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The purpose of this review is to present animal research models that can be used to screen and/or 

repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats 

and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, 

which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. 

Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal 

models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will 

be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that 

have tested the effects of compounds using the respective techniques are included. Wherever possible 

the Tables are organized chronologically in ascending order to describe changes in the focus of research 

on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a 

wide range of compounds. Older studies usually followed neurobiological findings in the selected lines 

that supported an association with a propensity for high ethanol intake. Most of these tests evaluated 

the compound’s effects on the maintenance of ethanol drinking. Very few compounds have been tested 

during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition 

of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets 

have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-

seeking and relapse continue to be factors and behaviors needing further study.  
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1.  Background from a Clinical Perspective 

1.1. Societal Burden of Alcohol Abuse and Dependence 

Approximately half of all Americans have at least one relative with an alcohol use disorders (AUD), with 

some of these individuals having this trait across multiple generations (Research Society on Alcoholism 

[RSA], 2011, 2015). Half of individuals meeting a life-time diagnosis for an AUD do so by age 21 with 

two-thirds doing so by age 25 (Hingson et al., 2006). This is especially troubling given between 15% and 

25% of individuals in the military have AUDs (Bray & Hourani, 2007; Bray et al., 2006; RSA, 2011, 2015). 

There has been a narrowing of the gender gap recently, especially among youth and the elderly (Brienza 

and Stein, 2002; Nelson et al., 1998; Substance Abuse and Mental Health Services Administration 

(SAMHSA), 2012; Wilsnack et al., 1991). In the US, the cost of AUDs approaches a quarter of a trillion 

dollars each year (Harwood et al., 2000; RSA, 2015), with close to 100,000 people dying due to alcohol-

related causes every year (RSA, 2011, 2015). The Centers for Disease Control and Prevention (CDC) 

considers AUDs the third leading cause of preventable death (Mokdad et al., 2004) and is a major factor 

in the top three leading medical causes of death (RSA, 2011, 2015). Moreover, a direct association has 

been found between alcohol (ethanol, the primary form of alcohol abused, will be used instead of 

alcohol in the rest of the paper) use and 50 different medical conditions (Reed et al., 1996; Rehm et al., 

2003). 

1.2. (Endo)Phenotypic Associations with Ethanol Abuse and Dependence 

For the present discussion, an endophenotype (sometimes called intermediate phenotype) is defined as 

a characterisitic (a) having relative specificity for the psychiatric disorder being studied, (b) a trait vs 

state characteristic such that it predates overt expression of symptoms, (c) having significant heritability 

and is associated with familial density of the disorder, and (d) has biological and clinical plausibility (e.g., 

Ray and Heilig, 2013). Preclinical and clinical research indicates the following endophenotypes are 

directly related to the development of ethanol dependence (a) lower initial sensitivity to ethanol’s 

aversive effects (c.f., Bell et al., 2006b, 2012; Colombo et al., 2006; Draski and Deitrich, 1996; Le et al., 

2001; Schuckit and Gold, 1988), (b) greater levels and/or quicker development of ethanol-induced 

tolerance (c.f., Costin and Miles, 2014; Lê and Mayer, 1996), (c) anxiety-like and/or depressive behavior 

including during ethanol withdrawal (c.f., Ciccocioppo et al., 2006; Heilig et al., 2010; Kirby et al., 2011; 

Overstreet et al., 2006; Pautassi et al., 2010; Sjoerds et al., 2014; Thorsell, 2010), (d) stress reactivity 

(c.f., Barr and Goldman, 2006), and (e) sweet liking/preference (c.f., de Wit and Richards, 2004; Kampov-

Polevoy et al., 2014; Lange et al., 2010; Pepino and Mennella, 2007; Perry and Carroll, 2008).   

Endophenotypes also include ethanol-associated physiological and behavioral stimulation (Trim et al., 

2010) [which is modeled in rodents by increased motor activity and/or approach behavior (Chappell and 

Weiner, 2008; Faria et al., 2008; Wise and Bozarth, 1987), aggression (Chiavegatto et al., 2010), and 

social facilitation (Varlinskaya and Spear, 2009, 2010)]. Interestingly, there appears to be 

pharmacological validity for ethanol-associated stimulation as well as reward, with histaminergic (Panula 

and Nuutinen, 2011 and references therein) and ghrelin (Jerlhag et al., 2011 and references therein) 

systems implicated in ethanol-induced motor activation, ethanol-induced conditioned place preference, 
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ethanol-preference and excessive ethanol intake. Nevertheless, there are concerns with establishing 

consilience and translatability of ethanol-induced stimulation between the preclinical and clinical 

literature (c.f., Crabbe et al., 2010). For instance, other than lower dose effects on self-report (Morzorati 

et al., 2002; Viken et al., 2003), heart rate (Finn and Justus, 1997; Peterson et al., 1996), and brain 

activity (Lukas et al., 1986; Sorbel et al., 1996; Trim et al., 2010) the stimulating effects of ethanol are 

not as readily seen in humans compared with rodents. 

1.3. Adolescence 

Adolescence is a crucial stage of development during which addiction becomes a prominent public 

health concern (c.f., Dahl and Spear, 2004; Essau, 2008; Liddle and Rowe, 2006; Monti et al., 2001; 

Romer and Walker, 2007; Rosner, 2013; Spear, 2010; Wagner and Waldron, 2001). Today’s youth are 

initiating ethanol use earlier (e.g., grade school) and experiencing more ethanol-related problems before 

leaving high school (Bava and Tapert, 2010; Gore et al., 2011; Kandel et al., 1997; Miller et al., 2001; 

Nelson et al., 1998; Pitkanen et al., 2005; Quine and Stephenson, 1990; Winters, 2001). Three-quarter of 

high school seniors in the United States have consumed ethanol with half of them initiating drinking 

before the eighth grade (Johnston et al., 1999). This is alarming since early onset of ethanol use along 

with binge drinking are strong predictors of future ethanol dependence (Anthony and Petronis, 1995; 

Capaldi et al., 2013; Chou and Pickering, 1992; Grant and Dawson, 1997; Hawkins et al., 1997; Rossow 

and Kuntsche, 2013). Moreover, adolescent onset of ethanol use is associated with a more rapid 

progression to dependence, compared with individuals who initiated use as adults (Clark et al., 1998). 

Regarding binge drinking, a quarter of high school seniors report binge drinking, with approximately 

three-quarters of college students reporting binge drinking during high school (Dawson et al., 2004; 

Johnston et al., 1991, 1993, 2008; Kuntsche et al., 2004; Presley et al., 1994; Wechsler et al., 2000; 

White et al., 2006). It is estimated that greater than 1 out of 3 male college students engage in binge 

drinking in the United States and many of these consume at least 2 to 3 times the binge definition 

threshold (e.g., Wechsler et al., 2000; White et al., 2006). However, in some United Kingdom locales 

adolescent girls may actually engage in binge drinking more than adolescent boys (c.f., Plant and Plant, 

2006). Regarding younger individuals, the seriousness of this problem is underscored by the fact that 

adolescents between 12 and 20 years of age drink 11 percent of all ethanol consumed in the United 

States, with more than 90 percent of it consumed in the form of binge drinking (NIAAA, 2012). 

Essentially, binge ethanol drinking has been defined as an escalation in self-administration (c.f., 

Covington and Miczek, 2011), achieving BACs associated with intoxication and an important step in the 

development of ethanol dependence (c.f., Koob, 2013; Koob et al., 2014a; Noronha et al., 2014). 

1.3.1. Binge Drinking as a Developmental Phenomenon 

Clinical evidence indicates that binge drinking behavior is engaged by adolescents and young adults 

more often and to a greater magnitude than older (>24 years old) adults (c.f., Courtney and Polich, 2009; 

Marczinski et al., 2009; Martinic and Measham, 2008; Plant and Plant, 2006). Earlier studies reporting 

contrary findings may be due to changes in the definition of binge drinking over time. The fact that binge 

ethanol drinking occurs mostly in adolescents and young adults is due, at least in part, to the fact that 

younger subjects are less affected by ethanol than older individuals. Most of the literature evaluating 
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this observation has been done in rodent models (see discussion by Spear, 2010), with some evidence 

for this from clinical observations as well. The most obvious clinical observation is that adolescents tend 

to drink substantially more ethanol per occasion than adults (NIAAA, 2012; SAMHSA, 2012) even though 

they can achieve similar BACs with fewer drinks (Donovan, 2009; NIAAA, 2012; SAMHSA, 2012). 

Regarding insensitivity to ethanol’s effects, Rohsenow and colleagues (2012) found that hangover 

insensitivity was significantly correlated with intoxication insensitivity and future ethanol-related 

problems. Another recent study (Gilman et al., 2012) examined the effects of ethanol in heavy and light 

social drinkers. The study examined individual subjective and objective, the latter measured by fMRI to 

emotional stimuli, responses while BACs were clamped at 80 mg%. These authors reported that heavy, 

relative to light, drinking individuals had both reduced sensitivity to ethanol’s subjective effects and 

reduced activation of the nucleus accumbens (Acb) and amygdala (Amyg) to emotional stimuli. 

There also is evidence suggesting that young heavy drinkers, relative to young light drinkers, experience 

greater stimulation on the rising limb of the BAC-curve and lower sedation on the descending limb of 

the BAC-curve (e.g., Holdstock et al., 2000; King et al., 2002). King and colleagues (2011) replicated their 

previous findings that weekly binge drinkers experience greater stimulation and less sedation following 

ethanol consumption than young light drinkers. These authors also reported that greater stimulation 

and lower sedation predicted escalated binge drinking over the next 2 years. In turn, escalated binge 

drinking predicted an increased likelihood of meeting diagnostic criteria for an AUD (King et al., 2011). 

This parallels findings that Family History Positive (FHP) for AUD individuals experience greater 

stimulation on the ascending limb and less sedation on the descending limb of the BAC-curve than 

family history negative (FHN) for AUD controls (e.g., Brunelle et al., 2004, 2007; Newlin and Thomson, 

1990, 1999; c.f., Sher, 1991; Windle and Searles, 1990). 

The difficulty with evaluating whether adolescent and young adult binge drinkers experience greater 

reward (e.g., stimulation) and less aversion (e.g., sedation) than light drinkers or older drinkers is the 

role of positive outcome expectancies from drinking to intoxication, such that young binge-drinkers 

expect increased peer affiliation as well as feelings of euphoria and excitement (c.f., Duka et al., 1998; 

Marczinski et al., 2009; Martinic and Measham, 2008; Plant and Plant, 2006).  Note that these are not 

expectancies associated with drinking in general but specifically “drinking to intoxication”. This parallels 

the BAC requirement (greater than 0.08 gram percent; i.e., 80 mg%) found in NIAAA’s definition of binge 

ethanol-drinking (NIAAA, 2004). There is preclinical evidence (e.g., Bell et al., 2000, 2001) indicating that 

ethanol-exposure approximating these BAC levels can induce tolerance to ethanol-induced motor 

impairment (i.e., ataxia). As noted in the discussion on the addiction process, escalation of intake is 

associated with tolerance to effects induced by ethanol which, in turn, may lead to abuse and 

dependence. However, as noted by (Ahmed, 2011), escalation in ethanol drinking, or the intake of 

substances of abuse, does not necessarily stem from the development of neuronal tolerance in humans. 

Although, it also should be noted that these other possible explanations for the development of 

tolerance in humans (Ahmed, 2011), such as social and economic factors, are not easily amenable to 

examination when using animal models.  

1.4. Polysubstance Abuse 
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As with ethanol, initiation of drug use and abuse generally occurs during adolescence and young 

adulthood (Kandel and Logan, 1984). Moreover, abuse of one drug is positively associated with initiating 

use of another drug of abuse (Yamaguchi and Kandel, 1984). Thus, again as with ethanol, the 

developmental periods of adolescence and young adulthood represent the peak times for initiating and 

using multiple substances of abuse (c.f., Dean et al., 2014). A recent meta-analysis/literature review 

addressed whether respondent subclassifications of substance use could be determined from published 

studies on adolescent and young adults (Tomczyk et al., 2016). Twenty-three studies (~a half million 

subjects) met inclusion criteria. Overall, these authors reported that none to low use were the largest 

“latent” classes, moderate to high single substance use (e.g., ethanol) were intermediate in size, and 

polysubstance use had the least respondents. However, approximately 32% of the respondents, across 

all of the analyzed studies, endorsed use of at least 2 substances, usually ethanol and smoking (Tomczyk 

et al., 2016). Given the above, Connor and colleagues (2014) make some important points about 

diagnostic and research challenges as they relate to changes introduced by the Diagnostic and Statistical 

Manual of Mental Disorders-5 (DSM-5) (American Psychiatric Association, 2013). In particular, the DSM-

5 removed the diagnostic category “Polysubstance dependence” along with the terms “Abuse” and 

“Dependence”. This may result in underestimating polysubstance dependence, since each drug class an 

individual abuses can be scaled separately on the severity index. 

1.5. Stages in the Development of Alcohol Use Disorders  

AUDs represent a chronic, progressive, relapsing disorder that advances from experimentation to 

dependence (Heilig and Egli, 2006; Jupp and Lawrence, 2010; Koob, 2009; Koob and LeMoal, 2008; Koob 

and Volkow, 2010; Spanagel, 2009; Volkow and Li, 2005). During experimentation, the individual 

experiences the rewarding, euphoric and positive-reinforcing effects of ethanol consumption. Moreover, 

experimentation includes binge-like drinking and acute increases in motor, such as pro-social behavior, 

and autonomic, such as heart rate, activity which are generally perceived as euphoric and pleasant. The 

experimentation and binge-drinking stages are associated with positive reinforcement; which increases 

the probability, frequency and magnitude of subsequent drinking behavior. After chronic use, there is an 

increase in dysphoria (as opposed to euphoria), such as anxiety, during ethanol withdrawal. These 

dysphoric effects can be physiological in nature (e.g., hangover, hyperthermia, tachycardia, etc.) or 

associated with negative behavioral sequelae, such as getting arrested. With this increase in dysphoria, 

the individual often seeks to relieve this state by relapsing to ethanol drinking. Essentially, during the 

early stages of AUDs positive reinforcement predominates, whereas during later stages of AUDs 

negative reinforcement tends to predominate (Koob et al., 2014a, 2014b; Koob & Le Moal, 2006, 2008). 

Addiction-related positive- vs negative-reinforcement can also be characterized in terms of impulsive vs 

compulsive ethanol drinking (Garbusow et al., 2014; Hagele et al., 2014; Koob et al., 2014a, 2014b; Koob 

& Le Moal, 2006, 2008; Spanagel, 2009). Within these constructs, impulsive drinking is associated with 

binge drinking and intoxication, during which an individual putatively has some volitional control, and 

subsequently there is the maintenance of ethanol drinking (Gray & MacKillop, 2014; Hamilton et al., 

2014; but see Irimia et al., 2013). Chronic usage leads to the development of tolerance to ethanol’s 

effects (Kippin, 2014). Following the development of tolerance there is the development of dependence 

as indicated by withdrawal signs once ethanol use is terminated and chronic relapsing to mitigate 
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associated dysphoria (Edwards et al., 2015). This negative reinforcement to mitigate physical and 

behavioral withdrawal leads in turn to compulsive/habitual drinking (Koob, 2014; Potgieter et al., 1999). 

It is during this transition from impulsive to compulsive drinking that the individual appears to “lose 

control” of their drinking. This, in turn, leads to a preoccupation with, and an anticipation of, future 

ethanol consumption during periods of acute and chronic ethanol withdrawal (Burnett et al., 2016; Koob 

et al., 2014a, 2014b; Koob & Le Moal, 2006, 2008). Nevertheless, it should be noted that AUDs do not 

necessarily progress in a linear fashion, such that the frequency and/or duration a person experiences 

these cycles of drinking, abstaining, seeking, and relapsing can differ substantially across individuals 

(e.g., Barker & Taylor, 2014; Mackenzie et al., 2014; Sartor et al., 2014; van Rizen & Dishion, 2014). 

1.6. Genetics of Alcohol Use Disorders 

The well-documented familial incidence of alcoholism as well as findings from twin and adoption studies 

indicate that ethanol dependence is a highly heritable disease (Cloninger, 1987; Cotton, 1979; Schuckit, 

1986). For instance, FHP individuals are at a 3-7 fold increased risk to develop alcoholism compared with 

FHN controls (Reich et al., 1998). Furthermore, this genetic proposal has been micro-dissected by 

multiple gene studies [for example the Collaborative Study On the Genetics of Alcoholism (COGA), the 

Study of Addiction: Genes and Environment (SAGE) and the European research project on risk taking 

behavior in teenagers (IMAGEN)] examining the association between diagnostic criteria for ethanol 

dependence, or related phenotypes, and the presence of single nucleotide polymorphisms (SNPs) in 

ethanol-dependent individuals (Agrawal et al., 2008; Chen et al., 2012; Dick, 2013; Edenberg, 2012; 

Edenberg and Foroud, 2013; Enoch, 2013; Kapoor et al., 2013; Levey et al., 2014; MacKillop and Acker, 

2013; Ray and Heilig, 2013; Rietschel and Treutlein, 2013; Wall et al., 2013; Wong and Schumann, 2008; 

Yan et al., 2014).  

1.7. Summary of Human Characteristics for Animal Model Development 

This first section provided an overview of characteristics observed in individuals suffering from AUDs 

and the second section of this paper will discuss how well selectively bred rats can display these same 

characteristics. It is clear that AUDs continue to be a major public health concern and despite some 

inroads made into identifying molecular targets for the treatment of ethanol dependence considerable 

more research is needed. Some of the key characteristics often displayed by individuals with AUDs 

include, an early onset of drinking, engaging in binge-like drinking, reduced sensitivity to the aversive 

and perhaps greater sensitivity to the stimulating effects of ethanol, the development of tolerance to 

ethanol’s effects, anhedonia associated with ethanol withdrawal, increased stress reactivity, greater 

sweet-liking, pursuance of novelty-seeking, certain electrophysiological measures, and key gene and/or 

protein differences from controls. It is believed that an animal model of AUD should display many of 

these characteristics and as the number of characteristics observed increases so too does the face 

validity of the animal model. 

2. Background from an Animal Model Perspective 

2.1. Pros and Cons of Animal Model Research 
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While drug development relies heavily on in vitro assays early in the process, subsequent studies in vivo 

are required in the pathway to FDA regulation and clinical use (Blass, 2015). In vivo assays are required 

to evaluate a compound in a highly complex biological system as opposed to in vitro assays, which are 

constrained by their limited macromolecular environment (Blass, 2015). Essentially, the outcome 

measures of an in vivo assay are greater than the sum of its multiple constituent measures or 

presumable endpoints initially measured using in vitro assays. The role of animals in research on human 

diseases continues to be debated (e.g., Cattaneo et al., 2015; Doke and Dhawale, 2015; Fiester, 2008; 

Gupta, 2014; Helms et al., 2015; Lynch et al., 2010). Regarding this debate, a major premise for 

arguments against animal research is the claim that no animal model recapitulates the entire disease 

state of humans, especially as it relates to psychiatric disorders (e.g., Hayes and Delgado, 2006; but see 

Humby and Wilkinson, 2006 for a discussion on examining endophenotypes/intermediate phenotypes as 

a compromise). The polygenic nature of mental health disorders (e.g., Nurnberger and Berrettini, 2012) 

indicates that often times psychiatric genetics and epidemiology must use endophenotypes to parse the 

genetics associated with symptomology of these disorders (Chen et al., 2012; MacKillop and Munafo, 

2013). Thus, the term intermediate phenotype, instead of endophenotype, is often used to convey that 

an observed genetic, behavioral or physiological characteristic bridges the gap between the disease 

process and diagnostic criteria. An example is prepulse inhibition (PPI) of the acoustic startle response 

(ASR) and schizophrenia. Rudimentary screening for the disorder doesn’t include testing for altered PPI, 

yet preclinical PPI assays have strong predictive validity for detecting the efficacy of antipsychotics. 

These endophenotypes and biomarkers can be identified by findings from next generation RNA and/or 

DNA sequencing (Barrera and Sebat, 2016; Gupta and Gupta, 2014), pharmacogenomics (Perlis, 2016), 

gene networks (Parikshak and Geschwind, 2016), and genetic epidemiology (Merikangas and 

Meirkangas, 2016). Two examples are the mu-opioid receptor (MOR) variant, OPRM1, and the long and 

short variants of the serotonin transporter (SERT) (Berretini, 2013; Johnson, 2004, 2010; Johnson et al., 

2003). More recent recent endophenotype identification has used advanced imaging techniques 

(Greicius, 2016; c.f., Self and Staley, 2010; Zahr and Peterson, 2016) or a combination of the above (e.g., 

Muller et al., 2010). Thus, with an increased focus on precision medicine and progress in identifying 

endophenotypes animal models, especially those used to determine treatment efficacy, need to 

incorporate biomarkers associated with AUDs and their development (e.g., Miczek, 2008; Millan, 2008; 

Winsky et al., 2008). 

2.2. Validity, Reliability and Reproducibility 

By displaying characteristics observed in the clinical setting, animal models are considered to have 

significant validity (e.g., Egli et al., 2016; Heilig and Egli, 2006; Litten et al., 2012). In basic terms, validity 

refers to the ability of an experimental method or measurement to accurately and precisely portray the 

construct, being examined, under “real-world” conditions. The three primary constructs of validity 

pertaining to medications discovery or screening are internal, external, and predictive validity. A test or 

method is considered to have internal validity if the causal inferences that Factor A influences Factor B 

observed in the test or method are appropriate. This generally requires (1) Factor A preceding Factor B, 

(2) there is a significant association between Factor A and Factor B, and (3) the results obtained are not 

due to confounding factors.  A number of confounding factors interfere with internal validity including 
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variable selection, repeated testing, instrumentation (i.e., test equipment), sample selection bias, 

statistical regression to the mean, attrition of subjects, etc. External validity is the generalizability of 

findings from a test or method across situations and/or across subjects/samples, which requires efforts 

to limit multiple types of selection bias. Thus, replication is the best confirmation of external validity 

with meta-analytic techniques serving a similar purpose. Predictive validity, as it relates to animal 

models for drug discovery and screening, refers to the ability of a method or test (i.e., animal model) to 

correctly identify medications that interfere with the development and/or expression of AUDs. 

It is important to recognize that, when pursuing the identification of medications to treat mental health 

disorders, deficits in external or face validity do not necessarily negate predictive validity. For instance, 

the Porsolt forced swim test and PPI of ASR have high predictive validity for medications to treat 

depression and schizophrenia, yet have poor face validity for these disorders. Finally, reliability refers to 

consistency of findings across experiments, such that the relevance of a model is determined by 

experimental reliability and extrapolation reliability (e.g., Rohra and Qazi, 2008). The former refers, 

essentially, to test-retest reliability such that the model will yield similar results across multiple tests, 

while controlling for within-subject effects. The latter refers to the ability of an animal model to yield 

results similar to those found in the clinical population. However, experimental and extrapolation 

reliability are based implicitly on the presence of sound validity. Thus, if a model has high reliability but 

low validity then the model will have minimal relevance. 

2.3. Animal Models 

Animal models attempt to parallel the human condition and many of these models have provided 

important information about mediating factors for medical and psychiatric disorders (c.f., Adan and 

Kaye, 2011; Buccafusco, 2001; Conn, 2008; Griffin, 2002; Kalueff, 2006; Kobeissy, 2012; McArthur and 

Borsini, 2008a,b,c; McKinney, 1988, 2001; Pankevich et al., 2013; Siegel, 2005; Verma and Singh, 2014; 

Warnick and Kalueff, 2010), including dual-diagnosis (Edwards and Koob, 2012). Particularly germane to 

the present topic, animal models have led to important findings on neural substrates mediating 

addiction to multiple substances of abuse (c.f., Bell and Rahman, 2016; DeBiasi, 2015; Dwoskin, 2014; 

Ekhtiari and Paulus, 2016a, 2016b; Koob et al., 2014; McArthur and Borsini, 2008c; Olmstead, 2011) and 

ethanol in particular (Bell et al., 2005, 2006b, 2012, 2013, 2014, 2016; Knapp and Breese, 2012; 

Maldonado-Devincci et al., 2012; McBride and Li, 1998; McBride et al., 2014b). As indicated above, 

advanced neuroimaging techniques including resting state functional connectivity are being used to 

develop endophenotypes for medications development targeting AUDs (e.g., Brown et al., 2015; Cui et 

al., 2015; Ernst et al., 2015; Fedota and Stein, 2015; Gowin et al., 2015; Moeller et al., 2016; Muller-

Oehring et al., 2015a, 2015b; Schuckit et al., 2016; Squeglia et al., 2014). In general, an animal model has 

the advantage of allowing the experimenter to control factors such as the animal’s genetic background, 

environment, and drug exposure. In addition, an animal model allows for the examination of 

neurobehavioral, neurochemical and neurophysiological correlates associated with the behavioral, 

physiological and/or neurological state that is modeled. These correlates in turn facilitate the 

development of pharmacological and/or behavioral treatments for the disorder in question.  

2.4. Criteria for an Animal Model of AUD 
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There have been reservations as to whether a valid animal model of AUD could be developed (Cicero, 

1979; Dole, 1986). These concerns stemmed from the fact that, in general, animals lower on the 

evolutionary scale, including rodents, do not readily consume sufficient amounts of ethanol to achieve 

pharmacologically relevant blood alcohol concentrations (BACs). In order to get a rodent to consume 

sufficient amounts of ethanol, experimental manipulations are required. These 

experimental/environmental manipulations include fluid deprivation (Sandi et al., 1990), schedule-

induced polydipsia (Ford, 2014; Meisch, 1975, 2001), scheduled availability (Holloway et al., 1984) 

including intermittent every-other-day access (Carnicella et al., 2014), sucrose-fading (Samson, 1986), 

and/or forced induction of dependence (Deutsch & Eisner, 1977); which can be achieved intragastrically 

(Crews, 2008; French, 2001), intraperitoneally (Pascual et al., 2009, 2014), by ethanol-vapor exposure 

(Roberts et al., 2000; Vendruscolo and Roberts, 2014), chronic drinking of a liquid ethanol diet (Brown et 

al., 2004; Lieber and DeCarli, 1989), or long-term drinking with water and food concurrently available 

(Vengeliene et al., 2009). Most of these methods include an integral stress factor, which does have some 

face validity with the clinical condition (Al’Absi, 2007). 

Despite the above reservations, certain criteria for an animal model of AUD have been put forth (Cicero, 

1979; Dole, 1986; Lester & Freed, 1973). Briefly, these criteria include 1) the animal should orally self-

administer ethanol, 2) the amount of ethanol consumed should result in pharmacologically relevant 

BACs, 3) ethanol should be consumed for its post-ingestive pharmacological effects, and not strictly for 

its caloric value or taste, 4) ethanol should be positively reinforcing, such that animals will work for 

access to ethanol, 5) chronic ethanol consumption should lead to the expression of metabolic and/or 

functional tolerance, and 6) chronic consumption of ethanol leads to dependence, as indicated by 

withdrawal symptoms after access to ethanol is terminated. Other criteria have been posited as well. A 

7
th

 proposed criterion is the animals should express relapse-like behavior, which manifests as a loss-of-

control (McBride & Li, 1998; Rodd et al., 2004b). Additional criteria might be the ability to display binge-

like drinking, as well as the expression of excessive ethanol consumption during the juvenile, adolescent 

and emerging adult stages of development (e.g., Bell et al., 2013; 2014). Finally, with a substantial 

minority of alcoholics engaging in polysubstance use and abuse, perhaps it is time to include this 

behavior in criteria for an animal model of AUD (e.g., Bell et al., 2016) as well. 

2.5. Adolescence and Emerging Adulthood in the Rat Model 

Ethanol use and abuse during adolescence is relatively common around the world (World Health 

Organization, 2011). Undoubtedly, some of the reasons may be associated with “rites of passage” such 

as graduating high school, entering college, joining the military etc. All of these institutions (high school, 

college, military) often give tacit support for the use and abuse of ethanol. There also is substantial 

evidence that adolescent mammals have decreased sensitivity to ethanol’s perceived negative (e.g., 

ataxia) effects and increased sensitivity to its perceived positive effects (e.g., behavioral and autonomic 

activation) (Spear, 2010, 2013, 2014).  Therefore, it is not surprising that adolescent rodents often 

consume significantly more ethanol than their adult counterparts (Bell et al., 2006c, 2011, 2013, 2014; 

Dhaher et al., 2012a; Spear, 2014). Research over the years has led to hypothesized parallel ages 

between humans and rats. These putative time periods (Table 1 adapted from Bell et al., 2013, 2014) 

have been based on neurobiological, sexual, foraging, and social characteristics that have been 
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evolutionarily conserved across species (e.g., Spear, 2000, 2010). Table 1 includes relative rat body 

weights which are the averages of Sprague-Dawley, Wistar, and Long-Evans Hooded rats at their 

respective ages. Body weights are included because many studies do not list the age of the subjects but 

do provide body weights. There is still substantial discussion on what constitutes an adolescent or adult 

rat. For example, Spear (2015) has noted significant differences in the long-term effects of ethanol 

following early- vs late-adolescent exposure. This parsing of the adolescent window results in some 

overlap with the juvenile and emerging adulthood stages of development, at least as depicted in Table 

1. Despite this ongoing debate, it is clear that rat models of adolescent substance use and abuse have 

revealed important information on the behavioral, neurobiological, and genetic consequences of 

ethanol and/or drug exposure (Adriani and Laviola, 2004; Andersen, 2003; Bell et al., 2013, 2014, 2016; 

Chambers et al., 2003; Smith, 2003; Spear, 2000, 2010, 2014, 2015; Spear and Varlinskaya, 2006; Witt, 

1994, 2010). 

Table 1. Approximate parallel ages between the human and rat equivalent 

 

Human Ages (Years) 

-3 to 0 Months 0 to 6 6 7 to 12 13 to 18 18 to 21 21 to 24 25 to 28 

Neonate Prejuvenile Weaning Juvenile Adolescent Emerging 
Adulthood 

Early Young 
Adult Young Adult 

Rat Ages [Post-Natal Days (PNDs)] 

1 to 7 8 to 21 21 22 to 27 28 to 42 43 to 60 61 to 75 76 to 90 

Rat Body Weights (g) 

Male: 6 to 15 16 to 40 40 40 to 70 70-155 155-260 260-335 335-390 

Female: 6 to 15 16 to 38 38 38 to 65 65-130 130-180 180-210 210-250 

 

2.6. Binge-Drinking in Rat Models 

The primary binge-like drinking criteria that can be modeled in the rat are the requirements of (a) BACs 

greater than 80 mg% and (b) clear signs of intoxication, usually in the form of locomotor impairment. 

Our laboratory has used three primary behavioral models of binge-like drinking. These are (a) the 

alcohol deprivation effect (ADE), (b) episodic access, and (c) drinking-in-the-dark—multiple-scheduled-

access (DID-MSA) procedures. The ADE results in both of these parameters being met. The ADE is 

basically the phenomenon that, after chronic access to ethanol usually 24h/day, when ethanol access is 

terminated and the subjects are re-exposed to ethanol access they tend to increase their ethanol intake 

relative to levels observed before the deprivation interval. However, because the ADE requires extended 

periods of deprivation before the animal is re-exposed to ethanol access, it probably models relapse-like 

behavior (Martin-Fardon and Weiss, 2013; Rodd et al., 2004b; Spanagel and Holter, 1999) to a greater 

extent than binge-like drinking. The episodic access procedure is similar to the ADE but incorporates 

shorter periods of ethanol access and forced abstinence. With the episodic access procedure, rats are 

given free-choice access to ethanol for an initial 8 days followed by cycles of 4 days of deprivation from 

and 4 days of re-exposure to ethanol access. Our laboratory has examined the effects of episodic access 

and found that whereas both high alcohol-drinking 1 and 2, HAD1 and HAD2 replicate lines, rats 

displayed an escalation of intake (an ADE), alcohol-preferring (P) rats did not (Bell et al., 2008). 
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Moreover, this did not appear to be a sex-dependent effect. This episodic protocol has been modified to 

examine changes in glutamatergic-associated protein levels in the extended Amyg and Acb of adult P 

rats (Obara et al., 2009). Overall, these authors reported that expression levels of N-methyl-D-aspartate 

receptor (GRIN) subunits and Homer proteins were differentially affected by episodic vs continuous 

access and whether tissue was harvested after a 24h vs 4-week deprivation period. 

The most recent model of binge-like drinking used by our laboratory is the DID-MSA procedure (e.g., Bell 

et al., 2006b, 2006c, 2009, 2011; McBride et al., 2010). This procedure parallels the DID procedure used 

in mice (e.g., Boehm et al., 2008; Crabbe et al., 2009; Lyons et al., 2008; Moore and Boehm, 2009; 

Navarro et al., 2009; Rhodes et al., 2005). However, initial access to ethanol during the dark-cycle must 

occur immediately upon lights out to maximize intake in rats, whereas initial access for mice must occur 

after three or fours into the dark cycle (Bell et al., 2006c, Rhodes et al., 2005; but see Colombo et al., 

2014). As with all of the drinking protocols used by our laboratory, water and food are freely available 

ad libitum. The rats experience between two and four 1h access periods across the 12h dark cycle with 

each access period separated by two or more hours. The rats experience a two day deprivation period 

each weekend. Selectively bred rats experiencing the DID-MSA procedure readily display BACs in excess 

of 80 mg%, usually in excess of 100 mg%, with clear signs of motor impairment (e.g., Bell et al., 2011). 

When this procedure was adapted for use in operant chambers, P rats displayed BACs in excess of 250 

mg% (McBride et al., 2010). Finally, it should be noted that limited access scheduling during the rats’ 

active-period (i.e., dark-cycle) has been a procedure used for many years and itself often results in BACs 

in excess of 80 mg% (See Bell et al., 2014 for a discussion of scheduled ethanol access procedures across 

20+ rat lines/strains). 

3. Selective Breeding 

Bi-directional selective breeding is a powerful genetic tool that has been employed to study the genetics 

of many ethanol-associated phenotypes (Crabbe, 2008). Compared to pure association studies such as 

genome-wide association studies (GWAS) and studies using recombinant inbred lines (RILs) panels, 

selective breeding from a heterogeneous outbred stock can make low frequency/rare alleles more 

common. Selective breeding involves establishing a distribution of scores for the phenotype of interest. 

Then, subjects are selected from the extremes of this distribution. Subjects from the same extreme are 

mated together and this cycle of selection and breeding occurs over multiple generations. This results in 

the high and low off-spring displaying phenotypic extremes that far exceed the range found in the 

original foundation stock. Heuristically, as relevant genes are segregated correlated traits of the primary 

selected phenotype (presumably due to pleiotropic actions of genes: Crabbe et al., 1990) can be 

identified and studied. 

3.1. Selectively Bred High Ethanol-Consuming Rat Lines 

There are primarily seven bi-directionally selected bred high ethanol-consuming rat lines used globally. 

The alcohol-preferring AA and alcohol-avoiding [ALKO Non-Alcohol-Accepting (ANA)] rats were 

developed from a Wistar-Sprague-Dawley cross foundation stock in Helsinki, Finland (Eriksson, 1968). 

The lines were revitalized with Brown-Norway and Lewis rat lines in the late 1980’s (Sommer et al., 
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2006). The high alcohol-drinking HAD and low alcohol-drinking LAD lines of rats were developed from 

N/NIH heterogeneous stock rats at Indiana University School of Medicine in Indianapolis, Indiana, USA 

(Li et al., 1993). The N/NIH line of rats was derived from an eight inbred strain cross (ACI, BN, BUF, F344, 

M520, MR, WKY and WN), with each strain displaying different phenotypes including ethanol intake, at 

the National Institutes of Health (Hansen and Spuhler, 1984). Two separate colonies were used to breed 

HAD and LAD lines of rats, such that replicate (HAD1 vs. LAD1 and HAD2 vs. LAD2) lines are available. 

The alcohol-preferring, P, and alcohol-nonpreferring, NP, rat lines were developed from closed-colony 

Wistar foundation stock at the Walter Reed Army Hospital and transferred to the Indiana University 

School of Medicine in Indianapolis, Indiana, USA (Lumeng et al., 1977). The Sardinian alcohol-preferring, 

sP, and alcohol-nonpreferring, sNP, rats were developed from a Wistar foundation stock at the 

University of Cagliari, Italy (Colombo et al., 2006). The alcohol-preferring UChB and alcohol-

nonpreferring [University of Chile A (UChA)] lines of rats were developed from a Wistar foundation stock 

at the University of Chile, Santiago, Chile (Mardones and Segovia-Riquelme, 1983). The Marchigian sP 

(msP) line does not have a non-preferring counterpart, although an outbred Wistar is often used as a 

control, and was derived from the sP line from the University of Cagliari, Italy (Ciccocioppo et al., 2006). 

All of the above lines were selected for 24h ethanol intake. A selective breeding program for limited 

access ethanol intake has also been undertaken yielding the High vs Low Addiction Research Foundation 

(HARF vs LARF) rat lines (e.g., Le et al., 2001). 

The 24h selective breeding programs had two primary selection criteria. First, the high ethanol-

consuming rat lines needed to drink at least 5 grams (g) of ethanol/kilogram (kg) bodyweight/day. Five 

g/kg/day, in a clinical sense, is equivalent to a 165 pound man consuming approximately a fifth of 90-

proof whiskey per day. The second criterion is that the animals had to prefer 10% ethanol over water by 

at least a 2:1 ratio. As seen in Table 2, all seven high ethanol-consuming rat lines meet the selection 

criteria and achieve intoxicating BAC levels after free-choice ethanol drinking. Six of the rat lines display 

an ADE indicating relapse behavior. Six of the rat lines will operantly self-administer ethanol indicating 

these rat lines find ethanol reinforcing. In addition, six of the lines display behavioral and/or 

physiological measures (i.e., generally activation or approach behavior) of ethanol reward. Five of the 

rat lines display tolerance to ethanol-associated effects. In addition, the high drinking lines generally 

develop quicker, or greater, tolerance to ethanol-associated effects than their low drinking 

counterparts. Only a few of the rat lines have demonstrated excessive ethanol-intake during 

adolescence, nicotine and/or cocaine self-administration. Importantly, all seven of the rat lines have 

published gene differences relative to their low drinking counterparts, or Wistar controls in the case of 

msP rats. 

3.2. Other Bi-directionally Selectively Bred Rat Lines 

Other rat lines have undergone selective breeding for endophenotypes associated with AUDs, but were 

not selected for the high ethanol preference or intake phenotypes. The High Alcohol vs Low Sensitivity 

(HAS vs LAS) rat lines were selected for ethanol-induced sedation and show alterations in ethanol-

induced conditioned taste aversion and nicotine-induced locomotor activity (e.g., de Fiebre et al., 2002; 

Kuljosky et al., 1995). The Alcohol Tolerant (AT) and Alcohol Non-Tolerant (ANT) rats were selected for 

sensitivity to ethanol-induced motor impairment and the development of tolerance to this effect, with 
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non-tolerance being mediated by a mutation of the GABRA-alpha 6 subunit (Wong et al., 1996). The 

High Saccharin Consumption (HiS) and Low Saccharin Consumption (LoS) Rats were selected for different 

propensities to consume a sweet, saccharin solution with the former consuming significantly more 

ethanol than the latter (c.f., Carroll et al., 2008). The Taste Aversion Prone (TAP) and Taste Aversion 

Resistant (TAR) rats were bidirectionally selected for cyclophosphamide conditioned taste aversion 

(CTA) to a saccharin solution, with the latter showing lower ethanol-induced CTA and greater ethanol 

intake than the former (e.g., Elkins et al., 1992; Orr et al., 2004). The Swim Test Susceptible (SUS) and 

Swim Test Resistant (RES) rats were bidirectionally selected for decreased swimming (SUS) activity when 

the test was preceded by a stressor, with the latter showing greater ethanol intake than the former 

(e.g., Weiss et al., 2008). 

--------------------------------------------Insert Table 2 About Here---------------------------------------------------- 

4. Behavioral Models for Screening Treatment Compounds and/or Targets 

4.1. The Home-Cage and Operant Environments 

Home-cage drinking is relatively self-explanatory, such that the rat has access to ethanol in its home-

cage environment. There are pros and cons to this test environment and there continues to be a debate 

as to its face validity with the clinical condition. However, home-cage drinking is positively associated 

with both the reinforcing and rewarding aspects of ethanol (e.g., Green and Grahame, 2008). On the 

other hand, operant self-administration requires removing the rat from its home-cage and transporting 

them to an operant test chamber, which has its own inherent cues, usually in an adjacent room. It is the 

role of these cues that make operant testing so attractive for compound testing. However, operant 

testing is resource-intense with greater costs in time, materials, and technicians compared with home-

cage testing. Many reviews have been written on operant procedures (June and Gilpin, 2010; Lopez and 

Becker, 2014; Ostroumov et al., 2015; O’Tousa and Grahame, 2014; Rodd et al., 2004; Samson and 

Czachowski, 2003; Vendruscolo and Roberts, 2014; Weiss, 2011), so only the basics will be covered here. 

The removal of the animal from their home-cage environment, transport to a test room, and placing the 

animal in the operant chamber results in many opportunities for the animal to form associations 

between environmental stimuli and learning the reinforcement value of ethanol. Reinforcement refers 

to the ability of a stimulus to increase the probability of a response occurring in the future, when the 

stimulus and response have been successfully associated with each other. Positive reinforcement refers 

to an increased probability of a response, in the presence of a stimulus, in order to receive a “positive” 

stimulus or reinforcer. Note: that reinforcer is more appropriate than reward because reward is not, in 

general, dependent upon a trained or conditioned response. Negative reinforcement refers to an 

increased probability of a response, in the presence of a stimulus, in order to avoid a negative/noxious 

stimulus. Operant self-administration is conducted in operant chambers, sometimes called Skinner 

boxes, where a subject is placed in the chamber and allowed to bar press on a lever in order to receive 

ethanol (the reinforcer). Cues such as lights or sounds, in the chamber, are programmed to alert the 

animal to different phases of an experiment, such as an anticipation phase before the bar press levers 

are extend into the chamber.  
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In general, there are two types of schedules-of-reinforcement: ratio which controls the number of 

responses (usually bar presses) required for reinforcement and interval which controls the period of 

time at which point the reinforcement is presented following the required response. Fixed-ratio (FR) 

reinforcement refers to a subject receiving reinforcement after a set number of bar presses. Variable-

ratio (VR) reinforcement refers to a subject receiving reinforcement after a random number of 

responses, with the distribution of these numbers of responses covering a range centered on an average 

number (i.e., in general this average would be associated with the FR requirement). For instance, an FR-

1 schedule would be used to initiate training where the subject receives reinforcement after each bar 

press. This is also called continuous reinforcement. Similalrly, an FR-3 schedule would result in the 

subject receiving reinforcement after each set of 3 bar presses. Finally, most experimenters include a 

time-out period following each reinforcement where responses are not counted towards the next 

reinforcement until the time-out period is over. The time-out is used to control for purely stereotypical 

behavior (e.g., self-administration of amphetamine which results in stereotypic motor responses that 

are not explicitly tied to the drug’s reinforcement value). Similar to ethanol drinking in the home cage, 

outbred rats, those not selectively bred for high drinking, require different types of training or shaping 

regimens in order for the animal to acquire self-administration behavior. This is primarily for the oral 

route of administration. However, in selectively bred high ethanol-consuming rats this training is 

minimal or not needed at all indicating these lines find ethanol reinforcing and rewarding (see Table 2).  

4.2. Modeling the Stages of the Addiction Cycle 

In general, an ethanol dependent individual develops addiction to ethanol through multiple stages, 

progressing from impulsive drinking to compulsive drinking (Feltenstein and See, 2013; Koob, 2013; 

Koob et al., 2014; Little et al., 2008; Noronha et al., 2014; Olmstead, 2011; Pierce and Kenny, 2013; 

Scofield et al., 2016; Vanderschuren and Ahmed, 2013). These stages include acquisition (Carroll and 

Meisch, 2011), escalation (Ahmed, 2011), binge-like behavior (Covington and Miczek, 2011; Stephens et 

al., 2013), habit formation and compulsion (Belin et al., 2011; Everitt et al., 2010), withdrawal (Barr et 

al., 2011; Koob, 2008; Koob and LeMoal, 2010), relapse (Erb and Placenza, 2011; Martin-Fardon and 

Weiss, 2013; Meyerhoff et al., 2013; Stewart, 2010), craving (Grimm, 2011), as well as ethanol seeking 

and a pre-occupation with future use (Lasseter et al., 2010). 

4.3. Acquisition of Alcohol Use Disorders 

Delaying the onset of ethanol abuse during adolescence and/or emerging adulthood may reduce the risk 

of developing AUDs later in life. Thefore, treating an individual while they are still engaging in impulsive 

drinking and before compulsive drinking has been established may prevent the development of ethanol 

dependence. The closest selectively bred animal model of this would be testing the efficacy of a 

compound to disrupt acquisition of ethanol intake. This is done by administering the compound 

concurrently with initial ethanol access, or by pretreating the animal before initial ethanol access. 

Therefore, disrupting the acquisition of ethanol abuse in today’s youth is an important consideration. 

This would be prophylactic in nature similar to fortifying flour with thiamine to prevent deficiencies and 

subsequent brain damage and probably restricted to “captive” samples such as those in chemical 

dependency treatment. Pharmacological studies evaluating the acquisition of ethanol intake have been 
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conducted under both home-cage drinking and operant self-administration conditions. As seen in Table 

3, roles for the adrenergic (Froehlich et al., 2013), cannabinoid (Gessa et al., 2005; Serra et al., 2001), 

GABAergic (GABRB: Colombo et al., 2002a; Orru et al., 2005), opioid (Dhaher et al., 2012b; Sable et al., 

2006), and serotonergic (Rodd et al., 2010; Rodd-Henricks et al., 2000a) systems have been implicated in 

the acquisition of ethanol intake. Of the selectively bred rat lines discussed here, only the P and sP rat 

lines have been used to examine acquisition of ethanol intake. However, only naltrexone has been 

tested in both P and sP rats. Unfortunately, all of these treatments had a modest effect on ethanol 

intake and intake levels increased to control levels after cessation of treatment.  

--------------------------------------------Insert Table 3 About Here---------------------------------------------------- 

4.4. Binge-Like Drinking 

The number of reports documenting pharmacological disruption of binge-like drinking is limited. As 

discussed above, binge-like drinking is associated with repeated sessions of intoxicated drinking per day 

(e.g., Bell et al., 2011). Given this, repeated testing sessions per day precludes controlling for carryover 

effects. However, most published binge-drinking studies tested the compound either acutely (i.e., once 

or twice) or chronically on a once-a-day basis. Examples of neurotransmitter systems mediating binge-

like intake include the cholinergic (Katner et al., 1997), dopaminergic (Ingman et al., 2006), GABAergic 

(GABRA: Liu et al., 2011), noradrenergic (Warnock et al., 2012), and serotonergic (Ingman et al., 2006) 

systems (Table 4). Of the selectively bred rat lines discussed here, only the AA and P rat lines have been 

used to examine binge-like drinking, with no compounds being tested in both lines. Unfortunately, since 

BACs in general were not reported it is difficult to determine if the ethanol intake levels truly met the 

definition for binge drinking (i.e., > 80 mg%).   

---------------------------------------------Insert Table 4 About Here----------------------------------------------------- 

4.5. Maintenance of Ethanol Drinking 

Pharmacological studies examining the maintenance of ethanol drinking have been the test of choice in 

the ethanol research field. Usually, the assumption is that the maintenance of ethanol intake reflects 

habitual or compulsive use. In fact, habitual or compulsive use models have been posited as preclinical 

models for medications testing (Carnicella et al., 2014; O’Tousa and Grahame, 2014). Similar to 

acquisition, studies on maintenance have been performed under both home-cage drinking and operant 

self-administration conditions. Free-choice access refers to tests during which the animal can choose 

between ethanol, usually water and food. Sometimes, multiple choices of ethanol solutions are given, 

which tends to increase the overall volume of intake (Bell et al., 2003, 2004; Rodd-Henricks et al., 2001). 

The home-cage environment is more amenable to this than the operant chamber. For instance, food is 

very rarely available in the operant chamber although this could be a control over prandial-associated 

intake. When assessing the maintenance of ethanol drinking the investigator administers the compound 

during ongoing drinking. Usually this is done under limited access conditions. The compound is 

administered and then after a set period of time, usually associated with absorption and the 

compound’s transit of the blood-brain-barrier (BBB), the subject is given access to ethanol for a discrete 

period-of-time. Limited access is used to assess the acute effects of the compound, especially if tested 
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across days. Although when conducting a study under 24h access conditions, ethanol intake can be 

recorded post-treatment at different time-points during the day. This allows the experimenter to 

measure both the acute (e.g., first 1h or 4h post-administration) and more chronic effects of the 

compound. A benefit of 24h access tests is the ability to detect the effects of a compound relative to its 

temporal bioavailability (e.g., absorption, transit across the BBB, and metabolism).  

An interpretative difficulty of 24h access testing is the inability to disentangle the interactional post-

acute compound effects from continuous ethanol intake effects, although limited access tests also have 

this problem but to a lesser degree. Major concurrent measures would include body weight as well as 

food and water intake to detect secondary effects. Examples of neurotransmitters modulating the 

maintenance of ethanol intake include the adrenergic (alpha: Froehlich et al., 2013a), cannabinoid (Dyr 

et al., 2008; Gessa et al., 2005; Hansson et al., 2007), cholinergic (Bell et al., 2009; Sotomayor-Zarate et 

al., 2013), dopaminergic (Dyr et al., 1993; Thanos et al., 2005), GABAergic (GABRA: Agabio et al., 1998; 

GABRA-BDZ complex: June et al., 1998b; McKay et al., 2004; GABRB: Maccioni et al., 2012; Quintanilla et 

al., 2008), glutamatergic (Bilbeny et al., 2005; Cowen et al., 2005b; Sari et al., 2013a), histaminergic 

(Lintunen et al., 2001), opioid (pan-opioid: Hyytia and Sinclair, 1993; June et al., 1998d; MOR: Honkanen 

et a., 1996; Krishnan-Sarin et al., 1998; DOR: Hyytia and Kiianmaa, 2001; sigma: Sabino et al., 2009a), 

and serotonergic (Long et al., 1996; Overstreet et al., 1997; Panocka et al., 1995b; West et al., 2011) 

systems (Table 5). Overall, the neurotransmitter systems most often tested across the lines have been 

the (a) cannabinoid system in six of the selectively bred rat lines, (b) GABAergic system in five of the 

selectively bred lines as well as Sprague-Dawley and Long-Evans Hooded outbred lines, and (c) opioid 

system in six of the selectively bred rat lines as well as Sprague-Dawley and Wistar outbred lines. Across 

the rat lines, the CB1R antagonist, SR-141716, has been tested in six of the selectively bred rat lines as 

well as Wistar rats with consistent reductions in ethanol intake. Across rat lines, naloxone/naltrexone 

has been tested in, and consistently reduced ethanol intake by, five of the selectively bred rat lines as 

well as Sprague-Dawley and Wistar rats.      

-----------------------------------------------Insert Table 5 About Here----------------------------------------------------- 

4.6. Relapse Behavior 

Ethanol abuse and dependence are considered chronic relapsing disorders, such that 60-80 percent of 

abstinent alcoholics will relapse during their lifetime (Barrick and Connors, 2002; Chiauzzi, 1991; Jaffe, 

2002; Weiss et al., 2001). Thus, an animal model of AUD ought to demonstrate this feature of the clinical 

picture as well (McBride and Li, 1998). Although a number of criteria for relapse have been put forth 

(Barrick and Connors, 2002; Chiauzzi, 1991; Jaffe, 2002; Weiss et al., 2001), the primary criterion holds 

that a return to levels of ethanol consumption equal to or greater than that observed prior to 

abstinence constitutes a relapse. A common model of AUD relapse is the alcohol deprivation effect 

(ADE). The ADE is a temporary increase in ethanol intake and/or preference over water upon re-

exposure to ethanol access compared with levels observed prior to ethanol withdrawal (Brown et 

al., 1998; Burish et al., 1981; Heyser et al., 1997, 2003; Kornet et al., 1990; McKinzie et al., 1998; 

Mello and Mendelson, 1972; Rodd et al., 2003a, Rodd-Henricks et al., 2000a, 2001; Sinclair, 1971; 

Sinclair and Li, 1989; Sinclair and Senter, 1967; Sinclair et al., 1973; Wolfgramm and Heyne, 1995). 
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Thus, by definition the ADE usually reflects an escalation of intake. Moreover, the ADE is not 

simply an effect of withdrawal, because it can be observed before an animal becomes phycically 

dependent upon ethanol (Bell et al., 2008; McKinzie et al., 1998; Sinclair and Senter, 1967; Rodd-

Henricks et al., 2000a, 2001) or after overt withdrawal signs have passed (Rodd-Henricks et al., 

2002a; Rodd et al., 2003). While most studies have relied upon a single period of abstinence, this does 

not parallel the clinical condition because most individuals seeking treatment have experienced multiple 

cycles of abstinence and relapse. Finally, as seen in Table 2, different selectively bred rat lines display 

different ADE profiles (e.g., time-dependent) under particular conditions. Given the multiple genes, each 

contributing a relatively small effect-size, mediating the genetic risk for developing AUD; it is not 

surprising that there are different drinking, including relapse, profiles among the selected lines (Table 2). 

Examples of neurotransmitters and neuromodulators modulating relapse to ethanol intake include the 

adrenergic (alpha: Froehlich et al., 2013a), cannabinoid (Dyr et al., 2008; Gessa et al., 2005; Hansson et 

al., 2007), cholinergic (Bell et al., 2009; Sotomayor-Zarate et al., 2013), dopaminergic (Dyr et al., 1993; 

Thanos et al., 2005), GABAergic (GABRA: Agabio et al., 1998; GABRA-BDZ complex: June et al., 1998b; 

McKay et al., 2004; GABRB: Maccioni et al., 2012; Quintanilla et al., 2008), glutamatergic (Bilbeny et al., 

2005; Cowen et al., 2005b; Sari et al., 2013a), histaminergic (Lintunen et al., 2001), opioid (pan-opioid: 

Hyytia and Sinclair, 1993; June et al., 1998d; MOR: Honkanen et a., 1996; Krishnan-Sarin et al., 1998; 

DOR: Hyytia and Kiianmaa, 2001; Sigma: Sabino et al., 2009a), and serotonergic (Long et al., 1996; 

Overstreet et al., 1997; Panocka et al., 1995b; West et al., 2011) systems (Table 6). Unfortunately, only 

the P, HAD1, HAD2, and sP rat lines have been consistently used to assess compound efficacy in 

disrupting relapse-like behavior. Moreover, no single compound has been tested across three or more 

selectively bred rat lines. Thus, more research is needed to address the validity of findings across 

selectively bred rat lines and/or mouse lines.  

-----------------------------------------------Insert Table 6 About Here----------------------------------------------------- 

4.7. Ethanol-Seeking (Craving) Behavior 

For the present discussion, craving and ethanol-seeking will be considered similar constructs on a 

behavioral continuum from a more visceral response to an overt behavioral response, respectively. To 

test for ethanol-seeking behavior, an animal is trained to operantly self-administer ethanol, this operant 

response is then extinguished, such that the animal no longer responds on the lever previously 

associated with ethanol reinforcement, with changes in response rate across time reflecting seeking 

behavior. This can also be determined by comparing response numbers between the lever previously 

associated with ethanol and the control lever (i.e., is the animal able to distinguish between the two). 

Or, another method would be to compare the response rate with a baseline rate recorded prior to 

extinction. It has been suggested that the rate of extinction can be a measure of ethanol-seeking, 

because the animal continues to manifest an overt behavior directed toward the lever previously 

associated with ethanol reinforcement in the absence of reinforcement (Koob, 2000; Littleton, 2000). In 

a clinical sense, this would be similar to an individual displaying approach behavior (i.e., going to the 

liquor store) and being frustrated by the fact that the liquor store is closed. 
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Responses on the operant lever, previously associated with ethanol reinforcement, in the absence of 

reinforcement can be elicited several ways. Here we will examine (a) drug-induced “priming” of the 

response, (b) cue-induced “priming” of the response, and (c) “Pavlovian Spontaneous Recovery” (PSR) of 

the response. Essentially, PSR stems from the work of Pavlov who showed that simply returning the 

animal to the environment previously associated with reinforcement “recovered” the response, even if 

the response was absent (i.e., extinguished) at the end of the previous session (c.f., Rodd et al., 2004). 

All of these methods have been reviewed by others as noted in sections 4.1 and 4.2 and the present 

discussion will only present an overview. The word priming is used because these three methods 

essentially prepare/prime the animal to make the response. These three forms of reinstatement of 

responding can be arranged on a continuum from the most overt (drug-induced priming) to the least 

overt (PSR), in the sense that all three use cues to elicit the response. Drug-induced priming 

automatically incorporates environmental cues associated with (a) drug self-administration as well as (b) 

drug-induced physiological responses. The drug-induced priming dose is usually too small to induce 

behavioral activation. Nevertheless, most drugs-of-abuse, including ethanol, do sensitize behavioral 

activation (i.e., shift the dose-response curve to the left) and; therefore, this remains a critique of this 

model/procedure.   

Cue-induced priming of the response uses discrete cues from the environment that were previously 

associated with ethanol self-administration (Koob, 2000). Therefore, the environmental cues recruited 

in drug-induced priming are also present in cue-induced priming but overt physiological responses to the 

drug are absent. The role of environmental cues in drug- vs cue-induced priming can, to some degree, 

be dissociated by administering the drug priming in a different environment. However, absolute 

dissociation is impossible. Finally, PSR of responding incorporates the environmental cues used in cue-

induced priming. One method to dissociate the more subtle cues in the environment from the more 

overt, discrete cues used in cue-induced priming is to employ positive (+), negative (-) and neutral cues 

in the methodology. (+)-cues are stimuli previously associated with ethanol/drug availability, (-)-cues are 

stimuli previously associated with ethanol/drug “non”-availability, and neutral cues are environmental 

cues present in both circumstances (e.g., Knight et al., 2016). As seen in Table 7, roles for the adrenergic 

(alpha: Bertholomey et al., 2013), cannabinoid (Cippitelli et al., 2005), cholinergic (Hauser et al., 2014a; 

Le et al., 2003), dopaminergic (Hauser et al., 2014b; Vengeliee etal., 2006), GABAergic (GABRB: Maccioni 

et al., 2008b), glutamatergic (Backstrom and Hyytia, 2004; Rodd et al., 2006; von der Glotz et al., 2009), 

neuropeptide Y (Bertholomey et al., 2011), nociceptin-orphanin (Ciccocioppo et al., 2004), opioid (pan-

opioid: Le et al., 1999; MOR: Giuliano et al., 2015; DOR: Henderson-Redmond and Czachowski, 2014; 

KOR: Deehan et al., 2012), and serotonergic (Hauser et al., 2014a) systems have been implicated in 

ethanol-seeking and -craving behavior. Also as seen in Table 7, outbred rat lines are used more 

consistently than selectively bred rat lines when investigating the efficacy of compounds to disrupt 

ethanol-craving and –seeking behavior. 

-----------------------------------------------Insert Table 7 About Here----------------------------------------------------- 

4.8. Dependence and Withdrawal-Associated Effects 
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The research on dependence and withdrawal in rats has been limited, at least as it pertains to 

medications screening for the treatment of AUD. Early work examined the GABAergic system, due to the 

fact that agonists of this system were, and still are, used to treat the danger of ethanol-withdrawal 

associated seizures. Subsequent work examined the role of the glutamatergic system and its 

hyperexcitability in the dependent state. This paralleled work examining neurosteroids and their 

modulation of the GABAergic system. Peptide systems such as cotricotrophin releasing factor (CRF) and 

neuropeptide Y (NPY) have also received attention because of their recognized role in anxiety and their 

activity in the extended amygdala. More recent research has recognized that stress-associated systems 

play a key role in the development and maintenance of AUD and addiction in which withdrawal plays an 

important part (See Griffin, 2014). Therefore, stress-associated seeking and/or craving behavior has 

received research interest but mostly in non-selectively bred (i.e., outbred) rat lines. Table 8 describes 

some of the neurotransmitters and neuromodulators mediating stress-associated findings from 

selectively bred and outbred rats. These include the adrenergic (Rasmussen et al., 2014), corticotrophin 

(Overstreet et al., 2007), dopaminergic (Overstreet et al., 2007), GABAergic (GABRA-BDZ: Knapp et al., 

2007a, 2007b), neuroimmune (Breese et al., 2008), neuropeptide Y (Cippitelli et al., 2011), and 

serotonergic (Overstreet et al., 2007) systems. 

----------------------------------------------Insert Table 8 About Here------------------------------------------------------ 

4.9. Summary 

The research presented in Tables 3 through 8 highlights compounds and rat lines used to assess 

disruption of different stages in the addiction cycle. The tables were tabulated to provide a historical 

perspective on the evolution of (a) neurotransmitter/ neuromodulatory targets examined as well as (b) 

stages in the addiction cycle being investigated. Although this paper has focused primarily on selectively 

bred rat lines, it has included some of the findings garnered from research using outbred rat lines. This 

provides some context into which the results from selectively bred rat research can be placed. This also 

highlights some areas of medications screening that have been dominated by the use of outbred rat 

lines. A very clear example of this is the dependence/ withdrawal/ stress areas of research. This is due, 

at least in part, to the fact that the active selection process has resulted in high ethanol-consuming rats 

that can consume ethanol with limited adverse effects. From the data presented herein and a previous 

paper (Bell et al., 2012), it is clear that not all neurotransmitter/ neuromodulatory systems have 

received the same level of scrutiny in all of the rat lines. For instance, the vast majority of the research 

examining the alcohol dehydrogenase and aldehyde dehydrogenase systems has been performed in the 

UChB and UChA rat lines. Similarly, histaminergic research has been limited to the AA and ANA rat lines. 

Another example is the cannabinoid system, such that most of the research in these selected rat lines 

has been conducted in the sP and sNP rat lines, with the AA and ANA rat lines also receiving substantial 

focus.  

This uneven focus, across the rat lines, on particular neurotransmitter systems creates difficulty with 

interpreting validity. Exacerbating this is the fact that the present publishing environment places low 

priority on negative findings and if a particular compound is found to be effective in one rat line it is 

rarely tested in the other rat lines. Reasoning for the latter is that studies following the first one are not 
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novel. In order to increase the validity of animal research targeting treatment of AUDs, the field needs 

to understand both the positive and negative findings for particular compound classes (e.g., 

neurotransmitter, neuromodulator, transcription factor, etc.) and/or compounds within a class. Finally, 

the present review makes it clear that the single neurotransmitter/ neuromodulatory-system research 

approach that characterized early work has progressed to a more thorough understanding of 

intracellular cascades that are involved in multiple neuromodulatory systems. In addition, it also is now 

recognized, with some of these findings presented in their respective Tables, that neurotransmitter/ 

neuromodulatory systems involved in one stage of the addiction cycle do not necessarily mediate 

another stage of the addiction cycle.  

5. Caveats, Challenges, and Conclusions 

A few caveats need to be mentioned before summarizing this review. First, the mouse ethanol research 

literature was not discussed. This was done due to space limitations and in no way minimizes the 

substantial literature that is associated with it. Second, transgenic ethanol research was not discussed. 

Similar to the first caveat, especially since most of the transgenic work has involved mice, this was done 

due to space limitations. For excellent discussions on both of these subjects see Barkley-Levenson and 

Crabbe (2014), Crabbe et al. (2006), Fisch and Flint (2006), Greenberg and Crabbe (2016), Kalueff and 

Bergner (2010), Mayfield et al. (2016), as well as Oberlin et al. (2011). Third, models of withdrawal, and 

to some degree dependence, as well as stress and its associated medications screening received limited 

review. To a great extent this is also related to the first caveat, in the sense that most of the ethanol 

withdrawal research has been conducted in mice.  We noted some of the rat research, often using 

outbred rat lines, in section 4.8 and table 8; for other work and discussion see Al’Absi (2007), Becker 

(2013), Burke and Miczek (2014), Greenberg and Crabbe (2016), Lopez and Becker (2014), Metten et al. 

(2014), Phillips et al. (2015), Spanagel et al. (2014), Vendruscolo and Roberts (2014), as well as Zorrilla et 

al. (2014). 

This review highlights the fact that most of the medications research conducted thus far has sought to 

delineate the role and importance of different neuromodulatory and neuroanatomical systems in the 

maintenance of ethanol intake. This is especially obvious from the early ethanol research focus on the 

role of the opioid, dopaminergic, and serotonergic systems in ethanol abuse and dependence. Of these 

systems, the most effective FDA-approved medication (naltrexone) targets the opioid system. As 

outlined elsewhere (e.g., Bell et al., 2012), the bi-directional selection for high vs low ethanol-consuming 

rat lines has resulted in dopaminergic and serotonergic deficits in many, but not all of the high ethanol-

consuming rat lines. Therefore, it is not surprising that much of the earlier research focused on these 

neurotransmitter systems. However, much of this earlier, and later, work did not result in readily 

translatable treatment strategies. Recognition of the difficulty in translating preclinical findings into 

clinical treatments has been recognized by the National Institute on Alcohol Abuse and Alcoholism 

(NIAAA) and the National Institute on Drug Abuse (NIDA) of the National Institutes of Health (NIH). To 

facilitate testing compound efficacy, NIAAA and NIDA have created programs, in partnership with the 

pharmaceutical industry, to screen compounds that have either received FDA-approval for other 

indications or have gone through significant clinical trials. Essentially, the objective is to assess the ability 

to “repurpose” drugs to treat AUDs that have already received considerable regulatory scrutiny. 
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The National Institute on Mental Health (NIMH) of NIH has also recognized this modest translatability of 

preclinical research to clinical practice and has developed, as well as incorporated, the Research Domain 

Criteria (RDoC) program into their preclinical funding strategies. RDoC incorporates examination of the 

psychobiological and neuroscientific causation into translational research models. Put another way, 

RDoC focuses on dimensional/ valence constructs observed across multiple mental disorders rather than 

strict diagnostic symptomology related to a single disorder (Cuthbert, 2016; Kozak and Cuthbert, 2016; 

MacNamara and Phan, 2016). This focus on systems, rather than clinical diagnostic symptoms, has 

seemingly pitted the RDoC project against the Diagnostic and Statistical Manual of Mental Disorders 

system (e.g., Pritchard, 2015), such that a binary (i.e., one-or-the-other) system approach is generally 

discouraged (Shorter, 2015). As noted by Kaffman and Krystal (2012) and from the work of Hyman and 

colleagues (Hyman, 2010; Casey et al., 2013), the DSM and ICD classification systems were developed to 

achieve the highest inter-rater reliability based on diagnostic symptomology. Therefore, animal models 

of psychiatric disorders have generally focused on recapitulating many if not all of the DSM- and ICD-

defined symptoms as separate models. However, this focus on diagnostic symptomology has, to some 

degree, interfered with recognizing that there are domains of symptomology stretching across different 

diagnostic categories. NIMH, NIAAA, and NIDA have recognized this and have developed several joint 

funding programs that recognize that, for instance, ethanol, nicotine, and stimulant addiction are not 

unitary phenomenon with minimal overlap. Rather, ethanol dependence has to be examined within its 

neurobiological, physiological, developmental, behavioral, and social context (c.f., Kaffman and Krystal, 

2012; Kobeissy, 2012; Nestler and Hyman, 2010).  

With these considerations in mind, the present paper first presented a background from a clinical 

perspective in order to provide an overview of the constellation of factors influencing the development 

of ethanol dependence in humans. Section two provided some background on the rat and how the 

above clinical factors can be examined within the rat’s developmental context. For instance, rats also go 

through developmental stages and physiological as well as behavioral milestones point to adolescence 

as a critical stage of development for rats just as it is for humans. Also, binge eating and drinking are 

observed in adolescent rats just as they are in humans. Moreover, rats display physiological 

characteristics of lower sensitivity to ethanol’s aversive, but not necessarily deleterious, effects and 

higher sensitivity to ethanol’s stimulating effects similar to observations in the clinical setting. Thus 

through experimental manipulations, it has been shown that binge ethanol intake by adolescent rats is 

not purely to satisfy increased caloric demand associated with the adolescent growth spurt. The third 

section highlighted behavioral characteristics of the seven dominant selectively bred high, vs low, 

ethanol-consuming rat lines in the world. As shown in Table 2, all of the lines display many of the 

characteristics observed in individuals caught in the ethanol addiction cycle.  

The fourth section discussed common pharmacological test procedures as they relate to stages of the 

addiction cycle. Each of these stages is accompanied by a table highlighting associated findings from the 

seven, international selectively bred high ethanol-consuming rat lines as well as some findings from 

other selectively bred rat lines and outbred rats. Overall, the literature reviewed herein indicates that all 

of these high ethanol-consuming rat lines have face validity displaying many, but not necessarily all, of 

the characteristics observed in the ethanol-dependent individual. In addition, each of the lines has 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Selectively Bred Rats           Page 23 of 75 

 

tested various neurotransmitter and neuromodulator compounds in the procedures outlined in the 

fourth section. Nevertheless, these animal models need to be expanded into more holistic models. For 

instance, binge-drinking with an adolescent age-of-onset is a crucial factor in the development of AUDs 

that has received limited attention. In addition, most individuals addicted to ethanol are also addicted to 

other substances-of-abuse and discussions regarding animal models of polysubstance dependence are 

limited. Therefore, despite making progress in determining the neurobiological systems mediating 

ethanol dependence, further work using more holistic models needs to be undertaken in both the 

preclinical and clinical areas to determine molecular targets for pharmacological treatment of AUDs. 
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Table 1. Approximate Parallel Ages Between the Human and Rat Equivalents 

 

Human Ages (Years) 

-3 to 0 Months 0 to 6 6 7 to 12 13 to 18 18 to 21 21 to 24 25 to 28 

Neonate Prejuvenile Weaning Juvenile Adolescent 
Emerging 
Adulthood 

Early Young 
Adult 

Young Adult 

Rat Ages [Post-Natal Days (PNDs)] 

1 to 7 8 to 21 21 22 to 27 28 to 42 43 to 60 61 to 75 76 to 90 

Rat Body Weights (g) 

Male: 6 to 15 16 to 40 40 40 to 70 70-155 155-260 260-335 335-390 

Female: 6 to 15 16 to 38 38 38 to 65 65-130 130-180 180-210 210-250 
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Table 2. Criteria for an animal model of alcoholism that each of the high alcohol-consuming selected lines successfully meets. 
 

  Rat Line  
 
 AA HAD P sP UChB msP WHP 

1) Ethanol is orally self-administered 
under free-choice conditions (>5 g of 
ethanol/kg bodyweight/day) 
 

Yes1 
 

Yes9 Yes16 Yes31 Yes39 Yes45 Yes54 

2) Pharmacologically relevant BACs are 
achieved with self-administration (50 to 
200 mg%) 
 

Yes2 Yes10 Yes17 Yes32 Yes40 Yes46 Yes55 

3) Ethanol is consumed for its post-
ingestive effects and not for taste or 
calories only (administered by non-oral 
routes of administration) 
 

NK 
 
 
 
 

NK Yes18 NK NK Yes47 NK 

4a) Ethanol is rewarding as indicated by 
behavioral and/or autonomic activation 
 

Yes3 Yes11 Yes19 Yes33 NK Yes48 NK 

4b) Ethanol is rewarding as indicated by a 
conditioned place preference (CPP) 
 

NK NK No20 NK Yes41 Yes49 NK 

5) Ethanol is positively reinforcing (the 
animal operantly works for access) 
 

Yes4 Yes12 Yes21 Yes34 NK Yes50 Yes56 

6a) Chronic consumption leads to 
metabolic tolerance 
 

Yes5 NK Yes22 NK NK NK Yes57 

6b) Chronic consumption leads to 
functional tolerance 
 

NK NK Yes23 Yes35 Yes42 NK Yes58 

7) Chronic consumption leads to 
dependence (withdrawal-like signs seen) 
 

NK NK Yes24 Yes36 NK NK Yes59 

8) Relapse behavior is displayed 
 

Yes6 Yes13 Yes25 Yes37 Yes43 Yes51 NK 

9) Serve as an animal model of 
adolescent alcohol abuse 
 

NK Yes14 Yes26 NK NK NK NK 

10a) Self-administer or consume other 
drugs of abuse—nicotine, including line 
differences in self-administration 

NK NK Yes27 NK NK Yes52 NK 
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10a) Self-administer or consume other 
drugs of abuse—cocaine, including line 
differences in self-administration 
 

Yes7 NK Yes28 NK NK NK Yes60 

11a) Gene expression differences 
between high and low consuming lines  

Yes8 
Acb, VTA, CeA 
Advillin 
 
NFkB signaling 

Yes15 
Acb, VTA, CeA 
Glu, ILK signal 
Ankrd12 
NFkB signaling 
Gsta4 

Yes29 
Acb, VTA, CeA 
DA, GABA, Glu, 
NPY, CRF 
NFkB signaling 
Gsta4 

Yes38 
Acb, VTA, CeA 
Glu, NPY 
Ankrd12 
 
Gsta4 

Yes44 
VTA 
ALDH2, ADH1B 

Yes53 
Extended Amyg 
CRFR1, GABA 
 

Yes61 
mPFC, Hipp, Acb 
Gabra4, DA 

11a) Gene and protein expression 
differences expressed after ethanol intake 
 

NK NK Yes30 
Acb, VTA, CeA 
DA, GABA, Glu, 
5HT, peptides 

NK Yes44 Yes53 NK 

AA = ALKO Alcohol-Accepting rat lines; HAD (HAD1 and HAD2) = High Alcohol Drinking rat lines; P = Alcohol-Preferring rat line; sP = Sardinian Alcohol-Preferring rat line; UChB = 
University of Chile B, high ethanol-consuming, rat line; msP = Marchigian Sardinian Alcohol-Preferring rat line; WHP = Warsaw High Preferring, high ethanol-consuming, rat line; NK = 
Not Known; BACs = Blood Alcohol Concentrations; Acb = Nucleus Accumbens; VTA = Ventral Tegmental Area; CeA = Central Amygdala; Glu = Glutamate; NF-κB = Nuclear Factor 
Kappa-Light-Chain-Enhancer of Activated B Cells ; ILK = Interleukin; Ankrd12 = Ankyrin Repeat Domain 12; Gsta4 = Glutathione S-Transferase A4; DA = Dopamine; GABA = Gamma 
Amino Butyric Acid; NPY = Neuropeptide Y; CRF = Corticotrophin Releasing Factor; ALDH2 = Aldehyde Dehydrogenase 2; ADH1B = Alcohol Dehydrogenase 1B; CRFR1 = CRF 
Receptor1; mPFC = Medial Prefrontal Cortex; Hipp = Hippocampus; Gabra4 = GABA-A Receptor containing alpha-4 subunit; 5HT = Serotonin; 1Ritz et al., 1986; 2Aalto, 1986; 3Paivarinta 
and Korpi, 1993; 4Files et al., 1997, 1998; Samson et al., 1998; 5Forsander and Sinclair, 1992; 6Sinclair and Li, 1989; 7Hyytia and Sinclair, 1993; 8McBride et al., 2012, 2013b; 9Rodd-
Henricks et al., 2000a; 10Bell et al., 2008; Murphy et al., 2002; Oster et al., 2006; 11Rodd et al., 2004; 12Files et al., 1998; Oster et al., 2006; Samson et al., 1998; 13Oster et al., 2006; 
Rodd et al., 2009; Rodd-Henricks et al., 2000b; 14Bell et al., 2004; 15McBride et al., 2012, 2013b; 16Li et al., 1987; 17Bell et al., 2006a, 2008a, 2011; Murphy et al., 1986, 2002; Rodd et al., 
2003; 18Murphy et al., 1988; Waller et al., 1984; 19Bell et al., 2002, 2008b; Melendez et al., 2002; Rodd et al., 2004a; 20Schechter et al., 1992; 21Files et al., 1998; Murphy et al., 1989; 
Rodd et al., 2003; Rodd-Henricks et al., 2002a, 2002b; Samson et al., 1998; Toalston et al., 2008; 22Lumeng and Li, 1986; 23Gatto et al., 1987; Stewart et al., 1991; 24Kampov-Polevoy et 
al., 2000; Waller et al., 1982; 25Rodd et al., 2003; Rodd-Henricks et al., 2000a, 2000b, 2001; 26Bell et al., 2003, 2011, 2013; Toalston et al., 2014, 2015; 27Hauser et al., 2012, 2014a; Le 
et al., 2006; Rezvani et al., 2010; 28Katner et al., 2011; Hauser et al., 2014b; Rodd et al., 2007; 29Bell et al., 2016; McBride et al., 2012, 2013b; 30Bell et al., 2006a, 2009, 2016; McBride et 
al., 2010, 2013a, 2014a; McClintick et al., 2015, 2016; Obara et al., 2009; Rodd et al., 2008; Sari et al., 2006; 31Agabio et al., 1996; 32Colombo et al., 2006 ; Lobina et al., 1997; 33Agabio 
et al., 2001; Colombo et al., 1998b; 34Vacca et al., 2002; 35Colombo et al., 2006; 36Loi et al., 2010; 37Agabio et al., 2000; Serra et al., 2003; 38McBride et al., 2012, 2013b; 39Mardones and 
Segovia-Riquelme, 1983; Quintanilla et al., 2006; 40Quintanilla et al., 2008; 41Quintanilla and Tampier, 2011; 42Quintanilla and Tampier, 2011; Tampier et al., 2008; 43Tampier and 
Quintanilla, 2011; 44Israel et al., 2006; Ocaranza et al., 2008; Quintanilla et al., 2005a, 2005b, 2006, 2012; Rivera-Meza et al., 2010; 45Ciccocioppo  et al., 2006; 46Ciccocioppo  et al., 
2006; 47Ciccocioppo et al., 1999a; 48Ciccocioppo et al., 1999b; 49Ciccocioppo et al., 1999a; 50Cannella  et al, 2016; Ciccocioppo et al., 2004; Cippitelli et al., 2005; Rorick-Kehn et al., 
2016; 51Ciccocioppo  et al., 2006; 52Scuppa et al., 2015; 53Ayanwuyi et al., 2013; Cannella  et al, 2016; Ciccocioppo  et al., 2006; 54Dyr  and  Kostowski, 2000, 2004, 2008; 55Dyr and 
Kostowski, 2004; 56Dyr and Kostowski, 2008; Rok-Bujko et al., 2006; 57Dyr and Taracha, 2012; 58Dyr and Taracha, 2012; 59Dyr and Taracha, 2012; 60Acewicz et al., 2012; 61Stankiewicz 
et al., 2015. See Table 1 for other abbreviations. 
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Table 3. Rat Studies on the Acquisition of Alcohol Intake and Its Pharmacological Disruption. 

 Ethanol Access 
Procedures 

Sex Line/Strain Age Drug Treatment 
Site 

Molecular 
Target 

Findings Citation 

24h 2BFC 15% 
 
LA OFC 15% 

F P Adolescent 
PND 30 
In Adulthood 
PND 75 

Pre-exposure   Readily acquired drinking 
during adolescence  
Increased operant acquisition 
rate in adulthood  

Rodd-Henricks et 
al., 2002a 

Adrenergic 

LA 2BFC 15% (2h) 
 

M P Adult >PND 90 Prazosin 
Antagonist 

Systemic Alpha1Rs Reduced acquisition Froehlich et al., 
2013a 

Cannabinoid 

24h 2BFC 10% 
 

M sP Adult >PND 75 SR 141716 
Antagonist  

Systemic CB1R Reduced acquisition Serra et al., 2001 

24h 2BFC 10% M sP Adult >PND 75 SR147778 
Antagonist 

Systemic CB1R Reduced acquisition Gessa et al., 2005 

GABAergic 

24h 2BFC 10% M sP Adult >PND 75 Baclofen  
Agonist 
CGP44532 
Agonist 

Systemic GABRB Both reduced acquisition  Colombo et al., 
2002 

24h 2BFC 10% 
 

M sP Adult >PND 75 CGP7930  
PAM 
GS39783 
PAM 

Systemic GABRB Both reduced acquisition  Orru et al., 2005 

Glutamatergic 

24h 3BFC 15%, 30% 
 

F P Adolescent  
PND 30 
Adult PND 75 

Ceftriaxone 
Up-regulator 

Systemic GLT1 (EAAT2) CEF reduced acquisition in 
both adolescents and adults 

Sari et al., 2013a 

Opioid 

LA 2BFC 10%  P Adult Naloxone 
Antagonist 

Systemic MOR, DOR, KOR Dose-dependently reduced 
acquisition 

Badia-Elder et al., 
1999 

24h 2BFC 15% M&F P Adolescent PND 
30 

Naltrexone 
Antagonist 

Systemic MOR, DOR, KOR Dose-dependently reduced 
acquisition 

Sable et al., 2006 

24h 2BFC 15% M&F P Adult >PND 75 Naltrexone 
Antagonist 

Systemic MOR, DOR, KOR Dose-dependently reduced 
acquisition 

Sable et al., 2006 

Serotonergic 

24h 2BFC 15% 
 

M P Adult >PND 90 MDL 72222 
Antagonist 
ICS205-930 
Antagonist 

Systemic HTR3 Both reduced acquisition Rodd-Henricks et 
al., 2000a 

LA OFC 15 % F P Adult >PND 90 ICS 205-930 
Antagonist 

pVTA HTR3 Dose-dependently and acutely 
reduced acquisition 

Rodd et al., 2010 

24h 2BFC 15% M P Adolescent  
Postnatal Day 

MDL 72222 
Antagonist 

Systemic HTR3 Both reduced acquisition c.f., Bell et al., 2012 
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Table 3. Rat Studies on the Acquisition of Alcohol Intake and Its Pharmacological Disruption. 

 

 

 

 

 

2BFC = 2-Bottle Free-Choice; LA OFC = Limited Access Operant Frontal Choice; F = Female; P = Alcohol-Preferring rat line; PND = Post-Natal Day; M = Male; sP = 

Sardinian Alcohol-Preferring rat line; GABRB = Gamma Amino Butyric Acid-B Receptor; PAM = Positive Allosteric Modulator; 3BFC = 3 Bottle Free-Choice; GLT1 = 

Glutamate Transporter1; EAAT2 = Excitatory Amino Acid Transporter2; CEF = Ceftriaxone; MOR = Mu Opioid Receptor; DOR = Delta Opioid Receptor; KOR = 

Kappa Opioid Receptor; HTR3 = Serotonin-3 Receptor; See Tables 1 and 2 for other abbreviations. 

(PND) 30 ICS205-930 
Antagonist 

Multiple Neurotransmitter and Neuromodulator Studies 

24h 2BFC 10% M sP Adult >PND 75 Naltrexone 
Antagonist 
Baclofen 
Agonist 

Systemic MOR, DOR, KOR 
 
GABRB 

Low doses of each had no 
effect;  
The combination reduced 
acquisition 

Colombo et al., 
2005 
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Table 4. Rat Studies of Binge-Like (Most Rely on Original Authors’ Interpretation) Behavior and Its Pharmacological Disruption 

 

 

PPN = Pedunculopontine Nucleus; mAChRs = Muscarinic Acetylcholine Receptors; D1R = Dopamine-1 Receptor; GHBR = Gamma Hydroxybutyrate Receptor; 

GRIN = Glutamate Ionotropic Receptor—N-Methyl-D-Asparate subtype; TLR4 = Toll-Like Receptor 4; VP = Ventral Pallidum; H1R = Histamine-1 Receptor; 

See Tables 1 through 3 for other abbreviations.   

Ethanol Access 
Procedures Sex Line/Strain Age Drug Region Molecular Target Findings Citation 

Cholinergic 

LA 2BFC 10%  
 
 

F P Adult >PND 90 Carbachol 
Agonist 
Methylscopola-
mine-bromide 
Antagonist 

PPN 
 
VTA 

AChRs 
 
mAChRs 

Both compounds in both 
regions decreased intake 
 

Katner et al., 1997 

Dopaminergic 

LA 2BFC 10%  
 

F P Adult >PND 90 SCH 23390 
Antagonist  
Sulpiride  
Antagonist 

Acb D1R 
 
D2R, D3R, GHBR 

SCH in Acb did not affect 
intake; 
Sulpiride in Acb reduced 
intake 

Levy et al., 1991 

LA 2BFC 10% M AA Adult >PND 90 Clozapine 
Antagonist, 
partial agonist 
Olanzapine 
Inverse agonist, 
antagonist 

Systemic D2R, HTR2, 
GRIN, GLT1 
 
HTR2, H1R, 
mAChR4/5, D2R 

Clozapine did not alter intake; 
Olanzapine  nonselectively 
reduced intake  
 

Ingman  and Korpi, 
2006 

LA 2BFC 10% M AA Adult >PND 75 Aripiprazole 
Partial agonist 

Systemic D2R, D3R, D4R, 
HTR1A, HTR2C, 
HTR7 

Aripiprazole reduced intake at 
doses that also suppressed 
locomotor activity 

Ingman et al., 2006 

GABAergic 

LA Drinking-in-the-dark 
(DID) 10%  

? P Adult >PND 90 GABRA α2 
siRNA 
GABRA α1 
siRNA 
TLR4-siRNA 

CeA   
 
VP 
 
CeA 

GABRA α2 
 
GABAR α1R 
 
TLR4 

GABA-A α2R and TLR4 viral 
vector in CeA reduced intake; 
GABAA α1R siRNA in VP 
reduced intake 

Liu et al., 2011 

Monoamine Reuptake Inhibitor  

LA DID 10% M P Adult >PND 90 Amitifadine 
Inhibitor   
Imipramine 
Inhibitor, 
antagonist 

Systemic SERT, NET, DAT 
 
SERT, NET, D2R, 
mAChR2, H1R, 
MOR? 

Amitifadine reduced intake; 
Imipramine  nonselectively 
reduced intake  

Warnock et al., 
2012 
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Table 5. Rat Studies on the Maintenance of Ethanol Intake and Its Disruption Page 1 of 21 

 
Ethanol Access 

Procedures Sex Line/Strain Age Drug Region Molecular 
Target Findings Citation 

Continuous access (24h) 2 
bottle free-choice (2BFC: 
water and 10% ethanol); 
4h limited access (LA) 2BFC 
10%; 
1h LA every 3h 2BFC 10% 
1h LA every 3h 2BFC 
multiple concentrations (MC: 
5%, 10%, 15%) 

M P Adult >PND 90    Blood alcohol concentrations 
(BACs) limit intake; 
Scheduled LA increases 
intake per access session 

Murphy et al., 
1986 

LA operant free-choice (OFC: 
water and 5%-30% with 
increasing concentration 
across days) 

M P & NP Adult >PND 90    NP rats fail to self-administer 
any concentration;  
P rats readily self-administer 
all concentrations;  
Even when adulterated with a 
non-preferred flavor 

Murphy et al., 
1986 

24h 2BFC 3%-30% vs water 
24h 2BFC Nutrasweet vs 
10% 
24h 2BFC Slender (chocolate 
drink) vs 10% 

M P & NP Adult >PND 90    NP rats consume more 3% 
ethanol than P rats, but the 
reverse is true for all other 
concentrations; P rats 
maintain high intake even in 
the presence of other 
palatable solutions 

Lankford et al., 
1991 

LA OFC 8% M P vs NP 
HAD vs LAD 

Adult >PND 120    P > HAD > LAD > NP 
responding  

Ritz et al., 1994 

24h 2BFC 10% 
 
LA OFC 10%, 15%, 30% 

M sP vs sNP Adult >PND 90    sP self-administered all 
concentrations; 
But sNP did not self-
administer the different 
concentrations 

Vacca et al., 
2002b 

24h 2BFC 10% 
24h 3BFC 0.2% saccharin 

F UChB ?    A third solution of saccharin 
reduces intake 

Tampier & 
Quintanilla, 2009 

Adrenergic 

24h 2BFC 10% 
 

M AA Adult >PND 90 Medetomidine 
Agonist 
Atipamezole  
Antagonist 

Systemic Alpha2Rs Atipamezole increased 
drinking;  
medetomidine did not alter 
drinking 

Korpi, 1990 

24h 2BFC 10% M P & HAD1 Adult >PND 90 Uncontrollable 
stress 

 HPA activity 
Adrenergic activity 

Stress moderately decreased 
intake by Ps and HAD1s; 
Post-stress increased intake in 
P, but not HAD1, rats 

Chester et al., 
2004 

LA OFC 10% M P Adult >PND 90 Prazosin 
Antagonist 

Systemic Alpha1Rs Prazosin reduced responding Verplaetse et al., 
2012 
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Table 5. Rat Studies on the Maintenance of Ethanol Intake and Its Disruption Page 2 of 21 

 

LA OFC 10%  
Appetitive vs Consummatory 
Responding 

M P & HAD2 Adult >PND 90 Yohimbine 
Antagonist 

Systemic Alpha1Rs, 
Alpha2Rs 

Yohimbine enhanced self-
administration 

Bertholomey et 
al., 2013 

LA 2BFC 15% 
 

M P Adult >PND 90 Prazosin 
Antagonist 

Systemic Alpha1Rs Lack of tolerance to chronic 
prazosin-induced reductions in 
drinking 

Froehlich et al., 
2013a 

LA 2BFC 15% 
 

M P Adult >PND 90 Doxazosin 
Antagonist 

Systemic Alpha1Rs Doxazosin reduced drinking O’Neil et al., 
2013 

Cannabinoid 

LA 2BFC 10% 
 

M sP Adult >PND 90 SR-141716 
Antagonist 

Systemic CB1R SR-141716 dose-dependently 
reduced intake 

Colombo et al., 
1998a 

LA OFC 10% M msP & Wistar  Adult >PND 90 SR141716 
Antagonist 

Systemic CB1R SR141716A reduced 
responding in both lines 

Cippitelli et al., 
2005 

24h 2BFC 10% 
 

M sP Adult >PND 75 SR147778 
Antagonist 

Systemic CB1R SR147778 reduced intake Gessa et al., 
2005 

LA OFC 10% 
 

F AA & Wistar 
 

Adult >PND 90 SR141716 
Antagonist 
URB597- fatty 
acid amido-
hydrolase FAAH 
Inhibitor 

Systemic 
PFC 
striatum 

CB1R 
 
 
CBRs 

SR141716A systemically and 
in the PFC, but not striatum, 
decreased responding; 
URB597 increased operant 
responding 

Hansson et al., 
2007 

LA 2BFC 10% M WHP Adult >PND 180 SR141716 
Antagonist 

Systemic CB1R SR141716A reduced intake Dyr et al., 2008 

LA OFC 10% M AA Adult >PND 90 SR141716A 
Antagonist 
WIN55,212-2 
Agonist 

Systemic 
VTA 
Acb 

CB1R Systemic administration 
exerted biphasic change in 
responding; 
Only SR141716A was 
effective in VTA and Acb 

Malinen & Hyytia 
2008 

LA OFC 15%  P Adult >PND 90 SR141716A 
Antagonist 

Systemic CB1R SR141716A transiently 
reduced responding 

Getachew et al., 
2011 

24h 2BFC 10% M sP & snP Adult >PND 70 SR141716A 
Antagonist 

Systemic CB1R SR141716A reduced intake Vinod et al.,  
2012 

Cholinergic 

24h 2BFC 10% M P & NP Adult >PND 90 Scopolamine 
Antagonist 
 
Methscopola-

Systemic mAChRs Scopolamine and 
methscopolamine reduced 
intake and preference in P; 
Scopolamine did not alter 

Rezvani et al., 
1990 
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mine 
Antagonist 

intake in NP; 
Methscopolamine  
nonselectively reduced intake 
in NP  

LA 2BFC 10% F P Adult >PND 90 Carbachol 
Agonist 
Methylscopola-
mine bromide 
Antagonist 
Oxotremorine 
Agonist 

PPN  
 
VTA 

Cholinergic Rs 
AChR 
 
mAChRs 

Carbachol in VTA and 
scopolamine in PPN 
decreased intake; 
Carbachol in PPN and 
methylscopolamine in VTA  
nonselectively decreased 
intake  

Katner et al., 
1997 

24h 3BFC 15% & 30% M HAD-2 Adult >PND 90 Cytisine 
Partial agonist 
Lobeline 
Mixed agonist-
antagonist 

Systemic Alpha4beta2 
subunit containing 
nAChRs 
 
nAChR 

Cytisine and lobeline dose-
dependently reduced intake 

Bell et al., 2009 

24h 2BFC 10% M P Adult >PND 90 Sazetidine-A 
Desensitizer  
 

Systemic Alpha4beta2 
subunit containing 
nAChRs 

Sazetidine-A reduced intake Rezvani et al., 
2010 

24h 2BFC 10% M UChB Young-Adult 
>PND 60 

Varenicline 
Cytisine 
Partial agonists 

Systemic Alpha4beta2 
subunit containing 
nAChRs 

Both partial agonists reduced 
intake 

Sotomayor-
Zarate et al., 
2013 

Dopaminergic 

LA 2BFC 10% M AA Adult >PND 90 SCH 23390 
Antagonist  
Sulpiride 
Antagonist 

Acb D1R 
 
D2R 

SCH23390 did not alter intake; 
 
Sulpiride decreased intake 

Levy et al., 1991 

LA 2BFC 10% 
 

F HAD Adult >PND 90 SKF-38393 
agonist 
SCH-23390 
Antagonist 
 
Quinpirole 
Agonist  
Spiperone 
Antagonist 

Systemic D1R 
 
 
 
 
D2R 

D1 and D2 agonists as well as 
D1 antagonist reduced intake; 
D2 antagonist increased 
intake 
 

Dyr et al., 1993 

24h 2BFC 10% M sP Adult >PND 90 SCH 39166 
Antagonist 

Systemic D1R SCH 39166 non-specifically 
reduced intake 

Panocka  et al., 
1995a 
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LA 2BFC 15% F P Adult >PND 90 Quinpirole 
Agonist  
Quinelorane 
Agonist 
Sulpiride 
Antagonist 

aVTA 
pVTA 

D2R Quinpirole and quinelorane, 
but not sulpiride, in aVTA 
reduced intake; 
Quinpirole in pVTA had 
nonspecific effects 

Nowak et al., 
2000 

LA 2BFC 15% 
 

F P Adult >PND 90 SCH-23390 
Antagonist 
Sulpiride 
Antagonist  

VP D1R 
 
D2R 

Sulpiride increased intake; 
SCH-23390 did not alter intake 

Melendez et al., 
2005 

24h 2BFC 15% M P & NP Adult >PND 90 SB-277011-A 
Antagonist 

Systemic D3R SB-277011-A reduced intake 
and lick responses 

Thanos et al., 
2005 

GABAergic 

LA 2BFC 10% M sP Adult >PND 90 Ro19-4603 
Partial inverse 
agonist 

Systemic GABRA-BDZ 
complex 

Ro19-4603 (3 x daily) 
reduced intake 

Balakleevsky et 
al., 1990 

LA 2BFC 10%  M Sprague-
Dawley 

Adult >PND 90 Ro15-4513 
Partial inverse  
BDZ agonist 

Systemic GABRA-BDZ 
complex 

Ro15-4513 reduced intake June et al., 1991 

LA 2BFC 10% M Sprague-
Dawley 

Adult >PND 90 Ro15-4513 
Partial inverse 
agonist 
Ro15-1788  
Antagonist 

Systemic GABRA-BDZ 
complex 

Ro15-4513 reduced intake 
and the antagonist Ro15-1788 
(Flumazenil) blocked these 
effects 

June et al., 1992 

24h 2BFC 10% M AA Adult >PND 90 Gamma-vinyl 
GABA Agonist 

Systemic GABRA Gamma-vinyl GABA 
decreased intake 

Wegelius  et al., 
1993 

LA 2BFC 10% F P Adult >PND 90 Ro19-4603 
Inverse agonist  

Systemic GABRA-BDZ 
complex 

Ro19-4603 reduced intake June et al., 
1994b 

LA 2BFC (2-11%) M Sprague-
Dawley 

Adult >PND 90 Ro15-4513 
Partial inverse  
agonist   
Ro15-1788 
Partial inverse 
agonist    

Systemic GABRA-BDZ 
complex 

Both Ro15-4513 and Ro15-
1788 reduced self-
administration 

June et al., 
1994a 

LA 2BFC 10% M NP Adult >PND 90 Ro19-4603 
Inverse agonist 
FG 7142  
Inverse agonist 
DMCM  

Systemic GABRA-BDZ 
complex 

RO19-4603 reduced intake; 
FG 7142 and DMCM had non-
selective effects; 
Bretazenil increased intake at 
higher doses 

June et al., 
1996b 
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Inverse agonist 
Bretazenil 
(R016-6028) 
Partial agonist 

LA 2BFC 10% M P Adult >PND 90 RO19-4603- 
Inverse agonist 
CGS 8216- 
Antagonist 
Flumazenil- 
Antagonist 
ZK 93426-  
Antagonist 

Systemic GABRA-BDZ 
complex 

RO19-4603 reduced intake 
and CGS 8216 reversed these 
effects; 
 
Neither flumazenil nor ZK 
93426 reversed RO19-4603’s 
effects 

June et al., 
1996a 

24h 2BFC 10% M sP Adult >PND 180 Gamma-
hydroxybutyric 
acid (GHB) 
Agonist 

Systemic GABRA 
GHBR 

GHB reduced intake Agabio et al., 
1998 

LA OFC 10% M&F P & NP Adult >PND 90 RO19-4603 
Inverse agonist 

Systemic 
Acb, CPU, 
VTA 

GABRA-BDZ 
complex 

Systemic and Acb infusions of 
Ro-19-4603 reduced self-
administration; 
Ro19-4603 in the VTA or CPu 
did not alter responding 

June et al., 
1998e 

LA 2BFC 10% F P & NP Adult >PND 90 CGS 8216  
Antagonist 
ZK 93426 
Antagonist 

Systemic GABRA-BDZ 
complex 
 

CGS 8216 and ZK 93426 
dose-dependently reduced 
drinking with some specificity 
over saccharin 

June et al., 
1998b 

LA OFC 10% M P Adult >PND 75 Ru 34000 
Inverse agonist 
Flumazenil 
Antagonist 
Ru 40410 
Antagonist 

Systemic 
VTA 
 

GABRA-BDZ 
complex 
 

Ru 34000 via sc, ip, oral, VTA  
nonselectively decreased 
responding; 
Flumazenil, but not Ru40410, 
reversed the effects of  
Ru34000 

June et al., 
1998c 

LA OFC 10% M P Adult >PND 90 Flumazenil 
Antagonist 
CGS 8216 
Antagonist 
ZK 93426 
Antagonist 

Systemic GABRA-BDZ 
complex 
 

All antagonists reduced self-
administration 

June et al., 1998f 

LA 2BFC 15% 
 
LA OFC 15% 

F P Adult >PND 90 Picrotoxin 
Antagonist 
Muscimol 

aVTA 
 

GABRA-BDZ 
complex 
GABRA 

Picrotoxin and bicuculline into 
the aVTA reduced intake and 
responding; 

Nowak et al., 
1998 
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Agonist 
Bicuculline 
Antagonist 

 
GABRA 

Muscimol reversed the effects 
of picrotoxin 

LA OFC 10% M P Adult >PND 90 RY023 
Inverse agonist 
ZK 93426 
Antagonist 

Hipp, Acb,  
VTA 

GABRA5-BDZ 
complex 

RY023 dose-dependently 
reduced responding; 
ZK93426 reversed these 
effects 

June et al., 2001; 
Cook et al., 2005 

LA OFC 10% M P Adult >PND 90 3-propoxy-beta-
carboline hydro-
chloride (3-PBC) 
Mixed agonist-
antagonist 

VP, Acb, 
CPU 

GABRA1-BDZ 
complex 

3-PBC in aVP and mVP, but 
not Acb or CPU, reduced 
responding 

Harvey et al., 
2002 

LA OFC 10% F P & HAD1 Adult >PND 90 bCCt  
Mixed agonist–
antagonist 
Chlordiazepox-
ide 
PAM 

Systemic 
VP 
AcbShell 
AcbCore 
CPU   
 

GABRA1-BDZ 
complex 
 
GABRA-BDZ 
complex 

bCCt systemic or VP reduced 
responding; 
bCCt into the Acb or CPU did 
not alter responding; 
bCCt reversed 
chlordiazepoxide-induced 
sedation 

June et al., 2003 

LA OFC 10% M Long-Evans Adult >PND 90 RY024  
Inverse agonist  

Systemic GABRA5-BDZ 
complex  

RY024 reduced responding,  
antagonized motor 
impairment, and sedative 
effects  

McKay et al., 
2004 

LA OFC 10% M P Adult >PND 90 RY023 
Inverse agonist  

Systemic 
Hipp 

GABRA5 RY023 dose-dependently 
reduced responding 

Cook et al., 2005 

24h 2BFC 10% 
 

M sP Adult >PND 75 CGP7930  
PAM 
GS39783  
PAM 

Systemic GABRB Both positive allosteric 
modulators reduced intake 

Orru et al., 2005 

LA OFC 15% M sP Adult >PND 75 Baclofen 
Agonist 

Systemic GABRB Baclofen dose-dependently 
reduced responding 

Maccioni et al., 
2005 

LA OFC 10% M iP Adult >PND 90 CGP7930 
Allosteric 
modulator 
Baclofen 
Agonist 

Systemic GABRB CGP7930 and baclofen 
reduced responding; 
Combination of substhreshold 
doses reduced responding 

Liang et al., 2006 

LA OFC 15% 
 

M sP Adult >PND 75 GS39783  
PAM 

Systemic GABRB GS39,783  dose-dependently 
reduced responding 

Maccioni  et al., 
2007b 
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24h 2BFC 10% M&F UChB Early-Adult 
>PND 60 

Baclofen 
Agonist 

Systemic GABRB Baclofen reduced intake Quintanilla et al., 
2008 

24h 2BFC 10% 
 
LA OFC 10% 
 

M sP Adult >PND 75 BHF177 
PAM 

Systemic GABRB BHF177 reduced self-
administration 

Maccioni et al., 
2009 

24h 2BFC 10% 
 
LA OFC 10% 
 

M sP Adult >PND 75 rac-BHFF [(R,S)-
5,7-di-tert-butyl-
3-hy-droxy-3-tri-
fluor omethyl-3H-
benzofuran-2-
one]- 
PAM 

Systemic GABRB rac-BHFF reduced self-
administration 

Maccioni et al., 
2010 

LA OFC 10% 
 

M P & sP & AA Adult >PND 90 GS39783   
PAM 
Baclofen  
Agonist 

Systemic GABRB  Baclofen and GS39783 
reduced FR and PR 
responding; 
Rank of potency for both drugs 
P>sP>AA rats 

Maccioni  et al., 
2012 

LA OFC 15% 
 

M sP 
 

Adult >PND 90 GS39783  
PAM 
BHFF 
PAM 

Systemic GABRB Both GABRB positive 
allosteric modulators reduced 
responding without tolerance 
and potentiated baclofen’s 
effects 

Maccioni  et al., 
2015 

Glutamatergic 

LA OFC 10% M Long-Evans Adult >PND 90 LY379268 
Agonist 
(S)-3,4- DCPG 
[(S)-3,4-dicar-
boxyphenylglycin
e]-agonist 

Systemic GRM2/3 
 
GRM8  

LY379268 and (S)-3, 4- DCPG 
reduced responding 

Backstrom & 
Hyytia 2005 

LA OFC 10% 
 

M iP & AA & 
Fawn-
Hooded 

Adult >PND 90 MTEP 
Antagonist 

Systemic GRM5 MTEP reduced responding in 
all strains/lines; 
Sedation seen in iP rats 

Cowen et 
al.,2005b 

LA OFC 10% M P Adult >PND 90 2-methyl-6-
(phenylethyl)-
pyridine (MPEP) 
Antagonist 
LY-341495 

Systemic GRM5 
 
 
 
GRM2/3  

MPEP and LY341495 reduced 
responding 

Schroeder et al., 
2005a 
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Antagonist   
CPCCOEt 
Antagonist 

 
GRM1 

24h 2BFC 10% M&F UChB Adult >PND 120 DCD 
Synthetic 
polyamine 

Systemic GRIN1/GRIN2 DCD reduced intake with lack 
of tolerance; 
absence of disulfiram effect 

Bilbeny et al., 
2005 

24h 2BFC 10% M&F UChB Adult >PND 90 DCD 
Synthetic 
polyamine 

Systemic GRIN1/GRIN2 DCD reduced intake with lack 
of tolerance; 
absence of disulfiram effect 

Font et al., 2005 

LA OFC 15% M P Adult >PND 90 LY404039  
Agonist 

Systemic GRM2/3 LY404039 did not alter 
responding 

Rodd et al., 2006 

LA OFC 15% M iP Adult >PND 90 JNJ16259685 
Antagonist 
MPEP 
Antagonist 

Systemic GRM1 
 
GRM5 

Both JNJ16259685 and MPEP 
reduced self-administration 

Besheer et al.,  
2008a, 2008b 

LA OFC 15% M P Adult >PND 90 MPEP 
Antagonist  
LY379268 
Agonist 

Acb 
 

GRM5 
 
GRM2/3 

MPEP in Acb reduced 
responding but not activity; 
LY379268 in Acb 
reduced responding and motor 
activity 

Besheer et al., 
2010b 

24h 3BFC 15% & 30% M P Adult >PND 90 Ceftriaxone 
Up-regulator 

Systemic GLT1 (EAAT2) CEF reduced intake; 
CEF increased GLT1 in Acb 
and PFC 

Sari et al., 2011 

24h 3BFC 15% & 30% M P Adult >PND 90 GPI-1046 
Up-regulator 

Systemic GLT1 (EAAT2) GPI-1046 reduced intake: 
GPI-1046 increased GLT1 in 
AcbCo and PFC 

Sari & 
Sreemantula, 
2012 

24h 3BFC 15% & 30% M P Adult >PND 90 Ceftriaxone 
Up-regulator 

Systemic GLT1 (EAAT2) Ethanol reduced GLT1 and 
increased ENT1 in the AcbSh 
and AcbCo; 
CEF reversed these effects as 
well as reducing intake 

Sari et al., 2013b 

24h 3BFC 15% & 30% F P Adult >PND 90 
Initiated PND 30 
or PND 75 

Ceftriaxone 
Up-regulator 

Systemic GLT1 (EAAT2) CEF reduced intake as adults 
in both rats initiating intake at 
PND 30 or PND 75; 
CEF increased GLT1 in Acb 
and PFC of both groups as 
well 

Sari et al., 2013a 

24h 3BFC 15% & 30% M P Adult >PND90 Ceftriaxone 
Up-regulator 

Systemic GLT1 (EAAT2) CEF reduced chronic intake; 
CEF increased GLT1 and xCT 

Rao & Sari, 
2014b 
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in Acb, PFC, and Amyg 

24h 3BFC 15% & 30% M P Adult >PND 90 MS-153 
Up-regulator 

Systemic GLT1 (EAAT2) MS-153 increased GLT1, 
NFkB-65 and pAKT;  
but reduced IkBalpha in Acb; 
MS-153 reduced intake 

Alhaddad et al., 
2014b 

24h 3BFC 15% & 30% M P Adult >PND 90 MS-153 
Up-regulator 

Systemic GLT1 (EAAT2) 
xCT 

Ethanol reduced GLT1a, 
GLT1b and xCT in Amyg and 
Hipp; 
MS-153 increased GLT1a, 
GLT1b and xCT in Amyg and 
Hipp; 
MS-153 reduced intake 

Aal-Aaboda et 
al., 2015 

24h 3BFC 15% & 30% M P Adult >PND 90 Ampicillin 
Up-regulator 

Systemic GLT1 (EAAT2) 
xCT 

AMP increased GLT1 and xCT 
in Acb and PFC; 
AMP reduced intake 

Alasmari et al., 
2015 

24h 3BFC 15% & 30% M P Adult >PND 90 Ceftriaxone 
Up-regulator 
Dihydrokainic 
acid (DHK) 
Blocker 

Systemic GLT1 (EAAT2) Ethanol reduced GLT1 and 
increased extra-cellular 
glutamate in Acb; 
CEF increased GLT1, and 
glutamine synthetase activity 
while reducing extra-cellular 
glutamate in Acb; 
DHK reversed CEF’s effects 
on GLT1 levels and extra-
cellular glutamate; 
Ceftriaxone reduced intake 

Das et al., 2015 

24h 3BFC 15% & 30% M P Adult >PND 90 Amoxicillin 
Up-regulator 
Amoxicillin/ 
Clavulanate 
(Augmentin) 
Up-regulator 

Systemic GLT1 (EAAT2) AUG increased GLT1 and 
pAKT in Acb and mPFC; 
AMOX increased GLT1 and 
pAKT in Acb; 
Aug and AMOX reduced 
intake 

Goodwani et al., 
2015 

24h 3BFC 15% & 30% M P Adult >PND 90 Ampicillin, 
Cefazolin, and 
Cefoperazone 
Up-regulator 

Systemic GLT1 (EAAT2) AMP, CEFA, and CEFO 
reduced intake and increased 
both GLT1 and pAKT in Acb 
and PFC 

Rao et al., 2015a 

24h 3BFC 15% & 30% M P Adult >PND 90 Ceftriaxone 
Up-regulator 

Systemic GLT1 (EAAT2) CEF increased GLT1, GLT1a, 
GLT1b and xCT in the Acb 
and PFC 

Rao et al., 2015b 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 5. Rat Studies on the Maintenance of Ethanol Intake and Its Disruption Page 10 of 21 

 

(a) 24h 3BFC 15% & 30%; 
(b) 24h 3BFC (10 % sucrose 
+ 0.07mg/ml nicotine and 
10% sucrose + 0.14mg/ml  
nicotine); 
(c) 24h 3BFC (15% ethanol + 
0.07 mg/ml nicotine and 30% 
ethanol + 0.14 mg/ml 
nicotine); 
(d) 24h 3BFC (10% sucrose 
+ 10% sucrose) 

F P Adult >PND 90 Ceftriaxone   
Up-regulator 

Systemic GLT1 (EAAT2) CEF reduced ethanol, ethanol 
+ nicotine, nicotine + sucrose, 
and sucrose intake to varying 
degrees  

Sari et al., 2016 

Histaminergic 

LA OFC 10% M AA & ANA Adult >PND 90 clobenpropit 
Antagonist 
Thioperamide 
Antagonist 
R-α- methyl 
Agonist 
Mepyramine 
Antagonist 

Systemic Histamine H3R 
and H1R 

H3 antagonists reduced 
responding; 
H3 agonists increased 
responding; 
H1 antagonist did not alter 
responding 

Lintunen et al., 
2001 

Opioid 

LA 2BFC 10% 
 

M HAD Adult >PND 90 Naloxone 
Antagonist 

Systemic MOR, DOR, KOR Naloxone dose-dependently 
decreased intake 

Froehlich et al., 
1990 

24h 2BFC 10% 
 

M HAD Adult >PND 90 Naloxone 
Antagonist 
ICI 174864 
Antagonist 
Thiorphan 
Inhibitor 
Hydrocinnamic 
acid 
Inhibitor 

Systemic MOR, DOR, KOR 
 
DOR 
 
Enkephalinase 

Naloxone and ICI 174864 
reduced intake; 
Thiorphan increased intake; 
Hydrocinnamic acid did not 
alter intake 

Froehlich et al., 
1991 

LA OFC 10% M AA Adult >PND 90 Naltrexone  
Antagonist 

Systemic MOR, DOR, KOR Acute and repeated 
Naltrexone reduced 
responding 

Hyytia & Sinclair 
1993 

24h 2BFC ?% M&F AA Adult >PND 90 CTOP 
Antagonist  
ICI 174,864 
Antagonist 

ICV MOR 
 
DOR 

CTOP decreased intake;  
ICI 174,864 did not alter 
drinking 
 

Hyytia, 1993 

LA 2BFC 10% M AA Adult >PND 90 Naloxonazine Systemic MOR-mu1 Naloxonazine had non-specific Honkanen et al., 
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Naltrindole 

 
DOR 

effects 
Naltrindole had no effect on 
intake 

1996 

LA 2BFC (2-11%) M Sprague-
Dawley 

Adult >PND 90 Buprenorphine 
Partial agonist 

Systemic MOR & KOR 
 

Buprenorphine reduced intake June et al., 
1998a 

LA OFC 10% M&F P & Wistar Early Adulthood 
>PND 60 

Nalmefene, 
Naltrexone 

Systemic MOR, DOR, KOR Nalmefene was more potent 
than naltrexone; 
The SC route was extremely 
more potent than the PO; 
Nalmefene’s effects were 
greater in P than Wistar rats 

June et al., 
1998d 

LA 2BFC 10% M HAD Adult >PND 90 Beta-FNA 
Antagonist 

Systemic MOR-specific Beta-FNA  dose-dependently  
reduced intake  

Krishnan-Sarin 
et al., 1998 

LA OFC 10% F P Adult >PND 90 Naltriben 
Antagonist  
Naloxone 
Antagonist 

Systemic DOR-δ2 
 
MOR, DOR, KOR 

Both naltriben and naloxone 
reduced responding 

June et al., 1999 

LA 2BFC 10% M AA Adult >PND 90 Naltrexone  
Antagonist 

Systemic MOR, DOR, KOR Naltrexone reduced intake Parkes & 
Sinclair, 2000 

LA OFC 10% M AA & Wistar Adult >PND 90 Naloxone 
Antagonist 
CTOP-
Antagonist  
Naltrindole 
Antagonist 

Systemic 
ICV 
Acb 
BLA 
VTA 

MOR, DOR, KOR 
 
MOR 
 
DOR 
 
 

Subcutaneous naloxone and 
ICV CTOP and naltrindole 
reduced self-administration 
equally in AA and Wistar rats; 
Naltrindole administered ICV, 
Acb, or BLA reduced Wistar 
responding, whereas CTOP 
was effective only in the BLA 

Hyytia & 
Kiianmaa, 2001 

24h 2BFC 10% 
 

M AA & P Adult >PND 90 Naltrexone 
Antagonist 

Systemic MOR, DOR, KOR High doses of naltrexone 
reduced palatability for AA, but 
not P, rats; 
Reduced intake by both lines 

Coonfield et al., 
2004 

LA OFC 10%  P Adult >PND 90 Nalmefene 
Antagonist 

Hipp 
Acb 
VTA 

MOR, DOR, KOR Nalmefene in the Acb and 
VTA reduced responding; 
Higher doses required for 
effects in VTA; 
Non-specific effects after 
nalmefene in Hipp 

June et al., 2004 

24h 2BFC 15% M&F P Adolescent 
>PND 30 

Naltrexone 
Antagonist 

Systemic MOR, DOR, KOR Lower doses of naltrexone 
more effective in adolescents 

Sable et al., 
2006 
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Adult >PND 90 

vs adults; 
Adult rats displayed greater 
tolerance to naltrexone’s 
effects vs periadolescent 

24h 2BFC 10% M sP Adult >PND 90 14-methoxy-
metopon- 
Agonist 
Naltrexone 
Antagonist 

Systemic 
 
 
 
ICV 

MOR 
 
 
 
MOR, DOR, KOR 

14-MM dose-dependently, and 
time-dependently affected 
intake; 
14-MM decreased intake at 30 
min but increased intake at 60-
240 min; 
naltrexone blocked 14-MM 
enhancing effects on intake 

Sabino et al., 
2007 

24h 2BFC 10% F WHP Adult >PND 90 Naltrexone 
Antagonist 

Systemic MOR, DOR, KOR Naltrexone reduced intake Zalewska-
Kaszubska et al., 
2008 

LA OFC 15% F P Adult >PND 90 Naltrexone 
Antagonist 
LY255582 
Antagonist 

Systemic MOR, DOR, KOR 
 
MOR 

Both naltrexone and LY 
reduced  responding 

Dhaher et al., 
2012a 

24h 2BFC 10%  
 
LA OFC 10%   

M P & HAD Adult >PND 90 Naltrexone 
Antagonist  
GSK1521498 
Antagonist 

Systemic MOR, DOR, KOR 
 
MOR 

Naltrexone and GSK1521498 
reduced intake & responding; 
GSK1521498 was more 
effective 

Giuliano et al., 
2015 

LA 2BFC 10% M AA Emerging 
adulthood  
>PND 60 

CTOP 
Antagonist 
DAMGO 
Agonist 
Morphine 
Agonist 
U50488H 
Antagonist 

AcbSh MOR 
 
MOR 
 
MOR, DOR, KOR 
 
KOR 

CTOP increased intake; 
DAMGO had a trend to 
decrease intake; 
Morphine and U50488H had 
no effect 

Uhari-Vaananen 
et al., 2016 

Serotonergic 

Intragastric (IG) FC 20% M P Adult >PND 90 Fluoxetine 
Inhibitor 

Systemic SERT Fluoxetine reduced IG self-
administration 

Murphy et al., 
1988 

LA 2BFC 10% F P Adult >PND 90 Spiroxatrine  
Antagonist 
Fluoxetine 
Inhibitor 
8-hydroxy-2(di-
N-propyl-amino) 

Systemic HTR1A 
 
 
SERT 
 
 

Fluoxetine reduced intake; 
Spiroxatrine had a modest 
effect on intake; 
Fluoxetine and spiroxatrine 
had a synergistic reduction; 
DPAT also augmented 

McBride et al., 
1989 
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tetralin (DPAT) 
Agonist 

HTR1A 
 

fluoxetine’s effects on intake  
 

LA 2BFC 10% 
 

F sP Adult >PND 85 MDL 72222 
Antagonist 

Systemic HTR3 MDL 72222 reduced intake Fadda et al., 
1991 

LA 2BFC 10% M sP Adult >PND 90 GR113808 
Antagonist 

Systemic HTR4 GR113808 reduced intake Panocka  et al., 
1995b 

24h 3BFC (3-30%) M P Adult >PND 90 Amperozide 
Antagonist 
FG5893 
Mixed antagonist 
FG5974 
Mixed antagonist 

Systemic HTR2A 
 
HTR1A 

Amperozide and FG5974 
reduced intake 

Lankford et al., 
1996a 

24h 3BFC (3%-30%) 
 

M HAD Adult >PND 90 FG5865 
Mixed agonist/ 
antagonist 

Systemic HTR1A/2 
 

FG5865 reduced intake Long et al., 1996 

24h 2BFC (3%-30%) M P Adult >PND 90 FG5865  
Mixed agonist/ 
antagonist 

Systemic HTR1A/2 FG5938 reduced intake  
 

Piercy et al., 
1996 

24h 2BFC 10% 
 
 
LA 2BFC 10% 

? P & AA & 
Fawn-
Hooded 

Adult >PND 70 Amperozide 
Antagonist  
FG 5974 
Mixed 
antagonist/ 
agonist 

Systemic HTR2A 
 
HTR1A/2A 

Amperozide dose-dependently 
reduced 24h and LA intake; 
FG 5974 modestly reduced 
24h intake but increased LA 
intake with non-specific effects 

Overstreet et al., 
1997 

24h 2BFC 10% F P Adult >PND 90 WAY 100635 
Antagonist  
Fluoxetine 
Inhibitor 

Systemic HTR1A 
 
SERT 

WAY and fluoxetine alone and 
together additively reduced 
intake 

Zhou et al., 1998 

24h 2BFC 15% 
 

M P Adult >PND 90 MDL 72222 
Antagonist 
ICS205-930 
Antagonist 

Systemic HTR3 Both MDL and ICS reduced 
drinking 

Rodd-Henricks 
et al., 2000a 

LA OFC 15% 
 

F P Adult >PND 90 ICS 205-930 
Antagonist 

pVTA 
aVTA 

HTR3 ICS in the pVTA, but not 
aVTA, increased responding 

Rodd et al., 2010 

LA 1B Test ?% M Swim Test 
Susceptible 
(SUS) Rat 

Adult >PND 90 Fenfluramine 
Agonist 
8-OH-DPAT 
Agonist 

Systemic SERT 
 
SERT, HTR1A, 
HTR7 

Fenfluramine dose-
dependently reduced intake; 
Biphasic effects of 8-OH-
DPAT lower doses increased 
and higher doses decreased 

West et al., 2011 
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intake 

24h 2BFC 12% F P Adult >PND 90 Lorcaserin 
Agonist 

Systemic HTR2C Lorcaserin reduced intake, 
with some non-specificity 

Rezvani et al., 
2014 

Neuropeptidergic 

24h 2BFC 10% M sP Adult >PND 90 SSR149415 
Antagonist 

Systemic Arginine 
vasopressin 
(AVP) V1bR 

SSR149415 reduced intake Zhou et al., 2011 

24h 2BFC 10% F AA Adult >PND 90 HS014 
Antagonist  
MTII 
Agonist  

ICV Melanocortin 
MC4R 
 
MC3/4Rs 

HS014 did not alter intake; 
MTII non-specifically reduced 
intake 

Ploj et al., 2002 

LA 2BFC 10% M msP Adult >PND 90 AgRP 
Antagonist 
SHU9119 
Antagonist 
MTII 
Agonist  

ICV MCRs 
 
MC3/4Rs 
 
MC3/4Rs 

AgRP did not affect intake; 
SHU9119 did not affect intake; 
MTII nonselectively reduced 
intake, although tolerance 
developed to this effect 

Polidori et al., 
2006 

LA 2BFC 8% M sP Adult >PND 90 NH,-SENK 
Agonist 
SENK 
Agonist 
[MePhe7]NKB 
Agonist 
Sar9 Met(02)]SP 
Agonist 
GR64349 
Agonist 

ICV Neurokinin Rs  
NK3R 
NK3R 
 
NK3R 
 
NK1R 
 
NK2R 

NK3R, but not NK1R or 
NK2R, agonists reduced 
intake 

Ciccocioppo  et 
al., 1994 

LA 2BFC (2-11%) M P & NP &  
Wistars 

Adult >PND 90 NPY 
Agonist 

ICV NPYRs NPY reduced intake in P 
but not NP or Wistars 

Badia-Elder et 
al., 2001 

LA 2BFC (2-11%) F HAD & LAD Adult >PND 90 NPY 
Agonist 

ICV NPYRs NPY reduced intake in HAD 
but not LAD 

Badia-Elder et 
al., 2003 

LA OFC 10% 
 

M Long Evans Adult >PND 90 BIBP 3226 
Antagonist 

CeA NPY-Y1R BIBP 3226 reduced self-
administration  

Schroeder et al., 
2003 

24h 2BFC 15% F HAD1 Adult >PND 90 NPY 
Agonist 

PVN-Hyp NPYRs NPY dose-dependently 
increased intake 

Gilpin et al., 
2004 

24h 2BFC 10% 
LA OFC 10% 

M iP Adult >PND 90 L-152,804 
Antagonist 

Systemic NPY-Y5R L-152,804 reduced intake and 
self-administration 

Schroeder et al., 
2005b 
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24h 2BFC 15% 
 

F P Adult >PND 90 NPY 
Agonist 

CeA NPYRs NPY did not affect intake Gilpin et al., 
2008 

24h 2BFC 10% M P Adult >PND 90 NPY  
Agonist 

CeA NPYRs NPY reduced intake Zhang et al., 
2010 

24h 2BFC 15% F P Adult >PND 90 NPS  
Agonist 

ICV NPSRs NPS reduced intake Badia-Elder et 
al., 2008 

LA OFC 10% M msP Adult >PND 90 N/OFQ 
Agonist 

Systemic Nociceptin/ 
orphanin FQ; 
N/OFQ & NOPR 

N/OFQ reduced intake and 
progressive ratio (PR) 
responding  

Ciccocioppo et 
al., 2004 

24h 2BFC 10% M P Adult >PND 90 TA-0910 
Agonist 

Systemic TRHR TA-0910 dose-dependently 
reduced intake 

Rezvani et al., 
1992 

Other Systems 

24h 2BFC 10% F UChB Early Adult 
>PND 60 

Disulfiram 
Inhibitor 
Cyanamide 
Inhibitor 

Systemic ALDH2 Chronic ethanol induced 
tolerance to effects of ALDH2 
inhibitors 

Tampier et al., 
2008 

24h 2BFC 10% F UChB Early Adult 
>PND 60 

Anti-Aldh2 
Antisense gene 

IV ALDH2 Antisense induced a long-
term reduction in intake 

Ocaranza et al., 
2008 

24h 2BFC 10% 
 
LA OFC 10% 

M iP & Fawn-
Hooded & 
Long-Evans 

Adult >PND 90 CVT-10216 
Inhibitor 

Systemic ALDH2 CVT-10216 reduced intake in 
FH; 
CVT-10216 reduced 
responding in FH, iP, and LE 

Arolfo et al., 
2009 

24h 2BFC 10% F WHP Adult >PND 90 Levetiracetam  
Inhibitor 

Systemic Synaptic vesicle 
glycoprotein 
SV2A Ca+ 

Levetiracetam reduced intake Zalewska-
Kaszubska et al., 
2011 

24h 2BFC 5% F UChB Adult >PND 120 HCN-2  
Lenti virus 
overexpression 

Intra-VTA Hyperpolarization 
activated cyclic 
nucleotide-gated 
(HCN-2) 

HCN increased intake; 
HCN increased CPP; 
HCN increased LMA 

Rivera-Meza et 
al., 2014 

24h 2BFC 10% M UChB Young-Adult 
>PND 60 

Fenofibrate 
PPAR agonist 

Systemic Peroxisome 
proliferator-
activated receptor 
(PPAR) 

Fenofibrate reduced intake Karahanian et 
al., 2014 

24h 2BFC 15% 
 

M&F HAD1 &  
HAD2 

Adult >PND 90 Ivermectin 
PAM 
P2rx4 shRNA 
lentivirus 

Systemic 
ICV 
pVTA 

Purinergic P2X4 
receptor P2RX4 

Ivermectin reduced intake in 
both; 
P2rx4 knockdown in pVTA 
reduced intake by HAD1 

Franklin et al., 
2015a 
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Multiple Neurotransmitter/Neuromodulator System Studies 

LA 2BFC 15% 
 

M P Adult >PND 90 Prazosin 
Antagonist 
Naltrexone 
Antagonist  

Systemic Alpha1Rs 
 
MOR, DOR, KOR 

Combination of threshold 
doses of naltrexone and 
prazosin reduced drinking 

Froehlich et al., 
2013b 

LA 2BFC 20% M P Adult >PND 270 Prazosin 
Antagonist 
Naltrexone 
Antagonist 

Systemic Alpha1Rs 
 
MOR, DOR, KOR 

Combination of Prazosin and 
naltrexone was more effective 
than each alone in reducing 
drinking 

Rasmussen et 
al., 2015 

24h 2BFC 10% 
 

M sP Adult >PND 180 WIN 55,212-2 
Agonist 
CP 55,940 
Agonist 
SR 141716 
Antagonist 
Naloxone 
Antagonist 

Systemic CB1R 
 
 
 
 
 
MOR, DOR, KOR 

CB1 agonists increased 
drinking;  
CB1 and MOR/DOR/KOR 
antagonists reduced CB1 
agonist effects 

Colombo et al., 
2002b 

LA 2BFC 10% M P & HAD Adult >PND 90 Apomorphine 
Agonist, 
Antagonist 
7-OH-DPAT 
Agonist 

Systemic D1R, D2R 
 
HTR2, AlphaRs 
D3R, HTRs 

Apomorphine and 7-OH-DPAT 
reduced intake in Ps and 
HADs 

Russell et al., 
1996 

24h 2BFC 10% 
 

M P Adult >PND 90 7-OH-DPAT 
Agonist 

Systemic D3R, HTRs 7-OH-DPAT reduced intake Mason et al., 
1997 

24h 2BFC 10% 
 

? P Adult >PND 90 GBR 12909 
Antagonist 
Amphetamine 
DAT modulator 
Homocryptine- 
Agonist 
Ro 15-4513 
Inverse agonist  

Systemic D2R 
 
DAT 
 
D2R 
 
GABRA-BDZ 
complex 

All DA modulators and Ro 15-
4513 reduced intake   

McBride et al., 
1990 

LA OFC 10%  P Adult >PND 90 SCH 23390 
Antagonist 
Eticlopride 
Antagonist 
Naltrexone 
Antagonist 

BNST D1R 
 
 
D2R 
 
 
MOR, DOR, KOR 

SCH23390 reduced  
responding but nonspecifically; 
Eticlopride and naltrexone did 
not alter responding 

Eiler et al., 2003 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 5. Rat Studies on the Maintenance of Ethanol Intake and Its Disruption Page 17 of 21 

 

LA OFC 10% M&F P Adult >PND 90 Eticlopride 
Antagonist 
 
SR95531 
Antagonist  

VTA-BNST 
VTA-Acb 
 

D2R 
 
 
GABRAs 

Eticlopride in the VTA reduced 
responding; 
SR95531 in the Acb, but not 
BNST, reduced responding; 
The combination had no effect 
on responding 

Eiler & June, 
2007 

LA OFC 10% M Wistar Adult >PND 90 sodium-N-acetyl-
homotaurinate 
(Na-AOTA) 
calcium-bis(N-
acetylhomotaurin
ate)- (Ca-AOTA) 
Partial agonists 

Systemic GABRA/GABRB 
GRIN, GRM1, 
GRM5 

Ca-AOTA, but not NA-AOTA, 
reduced responding; 
 
Suggesting calcium salt 
effects of acamprosate 
 

Spanagel et al., 
2014 

LA 2BFC 10% M AA Adult >PND 90 ZK 91296  
PAM 
CGS 9895  
PAM 
Ro 15-4513 
Inverse agonist 
Ro 19-4603 
Inverse agonist 
Bretazenil 
Agonist 
Naloxone 
Antagonist 

Systemic GABRA-BDZ 
complex 
GABRA-BDZ 
complex 
GABRA-BDZ 
complex 
GABRA-BDZ 
complex 
GABRA-BDZ 
complex 
MOR, DOR, KOR 

ZK 91296 and CGS 9895 
modestly reduced intake; 
 
 
Ro15-4513 and Ro19-4603 
reduced intake; 
 
 
Bretazenil modestly reduced 
intake; 
Naloxone decreased intake 

Wegelius  et al., 
1994 

LA OFC 10% 
 
24h 2BFC 5% 
 
24h 3BFC 5% & 20% 

M iP & AA & 
Fawn-
Hooded 

Adult >PND 90 Acamprosate  
Modulator 

Systemic GABA/Glu 
Ca2+ channel 
 

Acamprosate decreased iP 
and FH responding, tolerance 
developed to these effects; 
Acamprosate decreased AA 
and FH intake, tolerance 
developed to these effects 

Cowen et al., 
2005a 

24h 2BFC 10% F WHP Adult >PND 90 Acamprosate 
Modulator  

Systemic GABA/Glu 
Ca2+ channel 

Acamprosate decreased 
intake 

Zalewska-
Kaszubska et al., 
2008a 

LA OFC 15% 
 

M sP Adult >PND 75 Baclofen 
Agonist 
Naloxone 
Antagonist 

Systemic GABRB 
 
 
MOR, DOR, KOR 

Both baclofen and  
naloxone reduced responding; 
Baclofen had non-specific 
effects 

Maccioni  et al., 
2005 

LA OFC 15% M iP Adult >PND 90 Ganaxolone 
Neurosteroid 

Systemic GABRA 
GRIN 

Pregnenolone reduced  
responding but not activity; 

Besheer et al., 
2010a 
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analog  
Pregnenolone 
Precursor of 
neurosteroids 

Sigma-1R Ganaxolone reduced 
responding and activity 

24h 2BFC 10%  P & Wistar Adult >PND 90 Topiramate 
Modulator 

Systemic GABRA 
Ca2+ channels 
GRIA/GRIK 

Topiramate modestly, but 
persistently reduced intake in 
P but not Wistar rats 

Breslin et al., 
2010 

LA OFC 10% 
 

 P & Wistar Adult >PND 90 Naloxone 
Antagonist 
Bromocriptine 
Agonist 
Methysergide 
Partial agonist, 
antagonist 

Systemic MOR, DOR, KOR 
 
 
D2R 
 
HTR1A 
HTR2B, HTR2C 

Naloxone reduced responding 
but not preference in P; 
Bromocriptine reduced 
responding & preference in P; 
Naloxone and bromocriptine 
produced smaller reductions in 
Wistar; 
Methysergide did not affect 
responding in either strain 

Weiss et al., 
1990 

24h 2BFC 10% M P & AA & 
Fawn-
Hooded 

Adult >PND 90 Ibogaine-indole 
alkaloid 
Agonist, partial 
agonist 
 

Systemic MOR, KOR, 
GRIN, HTR3, 
sigma1R, 
sigma2R 

SC ibogaine altered intake; 
IP ibogaine reduced intake in 
all lines; 
IG ibogaine reduced intake in 
FH 

Rezvani et al., 
1995 

24h 2BFC 3-30% M HAD Adult >PND 90 Naltrexone 
Antagonist 
Amperozide 
Antagonist 

Systemic MOR, DOR, KOR 
 
HTR2A 
 

Dose-dependent reductions in 
intake by both amperozide and 
naltrexone 

Lankford  & 
Myers 1996 

LA OFC 10% M Wistar Adult >PND 90 Naltrexone  
Antagonist 
Fluoxetine 
Blocker 

Systemic MOR, DOR, KOR; 
5HT-transporter 
(SERT) 

Naltrexone and fluoxetine 
reduced responding 

Le et al., 1999 

24h 2BFC 10%  P & HAD & 
Fawn-
Hooded 

Adult >PND 90 Naltrexone 
antagonist 
Fluoxetine 
inhibitor 
TA-0910 
Agonist 

Systemic MOR, DOR, KOR 
 
SERT 
 
TRH R 

Low doses of naltrexone, 
fluoxetine, and TA-0910 alone 
did not alter intake; 
A combination of these 
compounds reduced intake 

Rezvani et al., 
2000 

24h 2BFC 10% 
 
LA 2BFC 10% 

M AA Adult >PND 180 6-OHDA lesions 
of dorsal & 
ventral Striatum  
Naltrexone 
Antagonist 

Systemic Catechol-
aminergic nerve 
terminals 
MOR, DOR, KOR 

Naltrexone reduced 24h and 
LA intake in both the 6-
OHDA–treated and the control 
groups 

Koistinen et al., 
2001 
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24h 2BFC 10% 
 

M sP Adult >PND 90 Morphine 
Agonist 
Naloxone 
Antagonist 
SR 141716 
Antagonist 

Systemic MOR, DOR, KOR 
 
 
 
CB1R 
 

Low dose morphine increased 
drinking; 
high dose decreased drinking; 
naloxone blocked morphine’s 
effects; 
SR 141716 was only effective 
against low dose morphine 

Vacca et al., 
2002a 

LA OFC 10% M&F P & HAD1 Adult >PND 90 Naltrexone 
Antagonist 
betaCCt, mixed 
BDZ agonist–
antagonist 

CeA 
 
CPU 

MOR, DOR, KOR 
 
GABRA1-BDZ 
complex 

betaCCt and naltrexone in the 
CeA reduced responding;  
whereas betaCCt and 
naltrexone in the CPU did not 
alter responding 

Foster et al., 
2004 

LA OFC 10% 
 

M sP Adult >PND 90 DTG 
Agonist 
BD-1063  
Antagonist  

Systemic Sigma1R, GRIN 
 
Sigma1R, GRIN  

DTG increased fixed and 
progressive ratio BACs; 
BD-1063 blocked the effects of 
DTG 

Sabino et al., 
2011 

LA OFC 10% 
 

M sP & Wistar Adult >PND 90 BD-1063  
Antagonist 
 

Systemic Sigma1R, GRIN     BD-1063 dose dependently 
reduced responding by sP and 
Wistars 

Sabino et al., 
2009a 

24h 2BFC 10% M sP Adult >PND 90 NE-100  
Antagonist 

Systemic Sigma1R, GRIN  NE-100 dose-dependently 
reduced intake 

Sabino et al., 
2009b 

24h 2BFC 8% M sP Adult >PND 90 Ritanserin  
Antagonist  
Risperidone 
Mixed antagonist 

Systemic HTR2 
 
HTR1C/D2R 

Risperidone, but not ritanserin, 
dose-dependently reduced 
preference 

Panocka  et al., 
1993b 

LA 2BFC 10% 
 

M AA Adult >PND 90 Risperidone 
Antagonist 

Systemic D1R, D2R, 
HTR2C 

Risperidone reduced intake  Ingman et al., 
2003a 

24h 2BFC 10% 
 

M P Adult >PND 90 Fluoxetine 
Inhibitor   
Fluvoxamine 
Inhibitor   
Desipramine 
Inhibitor 

Systemic SERT 
 
SERT 
 
SERT/NET 

Fluoxetine, fluvoxamine and 
desipramine reduced intake 

Murphy et al., 
1985 

LA 2BFC 10% 
 

M P Adult >PND 90 Fluoxetine 
Inhibitor 
Desipramine 
Inhibitor 
Ro 15-4513 
Partial inverse 

Systemic SERT 
 
SERT/NET 
 
GABRA-BDZ 
complex 

Fluoxetine, desipramine, and 
Ro15-4513 reduced intake; 
 
 
Ro15-1788 did not alter intake; 
 

McBride et al., 
1988 
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agonist 
Ro 15-1788 
Antagonist 

 
GABRA-BDZ 
complex 

 
Ro15-1788 blocked Ro15-
4513’s effects 

24h 2BFC 10% ? P & HAD Adult >PND 90 Fluoxetine 
Inhibitor 
Fenfluramine 
Reverser 
D,L-5-hydroxy-
tryptophan 
Agonist 
8-OH DPAT 
Agonist 
TFMPP 
Agonist 
DOI 
Agonist  
GBR 12909 
Inhibitor 
Amphetamine 
Reverser 
Bromocryptine 
Agonist  

Systemic SERT 
 
SERT 
 
HTRs 
 
 
HTR1A  
 
HTR1A 
 
HTR2 
 
DAT 
 
DAT 
 
D2R 
 

5-HT and DA agents reduced 
intake in both P and HADs 

McBride et al., 
1990 

24h 2BFC 3% M sP, Wistar Adult >PND 90 Risperidone 
Antagonist 
Ritanserin 
Antagonist  
Haloperidol 
Antagonist 

Systemic HTR2/D2R 
 
HTR1C  
 
D2R 

Risperidone, ritanserin, and 
haloperidol reduced 
preference; 
Only lowest dose of 
risperidone reduced intake 
 

Panocka  et al., 
1993a, 1993b, 
1993c 

LA 2BFC 10% M AA 
 
 

Adult >PND 90 Deramciclane 
Antagonist 
Midazolam 
Agonist  

Systemic HTR2 
 
GABRA-BDZ 
complex 

Deramciclane did not alter 
intake; 
 
Midazolam increased intake 

Ingman et al., 
2004 

24h 2BFC 10%  M P & Wistar Adult >PND 90 Ondansetron 
Antagonist 
Topiramate 
Modulator 

Systemic HT3R 
 
GABA/Glu 

Topiramate modestly but 
persistently decreased intake 
alone and in combination with 
ondansetron 

Lynch et al., 
2011 

LA OFC 10% M P & NP Adult >PND 90 DOV 102,677 
(DOV) 
Uptake inhibitor 

Systemic SERT, NET, DAT DOV reduced responding Yang et al., 2012 
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NP 
= 
Alco
hol-
Non
-
Pref
errin
g rat 
line; 
LAD 
= 
Low 
Alco
hol 
Drin
king 
(LA
D1 

and LAD2) rat lines; sNP = Sardinian Alcohol-Non-Preferring rat line; ANA = ALKO Alcohol-Non-Accepting rat line; iP = Inbred P; HPA = Hypothalamic Pituitary-Adrenal axis; 
GABRA-BDZ = GABA-A Receptor—Benzodiazepine Receptor complex; sc = subcutaneous; ip = intraperitoneal; CPU = Caudate Putamen; Grm2/3 = Glutamate Metabotropic 
Receptor 2/3; pAKT = also called Protein Kinase B (PKB); xCT = Cystine/Glutamate Antiporter; ICV = Intra-Cerebro-Ventricular admission; BLA = Basolateral Amygdala; SERT = 
Serotonin Transporter; NET = Norepinephrine Transporter; DAT = Dopamine Transporter; TRH = Thyrotrophin Releasing Hormone; BNST = Bed Nucleus Stria Terminalis; GRIA 
= Glutamate Ionotropic Receptor-AMPA (quisqualate) subtype; GRIK = Glutamate Ionotropic Receptor-Kainate subtype. See Tables 1 through 4 for other abbreviations. 

24h 2BFC 10% M P Adult >PND 90 TA-0910 
Agonist 
7-OH-DPAT 
Antagonist 
R( +)-SCH23390 
Antagonist  
s( -)-eticlopride 
Antagonist 

Systemic TRHR 
 
D3R 
 
D1R 
 
D2R 
 

TA-0910 reduced intake; 
7-OH-DPAT reduced intake; 
SCH23390 modestly reduced 
intake; 
Eticlopride reduced intake; 
Eticlopride, but not SCH23390 
or 7-OH-DPAT, reduced TA-
0910’s effects 

Mason et al., 
1997 

24h 2BFC 10% 
 

M P Adult >PND 90 TA-0910 
Agonist  
Bromocriptine 
Agonist 

Systemic TRHR 
 
D2R 

TA-0910 reduced intake with 
tolerance to these effects; 
TA-0910 reduced  
bromocriptine’s effects 

Mason et al., 
1994 

LA 3BFC 15%, 30% 
 
 
24h 3BFC 15%, 30% 
 

M&F P & HAD1 Adult >PND 90 Rolipram 
Inhibitor 
Ro 20-1724- 
Inhibitor 
Il-22ra2 shRNA 
lentivirus 

Systemic 
 
 
 
AcbShell 

Phosphodie-
sterase-4 (PDE4) 
 
 
Interleukin 22 R 
alpha2 gene 

Rolipram and Ro20-1724 
reduced intake in both lines; 
 
 
Il22ra2 knockdown in AcbSh 
reduced intake in P 

Franklin et al., 
2015b 

24h 2BFC 10% M iP Adult >PND 90 Carisbamate 
Inhibitor 
Naltrexone 
Antagonist 

Systemic VGSCs for Glu 
activity 
MOR, DOR, KOR 

Carisbamate selectively 
reduced intake and was more 
effective than naltrexone 

Rezvani et al., 
2009 
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Table 6. Rat Studies on Relapse Behavior (ADE) of Alcohol Intake and Its Pharmacological Disruption. 

 

  Ethanol Access 
      Procedures 

Sex Line     Age      Drug Region  Molecular          
   Target 

            Findings Citations 

24h 2BFC  10%  M&F AA Adult >PND 90 Ethanol re-
exposure 

  Absence of alcohol deprivation 
effect (ADE) after long-term 
deprivation interval 

Hilakivi et al., 
1984 

24h 2BFC  10%  
 

? AA Adult >PND 
300 

Ethanol re-
exposure 

  Re-exposure did not lead to 
ADE 

Sinclair & 
Tiihonen 1988 

24h 2BFC  ?% ? AA Adult PND?  Ethanol re-
exposure 

  Re-exposure led to ADE after 
12h and 24h, but not longer, 
deprivations 

Sinclair and Li, 
1989 

LA OFC 10% 
 
24h 2BFC 10%  
 

M Wistar Adult >PND 90 Ethanol re-
instatement 
Ethanol re-
exposure 

  Re-instatement led to ADE 
after 5, 7, 14, 28 days 
deprivation; 
Re-exposure led to ADE after 
5 days 

Heyser et al., 
1997 

LA OFC 15% 
 
24h 2BFC  10%  
 

M&F P Adult 
>PND 75 
Juvenile >PND 
22 

Ethanol re-
instatement 
Ethanol re-
exposure 

  ADE expressed after extended 
deprivation following ethanol 
after juvenile or adult initiation 

McKinzie et al., 
1998 

24h 4BFC 5%, 10%, 20%  M Wistar Adult ?PND Ethanol re-
exposure 

  Repeated short-term 
deprivations increased ADE 

Holter et al. 
1998 

24h 2BFC  10%  
 

M sP Adult >PND 75 Ethanol re-
exposure 

  Absence of ADE during initial 
24h of re-exposure after 3 to 
30 days of deprivation 

Agabio et al., 
2000 

Vapor exposure then LA 
OFC 10% 

M Wistars Adult > PND 90 Ethanol re-
instatement 

  Increased responding after re-
instatement; 
Increased responding 
remained elevated for 4-8 
weeks 

Roberts et al., 
2000 

24h 2BFC 10%  
 

F P Adult >PND 90 Ethanol re-
exposure 

  Single concentration (10%) 
induced ADE and there was 
prolonged expression for 4 
consecutive days 

Rodd-Henricks 
et al., 2000a 

24h 2BFC  10%  
 

M HAD1 & 
HAD2 

Adult >PND 90 Ethanol re-
exposure 

  Only repeated cycles of 
deprivation resulted in ADE  

Rodd-Henricks 
et al., 2000b 

24h 4BFC 10%, 20%, 
30%  

F P Adult >PND 90 Ethanol re-
exposure 

  Multiple concentrations 
increased ADE over 10% only; 
induced ADE with higher ethanol 
intakes there was prolonged 
expression for 6 consecutive 
days.  

Rodd-Henricks 
et al.,  2001 

24h 2BFC  15%  
 
LA OFC 15% 

F P  Adolescent 
PND 30-60 
Adult >PND 75 

After pre-
exposure 
Ethanol re-
instatement 

  Expression of ADE during 
reacquisition in adulthood 

Rodd-Henricks 
et al., 2002a 

24h 2BFC 15%  F P Adult PND 75- After pre-   Absence of ADE during Rodd-Henricks 
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Table 6. Rat Studies on Relapse Behavior (ADE) of Alcohol Intake and Its Pharmacological Disruption. 

 

 
LA OFC 15% 

105 
>PND 135 

exposure 
Ethanol re-
instatement 

reacquisition in adulthood et al., 2002b 

LA OFC 15% M P Adult >PND 90 Ethanol re-
instatement 

  Repeated deprivations 
increased both the magnitude 
and duration of the ADE 

Rodd et al., 2003 

24h 4BFC 10%, 20%, 
30% 

 sP Adult >PND 75 Ethanol re-
exposure 

  Modest acute ADE during re-
exposure 

Serra et al., 
2003 

24h 3BFC 5%, 20% M P, HAD, 
AA, 
Wistar 

Adult >PND 90 Ethanol re-
exposure 

Swim stress 
Foot shock 
induced 
relapse 

 Wistar, but not selected, rats 
increased relapse after swim 
stress; 
All lines increased relapse 
after foot shock 

Vengeliene et 
al., 2003 

24h 3BFC 5%, 20% F Wistar Adolescent 
PND 31 
 
Adult PND 71 

Initiation 
 
 
Initiation 
 
Ethanol re-
exposure 

Swim stress-
induced 
relapse 

 Relapse drinking similar in 
both groups; 
Repeated swim stress 
increased relapse modestly; 
Foot-shock increased relapse 
to a greater extent than swim 
stress, in the adolescents  

Siegmund et al., 
2005 

24h 2BFC  15%  
 
 

F P Adult >PND 90 Ethanol re-
exposure 

pVTA  Repeated deprivations 
increased reinforcing effects 
within pVTA 

Rodd et al., 2005 

LA OFC 15% M HAD1 & 
HAD2 

Adult >PND 90 Ethanol re-
instatement 

  Repeated deprivations 
increased both the magnitude 
and duration of the ADE. 

Oster et al., 2006 

LA OFC 10% M sP Adult >PND 90 Ethanol re-
instatement 

  Ethanol-associated (+) stimuli 
increased reinstatement 
responding 

Maccioni et al., 
2007b 

24h 4BFC 10%, 20%, 
30%   
 
4 cycles of 4 days of 
deprivation X 4 days of re-
exposure  

M P & 
HAD1 & 
HAD2 

Adult >PND 75 Ethanol re-
exposure 

  HAD rats expressed 24h ADE 
after short access and 
deprivation intervals; 
P rats displayed a modest 24h 
ADE under the same 
conditions 

Bell et al., 2008a 

LA OFC 10%, 20%, 30%  M HAD-1 & 
HAD-2 

Adult >PND 90 Ethanol re-
instatement 

Multiple 
deprivations 

 Multiple deprivations 
increased responding/ 
reinforcement; 
Shifted preference to higher 
concentrations; 
Prolonged the duration of the 
ADE up to 5 days 

Rodd et al., 2009 
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Table 6. Rat Studies on Relapse Behavior (ADE) of Alcohol Intake and Its Pharmacological Disruption. 

 

24h  4BFC 5%, 10%, 20%  
 
3BFC 6%, 16%  

M Wistar 
 
  

Emerging 
Adulthood 
>PND 60 

Ethanol re-
exposure 

  Repeated deprivations 
produced compulsive-like 
drinking behavior during 
relapse 

Vengeliene et 
al., 2014 

Adrenergic and Mixed 
LA OFC 10%  
Appetitive vs 
Consummatory 
responding 

M P & 
HAD2 

Adult >PND 90 Yohimbine 
Antagonist 

Systemic Alpha1Rs, 
Alpha2Rs 

Yohimbine enhanced 
reinstatement responding 

Bertholomey et 
al., 2013 

LA 2BFC 10%  
 
 

M P Adult >PND 70 Prazosin 
Antagonist 
Propranolol 
Antagonist 

Systemic Alpha1R 
 
BetaR 

Prazosin + propranolol 
reduced relapse drinking 

Rasmussen et 
al., 2014 

24h 3BFC 15%, 30%   P  Adult >PND 70 Prazosin 
Antagonist  

Systemic Alpha1R 
 

Prazosin prevented the 
expression of an ADE 

Froehlich et al., 
2015 

LA 2BFC 10%  
 
 

M P Adult >PND 70 Prazosin 
Antagonist 
Naltrexone 
Antagonist 

Systemic Alpha-1R 
 
MOR, DOR, 
KOR 

Prazosin + naltrexone reduced 
relapse drinking 

Rasmussen et 
al., 2015 

Cannabinoid 
2BFC 10% M sP Adult >PND75 SR147778 

Antagonist 
Systemic CB1R SR147778 reduced relapse 

drinking 
Gessa et al., 
2005 

LA OFC 15% F P Adult >PND 90 SR141716A 
Antagonist 
CP 55,940 
Agonist 

Systemic CB1R 
 
CB1R 

SR transiently reduced relapse  
responding ; 
CP increased relapse  
responding 

Getachew et al., 
2011 

Cholinergic 
24h 2BFC 10% M P Adult >PND 75 Sazetidine-A 

Partial agonist 
Systemic a4b2 containing 

nAChRs 
Sazetidine-A and naltrexone 
reduced relapse drinking 

Rezvani et al., 
2010 

LA OFC 15% F P Adult >PND 90 Nicotine 
Agonist 

Systemic nAChRs Nicotine time-dependently 
enhanced relapse drinking 

Hauser et al., 
2012a 

Corticotropin 
24h 2BFC 10%  
 

M P Adult >PND 90 CP154,526 
Antagonist 
CRA1000 
Antagonist 

Systemic CRF1 
 
CRF1 

Both CP and CRA reduced 
relapse drinking 
  

Overstreet et al., 
2007 

Dopaminergic and Mixed 
24h 3BFC 5%, 20% 
 

M P & HAD Adult >PND 90 BP 897 
Partial agonist 
SB-277011-A 
Antagonist 

Systemic D3R BP 897 and SB-277011-A 
reduced relapse drinking 

Vengeliene et 
al., 2006 

24h 2BFC  10%  M P Adult >PND 90 Haloperidol Systemic D2R, D3R,  Haloperidol and olanzapine Overstreet et al., 
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Table 6. Rat Studies on Relapse Behavior (ADE) of Alcohol Intake and Its Pharmacological Disruption. 

 

 Inverse agonist, 
Agonist, 
 
Antagonist 
  
Olanzapine 
Antagonist 
 
 
Inverse agonist 

D4R 
Sigma2R, 
HTR1A  
HTR2, HTR7, 
alpha1, alpha2 
HTR3, HTR6, 
HTR7, alpha1, 
alpha2, mAChR, 
D1R, D2R 
HTR2, H1 

reduced relapse drinking  
  

2007 

LA OFC 15% F P Adult >PND 90 Cocaine 
Modulator 

Systemic SERT, DAT, 
NET 

Cocaine enhanced relapse 
responding if administered 30 
min or 4h prior to test session 

Hauser et al., 
2014b 

GABAergic 
24h 2BFC 10%  
 

M P Adult >PND 90 Flumazenil 
Antagonist 

Systemic GABRA-BDZ 
complex 

Flumazenil reduced relapse 
drinking 

Overstreet et al., 
2007 

Glutamatergic and Mixed 
24h 4BFC  5%, 10%, 20%  
 
 

M Wistar Adult >PND 90 MPEP 
antagonist 

Systemic GRM5 
 

MPEP reduced relapse 
drinking following repeated 
alcohol deprivations 

Backstrom et al., 
2004 

24h 4BFC  5%, 10%, 20%  
 

M Wistar Emerging 
Adulthood 
>PND 60 

CGP37849 
Competitive 
antagonist  
L-701.324 
Antagonist  
Ifenprodil 
Antagonist 
Neramexane 
Antagonist  

Systemic NMDAR 
 
 
Glycine binding 
site 
GRIN2B 
 
GRIN, nAChR 

CGP37849, L-701.324, 
ifenprodil and neramexane 
reduced relapse drinking 

Vengeliene et 
al., 2005 

LA OFC 10% M P Adult >PND 90 MPEP 
Antagonist 
LY-341495 
Antagonist   
CPCCOEt 
Antagonist 

Systemic GRM5 
 
GRM2/3 
 
GRM1 

MPEP reduced relapse  
responding 

Schroeder et al., 
2005a 

LA OFC  15% F P Adult >PND 90 LY404039 
agonist 

Systemic GRM2/3 LY404039 reduced relapse 
responding 

Rodd et al., 2006 

LA OFC 10% M Wistar Adult GYKI 52466 
Antagonist 

Systemic AMPAR GYKI 52466 dose-dependently 
reduced relapse responding 

Sanchis-Segura 
et al., 2006 

LA OFC 10% M Wistar Adult > PND 60 Lamotrigine 
Inhibitor  

Systemic Na+ Channel 
control glutamate 
activity 

Lamotrigine reduced relapse  
responding 

Vengeliene et 
al., 2007 
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Table 6. Rat Studies on Relapse Behavior (ADE) of Alcohol Intake and Its Pharmacological Disruption. 

 

LA OFC 10% M P Adult >PND 90 MPEP 
Antagonist 

Systemic GRM5 MPEP reduced relapse 
responding 

Schroeder et al., 
2008 

24h 3BFC 15%, 30% 
 

M P Adult >PND 90 Ceftriaxone 
Up-regulator 

Systemic GTL1 (EAAT2) Ceftriaxone reduced relapse 
drinking; 
Associated with upregulation 
of GLT1 in AcbCo and PFC 

Qrunfleh et al., 
2013 

24h 3BFC 15% & 30% M P Adult >PND 90 Ceftriaxone 
Up-regulator 

Systemic GLT1 (EAAT2) Ethanol reduced pAKT in Acb; 
CEF increased GLT1a, GLT1b 
and xCT in Acb and PFC as 
well as pAKT in Acb; 
CEF reduced intake 

Alhaddad et al., 
2014a 

24h 3BFC 15% & 30% 
 

M P Adult >PND 90 Ceftriaxone  
Up-regulator 

Systemic GLT1 (EAAT2) CEF interfered with relapse 
intake when given during 
abstinence 

Rao & Sari, 
2014a 

LA OFC 10% 
 

M Wistar Adult >PND 90 Ro61-8048 
kynurenine-3-
monooxy-
genase (KMO) 
Inhibitor 

Systemic GRIN2B Ro61-8048 reduced relapse  
responding 

Vengeliene et 
al., 2016a 

LA OFC 10% 
 

M Wistar Emerging 
Adulthood 
>PND 60 

Memantine  
Antagonist  

Systemic NMDAR Memantine reduced relapse  
responding 

Vengeliene et 
al., 2015b 

LA OFC 10 % 
 

M Wistar Adult >PND 90 sodium-N-
acetylhomotauri
nate Na-AOTA 
calcium-bis(N-
acetylhomotauri
nate) Ca-AOTA 

Systemic  Ca-AOTA, but not Na-AOTA, 
reduced relapse drinking, 
suggesting a role for calcium 
salts in acamprosate 
formulations 

Spanagel et al., 
2014 

2BFC 10% M Wistar Adult >PND 90 Org25935 
Transporter 
inhibitor 
Acamprosate 
 

Systemic GlyT1 
GlyT2 
 
GABA/Glu 
Ca+ 

Org25935 reduced compulsive 
relapse drinking without 
tolerance to this effect;  
Acamprosate reduced 
compulsive relapse drinking 

Vengeliene et 
al., 2010 

3BFC 5%, 20% F Wistar Adolescent 
PND 31 
 
Adult PND 71  

Acamprosate Systemic GABA/Glu 
Ca+ 

No differences in baseline 
drinking between rats initiating 
in adolescence vs adulthood; 
Relapse-like drinking was only 
seen in the adult initiators;  
Acamprosate also reduced 
relapse drinking in this group 

Füllgrabe et al., 
2007 

4BFC 5%, 10%, 20% 
(ADE) 

? Wistar Adult 
Long-term 

A-705253 
Calpain-

Systemic NMDAR The calpain inhibitor reduced 
relapse 

Vengeliene et 
al., 2016b 
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Table 6. Rat Studies on Relapse Behavior (ADE) of Alcohol Intake and Its Pharmacological Disruption. 

 

 
LA OFC 5-10% 

access associated 
Modulator 

Opioid and Mixed 
LA 2BFC  LA 10%  P Adult Naloxone 

antagonist 
Systemic MOR, DOR, 

KOR 
Naloxone dose-dependently 
reduced relapse drinking 

Badia-Elder et 
al., 1999 

24h 2BFC 10% M P Adult Naltrexone 
antagonist 

Systemic MOR, DOR, 
KOR 

Naltrexone reduced relapse 
drinking 

Rezvani et al., 
2010 

LA OFC 15% F P Adult JDTic 
Antagonist 

Systemic KOR JDTic reduced relapse  
responding 

Deehan et al., 
2012 

LA OFC 15% F P Adult >PND 90 Naltrexone 
Antagonist 
LY255582 
Antagonist 

Systemic MOR, DOR, 
KOR 
MOR 

Both Naltrexone and LY 
reduced relapse responding 

Dhaher et al., 
2012b 

24h 2BFC 10% M sP Adult NE-100 
antagonist 

Systemic Sigma OR    NE-100 prevented increases 
in relapse drinking 

Sabino et al., 
2009b 

LA OFC 10% M Wistar Adult >PND 90 Naltrexone 
 
Acamprosate 

Systemic MOR, DOR, 
KOR 
GABA/Glu 
Ca+ 

Chronic administration of 
naltrexone and the 
combination of naltrexone + 
acamprosate reduced relapse  
responding 

Heyser et al., 
2003 

Peptidergic         
LA OFC 10% 
 

M Wistar Adult >PND 60 Melatonin  
Agomelatine 
Mixed Agonist/ 
Antagonist 
SB242084 
Antagonist  

Systemic MT1R 
MT2R 
 
 
HTR2C 

Melatonin, agomelatine, and 
SB24208 reduced relapse 
drinking. 

Vengeliene et 
al., 2015a 

24h 2BFC  8%  
 

F P Adult NPY 
Agonist 

ICV NPY YRs NPY reduced relapse drinking; 
Reduced continuous access 
drinking to a lesser extent 

Gilpin et al., 
2003 

24h 2BFC  15%  
 

F P Adult NPY 
Agonist 

CeA NPY YRs NPY in CeA reduced relapse, 
but not uninterrupted, drinking 

Gilpin et al., 
2008 

LA OFC 10%  F P Adult NPY 
Agonist 

ICV NPY YRs NPY ICV decreased relapse  
responding 

Bertholomey et 
al., 2011 

LA OFC 15%  F P Adult >PND 90 SB-334867 
Antagonist 

Systemic OX1R SD-334867 reduced relapse  
responding 

Dhaher et al., 
2010 

Serotoninergic and Mixed 
24h 2BFC 15%  
 

M P Adult >PND 90 MDL 72222-
Antagonist 
ICS205-930- 
Antagonist 

Systemic HTR3 Reduced relapse drinking. Rodd-Henricks 
et al., 2000a 

24h 2BFC 10%  M P Adult >PND 90 Buspirone Systemic HTR1A, HTR2C Buspirone and SB242084 Overstreet et al., 
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Table 6. Rat Studies on Relapse Behavior (ADE) of Alcohol Intake and Its Pharmacological Disruption. 

 

 

 

 

 

 

 

 

 

 

 

 

GlyT = Glycine Transporter; MTR = Melatonin Receptor; OXR = Orexin Receptor. See Tables 1 through 5 for other abbreviations. 

 Partial agonist 
SB242,084 
Antagonist 

reduced relapse drinking 
  

2007 

24h  2BFC 10% 
 

M P & 
Wistar 

Adult >PND 90 Ondansetron 
Antagonist 
Topiramate 
Modulator 

Systemic HTR3 
 
GABRAs, GRIA, 
GRIK, carbonic 
anhydrase 

Both ondansetron alone and in 
combination with topiramate 
blocked relapse drinking; 
Topiramate reduced relapse 
drinking but to a lesser extent 
than the combination 

Lynch et al., 
2011 

Other 
24h  2BFC 10%  
 

M Fawn-
Hooded, 
Long-
Evans, & 
iP 

Adult >PND 90 CVT-10216 
Inhibitor 

Systemic ALDH2  CVT-10216 reduced relapse 
drinking in Fawn-Hooded rats 
 

Arolfo et al., 
2009 

LA 2BFC 15% M P & 
HAD1 
 
 

Adult >PND 75 Ibudilast 
Inhibitor 

Systemic PDE4 Ibudilast reduced relapse 
drinking in both lines 

Bell et al., 2015 
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Ethanol Access 
Procedures Sex Line Age Drug Region Molecular 

Target Findings Citation 

LA OFC 10% Appetitive vs 
Consummatory responding 

M P, HAD1, & 
HAD2 

Adult >PND 90    P > HAD1 > HAD2 for 
responding and operant 
seeking behavior 

Czachowski & 
Samson, 2002 

24h 2BFC 15% 
 
 
LA OFC 15% PSR 

F P Adolescent 
PND 30-60 
 
Adult 30 days 
after 

Pre-exposure 
 
 
Re-instatement 

  Adolescent pre-exposure 
interfered with extinction; 
Adolescent pre-exposure 
enhanced and prolonged 
operant seeking behavior 

Rodd-Henricks 
et al., 2002a 

24h 2BFC 15% 
 
 
LA OFC 15% PSR 

F P Adult PND 75-105 
 
Adult 30 days 
after 

Pre-exposure 
 
 
Re-instatement 

  Adult pre-exposure did not 
affect extinction; 
Adult pre-exposure did not 
affect seeking behavior; 
A discriminative odor stimulus 
(+) enhanced operant seeking 
behavior; 
2 ml 15% ethanol bottle 
enhanced seeking behavior 

Rodd-Henricks 
et al., 2002b 

LA OFC 10% M sP Adult >PND 90    Orosensory properties of 
ethanol (+ stimulus) leads to 
operant seeking behavior 

Maccioni et al., 
2007a 

LA OFC 10% Appetitive vs 
Consummatory responding 

M P, HAD2, & 
Long- Evans 

Adult >PND 90    Only P rats displayed 
increased levels of operant 
delay discounting (a measure 
of seeking behavior) 

Beckwith & 
Czachowski, 
2014 

Adrenergic 

LA OFC 10% Appetitive vs 
Consummatory responding 

M P & HAD2 Adult >PND 90 Yohimbine 
Antagonist 

Systemic Alpha1Rs, 
Alpha2Rs 

Yohimbine enhanced operant 
seeking in both lines. 

Bertholomey et 
al., 2013 

Cannabinoid and Mixed 

LA OFC 10% M Wistar & 
msP 

Adult >PND 90 SR141716A- 
Antagonist 

Systemic CB1R SR141716A reduced seeking 
behavior 

Cippitelli et al., 
2005 

LA OFC 10%  iP Adult >PND 90 SR141716A 
Antagonist 
MTEP  
Antagonist 
SCH58261 
Antagonist 

Systemic CB1R 
 
Grm5 
 
adenosine 2A 

SR141716A with MTEP 
reduced cue-conditioned 
seeking; 
SR141716A with SCH58261 
did not alter cue-conditioned 
seeking 

Adams et al., 
2010 

LA OFC 15% PSR F P Adult >PND 90 SR141716A-
antagonist 
CP 55, 940-
agonist 

Systemic CB1R The CB1R antagonist reduced 
seeking; 
The CB1R agonist increased 
seeking 

Getachew et al., 
2011 

Cholinergic and Mixed 
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Table 7. Rat Studies on Alcohol-Seeking Behavior and Its Pharmacological Disruption. 

 

 

2BFC 12%  
LA OFC  12% 

M Long- Evans Adult PND? Nicotine 
Agonist 

Systemic nAChRs Nicotine increased seeking 
behavior 

Le  et al., 2003 

LA OFC  15% PSR  F P Adult >PND 90 Ethanol + Nicotine   Readily displayed ethanol + 
nicotine seeking behavior 

Hauser et al., 
2012a 

LA OFC  15% PSR F P Adult >PND 90 Nicotine 
Agonist 

Systemic nAChRs Nicotine enhanced seeking 
behavior 

Hauser et al., 
2012b 

LA OFC  15% PSR F P Adult >PND 90 Nicotine  
Agonist 
Mecamylamine 
Antagonist 

pVTA nAChRs Nicotine enhanced ethanol-
seeking behavior; 
Mecamylamine attenuated 
nicotine’s effects 

Hauser et al., 
2014a 

Corticotrophin 

2BFC 12%  
LA OFC  12% 

M Wistar Adult >PND 90 CP-154,526 
Antagonist 
d-phe-CRF 
Antagonist 

ICV CRF d-Phe-CRF and CP-154,526, 
attenuated stress-induced 
seeking 

Le et al., 2000 

Dopaminergic and Mixed 

LA OFC 10% 
Appetitive vs Consummatory 
responding 

M Long-Evans Adult >PND 90 Raclopride 
Antagonist 

Systemic D2R Raclopride reduced seeking at 
the low and high dose, but not 
intermediate, dose; Raclopride 
also reduced drinking 

Czachowski et 
al., 2001a 

24h 3BFC 5%, 20%  M P & HAD Adult >PND 90 BP 897  
Partial agonist 
SB-277011-A 
Antagonist 

Systemic D3R BP 897 and SB-277011-A 
reduced seeking behavior 

Vengeliene et al., 
2006 

LA OFC  15% PSR F P Adult >PND 90 SCH23390 
Antagonist 
A-77636 
Agonist 

AcbSh, 
AcbCo 

D1R SCH reduced seeking; 
A-77636 increased seeking in 
AcbSh, but not the AcbCo 

Hauser et al., 
2015 

LA OFC  15% PSR F P Adult >PND 90 Quinpirole 
Agonist 
Ethanol 

pVTA D2R Quinpirole microinjected into 
the pVTA reduced seeking; 
Quinpirole blocked ethanol-
induced enhancement of 
seeking 

Hauser et al., 
2011 

LA OFC 15% PSR F P Adult >PND 90 Cocaine 
Reverser 

Systemic SERT, NET, 
DAT 

Cocaine dose-dependently 
increased seeking behavior 

Hauser et al., 
2014b 

GABAergic and Mixed 

LA OFC 10% M P Adult >PND 90 3-propoxy-beta-
carboline 

VP 
Acb 

GABRA1-BDZ 
complex 

3-PBC in the anterior and 
medial VP produced marked 

Harvey et al., 
2002 
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hydrochloride (3-
PBC) 
Mixed agonist-
antagonist  

CPU  reductions in alcohol-
maintained responding in a 
genetically selected rodent 
model of alcohol drinking 

LA OFC 10% M sP Adult >PND 90 Baclofen 
Agonist 

Systemic GABRB Baclofen reduced seeking 
behavior  

Maccioni et al., 
2008a 

LA OFC 10% M sP Adult >PND 75 GS39783 
PAM  
Baclofen 
Agonist 

Systemic GABRB Baclofen non-specifically 
reduced operant breakpoint; 
GS39783 reduced operant 
breakpoint 

Maccioni et al., 
2008b 

LA OFC 10% 
Appetitive vs Consummatory 
behavior 

M sP Adult >PND 60 GS39783 
PAM 

Systemic GABRB GS39783 inhibited both 
seeking and intake behavior 

Maccioni et al., 
2010b 

Glutamatergic and Mixed 

LA OFC 10% 
Appetitive vs Consummatory 
responding 

M Long Evans Adult >PND 90 Acamprosate 
Modulator 

Systemic GABA/Glu 
Ca+ channel 
 

Acamprosate decreased intake 
but not seeking behavior 

Czachowski et 
al., 2001b 

LA OFC 10% M Long-Evans  Adult >PND 90 MPEP 
Antagonist 

Systemic GRM5 
 

MPEP reduced cue-induced 
operant seeking behavior 

Backstrom et al., 
2004 

LA OFC 10% M Long-Evans Adult >PND 90 MK-801 
Antagonist 
CGP39551 
Antagonist 
L-701,324 
Antagonist 
CNQX 
Antagonist 

Systemic GRIN 
 
GRIN 
 
 
 
GRIA/GRIK 
 

L-701,324 and CNQX reduced 
cue-induced operant seeking 
behavior 

Backstrom & 
Hyytia, 2004 

LA OFC 10% M Long-Evans Adult >PND 90 LY379268 Agonist 
(S)-3,4-DCPG 
[(S)-3,4-dicar-
boxyphenyl-
glycine] 
Agonist 

Systemic GRM 2/3 
 
 
GRM8 

Both compounds reduced 
operant seeking behavior 

Backstrom & 
Hyytia, 2005 

LA OFC  10% M Wistar Adult >PND 90 Acamprosate  
Modulator 
Neramexane 
Antagonist  

Systemic GABA/Glu 
 
NMDAR 

Acamprosate dose-
dependently reduced (+) cue-
induced seeking; 
Acamprosate did not affect  
(-) cue-induced seeking; 
The high dose of neramexane 

Bachteler et al., 
2005 
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reduced acamprosate-induced 
(+) and (-) cue-induced 
seeking 

LA OFC 10% M sP Adult >PND 90 MTEP 
Antagonist 

Systemic GRM5 
 

MTEP reduced operant 
seeking behavior 

Cowen et al., 
2005b 

LA OFC 10% M Wistar Adult >PND 60 GYKI 52466 
Antagonist 

Systemic AMPAR GYKI 52466 dose-dependently 
reduced cue-induced operant 
seeking 

Sanchis-Segura 
et al., 2006 

LA OFC 15% PSR M P Adult >PND 90 LY404039  
Agonist 

Systemic GRM 2/3 LY404039 reduced operant 
seeking behavior 

Rodd et al., 2006 

LA OFC 10% M Wistar Adult >PND 60 Lamotrigine, 
Inhibitor of 
voltage-gated Na+ 
channel 

Systemic Na+ channel 
control  

Lamotrigine reduced  
seeking and relapse intake 
 

Vengeliene et al., 
2007 

LA OFC 10% M P Adult >PND 90 MPEP 
Antagonist 

Systemic GRM5 
 

MPEP reduced cue-induced 
operant seeking behavior and 
pERK1/2 in AcbSh and BLA 

Schroeder et al., 
2008 

LA OFC  10% M Wistar Adult >PND 60 Anisomycin - 
protein synthesis 
inhibitor 
MK-801 
Antagonist  
Acamprosate 
Modulator 

Systemic 
 
ICV 

NMDAR 
 
 
 
 
GABA/Glu 
Ca+ 

Anisomycin and MK-
801 reduced cue-induced 
seeking behavior; 
Suggesting that memory 
reconsolidation disruption by 
these compounds; 
Acamprosate had no effect 

von der Goltz et 
al., 2009 

LA OFC 15%  M  iP Adult >PND 90 Aniracetam 
Agonist, 
6,7-dinitro-
quinoxaline-2,3-
dione 
Antagonist 

Systemic GRIA Aniracetam potentiated cue-
induced operant seeking; 
Aniracetam’s effects were 
reversed by the antagonist 

Cannady et al., 
2013 

LA OFC  10% M Wistar Adult >PND 90 sodium-N-
acetylhomotauri-
nate (Na-AOTA) 
calcium-bis(N-
acetylhomotauri-
nate) (Ca-AOTA) 

Systemic  Ca-AOTA, but not Na-AOTA, 
reduced seeking behavior; 
Suggesting calcium salts of 
acamprosate modulate its 
effects 

Spanagel et al., 
2014 

LA OFC 10% M Wistar Adult >PND 60 Memantine  
Antagonist  

Systemic NMDAR Memantine reduced operant 
seeking behavior 

Vengeliene et al., 
2015b 
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LA OFC 10% M Wistar Adult >PND 90 Ro61-8048- 
Inhibitor 
kynurenine-3-
monooxygen-ase 
(KMO) 

Systemic NMDAR Ro61-8048 reduced operant 
seeking behavior 

Vengeliene et al., 
2016a 

Neuropeptide Y, Nociceptin/Orphanin, Neurokinin 

LA OFC 10% Appetitive vs 
Consummatory responding 

M msP Adult >PND 90 N/OFQ 
Agonist 

ICV Nociceptin/ 
orphanin FQ 
N/OFQ & 
NOPR 

N/OFQ reduced cue-induced 
operant seeking behavior 

Ciccocioppo et 
al., 2004 

LA OFC 10% Appetitive vs 
Consummatory responding 

F P Adult >PND 90 NPY 
Agonist 

ICV NPYRs NPY decreased operant 
seeking responding 

Bertholomey et 
al., 2011 

LA OFC 10% M Wistar Adult >PND 90 JNJ-31020028 
Antagonist 

Systemic 
 

NPY Y2R JNJ altered stress-induced 
operant seeking behavior 

Cippitelli et al., 
2011 

LA OFC 10% M Wistar Adult >PND 90 L822429  
Antagonist 

Systemic NK1R L822429 reduced yohimbine 
(stress)-induced seeking 

Schank et al., 
2014 

Opioid 

LA OFC 10%  M Wistar Adult >PND 90 Priming dose of 
ethanol 
Naltrexone 
Antagonist  
Fluoxetine 
Antagonist 

Systemic  
 
MOR, DOR, 
KOR 
SERT 

Naltrexone blocked ethanol-, 
but not stress-, induced 
operant seeking behavior; 
Fluoxetine blocked stress-
induced more specifically than 
ethanol-induced operant 
reinstatement 

Le et al., 1999 

LA OFC 10%  M P Adult >PND 90 Naltrexone 
Antagonist 
Naltrindole 
Antagonist 
Naloxonazine 
Antagonist 

Systemic MOR, DOR, 
KOR 
DOR 
 
MOR 

Naltrexone, naltrindole, and 
naloxonazine inhibited operant 
seeking behavior; 
Naloxonazine had non-
selective behavioral 
suppression 

Ciccocioppo et 
al., 2002 

LA OFC 10% M Long-Evans Adult >PND 90 Naltrexone 
Antagonist 

Systemic MOR, DOR, 
KOR 

Naltrexone reduced cue-
induced operant seeking 

Backstrom & 
Hyytia, 2004 

LA OFC 15% PSR F P Adult >PND 90 JDTic Antagonist Systemic  KOR JDTic dose-dependently 
reduced operant seeking 

Deehan et al., 
2012 

LA OFC 15% PSR  F P Adult >PND 90 Naltrexone 
Antagonist 
LY255582 
Antagonist 

Systemic MOR, DOR, 
KOR 
MOR, DOR, 
KOR 

Both Naltrexone and LY 
reduced operant seeking 
behavior, with LY being more 
potent 

Dhaher et al., 
2012b 
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PSR = Pavlovian Spontaneous Recovery of operant responding. See Tables 2 through 6 for other abbreviations. 

LA OFC 10% 
Appetitive vs Consummatory 
responding 

M P & Long-
Evans 

Adult >PND 90 Naltrexone  
Antagonist 
 
Naltrindole 
Antagonist, 
U50,488H 
Agonist 

Systemic MOR, DOR, 
KOR 
 
DOR 
 
KOR 

Naltrexone, naltrindole and 
U50,488H reduced  intake, 
responding and seeking 
nonselectively; 
P rats were more sensitive to 
naltrindole’s effects on intake 
and seeking 

Henderson-
Redmond & 
Czachowski, 
2014 

LA OFC 10% 
Appetitive vs Consummatory 
responding 

M 
 
 

P & 
NP & 
HAD 

Adult >PND 90 Naltrexone  
Antagonist 
GSK152149 
Antagonist 

Systemic MOR, DOR, 
KOR 
 
MOR  

Naltrexone and GSK dose-
dependently reduced cue-
induced operant seeking, with 
GSK being more effective 

Giuliano et al., 
2015 

Orexin 

LA OFC 15% PSR F P Adult >PND 90 SB-334867 
Antagonist 

Systemic Orexin1R SB-334867 did not alter 
seeking behavior 

Dhaher et al., 
2010 

LA OFC 10% M iP Adult >PND 90 SB-334867 
Antagonist  

Systemic OX1R Cue-induced seeking occurred 
after immediate and protracted 
abstinence (5 months); 
SB-334867 reduced immediate 
and delayed cue-induced 
seeking as well as cue-induced 
c-fos expression; 
SB334867 disrupted 
progressive-ratio responding 
for ethanol but not sucrose 

Jupp et al., 
2011a, 2011b 

Serotonin and Mixed 

LA OFC  15% PSR F P Adult >PND 90 Nicotine  
Agonist 
Zacopride 
Antagonist 
CPBG 
Agonist 

pVTA HT3R 
 
nAChR 

Nicotine-enhanced ethanol-
seeking behavior is modulated 
by HTR3 in pVTA  

Hauser et al., 
2014a 

Aldehyde dehydrogenase 

LA OFC 10% M iP & 
Long-Evans 

Adult >PND 90 CVT-10216 
Inhibitor 

 ALDH2  CVT-10216 reduced seeking 
behavior in iP and Long-Evans  

Arolfo et al., 
2009 
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Table 8. Rat Studies on Alcohol Withdrawal Behaviors and Its Pharmacological Amelioration. 

 

Ethanol Access 
Procedures Sex Line Age Drug Region Molecular 

Target Findings Citation 

Adrenergic 

24h 2BFC 10%  
 

M P Adult >PND 90 Prazosin 
Antagonist 
Propranolol 
Antagonist 

Systemic Alpha1R 
 
Beta1R, Beta2R 

Combination of prazosin and 
propranolol reduced intake 
after short withdrawal 

Rasmussen et al., 
2014 

Dopaminergic Mixed 

24h 2BFC 10%  
 
 

M P Adult >PND 90 Haloperidol, 
SB242,084 
Inverse agonist, 
antagonist 

Systemic D2R, D3R, D4R, 
alpha1A, HTR2A, 
HTR2C 
GABRA-BDZ 
CRFR1 

Haloperidol or SB242,084 
failed to reduce anxiety-
induced increases in ethanol 
intake and withdrawal-
associated anxiety 

Overstreet et al., 
2007 

GABAergic         

24h 2BFC 10%  
 

 P Adult >PND 90 Bicuculline 
Competitive 
antagonist, 
 

Systemic GABRA 
K+ channels 

Symptoms present after 6 
week exposure as measured 
by bicuculline-induced 
seizures; 
Dependence resulted in 
increased intake and 
increased  anxiety 

Kampov-Polevy et 
al., 2000 

24h 4.5% Ethanol Diet for 5 
Day Cycles 

M Sprague-
Dawley 

Adolescent 
~PND50 

Flumazenil 
Antagonist 
DMCM Negative 
Allosteric 
Modulator 

CeA GABRA-BDZ  
complex 

Flumazenil reduced 
withdrawal-induced anxiety; 
DMCM exacerbated 
withdrawal-induced anxiety, 
which was reversed by 
flumazenil 

Knapp et al., 2007a 

24h 4.5% Ethanol Diet for 5 
Day Cycles 

M Sprague-
Dawley 

Adolescent 
~PND50 

Diazepam 
Ca2+ channel 
blocker 
 
Flumazenil 
Antagonist 
Baclofen 
Agonist 

Systemic GABRA-BDZ 
complex, 
diazepam binding 
site, 
GABRA-BDZ 
complex 
GABRB 

Diazepam, flumazenil, and 
baclofen dose-dependently 
reduced withdrawal-induced 
anxiety and its sensitization 

Knapp et al., 2007b 

Opioid 

24h 2BFC 10%  
 

M P Adult >PND 90 Naloxone 
Antagonist 

Systemic MOR, DOR, KOR Naloxone did not alter 
withdrawal-induced anxiety 

Overstreet et al., 
2007 

Serotonergic 

24h 2BFC 10%  
 

M P Adult >PND 90 Buspirone 
Partial agonist 

Systemic HTR1A, 
HTR2, D3R, D4R, 

Buspirone reduced 
withdrawal-induced anxiety; 

Overstreet et al., 
2007 
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   See Tables 1 through 7 for abbreviations. 

 

SB242,084 
Antagonist 
Olanzapine 
Inverse agonist, 
antagonist 

SigmaR 
 
HTR2, H1R, 
mAChR4/5, D2R 

SB242084 did not alter 
withdrawal-induced anxiety; 
Olanzapine reduced 
withdrawal-induced ethanol 
intake and anxiety 

Peptidergic 

24h 2BFC 10%  
 

M P Adult >PND 90 CP154,526 
Antagonist 
CRA1000 
Antagonist 

Systemic CRF1 
 

CRA1000 and CP154, 526 
reduced withdrawal-induced 
ethanol intake and anxiety 

Overstreet et al., 
2007 

LA OFC 10%  
 

M Wistar Adult >PND 90 JNJ-31020028 
antagonist 

Systemic 
 

NPY Y2R JNJ reduced withdrawal-
induced anxiety 

Cippitelli et al., 2011 

Neuroimmune 

24h 4.5% Ethanol Diet for 5 
Day Cycles 

M Sprague-
Dawley 

Adolescent 
~PND50 

LPS, IL-1-beta, 
MCP1, 
TNFalpha 
Agonist 
Flumazenil 
Antagonist 

ICV Cytokine-
associated 
receptors 
GABRA-BDZ  
complex 

Cytokines sensitized 
withdrawal-induced anxiety; 
Flumazenil blocked cytokine 
sensitization 

Breese et al., 2008 
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1) Several selectively bred rat lines serve as valid animal models of alcoholism 

2) Selectively bred rat lines serve as animal models of adolescent binge drinking 

3) Treatments for multiple stages of the addiction cycle have been tested in these rats 

4) The role of pharmacogenetics can be evaluated in these selectively bred rat lines 

 


