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 6.1 Introduction

Schizophrenia (SZ) is a debilitating mental disorder associated with psychotic symptoms, 

such as hallucinations and delusions which affect nearly 0.8% of the population (Saha et al., 

2005). Disturbances of auditory perception are among the most characteristic features of SZ. 

Interview measures of perceptual abnormalities, as distinct from hallucinations, indicate that 

auditory distortions are more frequent than distortions in any other sensory modality, 

occurring in 42% of patients with SZ compared to 17% of healthy adults (Bunney et al., 

1999). Consistent with these subjective reports, behavioral measures of auditory processing 

have demonstrated deficits in time estimation (Carroll et al., 2009), spatial localization 

(Perrin et al., 2010), sound intensity discrimination (Bach et al., 2011) pitch discrimination 

(Leitman et al., 2008) and echoic memory (Strous et al., 1995). Event-related potential 

(ERP) findings suggest that auditory processing is affected within 50–200 ms of stimulus 

onset, including reduction of the P50 response to the first click of a paired click paradigm, 

impaired P50 gating, reduction of the auditory N100 component, and reduced mismatch 

negativity (see Hirayasu et al., 1998; Turetsky et al., 2007). Auditory hallucinations are a 

diagnostic criterion for SZ, and patients with auditory hallucinations show altered brain 

activation in left superior temporal gyrus and middle temporal gyrus compared to non-

hallucinating individuals (Kuhn and Gallinat, 2010). Consequently, the auditory system can 

provide a window into one of the key neurobehavioral symptoms.

The neural mechanisms which produce symptoms of SZ remain poorly understood, but 

accumulating evidence suggests that disturbances in neural synchrony and oscillatory 

activity may contribute to failures of effective connectivity and neural integration in the 

illness (Uhlhaas and Singer, 2010; Whittington, 2008; Basar, 2011). While noninvasive 
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measures currently cannot detect cellular signaling at the level of individual neurons and 

circuits in humans, the electroencephalogram (EEG) and magnetoencephalogram (MEG) 

can detect the synchronous activity of ensembles of neurons. Moreover, since both EEG and 

MEG are primarily generated by postsynaptic potentials, they are often highly sensitive to 

alterations in neurotransmission secondary to brain dysfunction or pharmacological 

manipulations (Luck et al., 2011). Thus, these measures have the potential to serve as 

biomarkers for disturbance of synchrony and oscillations in SZ.

 6.1.1. Auditory steady-state responses

The auditory steady-state response (ASSR) is a type of ERP which can test the integrity of 

auditory pathways and the capacity of these pathways to generate synchronous activity at 

specific frequencies (Brenner et al., 2009). ASSRs are elicited by temporally modulated 

auditory stimulation, such as a train of clicks with a fixed inter-click interval, or an 

amplitude modulated (AM) tone. After the onset of the stimulus, the EEG or MEG rapidly 

entrains to the frequency and phase of the stimulus. Testing the capacity of auditory circuits 

to support entrainment provides a noninvasive method to determine the relationship of the 

power or phase of the output (EEG) to the characteristics of the periodic input. If the 

auditory system is unable to support neural synchronization, particularly at higher gamma 

frequencies (> 30 Hz), this would be evident in the amplitude or phase variability of the 

ASSR.

The ASSR is generated by activity within the auditory pathway. The ASSR for modulation 

frequencies up to 50 Hz is generated from the auditory cortex based on EEG (Pantev et al., 

1996; Herdman et al., 2002), MEG (Ross et al., 2002) and animal studies (Dolphin and 

Mountain, 1992; Conti et al., 1999). Higher frequencies of modulation (> 80 Hz) are thought 

to originate from brainstem areas (Herdman et al., 2002). The type of stimulus may also 

affect the region of activation within the auditory cortex. Amplitude modulated (AM) tones 

and click train stimuli are commonly used stimuli to evoke the ASSR (Picton et al., 2003). 

AM tones are generated by temporally modulating a tone (or sine wave) using another sine 

wave modulation resulting in variation of the amplitude of the tone over time. The frequency 

of the tone is referred to as the carrier frequency and the frequency of the modulation 

envelope is called the modulation frequency. The click train stimuli, on the other hand, 

consist of clicks which are brief but broad spectrum sound stimuli. Thus, the click stimulus 

has several harmonics, while the modulation frequency of AM tones has only one peak at 

the stimulus frequency. Due to tonotopic mapping of the auditory cortex, the carrier 

frequency or the frequency content in individual stimuli determines the region of the 

auditory cortex that is activated. In the case of the AM tones, only a small region that 

responds to the carrier frequency responds, while click stimuli activate a larger area. This is 

reflected in the amplitude of the ASSR responses, as clicks generate higher amplitude ASSR 

than AM tones. The mechanisms of generation of ASSRs differ as a function of frequency, 

but likely represent both the superposition of individual evoked potentials to each click or 

cycle of modulation, as well as intrinsic oscillatory processes in the auditory pathways. For 

further discussion of this issue, see Krishnan et al. (2009).
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 6.1.2. Time-frequency analysis of ASSRs

Entrainment is apparent in the ASSR averaged in the time domain (Fig. 1A and B), but the 

frequency response can be more accurately quantified using time-frequency analysis. One 

approach is to apply a Fast Fourier Transform (FFT) to the period of stimulation, or to the 

ASSR averaged across stimulus periods to improve signal to noise by isolating phase locked 

activity (Fig. 1C). The FFT decomposes the time domain ASSR into a sum of sinusoidal 

waveforms varying in power and phase. A power spectrum displays the coefficients for each 

frequency measured by the FFT as a graph of power values (usually in microvolts2), as 

shown in Fig. 1C. In Fig. 1, the ASSR was elicited by a 40 Hz amplitude modulated tone (1 

s duration) with a 1000 Hz carrier frequency. The power spectrum in Fig. 1C shows a 

prominent peak in power at 40 Hz, which has a larger value in the control group compared 

to the group of patients with SZ. The ASSR in humans shows a peak response at about 40–

45 Hz (Fig. 2).

More recently, signal analysis procedures have allowed trial-to-trial differentiation of phase 

consistency of the ASSR, and change in power from baseline. The phase locking factor 

(PLF), or inter-trial phase coherence, is a measure of phase synchronization of EEG activity 

across trials at particular temporal intervals and frequencies (Delorme and Makeig, 2004). In 

order to compute PLF, a baseline normalized spectrogram is first obtained by applying FFT 

using a time sliding window on single trial data. This results in a time-frequency transform 

consisting of a complex number for every time point, frequency and trial. This complex 

output is divided by its complex norm (absolute value), which is then averaged across trials. 

The complex norm of this averaged value results in PLF for different time and frequency 

points. PLF values can range from 0 (absence of synchronization) to 1 (perfect 

synchronization, or phase reproducibility across trials at a given latency). In contrast, mean 

power (MP) difference from baseline (also called event-related spectral perturbation (ERSP) 

measures the power in a frequency band relative to baseline. MP is obtained by first 

subtracting the power from the prestimulus baseline period and then averaging across trials. 

This measure represents the average change in power at a given frequency from the mean 

baseline power and so can detect changes in power that are induced by, but are not 

necessarily phase-locked to, stimulus onset. Fig. 1D and E show time-frequency plots 

comparing MP (or ERSP) and PLF (inter-trial coherence) for subjects with and without SZ 

to the 40 Hz AM tone.

 6.1.3. ASSRs in schizophrenia

ASSRs are usually reduced in power or phase locking in patients with schizophrenia to 40 

Hz stimulation (Table 1). Kwon et al. (1999) first reported that SZ patients showed a 

reduction in the ASSR. Short, 500 ms click trains were used to elicit the ASSR at three 

frequencies: 20, 30 and 40 Hz. Patients with schizophrenia showed a reduction in power at 

40 Hz, but not at 20 or 30 Hz. Moreover, patients showed delayed onset of phase 

synchronization and delayed desynchronization to the 40 Hz click trains. Subsequently, a 

reduction in 40 Hz power or PLF in SZ has been observed in most (Light et al., 2006; 

Vierling-Classen et al., 2008; Wilson et al., 2008; Spencer et al., 2009; Mulert et al., 2011) 

but not all (Hong et al., 2004) studies. Thirty and 40 Hz PLF ASSR reductions have been 

observed in first episode SZ (Spencer et al., 2008) and in adolescents with a diagnosis of a 
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psychotic disorder (Wilson et al., 2008) indicating that the deficit is probably not due to 

chronic illness or long-term medication effects. Type of stimulus may affect the specificity 

of the deficit to gamma range (> 30 Hz) frequencies. Studies which used AM tones rather 

than clicks to elicit the ASSR have found that power was reduced from 11 to 82 Hz (Brenner 

et al., 2003), and both power and PLF were reduced from 5 to 50 Hz (Krishnan et al., 2009). 

Hamm et al. (2011) used broad-band noise bursts and found that 5, 40 and 80 Hz ASSRs 

were attenuated in SZ, while 20 Hz was unaffected. Similar to findings by Hamm et al. 

(2011), unpublished data from the Krishnan et al. (2009) study also revealed an 80 Hz ASSR 

deficit in SZ. There is also evidence that the ASSR 40 Hz deficit is associated with genetic 

risk, although not with schizotypal personality characteristics. In the only study to examine 

first-degree relatives of SZ patients, Hong et al. (2004) reported that relatives showed a 

reduction in 40 Hz power. In contrast, individuals with schizotypal personality disorder, a 

phenotype which shares symptoms with schizophrenia, did not show a deficit in power at 42 

Hz or at any other frequency between between 11 and 82 Hz (Brenner et al, 2003).

ASSR deficits in 30–40 Hz range are suggestive of auditory cortex disturbances. Auditory 

cortex involvement in SZ has also been indicated by both imaging and neuropathological 

findings. Reduction of the grey matter volume of the posterior superior temporal gyrus, 

including auditory cortex, is a consistent neuroanatomical finding in SZ (Shenton et al., 

2001). At the cellular level, Sweet et al. (2003) have reported reduction of the volume of 

pyramidal neurons in the deep layer of primary and secondary auditory cortex in 

postmortem tissue from patients with SZ.

 6.1.4 Summary

Patients with SZ have typically demonstrated a deficit in ASSR power or PLF, which is most 

consistent at 40 Hz. This deficit is apparent for both EEG and MEG ASSR measures and is 

present at the first psychotic episode. The disturbance in synchrony affects a broader range 

of frequencies when AM tones, rather than clicks, are used as stimuli. Since the auditory 

cortex is the primary generator for scalp recorded ASSRs in the 40 Hz–50 Hz frequency 

range, these electrophysiological findings are convergent with other imaging data, 

demonstrating abnormalities in auditory cortex anatomy and function. The 40 Hz deficit also 

appears in first-degree relatives, suggesting that it may reflect genetic risk or shared 

environmental factors, but not in individuals with schizotypal personality disorder.

 6.2. Cellular mechanisms, pharmacology and animal models

ASSRs demonstrate alterations in a key system affected by SZ, the auditory pathways and 

auditory cortex. The interpretation of this deficit and its value as a biomarker depend in part 

on understanding the cellular mechanisms responsible for synchrony and oscillatory activity 

within neural networks, and how these are disturbed by putative pathophysiological 

processes. Consequently, in vitro and in vivo studies of neurobiological mechanisms in 

animal models will likely play a critical role in further understanding cellular mechanism 

and evaluating novel treatments in both preclinical and clinical stages of development. 

Gamma range oscillatory activity (30–80 Hz) has been widely studied across a range of 

mammalian species (Ehrlichman et al., 2009; Lazarewicz et al., 2010).
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 6.2.1. Generation of gamma oscillations

Neural oscillations are a putative mechanism for sensory, attentional, mnemonic and motoric 

processes (Singer, 1999; Basar, 2011. A number of models have been developed to identify 

important components and network properties associated with neural synchronization. Data 

from both in vitro and in vivo investigations support the role of synaptic inhibition in the 

generation of neuronal oscillations, either in an interneuronal network or in a reciprocal 

excitatory–inhibitory loop (Wang, 2010).

In vitro studies suggest that two major cell types, excitatory principal neurons and inhibitory 

interneurons, and two specific receptor types, gamma-aminobutyric acid (GABA) and N-

methyl-D-aspartate (NMDA), are critical for neural synchronization (Roopun et al., 2008) in 

the gamma frequency range. It was originally postulated that among interneuron networks, 

precise, in-phase firing modulates excitatory glutamatergic pyramidal neuron activity 

(Whittington et al., 1995; Gray and McCormick, 1996; Traub et al., 1996; Whittington, 

2008).

Once activated by glutamatergic (NMDA) receptors, GABAergic interneurons generate post-

synaptic interneuronal potentials (Traub et al., 1996) and engage in ongoing mutual 

inhibition and a recurrent feedback loop (Whittington et al., 1995). It has since been 

demonstrated that trains of fast, somatic inhibitory post-synaptic potentials mediated by the 

GABAA receptor are present in all forms of gamma oscillations (Roopun et al., 2008). High 

frequency synchronization is likely propagated through networks in a cycle of GABAA 

mediated inhibition followed by rebound excitation and then inhibition (Lewis and 

Gonzalez-Burgos, 2008). The NMDA receptor is thought to contribute to the generation of 

network oscillations via modulation of both interneuron to interneuron and interneuron to 

pyramidal neuron, cell connections. A recent in vitro study demonstrated that the effects of 

altering NMDA function via ketamine administration may be region specific. Roopun et al. 

(2008) used horizontal cortical slices to examine the effects of NMDA antagonism of beta2 

(20–29 Hz) and gamma (30–80 Hz) range oscillations. This study showed that, following the 

administration of ketamine, beta2 power increased in association with prelimbic cortices, 

while gamma range power was decreased in slice recordings of several regions (medial 

entorhinal, perirhinal, insular, and medial orbital cortices). Of the areas studied, NMDA-

induced increase in gamma power was only detected in auditory cortex. In an in vivo study 

involving rodents, Pinault (2008) showed that acute blockade of NMDA receptors (with 

ketamine and MK-801) increased gamma activity in a dose-dependent manner. It could, 

therefore, be speculated that blocking excitation of inhibitory interneurons decreased phasic 

inhibitory post-synaptic potentials onto pyramidal cells, resulting in a net excitatory effect 

on the neuronal network.

In summary, while NMDA antagonists cause an increase in in vitro gamma activity in 

several brain regions, the auditory cortex appears to show the opposite effect for acute 

blockade. In vivo studies have shown an increase in gamma activity after acute NMDA 

blockade. These variations in synchronization patterns may result from intrinsic differences 

in NMDA signaling in different regions, or interactions among regions that are evident in in 

vivo studies (Kuwada et al., 2002; Roopun et al., 2008).
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 6.2.2. Pharmacological effects on ASSRs

The anatomical and functional organization of auditory pathways in humans and other 

mammalian species is comparable, allowing for the use of animals such as rodents to study 

ASSR in cross-species studies of schizophrenia-related phenotypes. However, an important 

issue is whether a specific animal model demonstrates the same frequency response function 

as that observed in humans. For example, while the healthy human brain has an ASSR 

resonant frequency at 40 Hz (Kwon et al., 1999), rat ASSRs appear to be maximal at a bout 

50 Hz (Fig. 3; (Vohs et al., 2010). It has been argued that this difference should not preclude 

the use of rodents in ASSR studies because the observed frequency shift is likely secondary 

to brain volume differences (see Leiser et al., 2011 for further information).

Because NMDA and GABAergic interneurons are thought to be the most likely candidate 

mechanisms for ASSR generation, studies examining pharmacological effects on this 

response have focused on these transmitter systems. However, few studies have utilized 

pharmacological manipulation on ASSRs. NMDA receptor antagonism via phencyclidine 

(PCP), MK-801, or ketamine administration induces schizophrenic-like symptoms in healthy 

individuals (Javitt and Zukin, 1991; Krystal et al., 1994) and exacerbates psychoses in 

patients with schizophrenia (Lahti et al., 1995; Malhotra et al., 1997). These effects likely 

reflect dysregulation of the glutamatergic system, and more specifically the NMDA receptor, 

in the disorder (Tsai et al., 1998). NMDA receptor antagonism not only induces positive 

(similar to amphetamine psychosis), but also mimics negative and cognitive symptoms 

associated with schizophrenia. As in patients with schizophrenia and healthy subjects 

(Plourde et al., 1997), NMDA antagonism (ketamine MK-801 PCP) produces an increase in 

baseline (unevoked) gamma power in vivo local field potentials (LFPs) and EEG in awake 

rodents (Pinault, 2008; Ehrlichman et al., 2009; Hakami et al., 2009; Lazarewicz et al., 

2010). While these studies mostly examined baseline gamma magnitude and suggested that 

NMDA antagonism increased gamma, none specifically tested ASSRs. In humans, it has 

been demonstrated that ketamine increased the 40 Hz ASSR in healthy individuals (Plourde 

et al., 1997). Ehrlichman et al. (2009), however, examined both baseline and evoked gamma 

band responses. These investigators found that subanesthetic (20 mg/kg) doses of ketamine 

produced increased baseline, but not evoked gamma response. Interestingly, dopamine 

agonism (D-amphetamine) did not alter gamma band response, suggesting that dopamine 

may not play a direct role in the gamma deficits observed in patients with schizophrenia.

 6.2.2. ASSRs in rodent models of schizophrenia phenotypes

EEG synchronization has recently been studied in rodent models of schizophrenia (Pinault, 

2008; Ehrlichman et al., 2009; Lazarewicz et al., 2010). However, limited data have been 

obtained using the ASSR protocol commonly employed in patients with schizophrenia in 

animal models. One such study (Vohs et al., 2010) elicited 40 Hz ASSRs from neonatal 

ventral hippocampal lesion (NVHL) model rats, an established rat model of schizophrenia. 

In addition, a pharmacological manipulation targeting the GABAA receptor was also 

performed to further elucidate this receptor’s role in ASSR generation and its status in the 

NVHL model. The authors found that agonism of the GABAA receptor yielded a strong 

lesion by drug interaction, with ASSR magnitude and synchronization decreased in NVHL 

and increased in sham rats (Vohs et al., 2010). These data suggested an alteration in GABAA 
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receptor function in NVHL rats and altered inhibitory transmission in the neuronal networks 

responsible for ASSR generation in NVHL rats.

 6.2.4. Summary

A key question in the application of a translational biomarker is whether a comparable 

neural response can be obtained in human and in an animal model. The ASSR can be 

elicited from a wide range of species, although initial studies suggest the need for better 

characterization of the frequency response function to both click and AM tone stimuli in 

rodent models. in vitro studies suggest that gamma range oscillations in cortical circuits are 

entrained by GABAA neurons and are reduced by NMDA receptor antagonists. Importantly, 

the effect of NMDA antagonists on gamma activity may vary across cortical regions, and 

between in vitro and in vivo preparations. Thus, while the sensitivity of gamma range 

activity has been demonstrated by both types of preparation, study of local circuit activity 

and neural populations in vivo will be required to better characterize the basis of specific 

pharmacological effects. Several studies have examined ASSRs in rodent models of 

schizophrenia-related phenotypes and suggest that this approach may offer a flexible vehicle 

for cross-species studies of pathophysiological mechanisms and medication effects.

 6.3. Discussion

ASSRs, particularly in the gamma frequency range (> 30 Hz), are reduced in power and 

phase synchronization in schizophrenia. Because synchronized neural activity appears to be 

critical for a wide range of perceptual, cognitive and motoric processes, oscillatory deficits 

may index a key mechanism for functional disconnection or integration in SZ (Basar et al., 

2001; Whittington, 2008; Uhlhaas and Singer, 2010). ASSRs therefore appear to have the 

potential to serve as a translational, cross-species biomarker for schizophrenia and related 

disorders. However, the functional significance of the ASSR deficit and its implications 

regarding the pathophysiology of SZ must be better characterized for this response to be 

effectively utilized as an informative biomarker in studying etiological factors, mechanisms 

and intervention effects.

The ASSR represents only one of a variety of EEG and MEG paradigms which can capture 

disturbances of neural synchrony or oscillations in schizophrenia (Basar et al., 2001; 

Uhlhaas and Singer, 2010; Basar, 2011). Gamma activity, for example, may also be evoked 

by the onset of an auditory stimulus, or induced by working memory demands in patients 

with schizophrenia. Moreover, gamma activity deficits have been observed in other disorders 

as well, including attention deficit hyperactivity disorder and bipolar disorder (see Basar and 

Guntekin, 2008, for review), and therefore are not specific to schizophrenia. Given the 

dependence on gamma oscillations on interactions among GABAergic and glutamatergic 

neurons within cortical circuits, it is not surprising that oscillatory deficits would be 

sensitive to a range of neuropsychiatric disorders.

From a clinical perspective, the relationship of ASSRs to the development and course of the 

illness, treatment, and outcomes is incompletely characterized. While it has been established 

the motoric, cognitive and social behavior deficits are often present in children who develop 

schizophrenia later in life (O’Donnell, 2007), there are no studies of ASSRs in high-risk or 
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prodromal individuals who later develop the illness. A single study (Hong et al., 2004) has 

reported that the 40 Hz ASSR deficit occurs in non-psychotic relatives of patients with 

schizophrenia, consistent with an effect of familial or genetic risk factors. No longitudinal 

studies have been conducted, and long- term test–retest reliability of the measure in SZ has 

not been evaluated. The relationship of ASSR deficits to long-term outcomes or treatment 

response has not been studied. Hong et al. (2004) reported that patients receiving novel 

antipsychotic medication may show enhanced 40 Hz activity, but no studies have examined 

ASSRs in patients before and after receiving antipsychotic medications.

The ease of recording ASSRs in animal models of SZ phenotypes suggests that these 

measures could also be highly informative in testing neurophysiological models of the 

disorder, particularly with respect to glutamate and GABAergic interactions. ASSRs can test 

cellular mechanisms that are not accessible through non-invasive measures in humans and 

could provide a preclinical measure to test novel antipsychotic treatments. The potential of a 

combined human and animal model approach to treatment development is especially 

intriguing and merits exploration in future research.
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Fig. 1. 
Auditory steady-state responses (ASSRs) to a 1-s, 40-Hz amplitude-modulated tone 

recorded at Cz in a healthy control group (HC; N = 21) and in patients with schizophrenia 

(SZ; N = 21). (A) The ERP in the time domain averaged across subjects, showing both a 

large onset response as well as the 40-Hz oscillation. In (B), the averaged wave form has 

been filtered between 39 and 41 Hz. (C) A power spectrum obtained by applying a Fast 

Fourier Transform on the ERPs in the two groups, showing the 40-Hz response in the HC 

group which is reduced in magnitude in the SZ group. (D) Mean power (MP) across the 

epoch which indicates the average change in power at a given frequency from the mean 

baseline power. The x-axis represents time in milliseconds, the y-axis represents frequency 

in Hertz, and the colors represent the magnitude of power. (E) The phase-locking factor 

(PLF) across trials. The x-axis indicates time in milliseconds, they-axis indicates frequency, 

and the colors represent phase reproducibility across trials ranging from 0 (absence of 

synchronization) to 1 (perfect synchronization). (For color figures, please refer to the color 

figures in last section of the book.)
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Fig. 2. 
The modulation transfer function (MTF) for the ASSR recorded at Cz from healthy control 

(HC; N = 21) and schizophrenia (SZ; N = 21) groups. The MTFs for the each stimulus 

frequency are displayed. Each data point is the mean value across the entire stimulus period 

averaged across subjects within the group. The error bars indicate standard errors. Note the 

large decrement in schizophrenia for both PLF and MP between 35 and 50 Hz.
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Fig. 3. 
Modulation transfer function of phase locking factor (PLF, left panel) and mean power (MP, 

right panel) to 10-s click trains in eight male rats, with frequency of stimulation on the x-

axis. The peak frequency of response for hoth phase locking and mean power is at a slightly 

higher frequency in rats than in humans (hetween 45 and 50 Hz).
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Table 1

Studies of Auditory Steady State Responses (ASSRs) in Schizophrenia and Related Disorders)

Author Stimuli Frequency Stimuli Type Group Results (Power, MP or PLF)

Kwon et al., 1999 20, 30, 40 Hz Clicks SZ Reduced 40 Hz

Brenner et al., 2003 11, 22, 31, 42,
51, 62, 82 Hz

AM Tones SZ Reduced across multiple
frequencies

Brenner et al., 2003 11, 22, 31, 42
51, 62, 82 Hz

AM Tones SPD No reduction at any frequency

Hong et al., 2004 20, 30, 40 Hz Clicks SZ No reduction at 40 Hz

Hong et al., 2004 20, 30, 40 Hz Clicks First-degree relatives Reduced 40 Hz

Light et al., 2006 20, 30, 40 Hz Clicks SZ Reduced 40 Hz

Spencer et al., 2008 20, 30, 40 Hz Clicks First-episode Psychosis: SZ Reduced 30, 40 Hz, reduced PLF
of 40 Hz harmonic of 20 HZ ASSR

Teale et al., 2008 40 Hz AM Tones SZ Reduced 40 Hz

Vierling-Classen et al., 
2008

20, 30, 40 Hz Clicks SZ Reduced 40 Hz, but increased 20 Hz

Wilson et al., 2008 40 Hz Clicks adolescent psychosis: SZ, BP Reduced 40 Hz

Krishnan et al., 2009 5 to 50 Hz AM tones SZ Broadband reduction

Spencer et al., 2009 40 Hz Clicks SZ Reduced 40 Hz

Mulert et al, 2011 40 Hz Clicks SZ Reduced 40 Hz

Hamm et al., 2011 5, 20, 40, 80
160 Hz

Broadband Noise
Bursts

SZ Reduced 5 Hz and 80 Hz, reduced 40 
Hz
in right hemisphere

Abbreviations: Schizophrenia (SZ), schizotypal personality disorders (SPD), mean power (MP), phase locking factor (PLF)
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