1

ACCEPTED MANUSCRIPT

Survival Impact of Post-Operative Therapy Modalities According to Margin Status

in Non-Small Cell Lung Cancer patients in the United States 2 3 4 Matthew P. Smeltzer, PHD¹ 5 6 Chun Chieh Lin, MBA PHD² Feng-Ming Kong, MD PHD³ 7 Ahmedin Jemal, DVM PHD² 8 Raymond U. Osarogiagbon, MBBS FACP⁴ 9 10 ¹School of Public Health, University of Memphis, Memphis, TN. 11 12 ²American Cancer Society, Inc., Atlanta, GA. 13 14 ³ Thoracic Oncology Program, Simon Cancer Center, Indiana University School of 15 Medicine, Indianapolis, IN 16 17 ⁴Thoracic Oncology Research Group, Baptist Cancer Center 18 80 Humphreys Center Drive, Suite 220 19 Memphis, TN 38120. 20 21 22 Corresponding Author: Raymond U. Osarogiagbon, MBBS FACP 23 Thoracic Oncology Research Group, Baptist Cancer Center, 80 Humphreys Center 24 Drive, Suite 220, Memphis, TN 38120. 25 Telephone: (901) 722-0664 26 Fax: (901) 722-0452 27 E-mail: rosarogi@bmhcc.org 28 29 Manuscript Word Count: 3007 30

This is the author's manuscript of the article published in final edited form as:

31	Sources of Funding: Dr. Osarogiagbon was partially supported by RO1CA172253 and
32	PCORI IH-1304-6147. Drs. Jemal and Lin were supported by the American Cancer
33	Society intramural research funding. Dr. Kong was supported by R01CA142840,
34	P01CA59827 and R01CA66948.
35	Disclosure: Dr. Osarogiagbon has served as a consultant for Roche/Genentech and El
36	Lilly, and speaker for Pfizer and Roche/Genentech. Dr. Kong has received research
37	funding and travel support and speaker's honorarium from Varian Medical System. The
38	remaining authors declare no conflict of interest.
39	

40 41	Abstract [249 Words]
42 43	Objective
44	Unlike complete (R0) resection guidelines, current National Comprehensive Cancer
45	Network (NCCN) adjuvant therapy guidelines after incomplete (R1/R2) resection of non-
46	small cell lung cancer (NSCLC) are based on low-level evidence. We attempted to
47	validate them.
48	
49	Methods
50	Patients with pathologic stage I-IIIA NSCLC from 2004-2011 in the National Cancer
51	Data Base were stratified by margin status, NCCN-specified stage groupings and
52	adjuvant therapy exposure (none, radiotherapy, chemotherapy or both). Five-year
53	overall survival (OS) and hazard ratios, adjusted for patient and institutional
54	characteristics, were compared. We used a parallel analysis of R0 resections to validate
55	our methodology.
56	
57	Results
58	We analyzed 3461 R1/R2, and 78,929 R0 resections. After R0 resection, the NCCN-
59	recommended option was associated with the best survival across all stage groups,
60	supporting our analytic approach. R1/R2 stage IA patients treated with radiation had a
61	26% OS, compared to 58% with no treatment (p=0.003). In stage IB/IIA(N0) R1/R2
62	patients, radiation was associated with a 25% OS compared to 47% with no treatment
63	(p=0.025) and 62% with chemotherapy (p<0.007). Chemoradiation was not associated
64	with a survival benefit in either group. Patients with IIA (N1)/IIB and IIIA had better

65	survival with chemotherapy or chemoradiation. No group had a survival benefit with
66	radiation alone.
67	
68	Conclusions
69	NCCN adjuvant therapy guidelines after complete resection, based on high-level
70	evidence, are validated, but not guidelines for patients with incompletely resected early
71	stage NSCLC, which are based on low-level evidence. Monomodality postoperative
72	radiotherapy was not validated for any stage. Specific studies are needed to determine
73	optimal management after incomplete resection.
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	

o	o
Ö	9

Perspective Statement

93 NCCN guidelines for post-operative chemotherapy and radiation after complete surgical

resection for NSCLC, based on high-level evidence, are validated in this analysis.

Current guidelines for post-operative therapy after incomplete resection of stage I-II

NSCLC, which are based on lower-level evidence, are not supported by this analysis.

Central Message

NCCN guidelines for post-operative therapy after incomplete surgical resection in stage

101 I-II patients should be prospectively evaluated.

Abbreviations	
National Comprehensive Cancer Network	NCCN
Postoperative radiotherapy	PORT
Randomized clinical trials	RCTs
Non-small-cell lung cancer	NSCLC
National Cancer Database	NCDB
Interquartile range	IQR
Overall survival	os
Hazard Ratio	HR

108	Introduction
109	Lung cancer accounts for approximately 27% of all annual US cancer deaths. 1 Most
110	long-term survivors are among the 29% of patients who have undergone curative-intent
111	surgical resection. ^{2,3} In high-risk patients, adjuvant chemotherapy ⁴⁻⁶ and/or
112	postoperative radiotherapy (PORT) may improve survival. ⁷ The quality of evidence for
113	the benefit of these treatments varies by stage and margin status. ⁷⁻¹⁰
114	
115	Randomized clinical trials (RCTs) and a pooled analysis have demonstrated the benefit
116	of adjuvant chemotherapy in completely (R0) resected patients with T-category 2b or
117	more advanced primary tumors, and those with nodal metastasis. ^{4-6,11} A large meta-
118	analysis showed the harmfulness of PORT in R0-resected patients without mediastinal
119	nodal metastasis 12,13; a retrospective analysis of the US Surveillance, Epidemiology and
120	End Results database and an unplanned retrospective analysis of a clinical trial suggest
121	R0 patients with mediastinal nodal metastasis may benefit from PORT. ^{7,10}
122	
123	Unlike the situation after complete resection, there is no RCT evidence to guide
124	adjuvant management for the 2-17% of non-small-cell lung cancer (NSCLC) resections
125	with microscopic (R1) or macroscopic (R2) positive margins. However, recipients of
126	incomplete resection are at significantly high risk for early death, irrespective of stage. ¹⁶
127	¹⁸ Current National Comprehensive Cancer Network (NCCN) guideline
128	recommendations for post-operative management of these patients are based on
129	unverified expert opinion. 19 Therefore, the guidelines need validation.
130	

131	We evaluated the survival impact of four different adjuvant therapy options, after
132	incomplete resection, in the National Cancer Database (NCDB) to determine which
133	options seemed best for patients grouped into stage clusters as in the NCCN
134	guidelines. ¹⁹
135	Methods
136	Cohort selection. We used the NCDB, an oncology database sourced from Commission
137	on Cancer-accredited facilities, which covers approximately 70% of newly diagnosed
138	US cancer cases. ^{20,21} We selected patients with surgically resected pathologic stage I-
139	IIIA NSCLC from 2004-2011 (International Classification of Disease for Oncology, 9th
140	edition [ICD-9-CM] site codes C34.0 - C34.9), excluding patients with missing
141	information on last date of contact, administration (or date of administration) of radiation
142	or chemotherapy, facility or patient location. We also excluded patients with more than
143	one surgical procedure, neoadjuvant radiation or chemotherapy, no (or unknown) nodal
144	examination, adjuvant therapy more than 180 days past date of diagnosis, government
145	insurance and death within 60 days of surgery.
146	
147	Objectives. The primary objective of this analysis was to compare stage-specific
148	survival between post-operative therapy modalities in patients with incomplete surgical
149	resection (R1/R2) who did not undergo re-resection. We used a parallel analysis of R0
150	patients to evaluate whether our data and methodology produced results congruent with
151	existing high-level evidence for treatment of R0 patients.
152	
153	Adjuvant therapy options. We classified post-operative therapy modalities as
154	chemotherapy, radiotherapy, chemoradiation, or no treatment. Therapy administered

155	within six months after surgery, at any dose level, was included as post-operative
156	therapy. The median time from surgery to onset of treatment, by modality, is reported in
157	Supplemental Table I. For combined modality chemoradiation therapy, the second
158	modality had to begin within 2 months of the end of the first. The time from surgery to
159	initiation of adjuvant therapy was evaluated to verify that adjuvant modalities were not
160	typically used for the purpose of salvage therapy in this cohort.
161	
162	NCCN stage groups and adjuvant therapy guidelines. NCCN recommendations for
163	adjuvant therapy are based on pathologic stage, categorized into the following four
164	groups: 1. Stage IA (T1ab, N0); 2. Stage IB (T2a, N0) and Stage IIA (T2b, N0); 3. Stage
165	IIA (T1ab-T2a, N1) and Stage IIB (T3, N0; T2b N1); 4. Stage IIIA (T1-3, N2; T3, N1).
166	The NCCN-recommended non-surgical adjuvant therapy for group 1 is PORT; for group
167	2, PORT with or without chemotherapy; for groups 3 and 4, chemoradiation (sequential
168	or concurrent) for R1 and concurrent chemoradiation for R2. ¹⁹
169	
170	Variables. Margin status was evaluated as negative (R0) or positive (R1, R2 or positive
171	not otherwise specified), and in subsequent analyses R1 and R2 were evaluated
172	individually. Covariates (detailed in Table 1 and Supplemental Table I) in the analysis
173	included patient demographic (age, sex, race, insurance status, income, rural/urban
174	residence, census region), and clinical characteristics (number of comorbidities [0,1, or
175	≥2], histology, tumor grade, tumor size, primary site, type of surgery), as well as
176	institutional characteristics (facility type).

Overall survival (OS) times were taken from the date of surgery until the date of death or last follow-up. Survival analyses were conducted to compare the four post-operative treatment modalities within each of the four stage groups. OS was estimated using the Kaplan-Meier method and post-operative treatment groups were compared using the log-rank test.

OS comparisons were also evaluated using univariate Cox proportional hazards models and multiple variable Cox proportional hazards models to adjust for covariates. Model-based hazard ratio estimates are reported with 95% confidence intervals. For each model we present unadjusted hazard ratios and hazard ratios adjusted for demographic, clinical, surgical, and institutional characteristics. The proportional hazards assumption was evaluated graphically, using log(-log) survival plots by treatment group. We used 'no adjuvant treatment' as the reference adjuvant therapy option, since there is no clinical trial evidence to support adjuvant therapy after incomplete NSCLC resection. P-values less than 0.05 were considered statistically significant with no adjustment for multiple comparison and all analyses were conducted in SAS Version 9.4 (Cary, NC). ²²

Sensitivity Analyses. We conducted multiple sensitivity analyses to address specific details of the analysis. First, the specific type of positive resection (R1 or R2) was unknown for some margin-positive patients. We evaluated the sensitivity of our results

201	to margin-positivity of unknown type by conducting multiple analyses in which we
202	grouped them as R1, R2, and eliminated them.
203	
204	Additional sensitivity analyses were conducted to evaluate if departures from
205	proportional hazards or the large number of covariates adjusted for in each model could
206	impact the observed results from primary analysis. In these analyses, propensity-score
207	adjusted models were used to control for demographic, clinical, surgical, and
208	institutional characteristics with a propensity score, which was entered into the model as
209	a covariate. ²³
210	
211	Finally, we evaluated the potential impact of departures from the proportional hazards
212	assumption by re-evaluating the multiple variable Cox models after eliminating any
213	exposure groups where the assumption was questionable.
214	
215 216	Results
217	A total of 82,440 patients were eligible: 3461 (4%) with incomplete resection, the
218	primary analysis group of interest (Figure 1), and 78,979 (96%) with R0 resection
219	(Supplemental Figure I), used to validate our analytic approach. The demographic and
220	clinical characteristics of these patients, stratified by NCCN stage group (Table 1A [non-
221	R0] and Supplemental Table IIA [R0]) and adjuvant therapy exposure (Table 1B [non-
222	R0] and Supplemental Table IIB [R0]), are presented.
223	

224	Early-stage patients with incomplete resection: NCCN groups 1 and 2. OS estimates
225	were compared by treatment modality in margin-positive patients with stage IA (T1ab,
226	N0) and stages IB/IIA (T2a, N0 and T2b, N0). Margin-positive stage IA patients who
227	received PORT alone had significantly lower OS compared to those with no treatment
228	(5-Year OS: 26% vs. 58%, p-value=0.0030, Table 2, Figure 2A). This result trended
229	towards statistical significance in the fully adjusted model (aHR: 1.7, p-value=0.0551,
230	Table II). Similarly, for stage IB/IIA patients, the 5-year OS was 47% with no treatment,
231	and 25% with PORT (p-value=0.0251; aHR 1.28, p-value=0.12) (Table 2, Figure 2B).
232	
233	We found no significant association between chemotherapy and survival in stage IA
234	patients with positive margins. However, survival was significantly higher in persons
235	with stages IB-IIA who received post-operative chemotherapy compared to no treatment
236	(5-Year OS: 62% vs. 47%, p-value=0.0065, Table 2, Fig 2B). These results remained
237	statistically significant in fully-adjusted models (aHR 0.58, p-value=0.0040, Table 2).
238	Sensitivity analysis using propensity score-adjusted models (Supplemental Table III)
239	and those that did not consider treatment groups where the proportional hazards
240	assumption may be violated (Supplemental Table IV) provided consistent results.
241	Survival with chemoradiation was not significantly different from no adjuvant treatment
242	in group 1 or 2 patients (Table 2).
243	
244	Late-stage patients with incomplete resection: NCCN groups 3 and 4. In margin-positive
245	NCCN group 3, patients with Stage IIA (T1ab-T2a, N1) or Stage IIB (T3, N0;T2b N1),
246	those who received radiation had a similar survival experience to those who received no

247	treatment (5-Year OS: 26% vs. 27%, p-value= 0.59, Figure 2C, Table 2). Recipients of
248	chemotherapy or chemoradiation had superior survival (p-values<0.0010, Table 2,
249	Figure 2C). Results were similar in fully adjusted models, where the chemotherapy
250	group had 0.72 times the hazard of death compared to no treatment (p-value=0.0041),
251	and the chemoradiation group had 0.74 times the hazard of death (p-value=0.0083).
252	
253	Subsequent analysis found no substantial differences in survival in the chemoradiation
254	group based on the order in which therapies were administered (Supplemental Table
255	V). When evaluated separately, patients receiving chemotherapy first and then
256	radiation had 37% 5-Year OS compared to 36% for patients receiving radiation first and
257	then chemotherapy and 38% for those receiving both concurrently (Supplemental Table
258	V).
259	
260	Consistent with NCCN guidelines, margin-positive patients with stage IIA or stage IIB
261	were further delineated based on the specific type of incomplete resection, R1, R2, or
262	unknown (margin-positive, but type not specified). Although potentially limited by
263	smaller sample sizes, results were largely consistent with those observed for all margin-
264	positive patients combined (Supplemental Table VI).
265	
266	In margin-positive NCCN group 4, patients with Stage IIIA (T1-3, N2; T3, N1), 5-year
267	OS was similar between patients who received PORT (10%) and no treatment (12%, p-
268	value=0.52, Fig 2d). However, compared with no treatment, patients with
269	chemotherapy alone had higher 5-year OS (21% vs. 12%, p-value=0.0045), as did

270	those with chemoradiation (25%, p-value <0.0001). Fully adjusted models confirmed
271	these findings (Table 2). Specifically, the patients had a lower hazard of death in both
272	the chemotherapy group (aHR=0.77, p-value= 0.0466) and the chemoradiation group
273	(aHR 0.63, p-value <0.0001), compared to no treatment.
274	
275	Analysis of margin-positive patients with stage IIIA, after further stratification into R1 or
276	R2 subsets, yielded similar results to the combined cohort (Supplemental Table VI).
277	Similar to group 3 patients, we found no meaningful difference in survival in Stage IIIA
278	patients based on the order that chemoradiation was received (Supplemental Table V).
279	
280	Validation analysis with margin-negative resections. We applied the same analysis to
281	the R0 resection cohort in a parallel analysis. Five-year OS, unadjusted proportional
282	hazards models, and adjusted proportional hazards models in this cohort are presented
283	in Table 3 and Supplemental Figure II. We further delineated the stage IIIA margin-
284	negative survival analysis by pN-category (N0/N1 vs. N2) to match the NCCN
285	guidelines subsets and evaluated their comparative OS based on adjuvant therapy
286	exposure (Supplemental Table VII). The pattern of adjuvant therapy benefit in our
287	analysis matched up with the evidence-based NCCN guidelines for R0 resection (Table
288	4).
289	
290	Comparison with NCCN Recommendations Results from margin-positive and margin-
291	negative analyses by stage groups are summarized qualitatively in Table 4, and are
292	compared with the current NCCN recommendations.

Discussion

We compared OS between post-operative adjuvant therapy modalities in patients with completely and incompletely resected NSCLC, to determine if current NCCN recommendations are supported by a robust nationally-representative dataset. Our primary interest was in the patients with incomplete resection, but we used the R0 cohort to validate our methodology, and the suitability of the NCDB for this purpose. This analysis consistently corroborated NCCN guidelines backed by high-level clinical trial evidence, but did not support current recommendations in several scenarios after incomplete resection, where the available evidence is sparse.

In patients with completely resected stage IA NSCLC, RCT have shown no benefit from adjuvant therapy. ^{4,6} In stage IB-IIB, RCTs and a pooled analysis including the five largest studies, have shown an increase in overall and relapse-free survival with post-operative Cisplatin-based chemotherapy compared to observation. ^{4-6,11} Our analysis of the R0 cohort is consistent with this evidence. Specifically, patients with completely resected stage IB-IIA NSCLC who received chemotherapy had results superior to all other treatment groups. In patients with completely resected stage IIIA NSCLC, current evidence supports chemotherapy for those with N0 or N1, and chemotherapy or chemoradiation for those with N2, which is the current NCCN recommendation. ¹⁹ The R0 cohort analysis supports the use of chemotherapy in N0 and N1 patients, and chemotherapy with or without radiation in patients with N2.

317	Incomplete resections occur relatively infrequently, and adjuvant therapy trials
318	specifically exclude these patients. ^{4-7,10,11,24} Therefore, there is no definitive evidence
319	on the best choice of post-operative therapy in this situation. 16-18 NCCN guidelines
320	currently recommend PORT for group 1 (stage IA), PORT with or without chemotherapy
321	for group 2 (stage IB and IIA), and chemoradiation for groups 3 (stage IIA with N1 and
322	IIB) and 4 (T3N1 and T1-3,N2). 19 Our analysis supports observation for group 1,
323	chemotherapy only for group 2, chemotherapy with or without radiation for group 3, and
324	chemoradiation therapy for group 4. This analysis supports the NCCN
325	recommendations for groups 3 and 4, but suggests that the current recommendations
326	may be harmful to patients in groups 1 and 2. It also does not support the use of PORT
327	alone in any subset.
328	
329	Recent publications using the NCDB have provided conflicting results on the value of
330	PORT after incomplete resection. Hancock found that chemotherapy or chemotherapy
331	plus PORT provided superior results for stages I-III. 18 However patients who received
332	PORT alone after incomplete resection had unimproved (stage II-III) or worse (stage I)
333	survival. Wang reported slightly longer survival in patients completing a full regime of
334	PORT at 50-74 Gy post-operatively. ²⁵ Key differences in our study may explain the
335	conflicting results.
336	
337	Our analysis of the NCDB used the NCCN adjuvant therapy stage groupings in an
338	attempt to validate the treatment guidelines. Therefore, we further delineated stage I
339	patients by pT-category and stage IIA patients by pN-category. This delineation,

coupled with the broader timeline (2004-2011 vs. 2003-2006), may explain the subtle difference between our findings and those of Hancock. Both studies found that early-stage patients receiving PORT alone had shorter survival. However, we found the best survival for early-stage (NCCN group 2) patients was with chemotherapy alone compared with Hancock's findings that chemotherapy with or without PORT both showed similar survival that was superior to no adjuvant treatment or PORT alone for the undilineated group of stage II and III patients.

The report by Wang, supporting the use of PORT in Stage II-III patients with incomplete resection, differed from our work by evaluating only patients with an optimal PORT experience. Specifically, Wang excluded all patients who died within 120 days of surgery, and only included patients who completed optimal-dose radiation. A less optimal classification of PORT use is more pragmatic and provides better information for treatment of patients, whose ability to receive a full treatment regime of PORT cannot be known at the time of treatment decision. Patients who died as a result of acute radiation complications would have been excluded from their analysis. Another difference is that they treated chemotherapy as a confounding variable rather than a separate treatment option as we, and Hancock, have done.

Our PORT analysis group included all persons who survived 60 days post-surgery and received treatment with PORT within 6 months of surgery. Patients who discontinued PORT or received PORT at a less-than-optimal dose were included to adhere to the intention-to-treat principle and avoid potential selection bias. Because treatment with

PORT alone may be carried out differently than PORT with chemoth	erapy, we
considered these two treatment options separately to better represen	nt clinical practice
and to avoid the potential for residual confounding by controlling for	chemotherapy use
exclusively through statistical modeling.	

This retrospective study has several limitations. We have expressly excluded the primary recommendation of re-resection for non-R0 resections because of the relatively small number of such patients in the database. Ideally, PORT is preferably commenced within 60 days. We used a 6-month eligibility window, as others have done in these types of analyses, to reflect the practical reality that some patients start adjuvant therapy late. The median time to onset of PORT alone was 52 days, and 75% of patients initiated therapy within 74 days. This suggests that PORT was used adjuvantly, and not for salvage therapy after disease progression. However, it is impossible to verify the clinical circumstances around any of the treatments.

The NCDB covers 70% of all lung cancer cases in the US, drawing from a diverse group of hospitals. However, results may not apply directly to substantially different institutions. Although the NCDB is thorough, incomplete and inaccurate data are still potential problems. Although we addressed this limitation for critical variables by validating our results with sensitivity analyses, unequal assignment of post-operative treatment modalities may have impacted our results and the sample size of some analysis subsets may be too small for meaningful statistical inference. Outside a well-executed RCT, this remains a potential explanation for differences observed in all

386	studies of this question. We have addressed this limitation, as well as possible, with
387	extensive adjustment by statistical analysis.
388 389	The lack of observed benefit from PORT or chemoradiation in early-stage patients after
390	incomplete resection parallels the current evidence in completely resected patients; the
391	impact of radiation therapy in reducing the increased cancer-related mortality risk after
392	incomplete resection does not seem to overcome the excessive treatment-related
393	mortality risk of PORT. ²⁶ Chemotherapy appears to be valuable to some degree across
394	stage groups; patients with mediastinal nodal metastasis seem to benefit from
395	chemotherapy or combined-modality chemoradiation.
396	
397	Well-conducted retrospective evaluations can lead to conflicting conclusions based on
398	selection criteria for assigning treatment groups after the fact. An inherent imbalance
399	between treatment groups prior to treatment initiation is likely when treatment is
400	selected based on physician decision after individual patient assessment. Statistical
401	adjustment is unlikely to completely eliminate such confounding-by-indication.
402	
403	This study provides the most comprehensive evaluation of NCCN guidelines for
404	postoperative therapy to date. Results are largely consistent with high-level evidence
405	available after complete surgical resection. In patients with incomplete resection, where
406	the available evidence is far less, these data did not support the use of PORT in early-
407	stage patients. All available evidence in incompletely-resected patients is lower-level,
408	and results are discrepant. Only RCTs can definitively determine the best adjuvant
409	therapy for incompletely resected NSCLC.

4	10	

Such a trial will be challenging to execute because of the relatively low incidence of incomplete resections, and the practical reality that incomplete resections are least frequent in the types of institutions that typically conduct clinical trials. However, infrastructure such as the National Cancer Institute's Community Oncology Research Program can be harnessed to support such a trial. The possibility of patient harm in the existing evidence void should stimulate the political will to resolve this question.

418	Acknowledgements
419	This study used the National Cancer Data Base. The authors acknowledge the efforts of
420	the American College of Surgeons, the Commission on Cancer, and the American
421	Cancer Society in the creation of the National Cancer Data Base. All statements in this
422	report, including its findings and conclusions, are solely those of the authors and do not
423	necessarily represent the views of the American College of Surgeons, the Commission
424	on Cancer, the American Cancer Society, and the Patent-Centered Outcomes
425	Research Institute, its board of governors, or its methodology committee. Dr. Chun
426	Chieh Lin had full access to all of the data in the study and takes responsibility for the
427	integrity of the data and the accuracy of the data analysis.
428	
429	Sources of Funding
430	Dr. Osarogiagbon and Dr. Smeltzer were partially supported by RO1CA172253 and
431	PCORI IH-1304-6147. Drs. Jemal and Lin were supported by the American Cancer
432	Society intramural research funding. Dr. Kong was supported by R01CA142840,
433	P01CA59827 and R01CA66948.
434	
435	Disclosures
436	Dr. Osarogiagbon has served as a consultant for Roche/Genentech and speaker for
437	Pfizer and Roche/Genentech. Dr. Kong has received research funding and travel
438	support and speaker's honorarium from Varian Medical System. The remaining authors
439	declare no conflict of interest.
440	

441		
442 443	Refer	rences
444 445	1.	Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. <i>CA: a cancer journal for clinicians</i> . 2014;64(1):9-29.
446 447 448	2.	Pfannschmidt J, Muley T, Bulzebruck H, Hoffmann H, Dienemann H. Prognostic assessment after surgical resection for non-small cell lung cancer: experiences in 2083 patients. <i>Lung cancer</i> . 2007;55(3):371-377.
449 450 451	3.	Little AG, Rusch VW, Bonner JA, Gaspar LE, Green MR, Webb WR, Stewart AK. Patterns of surgical care of lung cancer patients. <i>The Annals of thoracic surgery</i> . 2005;80(6):2051-2056; discussion 2056.
452 453 454	4.	Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. <i>N Engl J Med.</i> 2004;350(4):351-360.
455 456 457 458 459	5.	Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C, Cormier Y, Goss G, Inculet R, Vallieres E, Fry W, Bethune D, Ayoub J, Ding K, Seymour L, Graham B, Tsao MS, Gandara D, Kesler K, Demmy T, Shepherd F. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. <i>N Engl J Med.</i> 2005;352(25):2589-2597.
460 461 462 463 464	6.	Pignon JP, Tribodet H, Scagliotti GV, Douillard JY, Shepherd FA, Stephens RJ, Dunant A, Torri V, Rosell R, Seymour L, Spiro SG, Rolland E, Fossati R, Aubert D, Ding K, Waller D, Le Chevalier T. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. <i>Journal of clinical oncology: official journal of the American Society of Clinical Oncology.</i> 2008;26(21):3552-3559.
465 466 467 468 469	7.	Lally BE, Zelterman D, Colasanto JM, Haffty BG, Detterbeck FC, Wilson LD. Postoperative radiotherapy for stage II or III non-small-cell lung cancer using the surveillance, epidemiology, and end results database. <i>Journal of clinical oncology:</i> official journal of the American Society of Clinical Oncology. 2006;24(19):2998-3006.
470 471 472 473	8.	Keller SM, Adak S, Wagner H, Herskovic A, Komaki R, Brooks BJ, Perry MC, Livingston RB, Johnson DH. A randomized trial of postoperative adjuvant therapy in patients with completely resected stage II or IIIA non-small-cell lung cancer. Eastern Cooperative Oncology Group. N <i>Engl J Med.</i> 2000;343(17):1217-1222.
474 475 476	9.	Weisenburger TH. Effects of postoperative mediastinal radiation on completely resected stage II and stage III epidermoid cancer of the lung. LCSG 773. <i>Chest.</i> 1994;106(6 Suppl):297S-301S.

- Douillard JY, Rosell R, De Lena M, Riggi M, Hurteloup P, Mahe MA. Impact of postoperative radiation therapy on survival in patients with complete resection and stage I, II, or IIIA non-small-cell lung cancer treated with adjuvant chemotherapy: the adjuvant Navelbine International Trialist Association (ANITA) Randomized Trial. *International journal of radiation oncology, biology, physics.* 2008;72(3):695-701.
- Butts CA, Ding K, Seymour L, Twumasi-Ankrah P, Graham B, Gandara D,
 Johnson DH, Kesler KA, Green M, Vincent M, Cormier Y, Goss G, Findlay B,
 Johnston M, Tsao MS, Shepherd FA. Randomized phase III trial of vinorelbine plus cisplatin compared with observation in completely resected stage IB and II non-small-cell lung cancer: updated survival analysis of JBR-10. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology.* 2010;28(1):29-34.
- 490 12. Postoperative radiotherapy in non-small-cell lung cancer: systematic review and 491 meta-analysis of individual patient data from nine randomised controlled trials. 492 PORT Meta-analysis Trialists Group. *Lancet.* 1998;352(9124):257-263.
- 493 13. Burdett S, Stewart L, Group PM-a. Postoperative radiotherapy in non-small-cell lung cancer: update of an individual patient data meta-analysis. *Lung cancer*. 495 2005;47(1):81-83.

496

- Lequaglie C, Conti B, Brega Massone PP, et al. Unsuspected residual disease at the resection margin after surgery for lung cancer: fate of patients after long-term follow up. Eur J Cardiothorac Surg 2003;23(2):229-32.
- 500 15. Kayser K, Anyanwu E, Bauer HG, et al. Tumor presence at resection boundaries 501 and lymph-node metastasis in bronchial carcinoma patients. Thorac Cardiovasc 502 Surgeon 1993;41(5):308-11.
- Osarogiagbon RU, Lin CC, Smeltzer MP, Jemal A. Prevalence, Prognostic
 Implications, and Survival Modulators of Incompletely Resected Non-Small Cell
 Lung Cancer in the U.S. National Cancer Data Base. *Journal of thoracic* oncology: official publication of the International Association for the Study of
 Lung Cancer. 2016;11(1):e5-e16.
- Wind J, Smit EJ, Senan S, Eerenberg JP. Residual disease at the bronchial
 stump after curative resection for lung cancer. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic
 Surgery. 2007;32(1):29-34.
- Hancock JG, Rosen JE, Antonicelli A, Moreno A, Kim AW, Detterbeck FC, Boffa DJ. Impact of adjuvant treatment for microscopic residual disease after non-small cell lung cancer surgery. *Ann Thorac Surg.* 2015;99(2):406-413.

515 516 517 518	19.	National Compreshensive Cancer Network. Non-Small Cell Lung Cancer NCCN guidelines Version 2 (2015). www.nccn.org/professionals/physician_gls/pdf/nscl.pdf . Accessed December 16, 2014.
519 520	20.	American College of Surgeons. Programs: National Cancer Data Base, 2011. http://www.facs.org/cancer/ncdb/index.html . Accessed December 16, 2014.
521 522 523	21.	Lerro CC, Robbins AS, Phillips JL, Stewart AK. Comparison of cases captured in the national cancer data base with those in population-based central cancer registries. <i>Ann Surg Oncol.</i> 2013;20(6):1759-1765.
524 525	22.	Rothman KJ. No adjustments are needed for multiple comparisons. <i>Epidemiology</i> . 1990;1(1):43-6.
526 527 528	23.	Austin P. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. <i>Multivariate Behav Res.</i> 2011; 46(3): 399–424.
529 530 531	24.	Effects of postoperative mediastinal radiation on completely resected stage II and stage III epidermoid cancer of the lung. The Lung Cancer Study Group. <i>The New England journal of medicine</i> . 1986;315(22):1377-1381.
532 533 534 535 536	25.	Wang EH, Corso CD, Rutter CE, Park HS, Chen AB, Kim AW, Wilson LD, Decker RH, Yu JB. Postoperative Radiation Therapy Is Associated With Improved Overall Survival in Incompletely Resected Stage II and III Non-Small-Cell Lung Cancer. <i>Journal of clinical oncology: official journal of the American Society of Clinical Oncology.</i> 2015;33(25):2727-2734.
537 538 539 540 541	26.	Lally BE, Detterbeck FC, Geiger AM, Thomas CR Jr, Machtay M, Miller AA, Wilson LD, Oaks TE, Petty WJ, Robbins ME, Blackstock AW. The risk of death from heart disease in patients with nonsmall cell lung cancer who receive postoperative radiotherapy: analysis of the Surveillance, Epidemiology, and End Results database. <i>Cancer.</i> 2007;110(4):911-917.
542		
543		
544		
545		
546		

547 548	Figure legends
549 550	Figure 1. Study consort diagram for margin positive patients
551 552 553 554 555 556 557	Figure 2. Kaplan Meier survival curves for margin positive patients categorized by National Comprehensive Cancer Network adjuvant therapy stage groups. The log-rank p-value tests the null hypothesis that all 4 groups have similar survival. a.) Group 1- stage IA (T1ab, N0); b.) Group 2- stage IB (T2a, N0) and Stage IIA (T2b, N0); c.) Group 3- stage IIA (T1ab-T2a, N1) and stage IIB (T3, N0; T2b N1); d.) Group 4- stage IIIA (T1-3, N2; T3, N1).
559 560 561 562 563 564	Central Figure. Kaplan Meier Survival Curves for Margin Positive Patients in Stage IB (T2a, N0) and Stage IIA (T2b, N0).
565	
566	
567	
568	
569	
570	

 Table 1A. Patient Demographic and Institutional Characteristics Among Margin Positive Patients by Stage Group.

Categories	Total	Stage IA(T1ab,N0)	Stage IB (T2a,N0) & IIA (T2b,N0)	Stage IIA(T1ab- T2a,N1) & IIB	Stage IIIA(T1- T3,N2; T3,N1)	p-value
	N=3461	N=369	N=857	N=1317	N=918	
	N (%)	N (%)	N (%)	N (%)	N (%)	
Age Group						
18-49	227 (7)	16 (4)	40 (5)	90 (7)	81 (9)	< .0001
50-64	1190 (34)	105 (28)	247 (29)	476 (36)	362 (39)	
65-74	1230 (36)	141 (38)	328 (38)	458 (35)	303 (33)	
75-90	814 (24)	107 (29)	242 (28)	293 (22)	172 (19)	
Sex						
Male	1851 (53)	159 (43)	436 (51)	766 (58)	490 (53)	< .0001
Female	1610 (47)	210 (57)	421 (49)	551 (42)	428 (47)	
Race/Ethnicity					, , , , , , , , , , , , , , , , , , ,	
Non-Hispanic, White	2653 (77)	287 (78)	670 (78)	1000 (76)	696 (76)	0.2
Hispanic	73 (2)	10 (3)	14 (2)	27 (2)	22 (2)	
Black	342 (10)	39 (11)	79 (9)	123 (9)	101 (11)	
Other	88 (3)	6 (2)	16 (2)	48 (4)	18 (2)	
Missing	305 (9)	27 (7)	78 (9)	119 (9)	81 (9)	
Insurance	07 (2)	C (2)	40 (2)	40 (2)	22 (2)	. 0001
Uninsured	87 (3)	6 (2)	19 (2)	40 (3)	22 (2)	< .0001
Medicaid	176 (5)	15 (4)	36 (4)	63 (5)	62 (7)	
Younger Medicare	219 (6)	22 (6)	42 (5)	74 (6)	81 (9)	
Older Medicare	1758 (51)	221 (60)	497 (58)	635 (48)	405 (44)	
Private	1184 (34)	103 (28)	257 (30)	485 (37)	339 (37)	
Missing	37 (1)	2 (1)	6 (0)	20 (2)	9 (1)	
Median Income-Quartile	470 (44)	F2 /4 4\	117 (14)	100 (14)	120 (14)	0.04
\$30,000 \\\$30,0000 \\\$30,0	478 (14)	52 (14)	117 (14)	180 (14)	129 (14)	0.84
\$35,000- \$45,999	708 (20)	67 (18)	175 (20)	276 (21)	190 (21)	
\$35,000- \$45,999 \$46,000+	999 (29)	100 (27)	242 (28) 275 (32)	382 (29) 407 (31)	275 (30) 287 (31)	
546,000+ Missing	1095 (32) 181 (5)	126 (34)	48 (6)	72 (5)	37 (4)	
Comorbidity	101 (3)	24 (7)	46 (0)	72 (3)	37 (4)	
0	1611 (47)	144 (39)	387 (45)	623 (47)	457 (50)	0.014
	1011 (47)	144 (39)				0.014
1 2+	580 (17)	76 (21)	321 (37) 149 (17)	491 (37) 203 (15)	309 (34) 152 (17)	
Histology	360 (17)	70 (21)	149 (17)	203 (13)	132 (17)	
NOS	9 (0)	1 (0)	1 (0)	7 (1)	0 (0)	< .0001
Large Cell	177 (5)	14 (4)	1 (0) 34 (4)	7 (1) 70 (5)	59 (6)	< .0001
Squamous	1340 (39)	121 (33)	335 (39)	572 (43)	312 (34)	
Other	248 (7)	16 (4)	49 (6)	110 (8)	73 (8)	
Adenocarcinoma	1687 (49)	217 (59)	438 (51)	558 (42)	474 (52)	
Tumor Grade	1087 (49)	217 (39)	438 (31)	338 (42)	474 (32)	
well/moderately						
differentiated	1688 (49)	244 (66)	477 (56)	579 (44)	388 (42)	< .0001
poorly/undifferentiated	1641 (47)	105 (28)	343 (40)	695 (53)	498 (54)	
Unknown	132 (4)	20 (5)	37 (4)	43 (3)	32 (3)	
Tumor Size	132 (4)	20 (3)	37 (4)	43 (3)	32 (3)	
≤3cm	1339 (39)	356 (96)	279 (33)	418 (32)	286 (31)	< .0001
>3cm-≤5cm	1156 (33)	3 (1)	367 (43)	457 (35)	329 (36)	1.0001
>5cm	940 (27)	8 (2)	207 (24)	428 (33)	297 (32)	
Unknown	26 (1)	2(1)	4 (0)	14 (1)	6 (1)	
Rural/Urban	(+)	- (+)	. (0)	- · (-/	~ (±/	
Rural	664 (19)	65 (18)	165 (19)	263 (20)	171 (19)	0.46
Urban	2582 (75)	279 (76)	631 (74)	970 (74)	702 (76)	5.10
Unknown	215 (6)	25 (7)	61 (7)	84 (6)	45 (5)	
Census Region	(0)	(,)	Q= (. /	0.(0)	.5 (5)	

		ACCEPT	ED MANUSC.	RIPT		
Northeast	572 (17)	72 (20)	136 (16)	207 (16)	157 (17)	0.58
Midwest	1100 (32)	108 (29)	283 (33)	409 (31)	300 (33)	
South	1366 (39)	150 (41)	327 (38)	532 (40)	357 (39)	
West	423 (12)	39 (11)	111 (13)	169 (13)	104 (11)	
Primary Site		, ,	. ,		, ,	
C340- Main bronchus	54 (2)	1 (0)	13 (2)	15 (1)	25 (3)	< .0001
C341-upper lobe	2068 (60)	224 (61)	474 (55)	854 (65)	516 (56)	
C342-Middle lobe	174 (5)	22 (6)	54 (6)	46 (3)	52 (6)	
C343-Lower lobe	976 (28)	113 (31)	278 (32)	335 (25)	250 (27)	
C348-Overlapping lesion	124 (4)	3 (1)	28 (3)	40 (3)	53 (6)	
C349-Lung NOS	65 (2)	6 (2)	10 (1)	27 (2)	22 (2)	
T category						
T1	676 (20)	369 (100)	0 (0)	184 (14)	123 (13)	< .0001
T2	1773 (51)	0 (0)	857 (100)	536 (41)	380 (41)	
Т3	1012 (29)	0 (0)	0 (0)	597 (45)	415 (45)	
N Category						
NO	1823 (53)	369 (100)	857 (100)	597 (45)	0 (0)	< .0001
N1	964 (28)	0 (0)	0 (0)	720 (55)	244 (27)	
N2	674 (19)	0 (0)	0 (0)	0 (0)	674 (73)	
Surgery						
Sublobar	420 (12)	114 (31)	95 (11)	109 (8)	102 (11)	< .0001
Lobe/bilobectomy	2643 (76)	250 (68)	703 (82)	1060 (80)	630 (69)	
Pneumonectomy	398 (12)	5 (1)	59 (7)	148 (11)	186 (20)	
Facility type						
Community Cancer Program	329 (10)	31 (8)	75 (9)	139 (11)	84 (9)	0.75
Comprehensive Community	1772 (51)	191 (52)	445 (52)	679 (52)	457 (50)	
Cancer Program	1772 (31)	191 (32)	443 (32)	0/9 (32)	457 (50)	
Teaching/Research Cancer	738 (21)	79 (21)	188 (22)	274 (21)	197 (22)	
Program	730 (21)	13 (21)	100 (22)	2/4 (21)	13/ (22)	
NCI Program/Network	299 (9)	39 (11)	72 (8)	104 (8)	84 (9)	
Other	323 (9)	29 (8)	77 (9)	121 (9)	96 (10)	

Table 1B. Patient Demographic and Institutional Characteristics Among Margin Positive Patients by Adjuvant Therapy.

Categories	Total	No Treatment	Chemotherapy	Radiation therapy	Chemoradiation	p-value
	N=3461	N=1406	N=645	N=447	N=963	
	N (%)	N (%)	N (%)	N (%)	N (%)	
Stage Group						
Stage IA	369 (11)	265 (19)	19 (3)	60 (13)	25 (3)	< .0001
Stage IB & IIA	857 (25)	477 (34)	142 (22)	119 (27)	119 (12)	
Stage IIA & IIB	1317 (38)	419 (30)	284 (44)	199 (45)	415 (43)	
Stage IIIA	918 (27)	245 (17)	200 (31)	69 (15)	404 (42)	
Age Group						
18-49	227 (7)	66 (5)	44 (7)	14 (3)	103 (11)	< .0001
50-64	1190 (34)	390 (28)	271 (42)	106 (24)	423 (44)	
65-74	1230 (36)	508 (36)	227 (35)	170 (38)	325 (34)	
75-90	814 (24)	442 (31)	103 (16)	157 (35)	112 (12)	
Sex	7					
Male	1851 (53)	735 (52)	337 (52)	240 (54)	539 (56)	0.31
Female	1610 (47)	671 (48)	308 (48)	207 (46)	424 (44)	
Race/Ethnicity						
Non-Hispanic, White	2653 (77)	1087 (77)	475 (74)	350 (78)	741 (77)	0.18
Hispanic	73 (2)	35 (2)	15 (2)	8 (2)	15 (2)	
Black	342 (10)	147 (10)	67 (10)	34 (8)	94 (10)	
Other	88 (3)	29 (2)	18 (3)	17 (4)	24 (2)	
Missing	305 (9)	108 (8)	70 (11)	38 (9)	89 (9)	
Insurance						

		ACCEPTE	D MANUSCF	RIPT		
Uninsured	87 (3)	37 (3)	14 (2)	9 (2)	27 (3)	< .0001
Medicaid	176 (5)	69 (5)	23 (4)	23 (5)	61 (6)	
Younger Medicare	219 (6)	77 (5)	44 (7)	16 (4)	82 (9)	
Older Medicare	1758 (51)	823 (59)	275 (43)	296 (66)	364 (38)	
Private	1184 (34)	388 (28)	281 (44)	96 (21)	419 (44)	
Missing	37 (1)	12 (1)	8 (1)	7 (2)	10 (1)	
Median Income-Quartile	37 (1)	12 (1)	0 (1)	7 (2)	10 (1)	
<\$30,000	478 (14)	196 (14)	79 (12)	72 (16)	131 (14)	0.25
\$30,000-\$34,999						0.23
	708 (20)	281 (20)	139 (22)	81 (18)	207 (22)	
\$35,000- \$45,999	999 (29)	405 (29)	171 (27)	132 (30)	291 (30)	
\$46,000+	1095 (32)	448 (32)	211 (33)	139 (31)	297 (31)	
Missing	181 (5)	76 (5)	45 (7)	23 (5)	37 (4)	
Comorbidity						
0	1611 (47)	634 (45)	331 (51)	183 (41)	463 (48)	0.005
1	1270 (37)	511 (36)	225 (35)	179 (40)	355 (37)	
2+	580 (17)	261 (19)	89 (14)	85 (19)	145 (15)	
Histology						
NOS	9 (0)	3 (0)	2 (0)	1 (0)	3 (0)	
Large Cell	177 (5)	57 (4)	38 (6)	23 (5)	59 (6)	< .0001
Squamous	1340 (39)	524 (37)	214 (33)	216 (48)	386 (40)	
Other	248 (7)	90 (6)	46 (7)	32 (7)	80 (8)	
Adenocarcinoma	1687 (49)	732 (52)	345 (53)	175 (39)	435 (45)	
Tumor Grade	1007 (43)	732 (32)	343 (33)	175 (55)	433 (43)	
well/moderately						
	1688 (49)	753 (54)	307 (48)	208 (47)	420 (44)	
differentiated	4.6.44./47\	500 (42)	242 (40)	224 (40)	540 (54)	
poorly/undifferentiated	1641 (47)	590 (42)	312 (48)	221 (49)	518 (54)	< .0001
Unknown	132 (4)	63 (4)	26 (4)	18 (4)	25 (3)	
Tumor Size						
≤3cm	1339 (39)	654 (47)	212 (33)	172 (38)	301 (31)	
>3cm-≤5cm	1156 (33)	417 (30)	223 (35)	161 (36)	355 (37)	< .0001
>5cm	940 (27)	323 (23)	207 (32)	112 (25)	298 (31)	
Unknown	26 (1)	12 (1)	3 (0)	2 (0)	9 (1)	
Rural/Urban						
Rural	664 (19)	285 (20)	110 (17)	90 (20)	179 (19)	0.014
Urban	2582 (75)	1023 (73)	482 (75)	337 (75)	740 (77)	
Unknown	215 (6)	98 (7)	53 (8)	20 (4)	44 (5)	
Census Region	, ,		` ,	` '	` ,	
Northeast	572 (17)	234 (17)	106 (16)	79 (18)	153 (16)	< .0001
Midwest	1100 (32)	386 (27)	222 (34)	144 (32)	348 (36)	
South	1366 (39)	586 (42)	246 (38)	158 (35)	376 (39)	
West	423 (12)	200 (14)	71 (11)	66 (15)	86 (9)	
Primary Site	423 (12)	200 (14)	/ 1 (11)	00 (13)	80 (3)	
	F4 (2)	10 (1)	0 (1)	12 (2)	10 (2)	0.22
C340- Main bronchus	54 (2)	16 (1)	8 (1)	12 (3)	18 (2)	0.22
C341-upper lobe	2068 (60)	825 (59)	384 (60)	280 (63)	579 (60)	
C342-Middle lobe	174 (5)	76 (5)	34 (5)	14 (3)	50 (5)	
C343-Lower lobe	976 (28)	412 (29)	185 (29)	122 (27)	257 (27)	
C348-Overlapping lesion	124 (4)	45 (3)	22 (3)	16 (4)	41 (4)	
C349-Lung NOS	65 (2)	32 (2)	12 (2)	3 (1)	18 (2)	
T category	/					
T1	676 (20)	368 (26)	82 (13)	89 (20)	137 (14)	< .0001
T2	1773 (51)	757 (54)	388 (60)	191 (43)	437 (45)	
T3	1012 (29)	281 (20)	175 (27)	167 (37)	389 (40)	
N Category						
NO	1823 (53)	912 (65)	247 (38)	309 (69)	355 (37)	< .0001
N1	964 (28)	320 (23)	248 (38)	94 (21)	302 (31)	
N2	674 (19)	174 (12)	150 (23)	44 (10)	306 (32)	
Surgery	()	\ \ /		(==)	(0-)	
Sublobar	420 (12)	180 (13)	56 (9)	78 (18)	106 (11)	< .0001
Subiobai	720 (12)	100 (13)	30 (3)	,0 (10)	100 (11)	1.0001

		ACCEPTE	D MANUSCR	CIPT		
Lobe/bilobectomy Pneumonectomy Facility type	2643 (76) 398 (12)	1077 (77) 149 (11)	482 (75) 107 (17)	335 (75) 34 (8)	749 (78) 108 (11)	
Community Cancer Program	329 (10)	123 (9)	55 (9)	33 (7)	118 (12)	< .0001
Comprehensive Community Cancer Program	1772 (51)	687 (49)	328 (51)	249 (56)	508 (53)	
Teaching/Research Cancer Program	738 (21)	343 (24)	131 (20)	97 (22)	167 (17)	
NCI Program/Network Other	299 (9) 323 (9)	133 (9) 120 (9)	66 (10) 65 (10)	32 (7) 36 (8)	68 (7) 102 (11)	

Table 2. Kaplan Meier Survival Analysis and Proportional Hazards Models by Stage Group for Margin Positive Patients.

		Margin Positive				
	Post-Op Treatment	N	5 Year Overall Survival (%) (Logrank P-Value*)	Unadjusted Hazard Ratio (95% CI)	Adjusted Hazard Ratio** (95% CI)	P-Value*
	No Treatment	265	58 (Referent)	1.00 (Referent)	1.00 (Referent)	
Crown 4. Store IA (Table NO)	Chemo Only	19	65 (0.6687)	0.81 (0.35-1.86)	1.27 (0.48-3.38)	0.6369
Group 1: Stage IA (T1ab, N0)	Radiation Only	60	26 (0.0030)	1.97 (1.25-3.11)	1.68 (0.99-2.84)	0.0551
	Chemo + Rad	25	35 (0.0895)	1.69 (0.92-3.12)	0.96 (0.47-1.98)	0.9176
	No Treatment	477	47 (Referent)	1.00 (Referent)	1.00 (Referent)	
Group 2: Stage IB (T2a, N0) &	Chemo Only	142	62 (0.0065)	0.61 (0.43-0.87)	0.58 (0.40-0.84)	0.004
Stage IIA (T2b, N0)	Radiation Only	119	25 (0.0251)	1.39 (1.04-1.86)	1.28 (0.94-1.74)	0.1185
	Chemo + Rad	119	39 (0.3571)	1.15 (0.85-1.57)	0.97 (0.70-1.35)	0.8678
	No Treatment	419	27 (Referent)	1.00 (Referent)	1.00 (Referent)	
Group 3: Stage IIA (T1ab-T2a, N1) &	Chemo Only	284	36 (0.0001)	0.65 (0.53-0.81)	0.72 (0.58-0.90)	0.0041
Stage IIB (T3, N0;T2b N1)	Radiation Only	199	26 (0.5907)	1.06 (0.85-1.32)	0.94 (0.74-1.18)	0.5878
	Chemo + Rad	415	37 (<.0001)	0.68 (0.56-0.83)	0.76 (0.62-0.93)	0.0083
	No Treatment	245	12 (Referent)	1.00 (Referent)	1.00 (Referent)	
Crown 4. Chara III A (T4 2 NO. T0 N4)	Chemo Only	200	21 (0.0048)	0.70 (0.55-0.90)	0.77 (0.60-1.00)	0.0466
Group 4: Stage IIIA (T1-3, N2; T3, N1)	Radiation Only	69	10 (0.5215)	1.11 (0.81-1.51)	1.03 (0.74-1.43)	0.8729
	Chemo + Rad	404	25 (<.0001)	0.59 (0.48-0.72)	0.63 (0.51-0.79)	<.0001

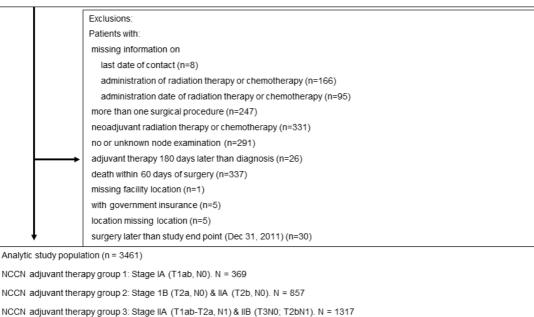
^{*}P-values compare each treatment to referent (no treatment) **Adjusted for Age, Sex, Race/Ethnicity, Insurance, Median Income, Comorbidity, Histology, Tumor Grade, Tumor Size, Rural/Urban, Census Region, Primary Site, T Category, N Category, Surgery Facility type, Facility Surgical % Lung Cancer, Facility % Medicaid or Uninsured

Table 3. Kaplan Meier Survival Analysis and Proportional Hazards Models by Stage Group for Margin Negative Patients.

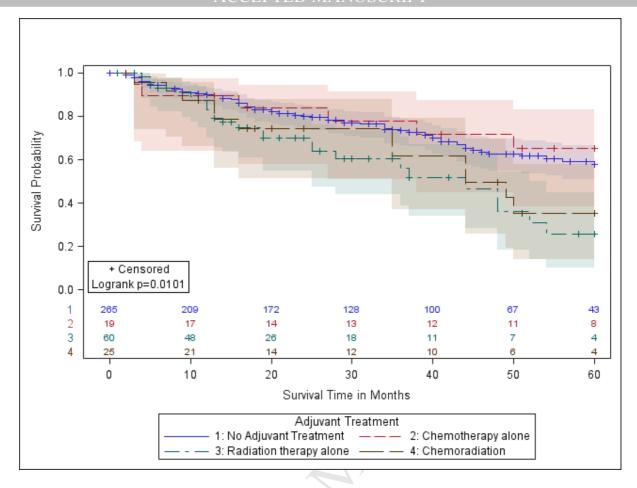
		Margin Negative				
	Post-Op Treatment	N	5 Year Overall Survival (%) (log-rank P-Value*)	Unadjusted Hazard Ratio (95% CI)	Adjusted Hazard Ratio** (95% CI)	P-Value*
	No Treatment	33780	71 (Referent)	1.00 (Referent)	1.00 (Referent)	
Crown 4: Store IA (Tack NO)	Chemo Only	789	74 (0.2946)	0.92 (0.78-1.08)	1.02 (0.87-1.20)	0.816
Group 1: Stage IA (T1ab, N0)	Radiation Only	136	44 (<.0001)	2.89 (2.22-3.73)	2.18 (1.67-2.85)	<.0001
	Chemo + Rad	76	40 (<.0001)	3.19 (2.21-4.59)	2.99 (2.07-4.31)	<.0001
	No Treatment	19281	57 (Referent)	1.00 (Referent)	1.00 (Referent)	
Group 2: Stage IB (T2a, N0) &	Chemo Only	4568	68 (<.0001)	0.68 (0.63-0.72)	0.74 (0.69-0.80)	<.0001
Stage IIA (T2b, N0)	Radiation Only	250	38 (<.0001)	1.92 (1.60-2.31)	1.8 (1.49-2.16)	<.0001
	Chemo + Rad	215	47 (0.0003)	1.47 (1.19-1.81)	1.41 (1.14-1.74)	0.0016
	No Treatment	6101	37 (Referent)	1.00 (Referent)	1.00 (Referent)	
Group 3: Stage IIA (T1ab-T2a, N1) &	Chemo Only	5788	53 (<.0001)	0.59 (0.56-0.63)	0.66 (0.62-0.70)	<.0001
Stage IIB (T3, N0;T2b N1)	Radiation Only	354	28 (<.0001)	1.35 (1.17-1.57)	1.36 (1.18-1.58)	<.0001
	Chemo + Rad	895	40 (0.1772)	0.93 (0.84-1.03)	1.04 (0.93-1.16)	0.4811
	No Treatment	2119	24 (Referent)	1.00 (Referent)	1.00 (Referent)	
Group 4: Stago IIIA (T1 2 N2: T2 N1)	Chemo Only	2520	39 (<.0001)	0.59 (0.55-0.65)	0.63 (0.58-0.69)	<.0001
Group 4: Stage IIIA (T1-3, N2; T3, N1)	Radiation Only	248	18 (0.0747)	1.18 (0.99-1.39)	1.15 (0.97-1.37)	0.1025
	Chemo + Rad	1859	38 (<.0001)	0.62 (0.57-0.68)	0.69 (0.63-0.76)	<.0001

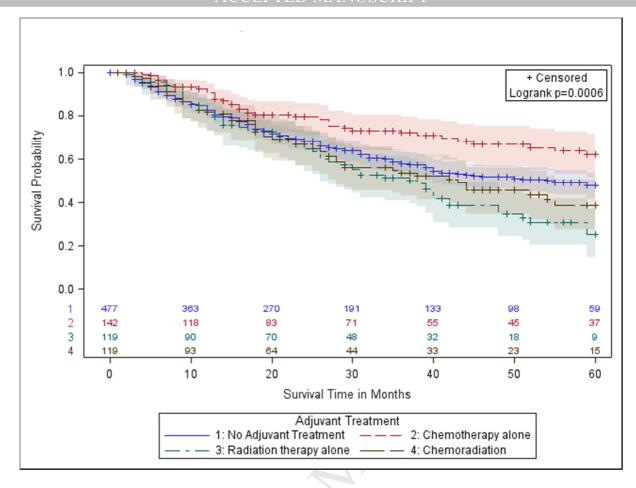
^{*}P-values compare each treatment to referent (no treatment) **Adjusted for Age, Sex, Race/Ethnicity, Insurance, Median Income, Comorbidity, Histology, Tumor Grade, Tumor Size, Rural/Urban, Census Region, Primary Site, T Category, N Category, Surgery Facility type, Facility Surgical % Lung Cancer, Facility % Medicaid or Uninsured

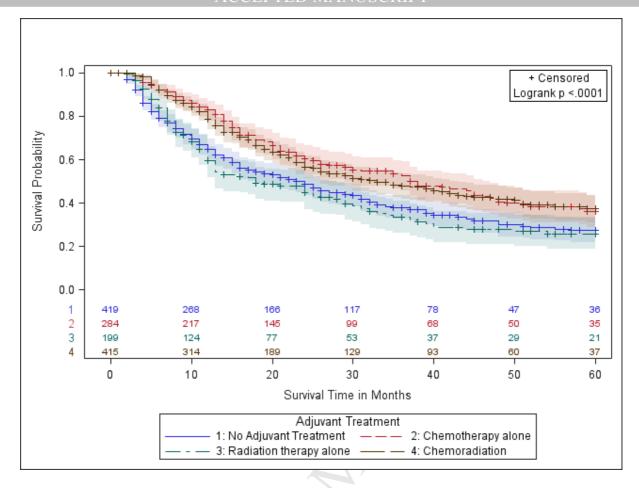
Table 4. Comparative survival impact of post-operative adjuvant therapy in patients with completely resected stage I – IIIA NSCLC in the NCDB, current NCCN adjuvant therapy recommendations ('recs'), and objective results from our analysis.

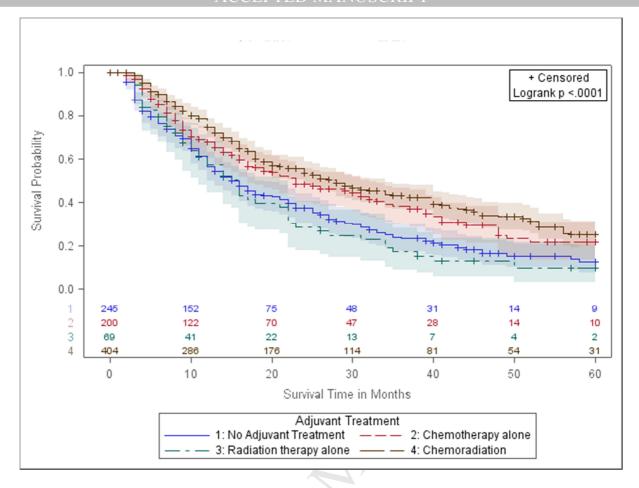

Stage	Margin Status	Chemo	Radiation	chemoXRT	NCCN	NCDB Data
Group 1: Stage IA	Negative	Neutral	Worse	Worse	Observe	Supports observation
Group 1: Stage IA	Positive	Neutral	Worse	Neutral	Radiation	Supports Observation
Group 2: Stage IB & Stage	Negative	Better	Worse	Worse	Observe or Chemo	Supports Chemo Only
IIA	Positive	Better	Neutral	Neutral	RT+/-Chemo	Supports Chemo Only
	Negative	Better	Worse	Neutral	Chemo	Supports Chemo Only
Group 3: Stage IIA	Positive	Better	Neutral	Better		
& Stage IIB	R1	Better	Neutral	Better	Chemo+RT	Supports Chemo+/-RT
	R2	Insufficient	Data (Suppleme	ntal Table I)	Chemo+RT	
			(X)			
Onesia di Otenne	Negative	Better	Neutral	Better		
Group 4: Stage IIIA	Non-N2	Better	Neutral	Neutral	Chemo	Supports chemo only
IIIA	N2	Better	Worse	Better	Chemo+RT	Supports Chemo+/-RT
Group 4: Stage	Positive	Better	Neutral	Better		
	R1	Neutral	Neutral	Better	Chemo+RT	Supports chemo+RT
IIIA	R2	Insufficient	Data (Suppleme	ntal Table I)		

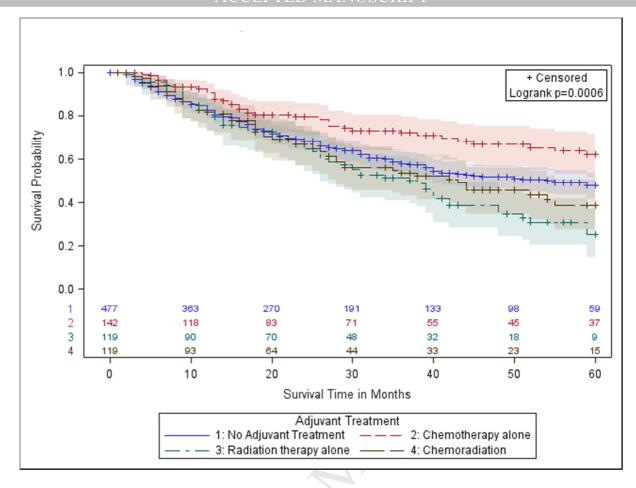
Chemo= chemotherapy; RT= radiation therapy; Chemo+RT= combined-modality chemotherapy and radiation therapy.


Figure 1: Patient selection schema among margin-positive NSCLC patients


NCCN adjuvant therapy group 4: Stage IIIA (T1-T3, N2; T3, N1). N = 918


Patients, aged 18-90, diagnosed during 2004-2011 with first primary invasive malignant AJCC stage I-IIIA non-small cell* lung cancer and underwent cancer-directed surgery* within six months of diagnosis in the National Cancer Data Base (n=5003)




^{*}Non-small cell histology was identified through International Classification of Diseases for Oncology, 3rd version (ICD-O-3) histology codes: 8010-8040, 8050 – 8076, 8140, 8143, 8211, 8230-8231, 8246, 8250 – 8260, 8310, 8320, 8323, 8430, 8470 – 8490, 8550 – 8573, 8980, 8981.
†Cancer-directed surgery was identified through site-specific surgical codes (21, 22, 30 – 70), including sub-lobectomy, lobectomy, bi-lobectomy, and pneumonectomy. NCCN = National Comprehensive Cancer Network.

Supplemental Tables and Figures:

Supplemental Table I. Times from Surgery to Adjuvant Therapy

Supplemental Table IIA. Patient Demographic and Institutional Characteristics Among Margin Negative Patients by Stage Group.

Supplemental Table IIB. Patient Demographic and Institutional Characteristics Among Margin Negative Patients by Adjuvant Therapy.

Supplemental Table III. Propensity Score Adjusted Models

Supplemental Table IV. Proportional Hazards Models by Stage Group and Margin Status After removal of exposure groups where the Proportional Hazards assumption is questionable.

Supplemental Table V. Kaplan Meier Survival Analysis and Proportional Hazards Models by Stage Group for Margin Positive Patients Evaluating the Order of Chemotherapy and Radiation.

Supplemental Table VI. Survival results for Margin Positive Patients by R1, R2, and R-Unknown

Supplemental Table VII. Analysis of Stage Group 4, Margin negative patients by pN stage (N0/N1 vs. N2)

Supplemental Table VIII. Kaplan Meier Survival Analysis and Proportional Hazards Models by Stage Group for Margin Negative Patients Evaluating the Order of Chemotherapy and Radiation.

Supplemental Table IX. Analysis including only Anatomic Resections

Supplemental Table X. Numbers of Events in Each Analysis Group

Supplemental Figure I. Consort Diagram for Margin Negative

Supplemental Figure II. Kaplan Meier Survival Curves for Margin Negative Patients by Stage Group

Supplemental Table I. Times from Surgery to Adjuvant Therapy

	Median	IQR
Days from surgery to initiation of PORT in patients without		
chemotherapy	52	39-74
Days from surgery to initiation of chemotherapy in patients without		
PORT	47	35-62
In Patients receiving chemotherapy and PORT		
Days from surgery to initiation of radiation therapy	57	40-126
Days from surgery to initiation of chemotherapy	43	34-58

Supplemental Table IIA. Patient Demographic and Institutional Characteristics Among Margin Negative Patients by Stage Group.

		Stogo	Stogo ID	Stage	Stage	
Cotogorios	Total	Stage	Stage IB	IIA(T1ab-	IIIA(T1-	میرامیر م
Categories	Total	IA(T1ab,N0	(T2a,N0) &	T2a,N1) &	T3,N2;	p-value
)	IIA (T2b,N0)	IIB	T3,N1)	
	N=78979	N=34781	N=24314	N=13138	N=6746	
	N (%)	N (%)	N (%)	N (%)	N (%)	
Age Group	(70)	(70)	. (/ 0 /	11 (70)	(/0)	
18-49	4389 (6)	1870 (5)	1181 (5)	820 (6)	518 (8)	< .0001
50-64	25864 (33)	11380 (33)	7352 (30)	4651 (35)	2481 (37)	< .0001
65-74	29782 (38)	13462 (39)	9084 (37)	4871 (37)	2365 (35)	
75-90	18944 (24)	` '	, ,		, ,	
	10944 (24)	8069 (23)	6697 (28)	2796 (21)	1382 (21)	
Sex	27044 (40)	4.4000 (40)	40400 (54)	7055 (54)	2270 (50)	. 0001
Male	37844 (48)	14933 (43)	12480 (51)	7055 (54)	3376 (50)	< .0001
Female	41135 (52)	19848 (57)	11834 (49)	6083 (46)	3370 (50)	
Race/Ethnicity						
Non-Hispanic, White	61957 (79)	27532 (79)	18978 (78)	10303 (78)	5144 (76)	< .0001
Hispanic	1734 (2)	709 (2)	565 (2)	278 (2)	182 (3)	
Black	6478 (8)	2665 (8)	2029 (8)	1124 (9)	660 (10)	
Other	2078 (3)	879 (3)	657 (3)	322 (3)	220 (3)	
Missing	6732 (9)	2996 (9)	2085 (9)	1111 (9)	540 (8)	
Insurance						
Uninsured	1517 (2)	563 (2)	493 (2)	286 (2)	175 (3)	< .0001
Medicaid	3325 (4)	1301 (4)	1030 (4)	635 (5)	359 (5)	
Younger Medicare	4538 (6)	2120 (6)	1278 (5)	745 (6)	395 (6)	
Older Medicare	41134 (52)	18298 (53)	13253 (55)	6452 (49)	3131 (46)	
Private	27402 (35)	12033 (35)	7946 (33)	4828 (37)	2595 (39)	
Missing	1063 (1)	466 (1)	314 (1)	192 (2)	91 (1)	
Median Income-Quartile	1000 (1)).00 (1)	0(.)	.02 (2)	0. (.)	
<\$30,000	10308 (13)	4326 (12)	3287 (14)	1810 (14)	885 (13)	< .0001
\$30,000- \$34,999	14718 (19)	6277 (18)	4619 (19)	2574 (20)	1248 (19)	< .0001
\$35,000-\$45,999	21718 (28)	9454 (27)	6705 (28)	3723 (28)	1836 (27)	
\$46,000+	27950 (35)	12742 (37)	8414 (35)	4397 (34)	2397 (36)	
Missing	, ,	, ,	, ,	, ,	, ,	
3	4285 (5)	1982 (6)	1289 (5)	634 (5)	380 (6)	
Comorbidity	27470 (47)	4COOF (4C)	44074 (40)	COOO (40)	0444 (54)	. 0004
0	37470 (47)	16095 (46)	11671 (48)	6293 (48)	3411 (51)	< .0001
1	28532 (36)	12865 (37)	8532 (35)	4818 (37)	2317 (34)	
2+	12977 (16)	5821 (17)	4111 (17)	2027 (15)	1018 (15)	
Histology						
NOS	224 (0.3)	93 (0.3)	67 (0.3)	45 (0.3)	19 (0.3)	< .0001
Large Cell	3652 (5)	1358 (4)	1225 (5)	695 (5)	374 (6)	
Squamous	22791 (29)	8584 (25)	8069 (33)	4390 (33)	1748 (26)	
Other	4030 (5)	1604 (5)	1254 (5)	781 (6)	391 (6)	
Adenocarcinoma	48282 (61)	23142 (67)	13699 (56)	7227 (55)	4214 (63)	
Tumor Grade		. ,				
well/moderately	ACEEO (EO)	00074 (07)	10610 (50)	CE10 (E0)	24.46 (47)	. 0004
differentiated	46558 (59)	23274 (67)	13619 (56)	6519 (50)	3146 (47)	< .0001

poorly/undifferentiated Unknown	29030 (37) 3391 (4)	9788 (28) 1719 (5)	9699 (40) 996 (4)	6195 (47) 424 (3)	3348 (50) 252 (4)	
Tumor Size	0001 (1)	17 10 (0)	000 (1)	12 1 (0)	202 (1)	
≤3cm	49644 (63)	34452 (99)	6486 (27)	5711 (44)	2995 (44)	< .0001
>3cm-≤5cm	19238 (24)	167 (0.5)	12819 (53)	4188 (32)	2064 (31)	
>5cm	9866 (13)	97 (0.3)	4932 (20)	3175 (24)	1662 (25)	
Unknown	231 (0.3)	65 (0.2)	77 (0.3)	64 (0.5)	25 (0.4)	
Rural/Urban						
Rural	14999 (19)	6312 (18)	4720 (19)	2686 (20)	1281 (19)	< .0001
Urban	59057 (75)	26236 (75)	18097 (74)	9680 (74)	5044 (75)	
Unknown	4923 (6)	2233 (6)	1497 (6)	772 (6)	421 (6)	
Census Region	45000 (00)	7400 (00)	4707 (40)	0074 (40)	4050 (00)	0004
Northeast	15939 (20)	7486 (22)	4727 (19)	2374 (18)	1352 (20)	< .0001
Midwest	21583 (27)	9160 (26)	6732 (28)	3787 (29)	1904 (28)	
South West	31840 (40)	13980 (40)	9752 (40)	5417 (41)	2691 (40)	
Primary Site	9617 (12)	4155 (12)	3103 (13)	1560 (12)	799 (12)	
C340- Main bronchus	431 (1)	46 (0.1)	95 (0.4)	199 (2)	91 (1)	< .0001
C341-upper lobe	47385 (60)	21947 (63)	13929 (57)	7547 (57)	3962 (59)	< .0001
C342-Middle lobe	3819 (5)	1880 (5)	1119 (5)	562 (4)	258 (4)	
C343-Lower lobe	25061 (32)	10323 (30)	8340 (34)	4249 (32)	2149 (32)	
C348-Overlapping lesion	1191 (2)	199 (0.6)	467 (2)	352 (3)	173 (3)	
C349-Lung NOS	1092 (1)	386 (1)	364 (2)	229 (2)	113 (2)	
T category	. ,			,	,	
T1	40403 (51)	34781	0 (0)	3716 (28)	1906 (28)	< .0001
		(100)			` '	< .0001
T2	33968 (43)	0 (0)	24314 (100)	6360 (48)	3294 (49)	
Т3	4608 (6)	0 (0)	0 (0)	3062 (23)	1546 (23)	
N Category		0.4704				
N0	62157 (79)	34781	24314 (100)	3062 (23)	0 (0)	< .0001
N1	11108 (14)	(100)	0 (0)	10076 (77)	1032 (15)	
N2	5714 (7)	0 (0) 0 (0)	0 (0) 0 (0)	0 (0)	5714 (85)	
Surgery	37 14 (7)	0 (0)	0 (0)	0 (0)	37 14 (03)	
Sublobar	7992 (10)	5005 (14)	1797 (7)	599 (5)	591 (9)	< .0001
Lobe/bilobectomy	67209 (85)	29544 (85)	21515 (89)	10907 (83)	5243 (78)	1.0001
Pneumonectomy		232 (1)	1002 (4)	1632 (12)	912 (14)	
Facility type	(-)	- ()	()	()	- ()	
Community Cancer	F707 (7)	2505 (7)	1746 (7)	1011 (0)	11E (7)	0.0005
Program	5707 (7)	2505 (7)	1746 (7)	1011 (8)	445 (7)	0.0005
Comprehensive						
Community Cancer	37952 (48)	16705 (48)	11724 (48)	6387 (49)	3136 (47)	
Program						
Teaching/Research	19304 (24)	8490 (24)	5892 (24)	3162 (24)	1760 (26)	
Cancer Program	, ,			, ,		
NCI Program/Network	8954 (11)	4052 (12)	2738 (11)	1395 (11)	769 (11)	
Other	7062 (9)	3029 (9)	2214 (9)	1183 (9)	636 (9)	

Supplemental Table IIB. Patient Demographic and Institutional Characteristics Among Margin Negative Patients by Adjuvant Therapy.

Categories	Total	No Treatmen t	Chemother apy	Radiation therapy	Chemoradiat ion	p- value
	N=78979 N (%)	N=61281 N (%)	N=13665 N (%)	N=988 N (%)	N=3045 N (%)	
Stage Group						
Stage IA	34781 (44)	33780 (55)	789 (6)	136 (14)	76 (3)	< .0001
Stage IB & IIA	24314 (31)	19281 (32)	4568 (33)	250 (25)	215 (7)	
Stage IIA & IIB	13138 (17)	6101 (10)	5788 (42)	354 (36)	895 (29)	
Stage IIIA Age Group	6746 (9)	2119 (4)	2520 (18)	248 (25)	1859 (61)	
18-49	4389 (6)	2882 (5)	1114 (8)	56 (6)	337 (11)	< .0001
50-64	25864 (33)	18296 (30)	5962 (44)	261 (26)	1345 (44)	
65-74	29782 (38)	23397 (38)	4981 (37)	382 (39)	1022 (34)	
75-90	18944 (24)	16706 (27)	1608 (12)	289 (29)	341 (11)	
Sex	, ,					
Male	37844 (48)	28854 (47)	6856 (50)	547 (55)	1587 (52)	< .0001
Female	41135 (52)	(53)	6809 (50)	441 (45)	1458 (48)	
Race/Ethnicity						
Non-Hispanic, White	61957 (79)	48361 (79)	10515 (77)	758 (77)	2323 (76)	< .0001
Hispanic	1734 (2)	1356 (2)	297 (2)	17 (2)	64 (2)	
Black	6478 (8)	4803 (8)	1293 (10)	96 (10)	286 (9)	
Other	2078 (3)	1616 (3)	346 (3)	28 (3)	88 (3)	
Missing Insurance	6732 (9)	5145 (8)	1214 (9)	89 (9)	284 (9)	
Uninsured	1517 (2)	1091 (2)	341 (3)	16 (2)	69 (2)	< .0001
Medicaid	3325 (4)	2382 (4)	720 (5)	51 (5)	172 (6)	.0001
Younger Medicare	4538 (6)	3413 (6)	849 (6)	59 (6)	217 (7)	
Older Medicare	41134 (52)	33907 (55)	5528 (41)	576 (58)	1123 (37)	
Private	27402 (35)	19609 (32)	6083 (45)	277 (28)	1433 (47)	

Missing Median Income-Qua		879 (1)	144 (1)	9 (1)	31 (1)	
<\$30,000	10308 (13)	7968 (13)	1808 (13)	158 (16)	374 (12)	< .0001
\$30,000- \$34,999	14718 (19)	11386 (19)	2498 (18)	221 (22)	613 (20)	
\$35,000- \$45,999	21718 (28)	16705 (27)	3878 (28)	270 (27)	865 (28)	
\$46,000+	27950 (35)	21822 (36)	4807 (35)	300 (30)	1021 (34)	
Missing Comorbidity	4285 (5)	3400 (6)	674 (5)	39 (4)	172 (6)	
0	37470 (47)	28612 (47)	6848 (50)	438 (44)	1572 (52)	< .0001
1	28532 (36)	22149 (36)	4945 (36)	364 (37)	1074 (35)	
2+	12977 (16)	10520 (17)	1872 (14)	186 (19)	399 (13)	
Histology	` ,	, ,				
NOS	224 (0.3)	175 (0.3)	36 (0.3)	2 (0.2)	11 (0.4)	< .0001
Large Cell	3652 (5)	2581 (4)	821 (6)	64 (7)	186 (6)	
Squamous	22791 (29)	17710 (29)	3897 (29)	383 (39)	801 (26)	
Other	4030 (5)	3031 (5)	739 (5)	62 (6)	198 (7)	
Adenocarcinoma	48282 (61)	37784 (62)	8172 (60)	477 (48)	1849 (61)	
Tumor Grade						
well/moderately differentiated	46558 (59)	37923 (62)	6827 (50)	496 (50)	1312 (43)	< .0001
poorly/undifferenti	29030	20626	6356 (47)	449 (46)	1599 (53)	.0001
ated Unknown	(37) 3391 (4)	(34) 2732 (5)	482 (4)	43 (4)	134 (4)	
Tumor Size	3331 (4)	2132 (3)	402 (4)	43 (4)	104 (4)	
≤3cm	49644 (63)	42437 (69)	5367 (39)	448 (45)	1392 (46)	< .0001
>3cm-≤5cm	19238 (24)	13070 (21)	4923 (36)	324 (33)	921 (30)	
>5cm	9866 (13)	5600 (9)	3335 (24)	210 (21)	721 (24)	
Unknown Rural/Urban	231 (0.3)	174 (0.3)	40 (0.3)	6 (0.6)	11 (0.4)	
	14999	11672	0=10 (10)	100 (00)	504 (40)	0.004
Rural	(19)	(19)	2540 (19)	196 (20)	591 (19)	0.034
Urban	59057 (75)	45716 (75)	10335 (76)	746 (76)	2260 (74)	
Unknown	4923 (6)	3893 (6)	790 (6)	46 (5)	194 (6)	
Census Region	45000	40440				
Northeast	15939 (20)	12446 (20)	2734 (20)	161 (16)	598 (20)	< .0001
Midwest	21583 (27)	15988 (26)	4355 (32)	268 (27)	972 (32)	

South	31840 (40)	24965 (41)	5215 (38)	432 (44)	1228 (40)	
West	9617 (12)	7882 (13)	1361 (10)	127 (13)	247 (8)	
Primary Site C340- Main bronchus	431 (1)	250 (0.4)	152 (1)	6 (1)	23 (1)	< .0001
C341-upper lobe	47385 (60)	36984 (60)	7838 (57)	626 (63)	1937 (64)	
C342-Middle lobe	3819 (5)	3024 (5)	617 (5)	40 (4)	138 (5)	
C343-Lower lobe	25061 (32)	19451 (32)	4509 (33)	278 (28)	823 (27)	
C348-Overlapping lesion	1191 (2)	768 (1)	333 (2)	19 (2)	71 (2)	
C349-Lung NOS T category	1092 (1)	804 (1)	216 (2)	19 (2)	53 (2)	
T1	40403 (51)	35961 (59)	3285 (24)	261 (26)	896 (29)	< .0001
T2	33968 (43)	23130 (38)	8800 (64)	494 (50)	1544 (51)	
T3	4608 (6)	2190 (4)	1580 (12)	233 (24)	605 (20)	
N Category N0	62157 (79)	54703 (89)	6292 (46)	565 (57)	597 (20)	< .0001
N1	11108 (14)	4855 (8)	5317 (39)	210 (21)	726 (24)	
N2	5714 (7)	1723 (3)	2056 (15)	213 (22)	1722 (57)	
Surgery						_
Sublobar	7992 (10)	6738 (11)	718 (5)	169 (17)	367 (12)	< .0001
Lobe/bilobectomy	67209 (85)	52526 (86)	11513 (84)	744 (75)	2426 (80)	
Pneumonectomy Facility type	3778 (5)	2017 (3)	1434 (11)	75 (8)	252 (8)	
Community Cancer Program	5707 (7)	4283 (7)	1023 (8)	112 (11)	289 (10)	< .0001
Comprehensive Community Cancer Program	37952 (48)	29420 (48)	6456 (47)	500 (51)	1576 (52)	
Teaching/Researc h Cancer Program	19304 (24)	15141 (25)	3235 (24)	214 (22)	714 (24)	
NCI Program/Network	8954 (11)	7039 (12)	1657 (12)	67 (7)	191 (6)	
Other	7062 (9)	5398 (9)	1294 (10)	95 (10)	275 (9)	

			Margin Positive	e	Margir	n Negative	
	Post-Op Treatment	N	Propensity Adjusted Hazard Ratio (95% CI)	P-Value	N	Propensity Adjusted Hazard Ratio (95% CI)	P-Value
O 4.	No Treatment	265	1.00 (Referent)		33780	1.00 (Referent)	
Group 1:	Chemo Only	19	0.94 (0.36-2.44)	0.8968	789	1.02 (0.87-1.20)	0.7841
Stage IA (T1ab, N0)	Radiation Only	60	1.87 (1.16-3.04)	0.011	136	2.37 (1.81-3.09)	<.0001
(11ab, 140)	Chemo + Rad	25	1.39 (0.73-2.63)	0.3142	76	2.91 (2.02-4.19)	<.0001
Group 2:	No Treatment	477	1.00 (Referent)		19281	1.00 (Referent)	
Stage IB	Chemo Only	142	0.58 (0.40-0.83)	0.0032	4568	0.73 (0.68-0.78)	<.0001
(T2a, N0) &	Radiation Only	119	1.30 (0.97-1.73)	0.0818	250	1.79 (1.49-2.16)	<.0001
Stage IIA (T2b, N0)	Chemo + Rad	119	1.01 (0.73-1.39)	0.9688	215	1.42 (1.15-1.76)	0.0012
Group 3:	No Treatment	419	1.00 (Referent)		6101	1.00 (Referent)	
Stage IIA	Chemo Only	284	0.73 (0.59-0.91)	0.0058	5788	0.66 (0.62-0.71)	<.0001
(T1ab-T2a,	Radiation Only	199	1.02 (0.81-1.28)	0.8649	354	1.37 (1.19-1.59)	<.0001
N1) &	Chemo + Rad	415	0.78 (0.64-0.97)	0.0218	895	1.05 (0.95-1.18)	0.341
Stage IIB	Chemo+Rad	146	0.81 (0.61-1.07)	0.1343	431	1.04 (0.89-1.20)	0.6584
(T3, N0;T2b	Rad+Chemo	120	0.77 (0.57-1.06)	0.1054	224	1.12 (0.93-1.37)	0.24
N1)	Chemo=Rad	149	0.80 (0.59-1.07)	0.1344	240	1.06 (0.86-1.29)	0.5967
Group 4:	No Treatment	245	1.00 (Referent)		2119	1.00 (Referent)	
Stage IIIA	Chemo Only	200	0.74 (0.58-0.95)	0.0167	2520	0.64 (0.58-0.69)	<.0001
(T1-3, N2;	Radiation Only	69	1.13 (0.83-1.54)	0.4428	248	1.17 (0.98-1.38)	0.0757
T3, N1)	Chemo + Rad	404	0.67 (0.54-0.83)	0.0003	1859	0.71 (0.65-0.79)	<.0001
	Chemo+Rad	173	0.59 (0.45-0.77)	0.0001	1096	0.64 (0.56-0.71)	<.0001
	Rad+Chemo	96	0.79 (0.57-1.09)	0.1434	316	0.77 (0.65-0.92)	0.0038
	Chemo=Rad	135	0.59 (0.44-0.80)	0.0006	447	0.78 (0.67-0.90)	0.001

Supplemental Table IV. Proportional Hazards Models by Stage Group and Margin Status After removal of exposure groups where the Proportional Hazards assumption is questionable.

		Margin Positive				
	Post-Op Treatment	N	Unadjusted Hazard Ratio (95% CI)	Adjusted Hazard Ratio (95% CI)	P-Value	
Group 1: Stage	No Treatment	265	1.00 (Referent)	1.00 (Referent)		

IA (T1ab, N0)	Chemo Only (patients	Chemo Only (patients who had chemotherapy only were excluded from the analysis)							
	Radiation Only	60	1.98 (1.25-3.12)	1.75 (1.03-2.97)	0.0385				
	Chemo + Rad	25	1.69 (0.92-3.11)	0.92 (0.44-1.92)	0.8202				
Group 3: Stage	No Treatment	419	1.00 (Referent)	1.00 (Referent)	_				
IIA (T1ab-T2a,	Chemo Only	284	0.65 (0.53-0.81)	0.72 (0.58-0.90)	0.0042				
N1) & Stage IIB	Radiation Only (patier	Radiation Only (patients who had radiation therapy only were excluded from the analysis)							
(T3, N0;T2b N1)	Chemo + Rad	415	0.68 (0.56-0.83)	0.77 (0.63-0.95)	0.0148				

Supplemental Table V. Kaplan Meier Survival Analysis and Proportional Hazards Models by Stage Group for Margin Positive Patients Evaluating the Order of Chemotherapy and Radiation

		,		Margin Positiv	/e	
	Post-Op Treatment	N	5 Year Overall Survival (log- rank p-Value)	Unadjusted Hazard Ratio (95% CI)	Adjusted Hazard Ratio (95% CI)	P-Value
Group 3:	No Treatment	419	27 (Referent)	1.00 (Referent)	1.00 (Referent)	
Stage IIA	Chemo Only	284	36 (0.0001)	0.65 (0.53-0.81)	0.72 (0.58-0.9)	0.0041
(T1ab-T2a, N1) & Stage IIB (T3, N0;T2b N1)	Radiation Only	199	26 (0.5907)	1.06 (0.85-1.32)	0.94 (0.74-1.18)	0.5878
	Chemo + Rad	415	37 (<.0001)	0.68 (0.56-0.83)	0.76 (0.62-0.93)	0.0083
	Chemo+Rad	146	37 (0.0106)	0.70 (0.54-0.92)	0.74 (0.56-0.98)	0.034
	Rad+Chemo	120	36 (0.0136)	0.69 (0.52-0.92)	0.76 (0.56-1.02)	0.071
	Chemo=Rad	149	38 (0.0036)	0.66 (0.50-0.87)	0.79 (0.59-1.06)	0.1099
	No Treatment	245	12 (Referent)	1.00 (Referent)	1.00 (Referent)	
	Chemo Only	200	21 (0.0048)	0.70 (0.55-0.90)	0.77 (0.6-1)	0.0466
Group 4:	Radiation Only	69	10 (0.5215)	1.11 (0.81-1.51)	1.03 (0.74-1.43)	0.8729
Stage IIIA (T1-	Chemo + Rad	404	25 (<.0001)	0.59 (0.48-0.72)	0.63 (0.51-0.79)	<.0001
3, N2; T3, N1)	Chemo+Rad	173	28 (<.0001)	0.54 (0.42-0.70)	0.56 (0.43-0.74)	<.0001
	Rad+Chemo	96	19 (0.0275)	0.70 (0.52-0.95)	0.79 (0.57-1.09)	0.1508
	Chemo=Rad	135	24 (0.0002)	0.58 (0.44-0.77)	0.63 (0.46-0.84)	0.0021

Supplemental Table VI. Survival results for Margin Positive Patients by R1, R2, and R-Unknown

		Stage IIA (T1ab-T2a, N1) & Stage IIB (T3, N0;T2b N1)				Stage IIIA (T1-3, N2; T3, N1)			
	Post-Op		Margin Posi	tive (N=1327)	Margin Positive (N=919)				
	Treatment	Total N	5 Year Overall Survival (log-rank p-	Adjusted Hazard Ratio (95% CI) P-Value	Total N	5 Year Overall Survival (log-rank	Adjusted Hazard Ratio (95% CI) P-Value		

			value)**				p-value)**		
	No Treatment	231	26 (referent)	1.00 (Referent)		127	15 (referent)	1.00 (Referent)	
R1	Chemo Only	146	36 (0.0024)	0.65(0.47-0.88)	0.0063	121	19 (0.1362)	0.83(0.59-1.17)	0.2876
	Radiation Only	135	29 (0.5925)	0.83(0.61-1.13)	0.2376	29	13 (0.9215)	0.97(0.57-1.62)	0.8925
	Chemo + Rad	241	37 (0.0019)	0.66(0.5-0.87)	0.0036	237	23 (0.001)	0.66(0.48-0.91)	0.0101
	No Treatment	13	23 (referent)	ID*		14	32 (referent)	ID*	
R2	Chemo Only	12	48 (0.0833)	ID*		5	40 (0.9666)	ID*	
	Radiation Only	6	0 (0.6098)	ID*		6	17 (0.5783)	ID*	
	Chemo + Rad	22	35 (0.1247)	ID*		18	9 (06722)	ID*	
	No Treatment	178	31 (referent)	1.00 (Referent)	, (105	8 (referent)	1.00 (Referent)	
DV	Chemo Only	129	35 (0.0503)	0.78(0.55-1.11)	0.1703	78	25 (0.0075)	0.6(0.38-0.95)	0.0284
RX	Radiation Only	61	23 (0.1165)	1.16(0.76-1.76)	0.4983	35	8 (0.7908)	1.13(0.67-1.91)	0.6458
	Chemo + Rad	153	37 (0.0649)	1.1(0.77-1.57)	0.6078	144	30 (<.0001)	0.48(0.33-0.69)	<.0001

^{*}ID= Insufficient Data **P-value from the log-rank test, comparing the entire survival curves.

Supplemental Table VII. Analysis of Stage Group 4, Margin negative patients by pN stage (N0/N1 vs. N2)

			Stage Group IV: Stage IIIA (T1-3, N2; T3, N1) Margin Negative Patients Only (R0)						
pN Stage	Post-Op Treatment	N	5 Year Overall Survival (log- rank p-value)**	Unadjusted Hazard Ratio (95% CI)	Adjusted Hazard Ratio (95% CI)	Propensity Adjusted Hazard Ratio (95% CI)			
N0,N1	No Treatment	396	27 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)			

	Chemo Only	464	46 (<.0001)	0.46 (0.37-0.57)	0.49 (0.39-0.62)	2.54 (1.30-4.95)
	Radiation Only	35	28 (0.6906)	1.10 (0.71-1.70)	0.94 (0.59-1.48)	1.08 (0.69-1.69)
	Chemo + Rad	137	23 (0.2422)	0.85 (0.65-1.10)	0.89 (0.67-1.18)	0.92 (0.70-1.21)
	Chemo+Rad	74	23 (0.1490)	0.77 (0.54-1.09)	0.85 (0.59-1.21)	0.84 (0.59-1.19)
	Rad+Chemo	36	12 (0.5019)	1.28 (0.79-2.08)	1.28 (0.77-2.13)	1.11 (0.67-1.84)
	Chemo=Rad	27	29 (0.3696)	0.75 (0.47-1.22)	0.73 (0.44-1.23)	0.96 (0.58-1.59)
	No Treatment	1723	23 (Referent)	1.00 (Referent)	1.00 (Referent)	1.00 (Referent)
	Chemo Only	2056	38 (<.0001)	0.62 (0.56-0.68)	0.65 (0.59-0.71)	0.65 (0.59-0.72)
	Radiation Only	213	15 (0.0620)	1.20 (1-1.44)	1.18 (0.98-1.42)	1.19 (0.99-1.43)
N2	Chemo + Rad	1722	40 (<.0001)	0.61 (0.56-0.68)	0.67 (0.60-0.74)	0.69 (0.62-0.76)
	Chemo+Rad	1022	43 (<.0001)	0.55 (0.49-0.62)	0.61 (0.54-0.69)	0.61 (0.54-0.69)
	Rad+Chemo	280	36 (0.0002)	0.70 (0.59-0.84)	0.74 (0.61-0.89)	0.74 (0.62-0.90)
	Chemo=Rad	420	34 (<.0001)	0.72 (0.62-0.84)	0.77 (0.66-0.91)	0.77 (0.66-0.91)

Supplemental Table VIII. Kaplan Meier Survival Analysis and Proportional Hazards Models by Stage Group for Margin Negative Patients Evaluating the Order of Chemotherapy and Radiation.

	_	Margin Negative					
	Post-Op Treatment	N	5 Year Overall Survival (log-rank p- Value)	Unadjusted Hazard Ratio (95% CI)	Adjusted Hazard Ratio (95% CI)	P- Value	
Group	No Treatment	33780	72 (Referent)	1.00 (Referent)	1.00 (Referent)		

1: Stage IA (T1ab, N0)	Chemo Only Radiation Only Chemo + Rad	789 136 76	74 (0.2946) 44 (<.0001) 40 (<.0001)	0.92 (0.78-1.08) 2.89 (2.22-3.73) 3.19 (2.21-4.59)	1.02 (0.87-1.2) 2.18 (1.67-2.85) 2.99 (2.07-4.31)	0.816 <.0001 <.0001
Group 2: Stage IB (T2a, N0) & Stage IIA (T2b, N0)	No Treatment Chemo Only Radiation Only Chemo + Rad	19281 4568 250 215	57 (Referent) 68 (<.0001) 38 (<.0001) 47 (0.0003)	1.00 (Referent) 0.68 (0.63-0.72) 1.92 (1.60-2.31) 1.47 (1.19-1.81)	1.00 (Referent) 0.74 (0.69-0.8) 1.8 (1.49-2.16) 1.41 (1.14-1.74)	<.0001 <.0001 0.0016
Group 3: Stage IIA (T1ab- T2a, N1) & Stage IIB (T3, N0;T2b N1)	No Treatment Chemo Only Radiation Only Chemo + Rad Chemo+Rad Rad+Chemo	6101 5788 354 895 431 224	37 (Referent) 53 (<.0001) 28 (<.0001) 41 (0.1772) 42 (0.1966) 36 (0.9445) 42 (0.3621)	1.00 (Referent) 0.59 (0.56-0.63) 1.35 (1.17-1.57) 0.93 (0.84-1.03) 0.91 (0.78-1.05) 0.99 (0.82-1.20) 0.91 (0.75-1.11)	1.00 (Referent) 0.66 (0.62-0.7) 1.36 (1.18-1.58) 1.04 (0.93-1.16) 1 (0.86-1.16) 1.13 (0.93-1.37) 1.03 (0.84-1.26)	<.0001 <.0001 0.4811 0.978 0.209 0.782
Group 4: Stage IIIA (T1- 3, N2; T3, N1)	No Treatment Chemo Only Radiation Only Chemo + Rad Chemo+Rad Rad+Chemo Chemo=Rad	2119 2520 248 1859 1096 316 447	24 (Referent) 39 (<.0001) 18 (0.0747) 39 (<.0001) 42 (<.0001) 34 (0.0006) 34 (<.0001)	1.00 (Referent) 0.59 (0.55-0.65) 1.18 (0.99-1.39) 0.62 (0.57-0.68) 0.56 (0.50-0.62) 0.74 (0.62-0.87) 0.72 (0.62-0.83)	1.00 (Referent) 0.63 (0.58-0.69) 1.15 (0.97-1.37) 0.69 (0.63-0.76) 0.62 (0.56-0.7) 0.79 (0.66-0.94) 0.77 (0.67-0.9)	<.0001 0.1025 <.0001 <.0001 0.0064 0.0006

Supplemental Table IX. Analysis including only Anatomic Resections

Y		Margin Positive			
	Post-Op Treatment	N	Adjusted Hazard Ratio (95% CI)	P-Value	
	No Treatment	197	1.00 (Referent)		
Group 1: Stage IA	Chemo Only	13	0.86 (0.18-4.16)	0.8501	
(T1ab, N0)	Radiation Only	31	4.14 (1.88-9.09)	0.0004	
	Chemo + Rad	14	1.14 (0.38-3.44)	0.8125	

Crave 2: Stare IB	No Treatment	423	1.00 (Referent)	
Group 2: Stage IB	Chemo Only	131	0.54 (0.37-0.80)	0.0023
(T2a, N0) & Stage IIA (T2b, N0)	Radiation Only	100	1.33 (0.96-1.85)	0.0899
Otage IIA (125, 140)	Chemo + Rad	108	0.94 (0.66-1.32)	0.7036
Crown 2: Store IIA	No Treatment	386	1.00 (Referent)	
Group 3: Stage IIA (T1ab-T2a, N1) & Stage	Chemo Only	266	0.75 (0.60-0.95)	0.016
IIB (T3, N0;T2b N1)	Radiation Only	177	0.99 (0.77-1.27)	0.9379
11B (13, N0, 12B N1)	Chemo + Rad	379	0.80 (0.64-0.99)	0.0389
	No Treatment	220	1.00 (Referent)	_
Group 4: Stage IIIA	Chemo Only	179	0.73 (0.56-0.96)	0.0229
(T1-3, N2; T3, N1)	Radiation Only	61	1.05 (0.74-1.48)	0.7959
	Chemo + Rad	356	0.66 (0.53-0.84)	0.0006

Supplemental Table X. Numbers of Events in Each Analysis Group

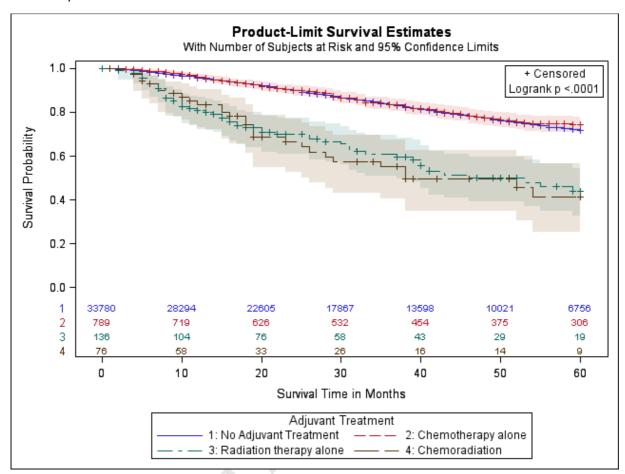
	Margin Positive		Margin Negative		
	Post-Op Treatment	N	Event=death	N	Event=death
	No Treatment	265	75 (28.3)	33780	5695 (16.86)
Group 1: Stage IA	Chemo Only	19	6 (31.58)	789	157 (19.9)
(T1ab, N0)	Radiation Only	60	25 (41.67)	136	55 (40.44)
	Chemo + Rad	25	12 (48)	76	29 (28.16)
Craum 2: Ctama ID	No Treatment	477	182 (38.16)	19281	5427 (28.15)
Group 2: Stage IB (T2a, N0) &	Chemo Only	142	39 (27.46)	4568	996 (21.8)
Stage IIA (T2b, N0)	Radiation Only	119	62 (52.1)	250	114 (45.6)
Stage IIA (12b, No)	Chemo + Rad	119	53 (44.54)	215	88 (40.93)
Group 3: Stage IIA	No Treatment	419	239 (57.04)	6101	2663 (43.65)

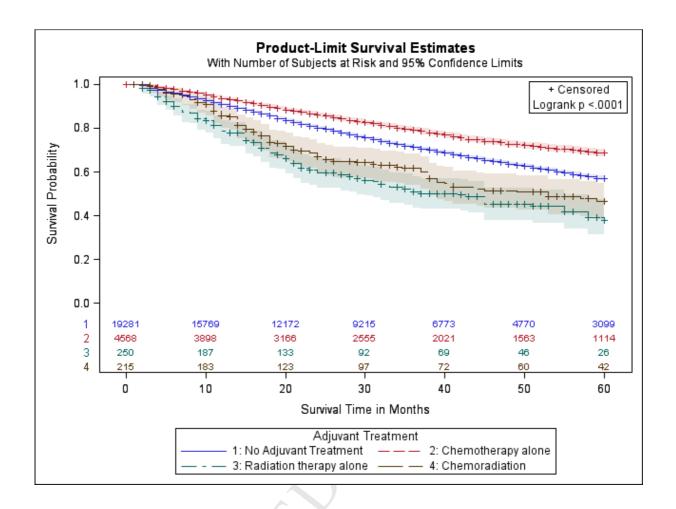
(T1ab-T2a, N1) &	Chemo Only	284	129 (45.42)	5788	1691 (29.22)
Stage IIB (T3, N0;T2b	Radiation Only	199	121 (60.8)	354	198 (55.93)
N1)	Chemo + Rad	415	186 (44.82)	895	398 (44.47)
	Chemo+Rad	146	69 (47.26)	431	186 (43.16)
	Rad+Chemo	120	56 (46.67)	224	109 (48.66)
	Chemo=Rad	149	61 (40.94)	240	103 (42.92)
	No Treatment	245	170 (69.39)	2119	1218 (57.48)
Group 4: Stage IIIA	Chemo Only	200	107 (53.5)	2520	969 (38.45)
(T1-3, N2; T3, N1)	Radiation Only	69	53 (76.81)	248	151 (60.89)
	Chemo + Rad	404	213 (52.72)	1859	791 (42.55)
	Chemo+Rad	173	90 (52.02)	1096	426 (38.87)
	Rad+Chemo	96	54 (56.25)	316	150 (47.47)
	Chemo=Rad	135	69 (51.11)	447	215 (48.1)

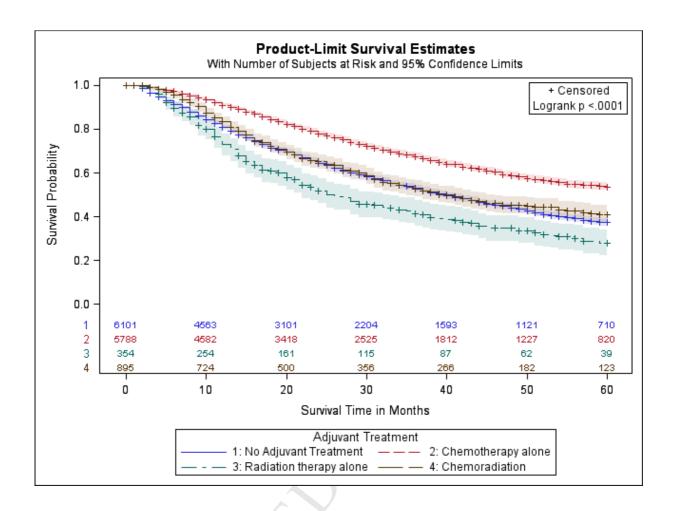
Supplemental Figure I. Consort Diagram for Margin Negative

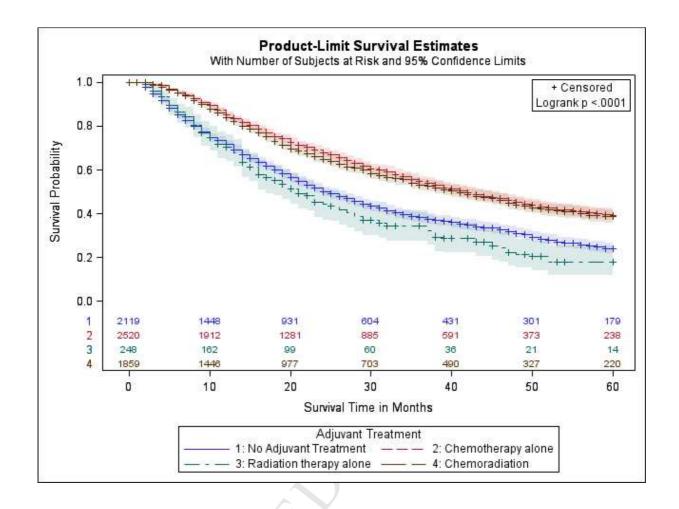
Supplemental Figure I: Patient selection schema among margin-negative NSCLC patients

Patients, aged 18-90, diagnosed during 2004-2011 with first primary invasive malignant AJCC stage I-IIIA non-small cell* lung cancer and underwent cancer-directed surgery† within six months of diagnosis in the National Cancer Data Base (n=101,381)


Exclusions: patients with missing information on last date of contact (n=227) administration of radiation therapy or chemotherapy (n=2435) administration date of radiation therapy or chemotherapy (n=1157) more than one surgical procedure (n=3619) unmeasurable tumor (n=1) neoadjuvant radiation therapy or chemotherapy (n=3851) no or unknown node examination (n=3599) adjuvant therapy 180 days later than diagnosis (n=446) death within 60 days of surgery (n=6166) missing facility location (n=1) with government insurance (n=145) missing location (n=82) surgery later than study end point (Dec 31, 2011) (n=662) Analytic study population (n = 78979) NCCN Adjuvant therapy group 1: Stage IA (T1ab, N0). N = 34781 NCCN Adjuvant therapy group 2: Stage 1B (T2a, N0) & IIA (T2b, N0). N = 24341 NCCN Adjuvant therapy group 3: Stage IIA (T1ab-T2a, N1) & IIB (T3,N0; T2b,N1). N = 13138 NCCN Adjuvant therapy group 4: Stage IIIA (T1-T3, N2; T3, N1). N = 6746


*Non-small cell histology was identified through International Classification of Diseases for Oncology, 3rd version (ICD-O-3) histology codes: 8010-8040, 8050 – 8076, 8140, 8143, 8211, 8230-8231, 8246, 8250 – 8260, 8310, 8320, 8323, 8430, 8470 – 8490, 8550 – 8573, 8980, 8981. †Cancer-directed surgery was identified through site-specific surgical codes (21, 22, 30 – 70), including sub-lobectomy, lobectomy, bi-lobectomy, and pneumonectomy. NCCN = National Comprehensive Cancer Network.




Figure S-II. Kaplan Meier Survival Curves for Margin Negative Patients by Stage Group

IIA. Group 1

