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Abstract

The number of liver transplants (LTs) performed in the US increased until 2006, but has since 

declined despite an ongoing increase in demand. This decline may be due in part to decreased 

donor liver quality and increasing discard of poor quality livers. We constructed a Discrete Event 

Simulation (DES) model informed by current donor characteristics to predict future LT trends 

through the year 2030. The data source for our model is the United Network for Organ Sharing 

database, which contains patient level information on all organ transplants performed in the US. 

Previous analysis showed that liver discard is increasing and that discarded organs are more often 

from donors who are older, obese, have diabetes, and donated after cardiac death. Given that the 

prevalence of these factors is increasing, the DES model quantifies the reduction in the number of 

LTs performed through 2030. In addition, the model estimates the total number of future donors 

needed to maintain the current volume of LTs, and the effect of a hypothetical scenario of 

improved reperfusion technology. We also forecast the number of patients on the waiting list and 

compare this to the estimated number of LTs to illustrate the impact that decreased LTs will have 

on patients needing transplants. By altering assumptions about the future donor pool, this model 

can be used to develop policy interventions to prevent a further decline in this life saving therapy. 

To our knowledge, there are no similar predictive models of future LT use based on epidemiologic 

trends.

Introduction

Liver cirrhosis, which can result in end stage liver disease and hepatocellular carcinoma, is 

the twelfth leading cause of death in the US [1]. The only cure for cirrhosis is liver 

transplantation (LT), which offers patients a 5 year survival rate of 74% [2]. Advances in 

transplantation medicine in the early 1980s transformed LT from an experimental procedure 

to a standard therapy for end stage liver disease [3], and since that time, continued 

improvements in management and outcomes have contributed to an expanding volume of 
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LTs nationally, except in the last decade, where despite an increase in the number of donated 

livers, the number if transplants has slightly declined due to an increase in non use [2].

Despite the increasing number of transplants in the US in the last few decades, demand has 

always exceeded supply. Efforts have been made to increase the donor pool by altering 

procurement strategies to encourage extended criteria donors, including older donors, donors 

with fatty livers, and organ donation after cardiac death (DCD) [4]. In DCD, organs are 

procured after donor circulation ceases, in contrast to standard donation after brain death 

(DBD), where circulation and oxygenation are supported until the time of procurement. The 

problem with these extended criteria donors is that LT outcomes are generally worse for 

recipients of these organs as compared to standard donors (i.e. extended criteria donor livers 

are often considered poor quality organs) [5,6]. Transplant centers are therefore hesitant to 

use livers from donors with advancing age, diabetes, obesity, and DCD, even when the 

donors' other organs (e.g. kidney or pancreas) are successfully transplanted [7, 8].

Patients that require a liver transplant are assigned a Model for End Stage Liver Disease 

(MELD) score based on standard blood work (bilirubin, creatinine and INR), that indicates 

their priority on the waiting list. Wait lists are stratified by ABO blood type. A donor liver is 

offered first to the candidate who matches on common elements, such as blood type and 

body size, and has the highest MELD score (indicating most need). Factors that are 

important for kidney transplants, such as negative lymphocytotoxic crossmatch and the 

number of HLA antigens in common between the donor and the recipient, are a non issue for 

livers. Geographic factors are also taken into consideration; however, while ideally, liver 

grafts are transplanted within 8 hours, they can remain outside the body for 12 to 15 hours, 

and thus, can travel farther than heart and lung grafts. Thus, in current practice, if the 

primary transplant center turns down the donated liver, several other centers will be offered 

the organ; as such, wastage of donated livers is rare. Moreover, since the number of patients 

on the waitlist for livers outnumbers the number of donors, the recipients of donated livers 

are not the limiting factor. Therefore, in this work we focus on the donor liver organs and 

assume that any offered high quality livers would find a donor. However, to show the impact 

of decreased liver utilization, we also forecast the waiting list size and show the gap between 

the waiting list, livers available for transplant, and livers used.

Despite a relatively constant supply of donated livers, the number of transplants performed 

annually in the US has slightly declined since 2006, and decreased donor liver quality may 

be partly responsible. Changing donor characteristics reflecting population wide increases in 

diabetes and obesity along with an emphasis on DCD may have had a deleterious impact on 

the overall number of LTs performed because of increased discard of such organs. 

Knowledge of current donor demographic trends and factors associated with liver discard 

can be used to predict future trends in LT. Such forecasting will aid in developing public 

health policies and programs oriented towards ensuring availability of and access to this life 

saving therapy. To date, forecasting of future liver donor quality and its impact on LT 

volume has not been attempted in the medical literature. Furthermore, forecasting tools 

commonly used in the medical literature, such as Markov and decision tree modeling, are 

imprecise when there are multiple variables that influence outcomes changing over time.
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Methods

Data and Overall Approach

The United Network for Organ Sharing (UNOS) database contains extensive patient level 

data on all LTs performed in the US. Data extracted from UNOS and processed through the 

use of different statistical tools were used to inform a discrete event simulation (DES) model 

[9] predicting future LTs. Although we considered using US Census data for demographic 

trends, we found that the UNOS database better represents the population of interest: 

potential organ donors. That is, the UNOS database better represented key health and 

demographic attributes of the organ donor population and these factors (age, race, etc.) and 

the relationships among them were found to be markedly different from other data sources 

including the Census, National Health and Nutrition Examination Survey (NHANES), and 

Behavioral Risk Factor Surveillance System (BRFSS). The model was developed utilizing 

data from 2004 to 2009, with forecasts over the period 2010 2030. Years 2010 and 2011 

were reserved for validation. We began by forecasting demographic trends (age, gender, 

race) accounting for possible correlations. Then we identified factors associated with discard 

of donated livers using multivariable logistic regression analysis. Incorporating the strengths 

of these associations and the changing prevalence of these factors over time, we constructed 

a DES model to estimate future LT utilization. DES enables the tracking of hypothetical 

individuals moving through a model while concurrently considering changing demographic 

and health attributes over time [10].

Inclusion/Exclusion Criteria

In our statistical analysis of the data used to parameterize the DES model, we only include 

donors who had at least one solid organ used for transplant, hence analyzing only those 

donors who met a minimal threshold for organ donation in general (e.g. HIV negative). 

Additionally, only donors at least 18 years of age were included. Living donors and split 

liver donors (where the donated liver is split between two recipients) were excluded because 

these donors make up a very small proportion of donors and their characteristics are very 

different from the general donor population. Another reason to exclude these donors is that 

their liver utilization is 100% as living donations are directed donations to an individual 

(usually a family member) and split donations are organs of high quality usually split 

between two children. Donors with a recorded BMI < 14 or > 50 kg/m2 were also excluded, 

as these extreme values may be reflective of data entry error in the UNOS database. These 

criteria are consistent with our previous work on LT trends [8].

The statistical analysis is restricted to time points between 2004 and 2009 and was inclusive 

of 37, 778 records. While most variables were available since 1995, with varying degrees of 

completeness, we chose to base our model on records from 2004 onward based on our 

interest in recent trends [8] and on the completeness of the data. In particular, alcohol 

consumption was not systematically recorded before this time. However, from 2004 onward, 

each individual variable of interest was missing for <3% of records.
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Statistical Analyses

Independent variables of interest in our logistic regression model included age, obesity (BMI 

≥ 30 kg/m2) diabetes, and DCD. Additional covariates included sex, race and alcohol 

consumption. The primary outcome of interest was a variable indicating whether or not the 

donated liver was used for a transplant. The Likelihood Ratio Test (LRT) [11] was used to 

check whether adding higher order interactions caused significant differences in the 

explanatory power of the logistic regression model. A simpler model was always preferred 

unless it failed the LRT. All statistical processing was done in R (version 2.15.3). Records 

with missing variables were eliminated from the analysis. About 3% of records were 

excluded due to missing variables. Additional details related to the regression models can be 

found in the appendices.

Table 1 presents an overview of the parameters used by the simulation model with additional 

details about the methods by which these variables were generated (i.e., relationships with 

independent variables and statistical models). These model parameters were selected based 

on a retrospective analysis of risk factors for liver discard [8].

Demographic Variables—We analyzed historical demographic trends in the gender, race 

and age of donors in the UNOS database. Our analysis revealed that the proportion of men 

and women in the donor pool has been stable, with the percentage of men being higher, 

accounting for 59% of the donors. Using this information, an empirical discrete probability 

distribution was used to generate the gender of hypothetical individuals moving through the 

simulation model, mirroring historical trends. Our analysis revealed that age, gender and 

race were interrelated; therefore, our analytic and simulation models incorporated 

stratification to appropriately represent this interdependence of important demographic 

variables influencing donation. We have included data from donors reported in UNOS as 

being non Hispanic white, non Hispanic black or Hispanic, with other races (accounting for 

2% of donors) excluded. Race was reported by the local organ procurement organization, 

which is the entity that coordinates the organ donation process. The percentage of donors 

belonging to each race category was generated using linear regression models stratified by 

gender. Following previous work [8], we specified age groups categorically (<30, 30 39, 40 

49, 50 59, and ≥60 years). The probability distribution of age categories is calculated using 

ordinary Least Squares Linear Regression models with stratification by gender and race. 

That is, using the regression, we predict the proportion of simulated individuals in each age 

category, with the age category ≥60 as the referent group; such that the proportion of donors 

in category ≥60 is 1minus the sum of the proportion of donors in all other age categories. 

These proportions then define a discrete distribution from which we draw a donor's age 

category. This is similarly done for race, where Hispanic is used as the referent race 

category. We considered other model specification methods to project gender, race, and age 

(such as moving average and single exponential smoothing); however, linear regression 

models were selected in every case either because the forecasting error was the smallest or 

because, statistically, linear regression yielded predictions equivalent to those from alternate 

models, and the linear regression model was simpler.
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Obesity—The UNOS database contains the BMI of each donor. As a risk factor for liver 

discard, we modeled whether a patient is obese (BMI > 30kg/m2) or not as a dichotomous 

variable. We tested alternate functional forms of BMI, but the use of a continuous variable or 

a more complex categorical variable did not substantially improve the predictive value. 

Because obesity prevalence has increased over time, the likelihood of being obese was 

estimated using a multivariable logistic regression that depends on the demographic 

attributes of the donor as well as on time (Table 1).

Alcohol consumption is reported in the UNOS database as a Yes/No variable (Yes, if ≥ 2 

drinks per day). Although preliminary analysis showed that the overall alcohol consumption 

at the population level has been stable over the time period of analysis, alcohol consumption 

does depend upon demographic attributes, which are changing over time. Accordingly, a 

multivariable logistic regression model was used to predict alcohol consumption based upon 

the demographic attributes of the donor population.

Cause of Death—Livers of donors who die of stroke pose an increased risk for liver graft 

failure after transplant, and are more likely to be discarded compared to other causes of 

death [6, 8]. We originally estimated stroke prevalence as a function of demographic 

attributes, time, diabetes, and obesity. However, in preliminary analyses, stroke prevalence 

was not correlated with diabetes or obesity, so the final logistic regression predicting stroke 

was modeled as a function of demographic attributes and time only. While stroke incidence 

may be correlated to diabetes or obesity in the general population, it is not necessarily the 

case in a successful donor population, which is our population of interest.

Donation after Cardiac Death (DCD) has increased over the last six years as a strategy to 

procure more organs [9]. Thus, the rising trend of DCD was projected by using a linear 

regression model dependent only on time.

Serum bilirubin is a marker of liver dysfunction, and is categorized as ≤ 1.2, 1.3 2.5, 2.6 5.0 

and >5.0 mg/dL, with higher values indicative of worse function. Elevated levels of bilirubin 

among organ donors are typically related to acute illness at the end of life and are not 

generally related to other clinical attributes. Accordingly, the percentage of donors in each 

serum bilirubin category has been stable over time, and these percentages are not related to 

demographic attributes. The serum bilirubin projection was the done by using an empiric 

discrete probability distribution.

Alanine Aminotransferase levels (ALT) are also reflective of liver damage, with mild 

moderate elevations characteristic of stable chronic liver disease (often fatty liver) and more 

severe elevations indicative of acute illness (as with elevated bilirubin). These levels were 

categorized as follows: ≤40, 41 200, 201 400 and >400 U/L. Because the causes of elevated 

ALT differ with respect to the magnitude of the elevation, nested logistic regression models 

were used to forecast ALT. Initially the data were divided into two categories ≤40 and >40, 

and a logistic regression was used to predict the likelihood of being in the ≤40 category. 

Then, among those patients in the category>40, a new logistic regression model was fitted to 

predict the likelihood of being in the 41 200 category. Finally, two subsequent logistic 

regressions were used to predict the likelihood of being in the categories 201 400 and >400. 
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Each of these models was estimated as a function of demographic attributes and time: the 

first model has Age, Obesity, Diabetes and Year as independent variables; the second has 

Age and Year and the third has Age, Diabetes and Year.

Finally, liver nonuse was defined as a liver procured from an organ donor that was not 

transplanted into a recipient. A logistic regression model depending on the remaining 

variables was used to predict whether or not a donated liver would be used for 

transplantation.

Simulation Model

Figure 1 shows how variables are linked in the simulation model. The boxes indicate the 

model variables, directional arrows indicate dependencies between variables, and the gray 

shading indicates that a variable also depends on time (or model year). The model was 

implemented using the software Arena version 15 (Rockwell Automation). We use the 

simulation model to forecast the future availability of livers for transplantation, as well as 

the probability of those livers being utilized. Since the forecast is simulation based, it 

incorporates uncertainties related to key demographic factors as well as health attributes and 

conditions that have been associated with organ donation and organ quality. The simulation 

also takes into account the correlation found among several variables. This is done by 

carefully generating the variables in the order suggested by the flow diagram (Figure 1) so 

that dependencies can be observed and explicitly modeled. The simulation model allows 

individual specific, as opposed to cohort or population based, simulation, which incorporates 

the multiple complex permutations of individual demographic and health attributes with the 

final goal of estimating the number of livers effectively available for and used in 

transplantation over the long term.

The simulation is performed by running 15 replications, each one simulating 100,000 

patients. This number of patients was sufficient to capture the heterogeneity of the donor 

population as well as observe low probability events. This number of replications allowed us 

to achieve a 95% confidence interval half width of 1% or less about our estimate of 

utilization for all years. The confidence intervals describe the reliability of our estimate. The 

accuracy of our results with respect to how well they predict the actual trends is described in 

the Validation Section of the Results.

The Waiting List

To show the impact that the decreased number of LTs would have, it is also important to 

consider the number of patients waiting for a transplant. To forecast the waiting list we use 

data from the Organ Procurement and Transplantation Network (OPTN) (http://

optn.transplant.hrsa.gov). OPTN provides the number on the waiting list at a specific point 

in time, the number of additions to the waiting list, by year, as well as the number of 

removals from the waiting list, by year and cause. We focus on adult (18 years of age and 

over) candidates. We note that candidates are different from registrations. A patient who is 

waiting at more than one center or for multiple organs would be considered a single 

candidate, where as a patient who is waiting at more than one center or for multiple organs 

would have multiple registrations. On January 31, 2014, there were 15, 267 adult patients on 
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the waiting list. We estimate the number of patients prior to 2014 using the following 

equation, number of waiting list candidates in year i+1= number of waiting list candidates in 

year i + number of candidates added in year i number of candidates removed in year i. 
Removal from all causes is considered (deceased or live donor transplant, deceased, 

transplant in another country, etc.). To forecast the waiting list size we use ordinary least 

squares regression with the independent variable year. To be consistent with the simulated 

variables, we use the estimated waitlist size from 2004 to 2009 to fit the model; since we 

were are to query the waitlist at a later date through the OPTN website, we can compare our 

model fit with historical data through 2014.

Study Design (Scenarios)

Several potential scenarios were defined and analyzed. Scenario I assumes that all trends 

projected by the model will continue for the 20 year period. However, some studies have 

suggested that the increase in obesity for adults in the US appears to have stagnated [12]. We 

therefore defined Scenario II in which we suppressed the effect of time after the year 2020 

for all those parameters for which time was a significant predictor, except for the 

demographic parameters. For instance, in the simulation model, obesity and diabetes depend 

on time, but after 2020, the ‘year’ variable was held constant at the 2020 value. Therefore 

predictions of obesity and diabetes in the years after 2020 will depend only on time to the 

extent that demographic trends shift over time.

We then considered an additional plausible scenario that might alter current trends or change 

the risk of liver discard. Scenario III considers an improvement in organ reperfusion 

technology, which could improve the quality of organs previously considered unsuitable for 

transplant [13-16]. Such improvements may mitigate the risk of using fatty livers or DCD 

livers and therefore increase the utility of such livers [13]. Assuming a reperfusion 

technology that becomes available in 2015 and is incorporated into clinical practice with an 

S shaped diffusion of innovation curve [17], and estimating between a 5 to 20% (according 

to a triangular distribution with mode 10%) associated reduction in the risk of liver discard 

for (IIIa) diabetic and obese donors, (IIIb) diabetic or obese donors, and (IIIc) DCD donors, 

we created a new forecast.

In this simulation model, we are required to make assumptions about the expected number 

of donors in the future. Two possibilities are considered. Based on historical data, from 2006 

onward the annual number of adult organ donors meeting our inclusion and exclusion 

criteria has remained relatively constant (around 6,500 donors/year). In the first case, we 

therefore assume that this trend will continue, and this number is held constant. As an 

alternate possibility, we consider an optimistic 3% annual increase in the number of donors 

after 2010.

To show the gap between supply and demand for LTs, we also show our forecast for the 

number of patients on the waiting list. Here again, two possibilities are considered, one in 

which the number of the waiting list continues to increase, and one in which the number of 

candidate on the waiting list remains constant after 2014.
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This study was exempt from review by the University of North Carolina Institutional Review 

Board because it used de identified publically available data (Study # 11 1948).

Results

Validation

Figure 2 illustrates simulated trends for several key variables from years 2004 to 2011, 

overlaid with the historical values for comparison. Recall that years 2010 and 2011 were not 

used in any of the predictive regression models as they were reserved for validation. Overall, 

for each one of the variables being forecasted by the simulation model the estimation error 

was within 1% of the actual historical data. Trends for all variables, simulated and historical, 

are provided in the Appendix. In terms of our forecast of the waiting list, Figure 3 shows 

waiting list candidates from years 2004 to 2014, where the years 2010 through 2014 were 

withheld from the model.

Figure 4 shows the trends in the donor population from 2010 to 2030 for the base scenario 

(Scenario I). Over that 20 year period the proportion of donors over the age of 50 will 

increase from 39% to 44% the prevalence of diabetes among organ donors will increase 

from 14% to 46%, and the prevalence of obesity will increase from 31% to 58%.

Figures 5 and 6 show the results for scenarios I and II respectively under the two 

assumptions for the number of donors in panels (a), the donors remain constant, in panels (b) 

the donors increase by 3% annually. From Figure 5(a) we can see that if the number of 

donors stays at its current level and the trends in all the input parameters continue as before 

(Scenario I), then there will be a continuous decline in the number of LTs. This would be the 

result of a stagnated pool of donors as well as an increasing prevalence of factors associated 

with nonuse, such as older age, obesity, diabetes, and DCD. Figure 5(b) shows that in order 

to maintain the current LT volume, the number of liver donors would need to increase by at 

least 3% per year. However, even with that increase in the number of donors we can see a 

declining trend in LT after 2025. In other words, the deterioration of liver quality will 

eventually surpass the assumed increase in the number of donors.

Figure 6 corresponds to the scenario in which we suppress the effect of time after the year 

2020 in our projections (Scenario II). The same alternative assumptions about the number of 

donors are considered: one case in which the number of donors is held constant at 6,500/

year (panel (a)) and one case in which the number of donors will increase by 3% per year 

(panel (b)). Under the assumption of a constant number of donors, we can see that after 2020 

LTs would continue to decrease, though at a much slower rate, there is only a loss of 58 LTs 

between 2020 and 2030. For the alternative assumption of an increasing number of donors, 

LTs will increase after 2020. Even then, however, the slope of the increase in LT is smaller 

than the slope of the increase in number of donors. In other words, there would still be 

deteriorating quality of donated livers, which will lead to increased discard rates.

In Scenario III we performed a simulation where a hypothetical change in organ reperfusion 

technology was implemented in 2015 over the course of 10 years according to a diffusion 

curve. In the base case, in which the donor pool remained constant, the rate of discard 
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among population of donors who were either obese or diabetic was 60.2% (in 2030). When 

advances in reperfusion affect only donors who are both obese and diabetic (Scenario IIIa), 

this rate of discard is reduced to 57.0%; while if the technique affects either obese or 

diabetic donors (Scenario IIIb), the rate of discard is reduced to 53.1%. The rate of discard 

among DCD donors is reduced from 82.5% to 75.2% if the reperfusion technique is applied 

to DCD livers (Scenario IIIc). Overall, donor utilization was increased by 2.4% to 46.0% by 

2030 when reperfusion techniques were applied to donors with both diabetes and obesity. 

Utilization was increased by 5.2% to 48.8% by 2030 if the technology benefitted patients 

with either diabetes or obesity. Utilization increased by 3.5% to 47.1% by 2030 when new 

reperfusion technology reduced the risk of DCD liver discard. The results are shown in 

Figure 7, for the base case, in which the donor pool remains constant, all three versions of 

the technology effect are shown with our original predictions also shown as “no change”.

Lastly, we forecast the waitlist size, and again consider two cases. In one case (panel (a)), 

the wait list size stays constant after 2014, in the other case (panel (b)) it continues to 

increase as per our forecast. Figure 8 shows the gap between supply and demand (wait list 

minus LTs) assuming the donor pool remains constant for scenarios I, II, and III (c).

Discussion

A decreasing trend in the number of livers being transplanted has been observed previously 

[8]. Given the importance of LT as an option to save lives, this decreasing trend generates 

concerns about the ability of current liver donation processes to meet future demand. In this 

context, we modeled the current system and forecasted future supply and non use of livers to 

better inform decision making about policies that may be implemented to improve donation 

outcomes and reduce waitlist size. Several variables affect the final decision of using or 

discarding a donated liver, including: demographic attributes, clinical risk factors, 

epidemiologic factors and comorbidities. To identify which factors are most relevant to the 

decline in liver use, and which are most modifiable, we develop a DES model that captures 

these complexities by allowing for interrelationships among variables to exist over time.

Our analyses indicate that observed trends in donor characteristics are expected to result in 

further declines in LTs in 5, 10, and 20 years. One strength of our approach is that DES 

modeling allows us to estimate these changes with precision. Furthermore, the DES model 

allows us to estimate how many additional donors will need to be recruited to maintain 

current LT levels. Our forecast of the waiting list size allows us to estimate the gap between 

supply and demand for livers. Such information can be critical to helping design policies to 

sustain or augment the number and quality of livers available for transplant. DES also allows 

for creating and evaluating “what if” scenarios. Since we are including the modeling of each 

input parameter as a separate module, it is possible to evaluate the effect of possible changes 

on a particular variable (or several of them, probably interrelated), as a result of changes in 

policies, procedures or technologies, for instance. This can be useful to inform policy 

makers about alternative ways to improve the utilization of donated livers. One such 

example was provided in Scenario III, where we considered the hypothetical scenario of 

improved reperfusion technology. Results show that such improvements, as optimistic as 

they are, can only reduce the rate of discard by about 5%. Thus, the total utilization rate will 
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still remain lower than current levels despite these optimistic assumptions. This model can 

be used in future studies to help influence donation and procurement policies in the context 

of increasing rates of metabolic disease and consequent liver discard. That is, it can help us 

to quantify the effectiveness of policy changes with respect to existing procurement 

strategies, such as extended criteria donation. Regarding future trends in the underlying 

donor population, the current model makes assumptions about the expected number of 

donors available in the future and the composition of the donor population. While we 

consider changes in the aggregate number (constant versus an annual 3% increase, obesity 

increases versus stagnates) the current model does not incorporate a detailed forecast of the 

entire donor pool, i.e. those patients/families that decline organ donation. One way to 

incorporate a detailed model of the supply of liver donations would be to use the census 

population and mortality rates for different demographics (such as age and race) jointly with 

a model for either likelihood of donation, based on historical rates of donation by strata, or a 

model for “willingness to donate” which considers that drivers of donation (such as patient 

demographics, religious beliefs and state level opt in policies) may change over time. 

However, we suspect that this forecast for liver graft availability may be rendered even more 

pessimistic if demographic shifts in the U.S. trend toward populations that have historically 

low organ donation rates [18]. While it is outside the scope of this research, as future work, 

we would like to expand the model so that it can also be used to quantify changes in policies 

that improve organ donation.

DES is a strong methodological approach over other commonly used models, such as 

Markov processes. By using DES we were able to employ different statistical processing 

tools for each relevant input parameter, selecting in each case the statistical tool that better 

suited the forecast of each variable. DES models have been used in the past in relation to 

liver transplantation. In [19] the authors developed a DES framework to model the US liver 

allocation system incorporating the stochastic disease specific natural history of patients. 

They mentioned that their model could be used for estimating the number of transplants 

performed as well as the number of wasted livers, among other statistics of interest. In [10] 

the authors also used DES to build a biologically based model of liver transplantation so that 

changes in allocation policies could be evaluated. The work in [20] describes a family of 

simulations developed by the US Scientific Registry of Transplant Recipients, used to 

predict the likely effects of different allocation policies. In [21] they used a multistage 

Markov decision analysis model to analyze the survival chances under different treatments 

of patients requiring liver transplantation. The authors mention that although many problems 

can be modeled by Markov Decision Process (MDP), when the number of states is too large 

or the system is complex enough so that MDP's parameters become hard to estimate, 

simulation becomes a valid alternative with high precision and reasonable computation time. 

We are using DES, taking advantage of its ability to deal with a system in which there are 

complex relationships among key variables. Furthermore, unlike the works mentioned we 

are not modeling the allocation policies. Instead we are interested in predicting the 

availability of livers and their quality. The allocation process is a step further once a suitable 

liver becomes available. We have not found previous research attempting to analyze the 

future availability of livers for transplantation, taking into account the explanatory factors of 

the quality of the livers being donated.
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A number of limitations accompany our analyses. For example, not all available variables 

were included in the analysis (e.g. self reported drug use); adding these variables could 

enhance the predictive power of the model; however there are concerns about reliability of 

variables such as drug use due to inherent bias in self report. In addition, some of the 

variables that we used were categorized to facilitate the analysis, which has been a common 

practice in previous research. However it may be the case that keeping all the information 

from the variables can improve the accuracy of the forecast. As with any forecast, this is an 

extrapolation into the future, which is unknown. While we have shown that the model 

adequately predicted the years 2010 and 2011, its accuracy beyond that is unknown. Major 

shifts in demographic and clinical factors in the population, as well as major shifts in 

technology could impact utilization. We have tried to take this into account to the extent 

possible by considering hypothetical scenarios, such as changes in obesity trends and 

changes in organ reperfusion technology. Lastly, as previously discussed, the current model 

does not include a detailed forecast of those patients/families that decline organ donation.

In conclusion, this work is the first to forecast liver's availability and quality at the US 

population level with high level of accuracy. Results show that if current trends continue this 

could result in 2230 (44%) fewer LTs by 2030. In order to maintain the number of LTs from 

2010, despite these trends, 5115 additional organ donors will be needed in 2030. 

Furthermore, if waitlist size continues to grow at the same rate, there will be 12429 

candidates on the list in 2030 who do not receive a liver. This grim outcome cannot be 

mitigated alone by even radical technological advances, a stabilization of negative clinical 

attributes (such as obesity) or an increase in the donor population. Likely, a combination of 

strategies that increase donor pool, improve donor liver quality, and make better use of 

inferior quality livers, will be necessary to keep up with LT demand. Unless the transplant 

community develops improved strategies for organ allocation and utilization, the only way to 

maintain the number of LTs at the current levels may be to accept inferior grafts at the risk 

worse post transplant outcomes.
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Appendix

Simulation Model Implementation Details

Below are the distributions used in the model for each independent variable.

Gender

Discrete distribution, 41.3% female, 58.7% male
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Age

Age category is assigned according to a discrete distribution that changes over time and 

depends on gender. The probability that age category x is assigned in year is given by 

P(x,y)= α(x)+βy for x={<30, 30-39, 40-49, 50-59}. P(60, y)= 1-Σx<60 P(x,y). In these 

equations “α”s are given by the “Intercept” estimates and “β”s are given by the “Year” 

estimates shown in the Regression Details Section of the Appendix.

Race

Race category is assigned according to a Discrete distribution that changes over time and 

depends on gender. The probability that Race category x is assigned in year is given by 

P(x,y)= α(x)+βy for x={White, Black}. P(Hispanic, y)= 1-Σx<60 P(x,y). In these equations 

“α”s are given by the “Intercept” estimates and “β”s are given by the “Year” estimates 

shown in the Regression Details Section of the Appendix.

The variables BMI, Alcohol, Diabetes, Stroke, and Use are modeled using logistic 

regressions. Where we obtain P(Y) using P(Y)= e^(Y)/[1+e^Y]; Y= β0+-Σj βj. β0 

corresponds to intercept estimates and βjs correspond to the estimates for each of the 

dependent variables listed in the Regression Details Section of the Appendix. Then P(Y) is 

used to sample from a discrete distribution with a binary outcome, yes or no.

Bilirubin

Discrete distribution categorized as ≤ 1.2, 1.3-2.5, 2.6 -5.0 and >5.0 mg/dL with the 

respective probabilities: 73.7%, 21.0%, and 4.0% and 1.3%

DCD

Assigned according to a discrete distribution that changes over time. The probability the 

organ comes from a DCD donor in year is given by P(y)= α+βy where “α” is given by the 

“Intercept” estimate and “β” is given by the “Year” estimate shown in the Regression Details 

Section of the Appendix.

ALT

First, we divide the data into two categories, ≤40 and >40, and a logistic regression was used 

to predict the likelihood of being in the ≤40 category. Then, among those patients in the 

category>40, a new logistic regression model was fitted to predict the likelihood of being in 

the 41-200 category. Finally, two subsequent logistic regressions were used to predict the 

likelihood of being in the categories 201-400 and >400. The probabililities of being in each 

of the binary categories at each step is calculated as explained for the other variables using 

logistic regression above. Then, we use conditional probabilities to obtain the probabilities 

of being in each of the original 4 categories. That is Pr(≤40) is given right away, as the first 

regression provides Pr(≤40) and Pr(>40)=1- Pr(≤40). Then Pr(41-200)= Pr(41-200|

>40)xPr(>40). This is repeated for the other categories.
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Waitlist

Waitlist size Y follows a linear regression where Y=α+βy. In this case y is the current year, 

such as 2004.

Regression Models Details

Male - Age <30

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.307051 0.007361 41.714 3.03e-05

Year -0.004563 0.003005 -1.519 0.226

Residual standard error: 0.009503

Multiple R-squared: 0.4346, Adjusted R-squared: 0.2461, p-value: 0.2262

Male - Age 30-39

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.521e-01 2.559e-03 59.438 1.05e-05

Year 4.096e-05 1.045e-03 0.039 0.971

Residual standard error: 0.003303

Multiple R-squared: 0.0005123, Adjusted R-squared: -0.3327, p-value: 0.9712

Male - Age 40-49

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2126201 0.0047586 44.68 2.47e-05

Year -0.0007567 0.0019427 -0.39 0.723

Residual standard error: 0.006143

Multiple R-squared: 0.04814, Adjusted R-squared: -0.2691, p-value: 0.7229

Male - Age 50-59

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.194718 0.004380 44.457 2.51e-05

Year 0.004403 0.001788 2.462 0.0907

Residual standard error: 0.005654

Multiple R-squared: 0.6689, Adjusted R-squared: 0.5586, p-value: 0.0907
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Male - Age >60

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1335192 0.0048541 27.506 0.000105

Year 0.0008765 0.0019817 0.442 0.688207

Residual standard error: 0.006267

Multiple R-squared: 0.06122, Adjusted R-squared: -0.2517, p-value: 0.6882

Female - Age <30

Coefficients:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.158056 0.005804 27.233 0.000109

Year 0.002390 0.002369 1.009 0.387421

Residual standard error: 0.007493

Multiple R-squared: 0.2533, Adjusted R-squared: 0.00435, p-value: 0.3874

Female - Age 30-39

Coefficients:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.134720 0.008739 15.417 0.000593

Year -0.000486 0.003567 -0.136 0.900268

Residual standard error: 0.01128

Multiple R-squared: 0.006148, Adjusted R-squared: -0.3251, p-value: 0.9003

Female - Age 40-49

Coefficients:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 0.248626 0.007147 34.788 5.22e-05

Year 0.000337 0.002918 0.116 0.915

Residual standard error: 0.009227

Multiple R-squared: 0.004427, Adjusted R-squared: -0.3274, p-value: 0.9153

Female - Age 50-59

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.246048 0.005810 42.347 2.9e-05
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Year 0.003255 0.002372 1.372 0.264

Residual standard error: 0.007501

Multiple R-squared: 0.3856, Adjusted R-squared: 0.1808, p-value: 0.2636

Female - Age >60

Coefficients:

Estimate Std. Error t value Pr(> 111)

(Intercept) 0.212550 0.006124 34.706 5.26e-05

Year -0.005494 0.002500 -2.197 0.115

Residual standard error: 0.007906

Multiple R-squared: 0.6168, Adjusted R-squared: 0.4891, p-value: 0.1155

Male - Race White

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.747167 0.007111 105.071 7.52e-14

Year -0.008250 0.001332 -6.194 0.000261

Residual standard error: 0.0121

Multiple R-squared: 0.8275, Adjusted R-squared: 0.8059, p-value: 0.0002612

Male - Race Black

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1222422 0.0026032 46.959 4.68e-ll

Year 0.0042008 0.0004876 8.615 2.55e-05

Residual standard error: 0.004429

Multiple R-squared: 0.9027, Adjusted R-squared: 0.8905, p-value: 2.553e-05

Male - Race Hispanic

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.130590 0.005766 22.65 1.53e-08

Year 0.004050 0.001080 3.75 0.00563

Residual standard error: 0.00981

Multiple R-squared: 0.6374, Adjusted R-squared: 0.592, p-value: 0.005625
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Female - Race White

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.799906 0.005799 137.946 8.53e-15

Year -0.009455 0.001086 -8.705 2.37e-05

Residual standard error: 0.009866

Multiple R-squared: 0.9045, Adjusted R-squared: 0.8926, p-value: 2.367e-05

Female - Race Black

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.102636 0.005867 17.493 1.16e-07

Year 0.007446 0.001099 6.775 0.000141

Residual standard error: 0.009982

Multiple R-squared: 0.8516, Adjusted R-squared: 0.833, p-value: 0.0001414

Female - Race Hispanic

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0974578 0.0040719 23.934 9.89e-09

Year 0.0020092 0.0007627 2.634 0.03

Residual standard error: 0.006928

Multiple R-squared: 0.4645, Adjusted R-squared: 0.3975, p-value: 0.02999

BMI

Coefficients:

Estimate Std. Error z value Pr(> | z |)

(Intercept) -87.366924 19.148313 -4.563 5.05e-06

GenderM -1.109458 0.126132 -8.796 < 2e-16

Age>=60 0.237314 0.136855 1.734 0.082909

Age30-39 0.270857 0.140752 1.924 0.054310

Age40-49 0.341998 0.122704 2.787 0.005317

Age50-59 0.422617 0.124174 3.403 0.000665

RaceHispanic 2.439582 27.969924 0.087 0.930495

RaceWhite -51.064656 20.915100 -2.442 0.014626

year 0.043198 0.009547 4.525 6.05e-06

GenderM :Age>=60 0.331250 0.188505 1.757 0.078875

GenderM :Age30-39 0.687985 0.179629 3.830 0.000128
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GenderM :Age40-49 0.498453 0.160411 3.107 0.001888

GenderM:Age50-59 0.170108 0.165596 1.027 0.304305

GenderM:RaceHispanic 0.721618 0.179217 4.026 5.66e-05

GenderM:RaceWhite 0.691696 0.140777 4.913 8.95e-07

Age>=60:RaceHispanic 0.242861 0.208022 1.167 0.243017

Age30-39:RaceHispanic 0.443973 0.205978 2.155 0.031127

Age40-49:RaceHispanic 0.346030 0.186828 1.852 0.064007

Age50-59:RaceHispanic 0.439398 0.188255 2.334 0.019593

Age>=60:RaceWhite 0.164633 0.150857 1.091 0.275133

Age30-39: RaceWhite 0.264082 0.156605 1.686 0.091740

Age40-49: RaceWhite 0.235071 0.136988 1.716 0.086162

Age50-59: RaceWhite 0.252462 0.138082 1.828 0.067499

RaceHispanicyear -0.001532 0.013947 -0.110 0.912520

RaceWhite:year 0.025103 0.010429 2.407 0.016079

GenderM:Age>=60:RaceHispanic -0.524963 0.281716 -1.863 0.062399

GenderM:Age30-39:RaceHispanic -0.861232 0.255950 -3.365 0.000766

GenderM:Age40-49:RaceHispanic -0.429464 0.235367 -1.825 0.068053

GenderM:Age50-59:RaceHispanic -0.200124 0.241284 -0.829 0.406872

GenderM:Age>=60:RaceWhite 0.149804 0.206032 0.727 0.467171

GenderM:Age30-39:RaceWhite -0.519040 0.200004 -2.595 0.009455

GenderM:Age40-49:RaceWhite -0.155751 0.178376 -0.873 0.382576

GenderM:Age50-59:RaceWhite 0.217655 0.182938 1.190 0.234133

Null deviance: 2110.55 on 299 degrees of freedom

Residual deviance: 284.23 on 267 degrees of freedom

AIC: 1825.1

Alcohol

Coefficients:

Estimate Std. Error z value Pr(> | z |)

(Intercept) -3.46135 0.16378 -21.134 < 2e-16

GenderM 0.93232 0.13353 6.982 2.91e-12

Age>=60 0.72548 0.19842 3.656 0.000256

Age30-39 1.26358 0.18671 6.768 1.31e-ll

Age40-49 1.68070 0.16647 10.096 < 2e-16

Age50-59 1.37501 0.16928 8.123 4.56e-16

RaceHispa -0.08106 0.19433 -0.417 0.676593

RaceWhite 0.81997 0.14770 5.551 2.83e-08

GenderM :Age>=60 0.18205 0.13324 1.366 0.171843

GenderM :Age30-39 -0.03443 0.12959 -0.266 0.790461

GenderM :Age40-49 -0.07111 0.11535 -0.616 0.537600

GenderM:Age50-59 0.15922 0.11763 1.354 0.175880

GenderM:RaceHispa 0.47804 0.14217 3.362 0.000773
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GenderM:RaceWhite -0.05577 0.09621 -0.580 0.562159

Age>=60:RaceHispa -0.17169 0.23113 -0.743 0.457584

Age30-39:RaceHispa -0.18022 0.19864 -0.907 0.364254

Age40-49: RaceHispa -0.28060 0.18167 -1.545 0.122458

Age50-59:RaceHispa -0.25913 0.18676 -1.387 0.165294

Age>=60:RaceWhite -0.54777 0.17752 -3.086 0.002030

Age30-39: RaceWhite -0.40926 0.16368 -2.500 0.012406

Age40-49: RaceWhite -0.50664 0.14544 -3.484 0.000495

Age50-59: RaceWhite -0.52747 0.14739 -3.579 0.000345

Null deviance: 1996.1471 on 29 degrees of freedom

Residual deviance: 2.0629 on 8 degrees of freedom

AIC: 234.8

Diabetes

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.888e+02 1.796e+01 -10.509 < 2e-16

GenderM -1.021e+00 1.326e-01 -7.695 1.41e-14

RaceHispa 4.220e+01 2.644e+01 1.596 0.110435

RaceWhite 4.398e+01 1.971e+01 2.232 0.025625

Age>=60 2.204e+00 1.816e-01 12.137 < 2e-16

Age30-39 8.240e-01 2.040e-01 4.039 5.38e-05

Age40-49 1.336e+00 1.811e-01 7.378 1.61e-13

Age50-59 1.817e+00 1.783e-01 10.189 < 2e-16

Year 9.237e-02 8.960e-03 10.309 < 2e-16

ObeseY 7.966e-01 2.898e-02 27.489 < 2e-16

GenderM: RaceHispa -3.656e-02 9.998e-02 -0.366 0.714580

GenderM: RaceWhite 1.731e-01 7.530e-02 2.299 0.021487

GenderM:Age>=60 1.374e+00 1.276e-01 10.769 < 2e-16

GenderM:Age30-39 6.743e-01 1.482e-01 4.549 5.38e-06

GenderM :Age40-49 1.028e+00 1.302e-01 7.897 2.85e-15

GenderM:Age50-59 1.129e+00 1.264e-01 8.935 < 2e-16

RaceHispa:Age>=60 -4.825e-02 2.361e-01 -0.204 0.838083

RaceWhite:Age>=60 -8.108e-01 1.847e-01 -4.391 1.13e-05

RaceHispa:Age30-39 -1.528e-01 2.648e-01 -0.577 0.563940

RaceWhite:Age30-39 -4.415e-01 2.086e-01 -2.117 0.034280

RaceHispa:Age40-49 1.441e-01 2.340e-01 0.616 0.538220

RaceWhite:Age40-49 -6.581e-01 1.849e-01 -3.559 0.000372

RaceHispa:Age50-59 5.486e-02 2.310e-01 0.237 0.812287

RaceWhite:Age50-59 -6.323e-01 1.816e-01 -3.482 0.000498

RaceHispa:Year -2.105e-02 1.319e-02 -1.596 0.110554

RaceWhite:Year -2.196e-02 9.831e-03 -2.234 0.025498
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Null deviance: 42409 on 76898 degrees of freedom

Residual deviance: 37177 on 76873 degrees of freedom

AIC: 37229

DCD

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0051997 0.0072109 -0.721 0.503

Year 0.0118093 0.0009905 11.923 7.32e-05

Residual standard error: 0.005241

Multiple R-squared: 0.966, Adjusted R-squared: 0.9592, p-value: 7.315e-05

Stroke

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.862e-01 1.569e+01 -0.056 0.954965

Age>=60 4.484e+01 1.527e+01 2.938 0.003308

Age30-39 2.764e+01 1.380e+01 2.003 0.045227

Age40-49 6.030e+01 1.296e+01 4.653 3.28e-06

Age50-59 8.523e+01 1.362e+01 6.258 3.89e-10

GenderM -3.422e+01 7.978e+00 -4.289 1.80e-05

RaceHispa -4.683e-01 1.676e+01 -0.028 0.977709

RaceWhite 7.619e+01 1.260e+01 6.048 1.47e-09

Year -1.507e-04 7.834e-03 -0.019 0.984652

Age>=60:GenderM 6.099e-01 6.695e-02 9.109 < 2e-16

Age30-39:GenderM 1.765e-01 6.297e-02 2.803 0.005070

Age40-49:GenderM 3.685e-01 5.863e-02 6.286 3.26e-10

Age50-59:GenderM 4.979e-01 6.099e-02 8.164 3.23e-16

Age>=60:RaceHispa -5.845e-01 1.355e-01 -4.314 1.60e-05

Age30-39:RaceHispa -3.238e-01 1.104e-01 -2.932 0.003363

Age40-49: RaceHispa -5.035e-01 1.055e-01 -4.773 1.81e-06

Age50-59:RaceHispa -5.203e-01 1.142e-01 -4.556 5.21e-06

Age>=60:RaceWhite -9.037e-02 1.068e-01 -0.846 0.397635

Age30-39: RaceWhite -2.354e-01 8.965e-02 -2.626 0.008650

Age40-49: RaceWhite -4.786e-01 8.435e-02 -5.674 1.40e-08

Age50-59: RaceWhite -3.388e-01 9.072e-02 -3.734 0.000188

Age>=60:Year -2.081e-02 7.619e-03 -2.732 0.006302

Age30-39:Year -1.303e-02 6.891e-03 -1.891 0.058670

Age40-49:Year -2.882e-02 6.470e-03 -4.455 8.41e-06

Age50-59:Year -4.106e-02 6.797e-03 -6.041 1.53e-09

GenderM:RaceHispa 2.268e-02 7.255e-02 0.313 0.754560
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GenderM: RaceWhite 1.110e-01 5.502e-02 2.017 0.043668

GenderM :Year 1.645e-02 3.983e-03 4.130 3.63e-05

RaceHispa:Year 2.923e-04 8.368e-03 0.035 0.972135

RaceWhite:Year -3.824e-02 6.289e-03 -6.081 1.20e-09

Null deviance: 27343.4 on 1722 degrees of freedom

Residual deviance: 2167.2 on 1693 degrees of freedom

AIC: 6752.4

ALT - <=40 - >40

Coefficients:

Estimate Std. Error z value Pr(> | z |)

(Intercept) 66.060988 3.480759 18.979 < 2e-16

AgeCat>=60 0.985003 0.026545 37.107 < 2e-16

AgeCat30-39 0.090342 0.023593 3.829 0.000129

AgeCat40-49 0.274738 0.021614 12.711 < 2e-16

AgeCat50-59 0.509089 0.022732 22.396 < 2e-16

Obese.Y -0.265279 0.018350 -14.457 < 2e-16

Diabetes.Y 0.132932 0.029767 4.466 7.98e-06

year -0.032894 0.001738 -18.923 < 2e-16

Null deviance: 2627.2 on 318 degrees of freedom

Residual deviance: 327.8 on 311 degrees of freedom

AIC: 1858.5

ALT - 41-200 - >200

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 70.407817 7.656245 9.196 < 2e-16

AgeCat>=60 0.981491 0.072491 13.539 < 2e-16

AgeCat30-39 0.149785 0.045355 3.302 0.000958

AgeCat40-49 0.397113 0.043958 9.034 < 2e-16

AgeCat50-59 0.669555 0.050792 13.182 < 2e-16

year -0.034443 0.003822 -9.012 < 2e-16

Null deviance: 740.80 on 314 degrees of freedom

Residual deviance: 332.18 on 309 degrees of freedom

AIC: 1300.8

ALT - 201-400 - >400

Coefficients:
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 51.58996 14.12514 3.652 0.000260

AgeCat>=60 0.69847 0.14491 4.820 1.44e-06

AgeCat30-39 0.13017 0.08229 1.582 0.113692

AgeCat40-49 0.21430 0.08094 2.648 0.008107

AgeCat50-59 0.35092 0.09622 3.647 0.000265

Diabetes.Y 0.26195 0.13305 1.969 0.048972

year -0.02581 0.00705 -3.661 0.000252

Null deviance: 346.95 on 265 degrees of freedom

Residual deviance: 293.42 on 259 degrees of freedom

AIC: 869.3

Liver Usage

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 103.34785 20.16547 5.125 2.98e-07

Age>=60 -0.84203 0.06327 -13.309 < 2e-16

Age30-39 -0.44170 0.05990 -7.373 1.66e-13

Age40-49 -0.90414 0.05386 -16.788 < 2e-16

Age50-59 -1.05926 0.05551 -19.082 < 2e-16

GenderM 0.12925 0.03422 3.777 0.000159

RaceHispa -0.84163 0.06341 -13.272 < 2e-16

RaceWhite -0.41177 0.05291 -7.783 7.08e-15

AlcohY -0.87527 0.03822 -22.904 < 2e-16

ObeseY -0.67870 0.03445 -19.701 < 2e-16

DiabetesY -0.13673 0.05070 -2.697 0.007000

StrokeY -0.18463 0.03734 -4.944 7.65e-07

DCD1: Yes -2.25521 0.04688 -48.111 < 2e-16

Altcat1: 41-200 -0.51481 0.03494 -14.736 < 2e-16

Altcat2: 201-400 -1.00249 0.08017 -12.504 < 2e-16

Altcat3: >400 -2.25609 0.07138 -31.605 < 2e-16

Bilicat1: 1.2-2.5 -0.43682 0.03939 -11.090 < 2e-16

Bilicat2: 2.5-5 -1.08503 0.06776 -16.012 < 2e-16

Bilicat3: >5 -2.25948 0.12118 -18.646 < 2e-16

year -0.04953 0.01005 -4.930 8.24e-07

Null deviance: 15548 on 8516 degrees of freedom

Residual deviance: 9696 on 8497 degrees of freedom

AIC: 13797

Waitlist Size
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Coefficients Standard Error t Stat P-value

Intercept -428968 119538.5 -3.58854 0.022992

Year 220.5714 59.5756 3.702379 0.020792
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Figure 1. Structure and relationships between the simulation variables
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Figure 2. Simulated and historical values of 6 key variables between 2004 and 2011. The 
difference between these values was <1% in all cases
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Figure 3. Forecasted and historical values of the number of adult LT waitlist candidates from 
2004 through 2014
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Figure 4. Simulated values of 6 key variables between 2010 and 2030

Diaz et al. Page 27

Med Decis Making. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Projection of number of donors and number of livers used assuming that current 
trends remain in place -- (a) Donor Pool Remains Constant (b) Donor Pool Increases by 3% per 
year
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Figure 6. Projection of number of donors and number of livers used assuming changes in current 
trends -(a) Donor Pool Remains Constant (b) Donor Pool Increases by 3% per year
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Figure 7. Projection of number of donors and number of livers if used reperfusion technology 
improves (Scenarios IIIa-IIIc) compared to Scenario I, when and donors remain constant
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Figure 8. Prediction of gap between supply and demand for LTs, assuming the donor pool 
remains constant -- (a) Waitlist size remains constant after 2014 (b) Waitlist size grows as 
predicted
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