouse is able to 

reach and grasp the beam with the fore-paws, at which point, the handler then releases the 

tail, by quickly lowering the mouse. The mouse is no longer suspended by the tail, but 

hanging on the beam and supporting its own body weight and from this point the mouse 

must pull its body onto the beam. Intentional drops or refusal to climb onto the beam after 

suspension release were not observed. Once on the beam, mice were observed for five 

seconds, traveling along the beam was not required. Scores used to gauge performance on 

this task were as follows: 5 = able to lift body onto beam with both fore- and hind-paws and 

did not fall off the beam throughout the test duration; 4 = only able to lift body onto the 

beam using the fore-paws and remains on the beam for test duration; 3 = only able to lift 

body onto beam using fore-paws and falls off the beam within five seconds; 1 = unable to 

lift body onto the beam, but once physically placed onto the beam, is able to remain on the 

beam for test duration; 0 = unable to lift body onto the beam and once physically placed 

onto the beam falls off within five seconds.

The remaining three tests were performed while mice were in an open field. Mice were 

individually placed within a clean, transparent, acrylic box (dimensions: 46cm × 33cm × 

19cm) for two minutes. Versi-dry paper was placed at the bottom of the open field and was 

replaced between mice. The gait analysis test was a combination of observations related to 

forward mobility, gait and posture, that have been well-defined and routinely used within the 

literature (Knippenberg et al., 2010; Tada et al., 2011; Marcuzzo et al., 2011; Irwin, 1968; 

Fig. 1D,J). We previously published a scoring system that utilized a 7-point scale 

(Haulcomb et al., 2014), to evaluate symptom onset in mSOD1 mice, which was also used in 

the present study.

The tail elevation test evaluated the position of the tail relative to the body during forward 

locomotion (Irwin, 1968; Fig. 1E,K). Typically, during forward movement, the tail is 

relatively straight and held horizontally at the same or slightly higher than that of the body 

(Fig. 1D,E). This action utilizes the muscles at the base of the tail, which are innervated by 

coccygeal MN (Shinohara, 1999). The scoring system was modified and the corresponding 

observations included: 5 = tail elevation level is higher than or at the level of the body 

during forward movement; 3 = tail appears to slumps during forward movement, thus the 

distal portion of the tail is often at an elevation level which is lower than that of the body or 

routinely touches the ground; 0 = tail is not elevated during forward movement, i.e. the 

entire tail, or distal portion, drags on the ground for the duration of the test.

The rearing behavior test evaluates the ability to completely extend the hind-limbs during 

weight bearing behaviors such as rearing or raising up onto the hind-limbs (Irwin, 1968; Fig. 

1F,L). Fortunately, B6SJL mice frequently and consistently rear or raise into an upright 

position onto their hind-limbs at the corners or walls of the open field box. It was interesting 
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that even severe motor impairment affecting the hind-limbs did not deter the mSOD1 mice 

from consistently attempting rearing behavior. Scores for this behavioral test were 

developed by our laboratory and are as follows: 5 = rearing behavior with complete 

extension/stretching of the hind-limbs, observed at least twice throughout the duration of the 

test; 4 = rearing behavior was not performed at all or was only observed once, regardless of 

whether the behavior revealed a complete or partial extension/stretch of the hind-limbs; 0 = 

rearing behavior with partial/incomplete extension/stretching of the hind-limbs was 

observed at least twice throughout the duration of the test.

All behavioral tests were directly scored by the animal handler at the time of test 

performance and in addition, all tests were video recorded for later analysis. The recordings 

were subsequently scored by two additional investigators for verification purposes. Each 

scoring scale or system for the individual behavior tests were specifically developed and 

optimized to provide a corresponding numerical value that is appropriately weighted for the 

functional motor impairment being assessing. The sum of all six test scores generated a 

motor score for each mouse per testing day, thus, providing a single quantitative measure, 

representing a comprehensive analysis of functional motor deficits.

Euthanasia Procedures

At 112 days of age or 56 days post-axotomy (dpa), WT mice (n = 31) and all but five 

randomly selected mSOD1 mice (n = 27) were euthanized by CO2 asphyxiation in an 

isolated chamber followed by cervical dislocation. The brains were removed and flash-

frozen, as previously described (Mesnard et al., 2010). The remaining five mSOD1 mice 

were permitted to progress to end-stage disease, without further behavioral assessments, for 

the purpose of verifying that the mSOD1 mice used in the current study succumbed to 

disease at an age that temporally coincides with that documented within the literature. 

mSOD1 mice were monitored daily for moribund criteria, which consisted of an inability to 

right themselves within 30 seconds after being placed on their side (Yang et al., 2011). Once 

these criteria were met, mice were euthanized by CO2 asphyxiation. Post-tissue processing 

was not performed on end-stage mice in the current study.

Determination of symptom onset

Mean motor scores ± SEM for WT and mSOD1 mice, per testing day, were used to 

determine symptom onset. Statistical analysis was accomplished by using a two-way 

repeated measures analysis of variance (RM-ANOVA), followed by the Student-Newman-

Keuls post hoc multiple comparison test, with significance at P ≤ 0.05 (SigmaPlot, version 

12.3; RRID:SciRes_000184). Symptom onset was identified for the purposes of defining the 

beginning of the symptomatic stage of disease among the current mSOD1 group.

Identification of mSOD1 subpopulations

Two, distinct statistical methods were employed to determine the existence of mSOD1 

subgroups based on symptom progression rates. First, motor scores per mSOD1 mouse were 

averaged throughout the symptomatic stage (from 98 to 112 days of age). Next, a median 

split was performed for all 32 averaged motor scores in order to separate the mice into two 

groups. mSOD1 mice with averaged scores above the median were defined as the slow 
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disease progression group (SPG; n = 16), while mSOD1 mice with averaged scores below 

were identified as the fast disease progression group (FPG; n = 16).

A second statistical method was used to validate the previous findings and further refine the 

individual mSOD1 group assignments. The rate of motor function decline was calculated for 

each mSOD1 mouse based on the slope of the line from a simple linear regression of its 

motor scores across time throughout the symptomatic stage (from 98 to 112 days of age). 

Next, a two-step cluster analysis was performed to identify the optimal number of clusters of 

mice, and to determine where the spits should occur (IBM SPSS, version 22; 

RRID:rid_000042). The cluster analysis confirmed that a model with two clusters, provided 

an optimal fit to the data, based on Schwarz's Bayesian Criterion (BIC), indicating that there 

are in fact two subgroups of mSOD1 mice with different disease progression rates; SPG (n = 

19) and FPG (n = 13). With only minor differences in the individual mSOD1 group 

assignments, the cluster analysis confirmed the presence of two distinct mSOD1 subgroups. 

The subgroup classification for individual mSOD1 mice identified by cluster analysis was 

used throughout the current study.

Analyses were performed between groups (WT, SPG, FPG) utilizing mean motor scores ± 

SEM, per testing day, and included a two-way RM-ANOVA, followed by the Student-

Newman-Keuls post hoc multiple comparison test, with significance at P ≤ 0.05 (SigmaPlot, 

version 12.3). Linear regression analysis was also performed using mean motor scores ± 

SEM during the symptomatic stage for mSOD1 subgroups (SigmaPlot, version 12.3). In 

order to test whether the two disease progression slopes were significantly different from 

one another we performed a linear mixed model, to account for the repeated measures of 

each mouse, using a 95% confidence interval (IBM SPSS, version 22).

In addition to regression analyses, a normality test (Shapiro-Wilk) was also executed using 

the rate of motor function decline for each mSOD1 mouse throughout the symptomatic stage 

(SigmaPlot, version 12.3). Since normality tests have little power to reject the null 

hypothesis when sample sizes are small (Ghasemi and Zahediasl, 2012), we increased the 

confidence interval to 90% for this particular test (P ≤ 0.10).

Gene copy number analysis

We analyzed Msod1 copy numbers to assess whether slight differences in copy number 

might account for the differences in disease progression rate, as it is well documented that 

large differences in copy number (i.e. high copy number mSOD1 mice vs. low copy number 

mSOD1) affects disease phenotypes and lifespan in the mSOD1G93A mouse (Dal Canto and 

Gurney, 1995). Mouse DNA was isolated from a 0.5cm section of the tail using the Purelink 

Genomic DNA Mini Kit (Invitrogen, #K1820-00) and total DNA quantification was 

determined using a NanoDrop 2000 spectrophotometer. Transgene copy numbers were 

evaluated using semi-quantitative real-time reverse transcription-polymerase chain reaction 

(qPCR; Eppendorf Real-plex) by determining the ΔCT of the transgene (Msod1) and a 

reference gene, interleukin-2 (Il2), as previously described (Alexander et al., 2004; Heiman-

Patterson et al., 2005). Previously published primer sequences (Alexander et al., 2004; 

Heiman-Patterson et al., 2005) were ordered from Bio-Synthesis, Inc. A linear regression 
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analysis was performed utilizing the Msod1 2−ΔCT vs. rate of motor score decline as a 

function of time throughout the symptomatic stage (SigmaPlot, version 12.3).

Laser microdissection

Twelve randomly selected mSOD1 brains (SPG, n = 7; FPG, n = 5) were cryosectioned at 

25μm throughout the rostrocaudal extent of the facial motor nucleus, thaw-mounted onto 

glass polyethylene membrane-slides (Nuhsbaum #11505158), and stored at −80°C, as 

previously described (Haulcomb et al., 2014). Sides were individually fixed and stained for 

histological identification (Mesnard et al., 2011). The right (axotomized) and left (disease-

only) facial motor nuclei were laser microdissected (Leica AS LMD) and separately 

collected into 65μl of extraction buffer (PicoPure RNA Isolation Kit, Invitrogen, 

#KIT0204), which had been added to the collection tube caps. Right and left facial motor 

nuclei samples were separately pooled for each mouse and stored at −80°C until RNA 

extraction was performed, as previously described (Haulcomb et al., 2014).

Analysis of mRNA expression

Total cellular RNA was isolated from laser microdissected samples using the PicoPure RNA 

Isolation Kit including a DNase treatment step (Qiagen, #79254), according to 

manufacturer's instructions. Total RNA quantification was determined using a NanoDrop 

spectrophotometer and concentrations were standardized prior to reverse-transcription. 

Complementary DNA was obtained using Superscript First Strand Synthesis System 

(Invitrogen, #11904-018), as previously described (Haulcomb et al., 2014).

PCR primer sets for the genes used in the current study were designed and custom ordered, 

as previously described (Haulcomb et al., 2014). qPCR was performed using the iCycler iQ 

detection system (Bio-Rad; Haulcomb et al., 2014). Relative mRNA expression levels were 

analyzed using the comparative CT method and the endogenous housekeeping gene, 

glyceraldehyde 3-phosphate dehydrogenase (Gapdh; Sharma et al., 2010), resulting in the 

ΔCT, which was then linearized, 2-ΔCT (Livak and Schmittgen, 2001, Schmittgen and Livak, 

2008). Therefore, the relative quantity of mRNA expression per gene could be compared 

between mSOD1 groups (SPG vs. FPG). Comparisons were first performed between the left 

facial nuclei (disease-only) of mSOD1 subgroups (SPG vs. FPG). Second, and separately, 

comparisons were made between the axotomized or right facial nuclei of mSOD1 subgroups 

(SPG vs. FPG). All comparisons were restricted to individual genes and not made between 

genes, as previously described (Haulcomb et al., 2014). Statistical analysis was 

accomplished using a Student's t-test, two-tailed with significance reported as P ≤ 0.05 

(SigmaPlot, version 12.3).

Results

Behavioral assessment identifies the onset of the symptomatic stage in mSOD1 mice

The age of symptom onset was determined in order to define the end of the pre-symptomatic 

stage and beginning of the symptomatic stage among mSOD1 mice used in the current 

study. Behavioral tests (Fig. 1) were conducted three times per week yielding motor scores 

for WT and mSOD1 mice, beginning at 79 days of age and continuing until 112 days of age 
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(Supplemental Table 1). Statistical analysis revealed an overall main effect between WT and 

mSOD1 groups (F1,960 = 421.61; P = ≤ 0.05), a main effect of age (F14,960 = 40.45; P = ≤ 

0.05), as well as an interaction between group × age (F14,960 = 38.97; P ≤ 0.05). Motor 

scores were significantly different between WT and mSOD1 mice as early as 98 days of age 

(P = ≤ 0.05; Fig. 2). Therefore, the battery of behavioral assessments used within the present 

study defined symptom onset at 98 days of age, which is consistent with previous findings 

(Haulcomb et al., 2014).

Behavioral assessment reveals two subgroups of mSOD1 mice, fast (FPG) and slow (SPG) 
progression groups

Motor scores for individual mSOD1 mice during the symptomatic stage (from 98 to 112 

days of age) were used to identify two subpopulations of mSOD1 mice with different 

disease progression rates. Two, distinct statistical methods were employed to determine the 

existence of mSOD1 subgroups based on symptom progression.

Initially, motor scores for each individual mSOD1 mouse were averaged throughout the 

symptomatic stage. Next, a median split was performed in order to separate the mice into 

two groups, a slow disease progression group (SPG) and a fast disease progression group 

(FPG). Longitudinal analysis of mean motor scores between the SPG, FPG, and WT, 

revealed significant differences between groups (data not shown).

In order to confirm the existence of mSOD1 subgroups and refine the individual group 

assignments, initially predicted by the median split, we performed a two-step cluster 

analysis using the rate of motor function decline, for each mouse, throughout the 

symptomatic stage. The subsequent cluster analysis confirmed the presence of two mSOD1 

subgroups with only minor differences in the individual mSOD1 group assignments; SPG (n 

= 19) and FPG (n = 13). Visualization of the distribution of mSOD1 motor decline rates 

suggests a bimodal distribution, with the presence of a heavy tail on the left side of the curve 

(Fig. 3). A normality test (Shapiro-Wilk) confirmed that the distribution was not normal (P 

≤ 0.10).Therefore, we conclude that the cluster analysis not only verifies the existence of the 

subgroups, originally identified using a median split, but also refined those subgroup 

assignments.

Longitudinal analysis of mean motor scores between the SPG, FPG, and WT, revealed 

significant differences between groups (F2,945 = 422.08; P ≤ 0.05), age (F14,945 = 119.43; P 

≤ 0.05), and group × age (F28,945 = 48.17; P ≤ 0.05). Pairwise comparisons between groups 

(SPG, FPG and WT), throughout the time course revealed statistical differences beginning at 

100 days of age and continuing until the last testing day (Fig. 4A; Supplemental Table 1; P 

≤ 0.05). While comparisons between WT vs. SPG and WT vs. FPG at 98 days of age were 

significant (P ≤ 0.05), mSOD1 subgroups (SPG vs. FPG) did not differ statistically at that 

time point. Linear regression analysis was also performed on the mSOD1 subgroups and 

resulted in a 3.375-fold increase in disease progression rate between the FPG (slope = -1.08; 

R2 = 0.580) and the SPG (slope = -0.32; R2 = 0.294; Fig. 4B). Therefore, using multiple 

statistical methods and a comprehensive battery of behavioral assessments, the current study 

has identified two mSOD1 subgroups with different symptom progression rates. While the 

SPG experienced a slow and steady decline in motor function during the symptomatic stage, 
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the FPG displayed a more severe phenotype as evidenced by the steep and rapid decline in 

motor function (Fig. 4B). Analysis via a linear mixed model reveals the slopes of the 

mSOD1 subgroups are statistically significant (P < 0.001). However, interestingly, both the 

SPG and FPG experienced symptom onset at the same time point (Fig. 4A; Supplemental 

Table 1).

Slight variations in transgene copy number do not correlate with motor scores

It is well-documented that large differences in Msod1 transgene copy number, affect disease 

phenotypes and lifespan in the mSOD1 mouse models (i.e. high copy vs. low copy number 

mSOD1 mice; Dal Canto and Gurney, 1995). Therefore, we evaluated Msod1 copy number 

in our mSOD1 mice to determine whether minor differences in transgene copy number 

could account for the variation in disease progression rates. Linear regression analysis 

revealed no correlation between Msod1 copy number and rate of motor score decline 

throughout the symptomatic stage (R2 = 0.02; P = 0.59; data not shown). Thus, our findings 

were consistent with others studying high copy number mSOD1 mice, that minor differences 

in copy number do not correlate to the differences in disease phenotypes and lifespan 

(Heiman-Patterson et al., 2005).

mSOD1 mice reach end-stage disease at an age consistent with that documented within 
the literature

The focus of the current study was to identify and characterize subpopulations of mSOD1 

mice with different disease progression rates within the symptomatic stage. Since our 

euthanasia time point was within the symptomatic stage (112 days of age), we permitted a 

small number of mice to progress to end-stage to confirm that they succumbed to the disease 

as expected. All five mSOD1 mice that were permitted to progress to end-stage and were 

humanely euthanized at a mean age of 133 days with a standard deviation of ± 5 days (data 

not shown), which is consistent with that documented within the literature (Heiman-

Patterson et al., 2005; Chiu et al., 1995).

Increased disease-induced molecular expression within the facial motor nucleus of the 
FPG suggests a more severe disease phenotype in comparison to that of the SPG

After identifying the mSOD1 subgroups based on symptom progression rates, we performed 

further analyses to confirm and characterize the two subpopulations of mSOD1 mice. As an 

additional, quantitative measure of disease progression, we analyzed and compared mRNA 

expression levels within the facial motor nuclei. We have previously shown that during 

disease progression the facial nucleus of mSOD1 mice reveals a reliable and measureable 

molecular response pattern across time (Haulcomb et al., 2014). This expression pattern, 

produced by a set of functionally diverse genes, is related to the disease process itself. 

Specifically, our previous work identified that the disease mechanism responsible for 

initiating this gene expression is axonal TD of the FMN (Haulcomb et al., 2014). Once 

disease-induced FMN TD has begun, relative mRNA expression levels within the mSOD1 

facial nucleus increase and continue to rise over time. For a majority of the genes within the 

profile, higher mRNA expression levels are indicative of a more severe degenerative 

phenotype. Within the current study we analyzed the mRNA expression of 12 genes within 
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the facial motor nuclei of mSOD1 subgroups. While basic gene descriptions are included 

within the current results, more detailed descriptions, explanations and rationale for 

selection have been previously described (Mesnard et al., 2011; Haulcomb et al., 2014).

Glial-specific and glial-related gene expression

The first three genes analyzed are considered to be glial-specific or glial-related genes. 

Analysis of glial fibrillary acidic protein (Gfap) and cluster of differentiation 68 (Cd68) 

mRNA expression has been shown to be useful and reliable measures of the astrocytic and 

microglial responses, respectively (Jones et al., 1997; Streit et al., 1988; Graeber et al., 

1990). In response to FMN TD, astrocytes and microglia become reactive, resulting in 

increases in Gfap and Cd68 mRNA (Tetzlaff et al., 1988; Dissing-Olesen et al., 2007; 

Mesnard et al., 2011; Haulcomb et al., 2014). In addition, fractalkine receptor (Cx3cr1) 

mRNA expression is also elevated during mSOD1 disease-induced FMN TD (Haulcomb et 

al., 2014). CX3CR1 is expressed by microglia and plays an important neuroprotective role 

following to CNS injury (Chapman et al., 2000; Cardona et al., 2006). Gene expression 

analysis revealed a statically significantly increase in relative quantity mRNA levels in the 

facial nucleus of FPG mice compared to SPG mice for all three glial-related genes; Gfap 

(FPG: 1.086 ± 0.106 [data point range: 0.8312-1.4473]; SPG: 0.482 ± 0.0894 [data point 

range: 0.2558-0.9772]; P = 0.001; Fig. 5A), Cd68 (FPG: 0.0196 ± 0.00291 [data point 

range: 0.0130-0.0295]; SPG: 0.0110 ± 0.00242 [data point range: 0.0020-0.0237]; P = 

0.045; Fig. 5B), and Cx3cr1 (FPG: 0.0251 ± 0.0036 [data point range: 0.0201-0.0285]; SPG: 

0.0157 ± 0.0010 [data point range: 0.0108-0.0197]; P < 0.001; Fig. 5C).

TNFR1 death receptor pathway gene expression

We have previously shown that mSOD1 FMN TD results in a robust and sustained 

upregulation of genes involved in the tumor necrosis factor receptor 1 (TNFR1) pathway 

(Mesnard et al., 2011; Haulcomb et al., 2014). Assessment of Tnfr1, Caspase-8, and 

Caspase-3 revealed increased relative quantity mRNA levels in the FPG facial nucleus in 

comparison to the SPG. Statistical analysis confirmed that increased mRNA expression in 

the FPG, compared to the SPG, was significant for the three genes involved in the TNFR1 

death receptor pathway; Tnfr1 (FPG: 0.0307 ± 0.00195 [data point range: 0.0254-0.0351]; 

SPG: 0.0238 ± 0.00093 [data point range: 0.0192-0.0260]; P = 0.006; Fig. 5D), Caspase-8 

(FPG: 0.0009 ± 0.0001 [data point range: 0.0007-0.0013]; SPG: 0.0006 ± 0.0001 [data point 

range: 0.0004-0.0009]; P = 0.019; Fig. 5E), and Caspase-3 (FPG: 0.0022 ± 0.0001 [data 

point range: 0.0018-0.0025]; SPG: 0.0016 ± 0.0001 [data point range: 0.0011-0.0021]; P = 

0.021; Fig. 5F).

Fas death receptor pathway gene expression

The role of the Fas death receptor (Fas) pathway in MN cell death during disease 

progression is well-documented in mSOD1 mice (Raoul et al., 2002, Raoul et al., 2006, 

Locatelli et al., 2007). Previously, we have analyzed mRNA levels of the Fas pathway in the 

mSOD1 facial motor nucleus throughout the pre-symptomatic and symptomatic stages of 

disease (Haulcomb et al., 2014). Interestingly, while the Fas pathway plays a major role in 

MN degeneration during the later stages of disease, the mRNA upregulation in response to 
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FMN TD is temporally delayed. Therefore, based on our previous understanding, regarding 

the time course of disease-induced FMN TD and the temporally delayed upregulation of Fas 

pathway genes following FMN TD, we expected mRNA expression levels to be near 

baseline at the time point analyzed within the current study (112 days of age). As 

anticipated, comparisons between the mSOD1 subgroups did not reveal differences in 

expression levels among genes involved in the Fas death receptor pathway; Fas (FPG: 

0.0021 ± 0.0003 [data point range: 0.0013-0.0029]; SPG: 0.0016 ± 0.0003 [data point range: 

0.0011-0.0030]; P = 0.181; Fig. 5G), Fas-associated death domain (Fadd; FPG: 0.0016 ± 

0.0002 [data point range: 0.0011-0.0014]; SPG: 0.0015 ± 0.0001 [data point range: 

0.0011-0.0020]; P = 0.704; Fig. 5H), or neuronal nitric oxide synthase (Nnos; FPG: 0.0004 

± 0.0001 [data point range: 0.0002-0.0005]; SPG: 0.0003 ± 0.00003 [data point range: 

0.0002-0.0004]; P = 0.279; Fig. 5I).

Control gene expression

For control purposes, the molecular profile used within the current study also included a 

subset of genes that have been previously shown to remain unchanged in their expression 

levels during disease progression in the mSOD1 facial motor nucleus (Haulcomb et al., 

2014). This subset of genes encodes the following intermediate signaling molecules; death 

associated protein-6 (Daxx), silencer of death domains (Sodd), and Tnfr1-associated death 

domain (Tradd). As expected, mRNA expression of these genes was not different between 

the mSOD1 subgroups in the facial motor nucleus (data not shown) and were representative 

of baseline expression levels (Haulcomb et al., 2014).

In conclusion, utilizing mRNA expression analysis as a secondary measure of disease 

progression, the current results validate the behavioral findings. Together these data suggest 

that the FPG represents a subgroup of mSOD1 mice with a more severe disease phenotype 

in comparison to that of the SPG.

Standardizing the axonal target disconnection (TD) in the mSOD1 subgroups fails to 
abolish the increased gene expression in the FPG facial motor nucleus

As previously described, higher mRNA expression levels of glial-related and death receptor 

pathway genes in the mSOD1 facial nucleus, are indicative of a more severe degenerative 

phenotype (Hensley et al., 2002; Chen et al., 2004; Turner et al., 2004; Philips and 

Robberecht, 2011). It is likely that multiple disease-related mechanisms could explain the 

increased level of expression in the FPG facial nucleus. Increased expression may be a result 

of a more extensive axonal TD (i.e. more rapid or enhanced disease progression) or may 

indicate that a longer period of time has passed since the FMN were initially disconnect 

from their targets (i.e. earlier disease onset).

In order to investigate the possibility that the increased gene expression within the FPG 

facial nucleus is a result of an earlier disease-induced TD than that of the SPG, we 

standardized the FMN TD in the mSOD1 subgroups by performing a facial nerve transection 

axotomy prior to disease onset. The right facial nerve was completely transected at an early 

age (56 days of age), prior to any disease-induced FMN TD, therefore the time point of the 

surgical procedure marks the onset and completion of the TD process for the right facial 
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motor nucleus, as previously described (Mesnard et al., 2011; Haulcomb et al., 2014). Thus, 

this procedure standardizes the axonal TD onset and process for the MN in the right facial 

nerve and nucleus of both mSOD1 groups, while leaving all other aspects of disease 

progression unaffected; such as voluntary motor pathways of the spinal cord, left facial 

nucleus, etc.

At the time point of 56 days-post axotomy (dpa), or 112 days of age, mRNA expression of 

genes within the axotomized facial motor nuclei of mSOD1 subgroups were analyzed. It 

should be noted that while the mRNA expression within the axotomized facial nuclei is 

considered a response to the surgical procedure performed (FMN TD), the mSOD1 mouse 

does continue to undergo disease progression and therefore, we cannot rule out effects from 

additional disease mechanisms within the facial motor nucleus.

Glial-specific and glial-related gene expression

Analysis of glial-related gene expression revealed that mRNA levels for all genes were 

significantly higher within the axotomized facial nucleus of the FPG compared to that of the 

SPG; Gfap (FPG: 2.358 ± 0.407 [data point range: 1.2311-3.4027]; SPG: 1.241 ± 0.138 

[data point range: 0.7071-1.9097]; P = 0.014; Fig. 6A), Cd68 (FPG: 0.0350 ± 0.0050 [data 

point range: 0.0242-0.0532]; SPG: 0.0184 ± 0.0025 [data point range: 0.0113-0.0298]; P = 

0.008; Fig. 6B), and Cx3cr1 (FPG: 0.0411 ± 0.0036 [data point range: 0.0313-0.0496]; SPG: 

0.0262 ± 0.0016 [data point range: 0.0221-0.0327]; P = 0.002; Fig. 6C). These results were 

surprising because the glial response to facial nerve axotomy is well-documented in both 

WT and mSOD1 mice (Jones et al., 1997; Streit et al., 1988; Graeber et al., 1990; Mesnard 

et al., 2011; Haulcomb et al., 2014) and the magnitude of the mRNA levels as well as the 

temporal expression pattern were thought to be closely regulated by the TD event itself. 

Since we had standardized the FMN TD onset between the two mSOD1 subgroups, we had 

expected the mRNA expression levels of glial-related genes to be similar.

TNFR1 death receptor pathway gene expression

Analysis of Tnfr1, Caspase-8, and Caspase-3 revealed similar findings. Increased relative 

quantity mRNA levels were identified in the axotomized facial nuclei of the FPG vs. SPG 

for Tnfr1 (FPG: 0.0385 ± 0.0018 [data point range: 0.0343-0.0442]; SPG: 0.0316 ± 0.0020 

[data point range: 0.0211-0.0376]; P = 0.034; Fig. 6D) and Caspase-8 (FPG: 0.0016 ± 

0.0001 [data point range: 0.0013-0.0019]; SPG: 0.0011 ± 0.0002 [data point range: 

0.0006-0.0017]; P = 0.054; Fig. 6E), as determined by a Student's t-test (P ≤ 0.05). While 

there was a trend for increased expression of Caspase-3 in the FPG, no statistical differences 

were evident (FPG: 0.0033 ± 0.0003 [data point range: 0.0025-0.0043]; SPG: 0.0026 ± 

0.0003 [data point range: 0.0015-0.0038]; P = 0.195; Fig. 6F).

Fas death receptor pathway gene expression

As previously mentioned, Fas pathway gene expression is increased following FMN TD in 

mSOD1 mice, however, this upregulation is temporally delayed (Haulcomb et al., 2014). For 

this reason, the previously analyzed mSOD1 facial motor nuclei at 112 days of age (the left, 

disease-only facial nucleus), revealed baseline expression levels and thus, no measurable 

differences between the subgroups. However, the time course of FMN TD within the 
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axotomized or right facial nuclei differs from that of the left or disease-only facial nuclei 

previously analyzed. This difference is due to the surgically-induced FMN TD, which 

occurred much earlier than the FMN TD induced by the disease process alone (Marcuzzo et 

al., 2011; Haenggeli and Kato, 2002; Niessen et al., 2006; Chiu et al., 1995). Therefore, the 

period of time from FMN TD onset to mRNA analysis is significantly longer, with respect 

to the axotomized facial nuclei, and well within the timeframe necessary to identify and 

quantify increases in Fas pathway gene expression (Haulcomb et al., 2014).

As anticipated, mRNA levels of Fas pathway genes revealed upregulated expression in the 

axotomized facial nuclei of both mSOD1 subgroups compared to non-axotomized or 

disease-only facial nuclei, although these differences were not analyzed statistically. 

Comparisons between the axotomized facial nuclei of the mSOD1 subgroups confirmed the 

presence of increased expression of all three Fas pathway genes (P ≤ 0.05) in the FPG vs. 

the SPG; Fas (FPG: 0.0039 ± 0.0006 [data point range: 0.0023-0.0053]; SPG: 0.0024 ± 

0.0002 [data point range: 0.0021-0.0049]; P = 0.021; Fig. 6G), Fadd (FPG: 0.0032 ± 0.0003 

[data point range: 0.0022-0.0039]; SPG: 0.0020 ± 0.0001 [data point range: 0.0017-0.0023]; 

P = 0.002; Fig. 6H), and Nnos (FPG: 0.0012 ± 0.0002 [data point range: 0.005-0.0017]; 

SPG: 0.0005 ± 0.0001 [data point range: 0.0003-0.0016]; P = 0.016; Fig. 6I).

Control gene expression

For control purposes, mRNA expression was analyzed for Daxx, Sodd, and Tradd within the 

axotomized facial nuclei of the mSOD1 subgroups. As expected, no differences in 

expression levels were detected (data not shown). Inclusion of these genes reveals that the 

increased mRNA expression consistently detected in the FPG facial motor nuclei, 

throughout this study, is not due to an overall non-specific increase in mRNA expression.

Discussion

It has been well documented that subgroups of ALS patients present with very rapid or slow 

disease progression rates (Grohme et al., 2001, Ratovitski et al., 1999). Investigating these 

differences in progression rates are confounded by genetic heterogeneity and environmental 

influences inherent within the patient population. Interestingly, several ALS mouse models 

also display relatively high variability, with regard to symptom onset and/or survival 

(Knippenberg et al., 2010; Haulcomb et al., 2014; Heiman-Patterson et al., 2011; Hamson et 

al., 2002). In particular, Hamson et al., 2002) noted that small groups of B6SJL SOD1G93A 

mice revealed distinct differences in survival by meeting moribund criteria at two separate 

ages. A few years later, Heiman-Patterson T.D. et al. (2005) demonstrated that the variation 

in survival of the B6SJL SOD1G93A mouse could be linked to the SJL background strain. 

Thus, it has been suggested that the SJL background may contain genetic modifiers or 

undetermined genes that interact with disease mechanisms resulting in either increased or 

decreased survival.

In the current study, we hypothesized that the variation in survival of the B6SJL 

mSOD1G93A mouse could be a result of distinct mSOD1 subgroups with different disease 

progression rates or disease phenotypes. Identification of mSOD1 subgroups using 
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behavioral assessment would provide a model for investigating the rapid and slow 

progressing disease rates often experienced by ALS patients.

We developed a comprehensive battery of behavioral assessments, with a corresponding 

scoring system, to analyze various motor deficits in large group of mSOD1 mice, beginning 

in the pre-symptomatic stage (79 days of age). Comparisons made between WT and mSOD1 

motor scores revealed symptom onset occurred at 98 days of age in mSOD1 mice, which is 

consistent with our previous findings (Haulcomb et al., 2014). Using individual mSOD1 

motor scores generated throughout the symptomatic stage (98 to 112 days of age), we 

identified the presence of two subpopulations of mSOD1 mice with different rates of motor 

function decline; a fast (FPG) and a slow progression group (SPG). While the FPG 

experienced a steep and rapid decline in overall motor function throughout the symptomatic 

stage, the SPG displayed a less-severe, but consistent rate of decline. Two separate statistical 

methods were employed for the purposes of identifying potential subpopulations and both 

methods indicated the presence of two subgroups, with only minor differences in group 

assignments. Therefore, these results confirm the existence of two subpopulations of B6SJL 

mSOD1G93A mice and show that with appropriate behavioral assessment methods these 

subgroups can be identified by their distinct disease progression rates.

We attribute the success of the behavioral assessment paradigm to three important factors. 

First, a sufficiently large mSOD1 group from which subpopulations could be identified 

(Ludolph et al., 2010; Ludolph et al., 2007). Second, frequent and consistent testing that 

generated sufficient and reliable data within a relatively short period of time, allowing us to 

identify and classify mSOD1 subgroups at a relatively early time point (112 days of age), 

with respect to the time course of disease. This opportunity for early, in vivo identification 

of subgroups is crucial for future studies aimed at investigating underlying mechanisms or 

potential treatments to slow disease progression.

Lastly, we attribute the success of the behavioral paradigm to the comprehensive nature of 

the various motor tasks included. We suspect that simple motor assessments alone would not 

be sufficient to accurately and reliably identify mSOD1 subgroups within the symptomatic 

stage of disease. The behavior paradigm developed within the current study involved a set of 

six assessments, which collectively tested a wide range of motor functions, each with a well-

defined and weighted scoring system. We predict that the comprehensive nature of the 

behavioral assessments played an important role in the successful identification of the 

mSOD1 subgroups.

While the use of behavioral tests to determine disease progression rates in mSOD1 mice is 

relatively common and effective, physicians attempting to define progression rates in ALS 

patients have been less successful. For example, prognostic tests, such as isometric 

myometry of select muscle groups, administered at the time of diagnosis or shortly after 

have experienced limited success thus far and are unable to reliably predict disease 

progression rates or estimate life expectancy (Orrell et al., 1995; Armon and Brandstater, 

1999). We theorize that a comprehensive battery of motor tests, consistently and frequently 

administered across time, similar in structure to the paradigm employed within the current 

study, would be more effective at predicting disease progression rates in ALS patients.
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Subsequent to the identification of mSOD1 subgroups using rate of motor score decline, 

further analyses were performed to confirm and characterize the two subgroups. Gene 

expression levels within the facial motor nucleus were analyzed as an additional, 

quantitative measure of disease progression. Previous work performed by our laboratory has 

identified that a reliable and measureable molecular pattern occurs throughout disease 

progression the facial nucleus of mSOD1 mice (Haulcomb et al., 2014). In addition, we have 

verified that this expression pattern, produced by a set of functionally diverse genes, is in 

response to disease-induced axonal TD of the FMN (Haulcomb et al., 2014). Thus, once 

disease-induced FMN TD has begun (i.e. disease onset has occurred), mRNA expression 

levels increase and continue to rise over time. Genes analyzed within the current study were 

functionally grouped as follows: glial-related, death receptor pathway-associated, and 

control genes. In general, increased expression levels of glial-related and death receptor 

pathway-associated genes in the mSOD1 facial nucleus, are indicative of a more severe 

degenerative phenotype (Hensley et al., 2002; Chen et al., 2004; Turner et al., 2004; Philips 

and Robberecht, 2011).

We report that mRNA expression, for glial-related and TNFR1 pathway genes, was 

significantly increased in the FPG compared to that of the SPG. Providing additional 

confirmation of the severe disease phenotype displayed by the FPG. Although, while 

analysis of gene expression within the facial nucleus following disease-induced TD is a 

useful as a measure of disease progression, it does not provide any insights as to the 

underlying mechanism(s) or causes of the identified phenotype within the FPG. A variety of 

disease-related mechanisms may be responsible the increased expression levels in the FPG 

facial nucleus. Increased mRNA could be a result of a more extensive axonal TD (i.e. more 

rapid or enhanced disease progression) or may indicate that a longer period of time has 

passed since the FMN were initially disconnect from their targets (i.e. earlier disease onset). 

It is has been established, within the literature, that while the onset of FMN disease-induced 

TD is determined by disease-related mechanisms and occurs over a period of time, the time 

of TD onset is unknown and may not be consistent across animals (Schaefer et al., 2005; 

Niessen et al., 2006; Fischer et al., 2004). Based on the knowledge that disease-induced TD 

is often variable, and our understanding that the mRNA upregulation in response to FMN 

TD appears to be highly temporally-dependent, we considered that an earlier onset of 

disease-induced TD could readily account for the increased gene expression in the FPG. We 

tested this theory by controlling for potential differences in FMN TD onset between the two 

mSOD1 subgroups, which was accomplished by performing a right facial nerve transection 

axotomy to standardize the FMN TD within the pre-symptomatic stage, prior to any disease-

induced FMN TD (i.e. prior to disease onset).

Our findings revealed consistent, increased mRNA expression of glial-related genes and 

death receptor pathway-associated genes within the axotomized facial nucleus of the FPG 

compared to that of the SPG. Therefore, standardization of the FMN TD onset failed to 

abolish the increased mRNA expression within the FPG, suggesting that the higher mRNA 

levels are a result of a more severe or accelerated degenerative process, and not solely due to 

an earlier disease-induced FMN TD onset, as was originally hypothesized. Interestingly, the 

behavioral data from the current study also supports this conclusion, as no differences in 

symptom onset were detected between the SPG and the FPG. Thus, we suspect that the onset 
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of disease mechanisms, such as disease-induced TD, may be consistent between the mSOD1 

subgroups and that subsequent mechanisms involved in disease progression and MN 

degeneration may not be the same, and may explain the differences in phenotypes between 

the mSOD1 subgroups.

Future studies aimed at investigating additional disease mechanisms may help to explain the 

rapid progression of motor impairments in the FPG along with the increased levels of glial-

specific and death receptor gene expression. Recent work in our laboratory has identified 

evidence that suggests the mSOD1 mouse may have a peripheral immune deficit (Mesnard 

et al., 2013; Mesnard-Hoaglin et al., 2014). It is well-established that the adaptive immune 

system plays an important role in mediating neuroprotection (Serpe et al., 1999; Xin et al., 

2012). In addition, it is thought that this immune-mediated neuroprotection requires 

communication between T cells and resident CNS glial cells (Wainwright et al., 2009; 

Byram et al., 2004). Evidence of increased glial-reactivity or upregulated death receptor 

pathways may suggest a dysregulation in peripheral immune system and thus, a lack of 

neuroprotection. From this study we hypothesize that the heightened glial response along 

with increased expression of death receptor pathways represents a negative 

neuroinflammatory state within the microenvironment of the facial nucleus and may result 

in increased MN cell loss and/or a more severe disease phenotype in general.

In conclusion, we successfully identified two subgroups of B6SJL SOD1G93A mice with 

different disease progression rates. Initial findings suggest that an earlier onset of disease is 

most likely not solely responsible for the different disease phenotypes presented by the 

mSOD1 subgroups. To our knowledge this is the first study to document and characterize 

the existence of mSOD1 subgroups with different disease phenotypes and provide a reliable 

methodology for identification. We predict that the mSOD1 subgroups will be a useful 

model to study the rapid and slow disease phenotypes often experienced by ALS patients.
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Figure 1. 
A combination of six behavioral tests were used to evaluate the progression of motor deficits 

in WT (n = 31) and mSOD1G93A (n = 32) mice. Images depict mice on various testing days 

(between 79 and 112 days of age) performing the following tasks: extension reflex (A,G), 

paw-grip endurance (B,H), balance beam (C,I), gait analysis (D,J), tail elevation (E,K), and 

rearing behavior (F,L). A defined scoring system (see Materials and Methods) was used to 

evaluate motor function. Top row images (A-F) are representative of normal motor function, 

or higher value scores, while bottom row images (G-L) represent severe motor deficits, or 

low value scores.
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Figure 2. 
Longitudinal analysis of motor deficits in mSOD1G93A mice. WT (n = 31) and mSOD1 (n = 

32) mice were evaluated for motor deficits across time. Behavioral assessment began at 79 

days of age and continued 3 times per week until 112 days of age. Data are presented as 

mean motor score ± SEM. Symptom onset was identified at 98 days of age, marking both 

the end of the pre-symptomatic stage and the beginning of the symptomatic stage. Two-way 

repeated measures ANOVA (group × age) with Student-Newman-Keuls multiple 

comparison post hoc test: * represents a significant difference between WT and mSOD1, at 

P ≤ 0.05.
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Figure 3. 
Distribution of motor function decline. The rate or slope of motor function decline was 

calculated for individual mSOD1G93A mice using motor scores across time during the 

symptomatic stage of disease (from 98 to 112 days of age).
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Figure 4. 
Longitudinal analysis of two mSOD1G93A groups with different disease progression rates, 

slow progression group (SPG) and fast progression group (FPG). A: Data are presented as 

mean score ± SEM across time. Two-way repeated measures ANOVA (group × age) with 

Student-Newman-Keuls multiple comparison post hoc test: * represents a significant 

difference between SPG (n = 19), FPG (n = 13) and WT (n = 31) mice; # represents a 

significant difference between WT and mSOD1 subgroups, at P ≤ 0.05. B: Scatter plot of 

individual mSOD1 motor scores within the symptomatic stage of disease (from 98 to 112 

days of age). X-axis variables were widened (days of age) to allow for visualization of 

overlapping data points. Linear regression analysis was performed separately on each 

mSOD1 subgroup, revealing a 3.375-fold difference in disease progression rates.
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Figure 5. 
Analysis of mRNA expression in the facial motor nucleus of mSOD1G93A subgroups in 

response to disease-induced facial motoneuron (FMN) target disconnection (TD). The facial 

motor nuclei of mSOD1 subgroups, fast (FPG; n=5) and slow progression group (SPG; 

n=7), at 112 days of age, were analyzed for mRNA expression (mean ± SEM) for the 

following genes: Gfap (A), Cd68 (B), Cx3cr1 (C), Tnfr1 (D), Caspase-8 (E), Caspase-3 (F), 

Fas (G), Fadd (H), and Nnos (I). Student's t-test: * represents a significant difference 

between subgroups, at P ≤ 0.05.
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Figure 6. 
Analysis of mRNA expression in the facial motor nucleus of mSOD1G93A subgroups 

following standardization of axonal target disconnection (TD). Prior to disease onset a facial 

nerve transection axotomy was performed to standardize the onset of facial motoneuron 

(FMN) TD between the mSOD1 subgroups. The axotomized facial motor nuclei of mSOD1 

subgroups, fast (FPG; n=5) and slow progression group (SPG; n=7), at 56 days post-

axotomy (112 days of age), were analyzed for mRNA expression (mean ± SEM) for the 

following genes: Gfap (A), Cd68 (B), Cx3cr1 (C), Tnfr1 (D), Caspase-8 (E), Caspase-3 (F), 

Fas (G), Fadd (H), and Nnos (I). Student's t-test: * represents a significant difference 

between subgroups, at P ≤ 0.05.
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