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Abstract

Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a 

clinical course that is similar to Alzheimer’s disease. Four single-nucleotide polymorphisms 

(SNPs) have previously shown association with HS-Aging. The present study investigated 

structural brain changes associated with these SNPs using surface-based analysis. Participants 

from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI 

scans and genotype data, were used to assess the association between brain atrophy and previously 

identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and 

KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was 

evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of 

atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for 

frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal 

atrophy whereas a SNP (rs7488080_A) nearby (~50 kb upstream) ABCC9 was associated with 

atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 
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(rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four 

previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a 

pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that 

common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of 

anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a 

non-Alzheimer’s disease contribution to atrophy outside of the hippocampus in older adults.
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INTRODUCTION

There is accumulating evidence of a common brain disease that mimics Alzheimer’s disease 

(AD) clinically, and which has been classified using the term “hippocampal sclerosis” based 

on pathologic observations [1–11]. This disease affects up to 25% of the “oldest-old” [1, 12–

14] and is associated with substantial disease-specific cognitive impairment [7–9, 13–17]. 

We apply the term “hippocampal sclerosis of aging” (HS-Aging) [1], to differentiate this 

disease from other conditions referred to as “hippocampal sclerosis”, because the latter 

designation refers to a pathologic phenomenon observed in many different brain disorders 

[13, 18–20]. HS-Aging is distinguished by the advanced age of the affected individuals, by 

the usual lack of either seizure disorder or frontotemporal dementia symptoms clinically, and 

by the presence of hippocampal TDP-43 pathology at autopsy [1, 2, 21–24]. HS-Aging is 

generally misdiagnosed in live individuals as AD [9, 16]; put another way, a relatively large 

proportion of what is considered “Alzheimer’s disease” clinically is actually HS-Aging. 

Despite rapid progress from multiple research centers, much remains to be learned about 

HS-Aging pathoetiology.

One promising approach for better understanding HS-Aging is through the study of genetics 

and specifically genotype-phenotype correlations. HS-Aging pathology has been linked with 

single-nucleotide polymorphisms (SNPs) within or near four different genes: GRN, 

TMEM106B, ABCC9, and KCNMB2. Two of the putative HS-Aging risk SNPs were 

previously associated with risk for frontotemporal lobar degeneration (FTLD), namely 

rs5848 (GRN) and rs1990622 (near TMEM106B) [25–28]. Genome-wide association 

studies (GWAS) implicated the other two SNPs—rs704180 (ABCC9) and rs9637454 

(KCNMB2)—in genes that encode potassium channel regulators [29, 30]. All four SNPs are 

relatively common, with minor allele frequencies of ~30%–50% in most populations. In 

terms of the disease phenotype, the study of multiple large cohorts indicated that HS-Aging, 

although diagnosed at autopsy according to the signal feature of hippocampal sclerosis, also 

affects brain areas outside of the hippocampus, including the frontal neocortex [31–33].

Collectively, these prior findings indicate that multiple genes can cause or exacerbate a 

disease (which we refer to currently as HS-Aging) that affects brain regions outside of the 

hippocampus. More specifically, we hypothesized that HS-Aging risk SNPs in older adults 

would be associated with brain structural variance detectable with brain neuroimaging, both 
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within and outside the temporal lobe. To test this hypothesis, we evaluated data including 

magnetic resonance imaging (MRI) and genetic information, from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) cohort. These analyses indicated that the HS-Aging risk 

gene variants are associated with relatively widespread brain atrophy in older adults.

MATERIALS AND METHODS

Subjects

All individuals included in this report were participants in the ADNI cohort and aged 55–90 

years at the time of scan. The ADNI initial phase (ADNI-1) was launched in 2003 to test 

whether serial MRIs, other biological markers, and clinical and neuropsychological 

assessment could be combined to measure the progression of mild cognitive impairment 

(MCI) and early AD. The ADNI-1 participants were recruited from 59 sites across the U.S. 

and Canada and included approximately 200 cognitively normal older individuals (HC), 400 

patients diagnosed with MCI, and 200 patients diagnosed with early probable AD aged 55–

90 years. ADNI-1 has been extended in subsequent phases (ADNI-GO and ADNI-2) for 

follow-up of existing participants and additional new enrollments. Inclusion and exclusion 

criteria, clinical and neuroimaging protocols, and other information about ADNI have been 

published previously [34] and can be found at http://www.adni-info.org. Demographic 

information, raw scan data, APOE and whole-genome genotyping data, neuropsychological 

test scores, and diagnostic information are publicly available from the ADNI data repository 

(http://www.loni.usc.edu/ADNI/). Written informed consent was obtained at the time of 

enrollment and/or genetic sample collection and protocols were approved by each 

participating study and sites’ Institutional Review Board. We only included non-Hispanic 

Caucasians in order to limit the impact of population stratification on association analysis 

(removing 140 participants).

Genotyping and imputation

Genotyping was performed using the Illumina Human610-Quad BeadChip for the ADNI-1 

participants, and the Illumina HumanOmni Express BeadChip and the Illumina Omni2.5M 

BeadChip for participants initially enrolled in ADNI-GO or ADNI-2. APOE genotyping was 

separately obtained using standard methods to yield the APOE ɛ4 allele defining SNPs 

(rs429358, rs7412). rs5848 (GRN) was genotyped only in the Illumina HumanOmni Express 

BeadChip and other SNPs (rs704180, rs7488080, rs1990622, and rs9637454) were not 

genotyped in any genotyping platforms. The un-genotyped SNPs were imputed separately in 

each phase as the ADNI cohort used different genotyping platforms. Before the imputation, 

we performed standard sample and SNP quality control procedures as described previously 

[35]. Furthermore, in order to prevent spurious association due to population stratification, 

we selected only non-Hispanic Caucasian participants that clustered with HapMap CEU or 

TSI populations using multidimensional scaling analysis (http://www.hapmap.org). 

Imputation was performed using MACH and minimac in a two-stage procedure as described 

previously [36]. The pilot 1 data of the 1000 Genomes Project were used as a reference 

panels for inferring missing genotypes. Minimac produced the posterior probabilities of the 

imputed genotypes at un-genotyped marker loci for each individual. In order to assess the 
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quality of imputation, an r2 value equal to 0.30 was imposed as the threshold to accept the 

imputed genotypes.

Imaging processing

T1-weighted brain MRI scans at baseline were acquired using a sagittal 3D MP-RAGE 

sequence following the ADNI MRI protocol [37]. As detailed in previous studies [38], a 

widely employed automated MRI analysis technique was used to process MRI scans: 

FreeSurfer V5.1 software (http://surfer.nmr.mgh.harvard.edu/). FreeSurfer was used to 

process and extract brain-wide target MRI imaging phenotypes (region volume and cortical 

thickness) by automated segmentation and parcellation. The cortical surface was 

reconstructed to measure thickness at each vertex on the surface. The cortical thickness was 

calculated by taking the Euclidean distance between the grey/white boundary and the grey/

cerebrospinal fluid (CSF) boundary at each vertex on surface. For surface-based comparison 

of the cortical thickness, all individual cortical surfaces were registered to a common surface 

template, which was an average created from all cognitively normal control subjects. The 

cortical thickness was smoothed with 10 mm FWHM Gaussian kernel to improve the signal-

to-noise ratio and statistical power. The common surface template is a triangle mesh 

consisting of 327,684 vertices with a cortical thickness value at each vertex on surface. In 

order to assess relative size of significant clusters on surface, we identified the number of 

vertices belonging to the significant clusters in a 100 vertices unit.

Imaging genetics analysis

The SurfStat software package (http://www.math.mcgill.ca/keith/surfstat/) was employed to 

perform surface-based analysis using a general linear model (GLM) approach. GLMs were 

developed using age at scan, gender, years of education, intracranial volume (ICV), 

diagnosis at baseline, MRI field strength, and SNP as independent variables. Following 

analysis of cortical thickness to examine the association between candidate SNPs and 

localizable cortical thickness measures, correction for multiple comparisons was performed 

using the random field theory (RFT) correction method at a 0.05 level of significance.

RESULTS

The main research question was whether candidate SNPs previously associated with HS-

Aging pathology are associated with brain atrophy detectable by structural MRI in older 

adults from the ADNI cohort. Detailed information about the SNPs, stratified by 

demographics and other parameters, is presented in Table 1. In the 1,239 included 

participants, the average age at scan was 73.8, average educational level was 15.9, 

percentage of participants with APOE ɛ4 allele was 46.0%, and percentage of participants 

that were female was 42.7%. The genes (SNPs) studied here were GRN (rs5848), 

TMEM106B (rs1990622), ABCC9 (rs704180), and KCNMB2 (rs9637454). The assumed 

models of mode of inheritance were derived from the published literature [29, 39]. We did 

not observe any associations with the non-risk alleles of these SNPs at the same statistical 

threshold (data not shown). For the SNPs showing an association (p < 0.05) with cortical 

thickness variance (following correction for multiple comparisons), tabular data about 

localization of atrophy and corrected p-values are presented in Table 2.
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None of the four SNPs previously identified to be associated with HS-Aging pathology 

showed associations with medial temporal lobe atrophy in the ADNI cohort. Two SNPs 

(rs5848 and rs1990622) previously linked to risk for both FTLD with TDP43-positive 

inclusions (FTLD-TDP) and HS-Aging showed different results. For GRN/rs5848 (Fig. 1; 

dominant model), the atrophy significantly associated with the risk allele was localized to 

the medial dorsal frontal cortex, roughly corresponding to Brodmann Area 9. Participants 

having at least one risk allele have decreased cortical thickness compared to those with no 

risk allele. As was the case for all SNPs tested, the non-risk SNPs did not show any 

significant spatial clusters (data not shown). For TMEM106B/rs1990622 (a dominant model 

was used), there was no area of MRI-detected atrophy (data not shown).

SNPs in two other genes were assessed that previously were linked to HS-Aging pathology: 

ABCC9 and KCNMB2. For ABCC9/rs704180, (Fig. 2; recessive model), the atrophy was 

multifocal with the largest area showing association to the SNP appearing in the right frontal 

lobe (Table 2). By contrast, for KCNMB2/rs9637454 (recessive model), we found no 

evidence of atrophy associated with the risk allele (data not shown).

In a post-hoc analyses, we also evaluated two SNPs that were intergenic, between ABCC9 
and CMAS on chromosome 12p (Fig. 3). A prior study showed that rs10743430 is 

associated with entorhinal thinning [40], a neuroimaging phenotype that could be a proxy 

for HS-Aging pathology. We identified another SNP (rs7488080) that is closer to ABCC9 on 

chromosome 12p than rs10743430, and tested its association with brain atrophy in the ADNI 

cohort. These two SNPs are in strong linkage disequilibrium (LD) with each other (r2 = 

0.87, D′= 0.99). We confirmed that in this sample (larger than in the prior study, but not an 

independent sample since Furney et al. [40] analyzed ADNI-1; see Discussion below), both 

rs10743430 and rs7488080 were associated with right entorhinal thinning.

When the APOE ɛ4 status was added as a covariate, the results were not changed 

(Supplementary Material).

We investigated whether the four common variants (rs5848, rs1990622, rs704180, and 

rs9637454) previously associated with risk of HS-Aging may also collectively underlie brain 

atrophy using cumulative genetic risk scores or polygenic risk scores to model the aggregate 

effect. Note that the intergenic SNPs described above were not included in this analysis. A 

polygenic score for each subject was constructed by summing the number of risk alleles 

across the four risk SNPs without considering their effect sizes. Figure 4(A) showed the 

distribution of the polygenic risk scores for each diagnosis group. The association analysis 

between polygenic risk scores and cortical thickness identified significant regional 

differences in thickness including multiple, predominately frontal, neocortical areas.

DISCUSSION

Here we report that gene variants previously associated with risk of HS-Aging pathology are 

also associated with brain atrophy outside the temporal lobe. The GRN risk locus (rs5848) 

was associated with atrophy in the frontal cortex bilaterally, whereas the other risk locus also 

associated with FTLD, rs1990622 (TMEM106B), was not associated with cortical atrophy 
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in this sample. ABCC9 gene variants (rs704180 and rs7488080) were associated with more 

multifocal, or generalized, atrophy. The only evaluated SNP that showed association with 

medial temporal structural changes (entorhinal cortex) in this dataset was rs7488080 which 

is ~50 kb upstream the ABCC9 gene. When the risk alleles were combined, they were 

related to a frontal cortex predominant pattern of brain atrophy. These data indicate that gene 

variants associated with HS-Aging pathology are also associated with vulnerability to 

neurodegeneration outside the hippocampal formation proper.

There are limitations to this study. The ADNI dataset is enriched for individuals at risk for 

AD and the present study relates to a disease (HS-Aging) which is similar but not identical 

to AD clinically [16, 41], so, the study findings may best relate to the subset of individuals 

with HS-Aging related genotype that have an “AD-like” phenotype. From a technical 

standpoint, the medial and more variable brain regions can be challenging to assess 

confidently across individuals using structural MRI. Further, the average age of the included 

subjects at the time of their MRI scan was not extremely old (73.8 years) in comparison to 

the ages of the individuals with autopsy-proven HS-Aging (often over 85 years at death) [1, 

2, 6, 7, 9, 12, 16, 17, 31, 42]. However, the current study also lacks some of the sources of 

bias that affect most autopsy studies (for examples, see [43, 44]). It should be noted that the 

observations made on the ADNI research subjects could provide important insights about the 

structural brain changes that occur earlier in the disease course.

An assumption underlying the current study is that neuropathologic classification is 

continuously evolving and fails to capture the full complexity of the aged human brain. The 

term “sclerosis” means “hardening” in Greek, and lacks a specific connotation in terms of 

molecular pathogenesis. Hippocampal sclerosis in aged individuals is diagnosed at autopsy, 

according to consensus-based criteria [45], when neuron loss and astrocytosis are observed 

in the hippocampal formation, out of proportion to AD-type plaques and tangles in the same 

structure. However, the actual anatomical localization of HS-Aging related pathologic 

changes are not confined to the hippocampal formation [1, 31, 32] and the applied 

nomenclature for the disease is heterogeneous [13, 19]. Even at academic centers 

specializing in neurodegenerative disease, HS-Aging tends to be misdiagnosed as AD 

clinically because of overlapping symptoms and imperfectly understood biomarkers [1, 16, 

41]. Hence the disease nosology, and even the awareness of its existence, should be 

recognized as being currently in a state of rapid change.

As described above, genetic risk factors for HS-Aging have provided insights into potential 

disease mechanisms. For example, APOE gene variants are not associated with altered risk 

for HS-Aging [1, 12, 16, 41, 46] and including APOE genotype in our models did not alter 

our results in terms of the genotype associations. These findings provide strong support for 

the hypothesis that HS-Aging is a separate disease entity from AD.

In the present study we found that the pattern of brain atrophy associated with different 

candidate HS-Aging risk alleles was not the same for each gene, and that atrophy was 

localized to regions mostly outside of the hippocampus. For GRN (rs5848), the atrophy 

associated with the risk genotype was localized to the dorsal and (mostly) medial frontal 

cortex. There was a striking bilaterally symmetric pattern that seemed to correspond to or 
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near Brodmann Area 9. This is intriguing because GRN mutations lead to a frontotemporal 

dementia (FTD, a clinical term) that is associated with a pathologic diagnosis of FTLD-TDP. 

Remarkably, there was no apparent atrophy signal related to rs5848 and the anterior 

temporal lobe such as occurs in FTLD-TDP. In addition to HS-Aging pathology, rs5848 has 

also been linked to multiple other brain disorders [47–49]. It is thus possible that the rs5848-

associated structural changes that were elucidated in the current study were due to brain 

conditions other than HS-Aging.

Another gene that was associated with brain atrophy in the ADNI cohort and previously 

associated with the HS-Aging pathology is ABCC9. The risk SNP, rs704180, was also 

associated with brain atrophy in the ADNI cohort but the statistically significant atrophy 

(controlling for multiple comparisons) is outside of the hippocampal formation. A SNP near 

ABCC9 (rs7488080) was associated with entorhinal cortex atrophy in the ADNI cohort. 

This SNP is <50 kb upstream of the ABCC9 start site, the next closest gene is CMAS. Also 

noteworthy is that rs10743430, in strong linkage disequilibrium (R2 = 0.87) with rs7488080, 

but not rs704180, was previously found to be the second strongest SNP in association with 

the endophenotype of entorhinal thinning in the ADNI-1 and AddNeuroMed cohorts [40]. 

At the time of that prior study, only 939 participants were evaluated for entorhinal thickness 

whereas the current study included 1,239 participants. Notably, entorhinal cortical atrophy 

may be a strong proxy for HS-Aging in a MRI study since the entorhinal cortex appears 

involved even early in the disease process [50].

The KCNMB2 and TMEM106B variants, when assessed individually, did not show 

significant association signals with cerebral atrophy in the ADNI dataset. However, prior 

evidence suggests that risk of HS-Aging pathology is increased when risk alleles are present 

in combination [39]. We therefore tested for potential interactions and found that frontal 

cortical atrophy may be associated with a polygenic combination of HS-Aging risk SNPs.

The present results can be reconciled with prior studies to help refine our expectations about 

a prevalent and high-morbidity brain disease that mimics AD. A directly relevant recent 

study from Rush University found that in elderly individuals that died with eventually 

autopsy-proven HS, premortem neuroimaging showed extensive brain atrophy on MRI, 

especially in the frontal lobes [32]. We previously reported evidence for brain pathology 

outside the hippocampal formation (specifically in the frontal cortex) in patients with 

comorbid HS-Aging [31], and multiple lines of evidence point to a multi-domain cognitive 

deficit in patients affected by the disease [1, 16]. The hypothesis that HS-Aging is actually a 

diffuse or multifocal disease that is often comorbid with brain arteriolosclerosis pathology 

rather than one localized to medial temporal lobe structures, is quite credible given the prior 

reports [13, 16, 31, 33, 50–52]. We conclude that the present study adds additional evidence 

to support a role for genetic variation in brain pathologies, and to the appreciation that this is 

a multi-factorial condition that can impact brain areas well beyond the hippocampus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Regional brain atrophy associated with variation in GRN/rs5858. GRN encodes progranulin, 

a potent growth factor that plays important roles in wound healing and angiogenesis. Note 

that the GRN/rs5848_T allele is associated with atrophy that localizes on both sides to the 

dorsal and medial frontal neocortex. This is remarkable since GRN is a risk gene for 

frontotemporal dementia. The multi-tone blue tab indicates p value.
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Fig. 2. 
Regional brain atrophy associated with variation in ABCC9/rs704180. ABCC9 encodes 

SUR2 (sulfonylurea receptor 2), a protein that acts as a metabolic sensor important in brain’s 

responses to hypoxia and other stressors. The regions of the brain where atrophy is 

associated with the presence of the ABCC9/rs704180 risk allele were scattered throughout 

the brain, mostly outside of the temporal lobe. The multi-tone blue tab indicates p value.
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Fig. 3. 
A prior study [40] identified an intergenic SNP between genes ABCC9 and CMAS on 

human chromosome 12p that is strongly associated with entorhinal cortical thinning in the 

ADNI and AddNeuroMed datasets (p < 1e−6). Here are shown results from that SNP ([A]; 

rs10743430; dominant model) and also a nearby SNP ([B]; rs7488080; dominant model) 

that is in close linkage disequilibrium (r2 = 0.87, D′ = 0.99). Note that for both SNPs, the 

risk allele is associated with right-sided entorhinal cortex atrophy (red arrow, panel B), as 

well as atrophy in other regions. The multi-tone blue tab indicates p value.
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Fig. 4. 
Distribution (A) of polygenic risk scores for each diagnosis group—cognitively normal 

control (HC), early MCI (EMCI), late MCI (LMCI), and Alzheimer’s disease (AD) by 

clinical impression—and regional brain atrophy (B) associated with polygenic risk scores. 

The polygenic risk scores were used to investigate the possibility of overlapping genetic 

factors. Those scores reflect a combined effect of four risk alleles for HS-Aging. The 

polygenic risk scores are associated with cortical thickness in multifocal brain atrophy 

including multiple areas of the neocortex, predominately in the frontal lobes. The multi-tone 

blue tab indicates p value.
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Table 2

Gene variants associated with MRI detected brain atrophy: anatomic localization, size, and corrected p values 

of significant clusters

Gene (SNP) Cluster Anatomic localization Cluster size* Corrected p-value

GRN (rs5848) 1 Left frontal lobe 33.4 4.0 × 10−5

2 Right frontal lobe 19.2 0.020

ABCC9 (rs7488080) 1 Right frontal and temporal lobes 45.9 1.91 × 10−5

2 Left parietal lobe 31.8 6.42 ×10−4

3 Right temporal lobe including entorhinal cortex 33.9 7.60 × 10−4

4 Left frontal and parietal lobes 26.7 0.013

5 Right temporal lobe 19.8 0.020

ABCC9 (rs704180) 1 Right frontal lobe 61.6 7.13 × 10−8

2 Right temporal and occipital lobes 38.3 2.50 × 10−5

3 Left occipital lobe 19.4 0.032

*
See text for calculation method.
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