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Conventional, Bayesian, and the modified least-squares Prony’s plus curve-fitting (MLSPþCF)

methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a

single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to

0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional

analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm.

In contrast, Bayesian and MLSPþCF methods successfully separated fast and slow waves and pro-

vided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses

ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for

phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and

slow waves. Good agreement among the three methods was also observed for average signal loss at

the center frequency. The Bayesian and MLSPþCF approaches were able to separate the fast and

slow waves and provide good estimates of the fast and slow wave properties even when the two

wave modes overlapped in both time and frequency domains making conventional analysis meth-

ods unreliable. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4923366]

[CCC] Pages: 594–604

I. INTRODUCTION

Due to its complex structure, which consists of a hard

trabecular matrix interspersed with liquid bone marrow, can-

cellous bone permits the propagation of two longitudinal

wave modes, referred to as fast waves and slow waves

(Hosokawa and Otani, 1997, 1998). Based on Biot theory,

the fast wave is thought to be generated by the solid and fluid

components moving in phase, while the slow wave is gener-

ated by the solid and fluid components moving out of phase

(Biot, 1956a,b; Haire and Langton, 1999; Fellah et al.,
2004). Observation of the two wave modes in the time-

domain is very dependent on the angle of insonification rela-

tive to the main trabecular orientation. Previous studies have

demonstrated that the speeds of sound of the fast and slow

waves become more similar as the angle of insonification

between the ultrasound beam and the predominant trabecular

orientation approaches perpendicular alignment, thus, poten-

tially causing the two wave modes to overlap substantially in

the time-domain (Hosokawa and Otani, 1998; Hughes et al.,
2007; Lee et al., 2007; Mizuno et al., 2008; Hoffman et al.,
2012). We have previously demonstrated that applying con-

ventional analysis methods to these mixed-mode signals can

produce misleading wave properties, including negative

dispersion (Marutyan et al., 2006; Bauer et al., 2008; Bauer

et al., 2009; Anderson et al., 2010).

Successful separation and analysis of the individual fast

and slow waves may bring about a better understanding of

the physical mechanisms underlying the propagation of ul-

trasonic waves in cancellous bone, potentially leading to

improvements in the diagnostic capabilities of clinical quan-

titative ultrasound devices. Over the past few years, several

techniques have been introduced to identify and potentiallya)Electronic mail: nelsonam@wustl.edu
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isolate the fast and slow waves, including a space alternating

generalized expectation maximization algorithm (Dencks

et al., 2009; Dencks and Schmitz, 2013), the modified least

squares Prony’s (MLSP) method (Wear, 2010), coded exci-

tation (Lashkari et al., 2012), the modified least squares

Prony’s plus curve-fitting (MLSPþCF) (Wear, 2013), band-

limited deconvolution (Wear, 2014), and generalized har-

monic analysis (Maruo and Hosokawa, 2014). We have

previously demonstrated an approach utilizing Bayesian

probability theory that is capable of isolating the fast and

slow waves, even in cases of extreme overlap and interfer-

ence (Marutyan et al., 2007). This Bayesian technique has

proven successful at separating the two wave modes in ex-

perimental data from plastic phantoms (Anderson et al.,
2010) and from cancellous bone (Nelson et al., 2011;

Hoffman et al., 2012). However, in the previous studies

using Bayesian methods on measurements of cancellous

bone, the fast and slow waves overlapped in time and fre-

quency domains, thus, not permitting the use of conventional

analysis methods. Therefore, there was no appropriate stand-

ard for comparison with the Bayesian method available.

Fujita et al. (2013) performed through-transmission

measurements on equine cancellous bone that was gradually

and systematically shortened. Since the angle of insonifica-

tion was parallel to the predominant trabecular orientation

and the bone volume fraction of the specimen was quite

high, the separation between the fast wave and slow wave

velocities was rather large. In the present study, we analyzed

data acquired in the same laboratory from a specimen adja-

cent to the specimen used to acquire the data presented in

Fujita et al. (2013). In the current study, conventional,

Bayesian, and MLSPþCF analysis techniques were

employed to analyze the data over a wide range of sample

thicknesses. The objective of the current study was to

directly compare estimates for phase velocity and attenua-

tion properties of fast and slow waves for the three methods

in order to further validate the Bayesian and MLSPþCF

approaches.

II. METHODS

A. Data acquisition

The data acquisition process has been described previ-

ously in Fujita et al. (2013). A brief overview will be given

here. A single, rectangular, defatted cancellous bone speci-

men, �22.4 mm� 22.4 mm� 11.8 mm in size, was extracted

from the left radius of a 36-month-old horse. The sample

was placed in an acoustic tube immersed in a room tempera-

ture tank filled with degassed water. A pair of planar, wide-

band polyvinylidene fluoride transducers, with active areas

of 15 mm � 15 mm, was used to interrogate the sample in a

through-transmission arrangement. The sample was oriented

so that the propagation direction was parallel to the main tra-

becular alignment, which was confirmed by micro-CT meas-

urements. The transducers were separated by a distance of

100 mm with the front surface of the sample positioned at

75 mm from the transmitting transducer.

The transmitter was excited by a single cycle of a

1 MHz sinusoidal pulse with a peak-to-peak amplitude of

5 V generated by a function generator (33250A, Agilent,

CO) which was then amplified by 20 dB using a power am-

plifier (4055, NF Corporation, Kanagawa, Japan). The

received signals, after passing through the sample, were digi-

tized by an oscilloscope (TDS 524A, Tektronix Inc., OR)

with a 20 dB preamplifier (5307, NF Corp., Kanagawa,

Japan). This process was repeated as the equine sample was

shortened from 11.8 mm down to 0.5 mm in increments of

�0.5 mm for a total of 24 data sets. At each step, the sample

was ground down using a polishing machine (Speed Lap,

Maruto, Tokyo, Japan).

B. Model of wave propagation in cancellous bone

In a through-transmission experiment, propagation

through cancellous bone can be modeled as

Outputðf Þ ¼ Inputðf Þ½Hfastðf Þ þ Hslowðf Þ�; (1)

where Outputðf Þ and Inputðf Þ are the complex Fourier spec-

tra of the model waveform and the transmitted ultrasonic sig-

nal, respectively. For experimentally acquired data, a

reference water-path-only signal is used as the source for

Inputðf Þ. The transfer functions, Hfastðf Þ and Hslowðf Þ, for the

fast and slow waves can be described by

Hk fð Þ ¼ Ak exp �bkfd½ �exp
i2pfd

ck fð Þ

� �
; (2)

where k stands for either fast or slow, Ak are the frequency-

independent amplitudes of the two waves, bk are the slopes

of the attenuation coefficients, ckðf Þ are the phase velocities,

and d is the sample thickness (Marutyan et al., 2006;

Anderson et al., 2008, 2010). The parameters, Ak, are con-

strained to lie between 0 and 1, indicating that the amplitude

of the fast and slow waves must be less than or equal to the

amplitude of the reference (water-path-only) signal. In order

to satisfy the causality-induced Kramers–Kronig relations,

the phase velocities are related to the linear-with-frequency

attenuation coefficients by

ck fð Þ ¼ ck f0ð Þ þ ck f0ð Þ½ �2 bk

p2
ln

f

f0

� �
; (3)

where f0 is a reference frequency within the experimental

bandwidth, typically the nominal center frequency of the

transmitting transducer (O’Donnell et al., 1981; Waters

et al., 2003, 2005).

C. Bayesian parameter estimation

This method has been described in previous publications

from our laboratory (Marutyan et al., 2007; Anderson et al.,
2010; Nelson et al., 2011; Hoffman et al., 2012). Bayesian

probability theory was used to estimate the six fast and slow

wave ultrasonic parameters, {Afast, Aslow, bfast, bslow, cfastðf0Þ,
cslowðf0Þ}, in the wave propagation model detailed above.

The prior probabilities for each of the six parameters were

assigned to be bounded Gaussian distributions with the char-

acteristics listed in Table I, and f0 was set to 1 MHz, the
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center frequency of the transmitted signal. Since the margi-

nalized posterior probability distributions for each parameter

are complicated five-dimensional integrals that are difficult

or impossible to solve analytically, these integrals were

approximated using Markov chain Monte Carlo simulation

with simulated annealing. This Bayesian parameter analysis

was performed on all 24 data sets acquired at sample lengths

ranging from 11.8 mm down to 0.5 mm.

D. Conventional analysis

Conventional analysis was performed on the data from

sample lengths that were sufficiently long as to permit

enough separation of the fast and slow waves so that time-

domain gating could be carried out effectively. A 90%

Tukey window was used to time-gate the received sample

signals into individual fast and slow waves for sample thick-

ness from 6.0 mm to 11.8 mm, a total of 13 lengths.

In this analysis, the individually windowed fast waves

and slow waves were compared to a reference signal

obtained by recording a signal traveling only through water.

The frequency-dependent phase velocities were determined

using

ck xð Þ ¼ cref

1þ crefD/ xð Þ
xd

; (4)

where cref is the speed of sound in the reference medium and

D/ðxÞ is the difference in the unwrapped phases of the ref-

erence signal and the through-sample signals.

The attenuation coefficients, in units of dB/cm, of the

time-gated fast waves and slow waves were determined

using a log-spectral subtraction technique

ak fð Þ ¼ 1

d

�
10 log j ~V ref fð Þj2

� �
� 10 log j ~Vk fð Þj2

� �

þ10 log TI
ref!kTI

k!ref

� 	�
; (5)

where j ~V refðf Þj and j ~Vkðf Þj are the magnitudes of the Fourier

transforms of the reference signal and the fast (or slow) sig-

nal, respectively, and TI
ref!k and TI

k!ref are the intensity

transmission coefficients at the boundaries between the refer-

ence medium and the sample. The third term in Eq. (5) rep-

resents the losses occurring at the interfaces between the

host medium and the sample as the wave propagates from

the transmitter to the receiver. These insertion losses could,

in principle, be determined by calculating the intensity trans-

mission coefficients for the front wall interface and the back

wall interface; however, this requires knowledge of the

acoustic impedances of the fast and slow waves. Since the

individual fast wave and slow wave impedances are

unknown, an alternative method was employed. The inser-

tion losses were estimated by determining the zero-

frequency intercepts of the signal loss versus frequency

curves. The normalized broadband ultrasound attenuations

(nBUAs) of the fast and slow waves were determined by the

slope of a linear fit to the attenuation coefficients over the

bandwidth from 0.58 MHz to 1.25 MHz.

E. MLSP1CF method

The MLSPþCF method was also applied to the experi-

mental data. This method has been described in a previous

publication (Wear, 2013). Briefly, as with the Bayesian

method, the frequency-domain signal was modeled as the

sum of two components with attenuation coefficients that

were linear-with-frequency and phase velocities with func-

tional forms consistent with the Kramers–Kronig relations in

order to ensure causality (O’Donnell et al., 1981; Marutyan

et al., 2006, 2007). The MLSP method (Wear, 2010) was

used to make rapid initial guesses for parameter values to be

used as inputs to a curve-fitting routine. A six-dimensional

parameter space (two amplitudes, two attenuation slopes,

and two phase velocities) was searched in order to minimize

mean square difference between data and the model func-

tion. The search algorithm was accelerated by exploiting

correlations among search parameter estimates. The search

space resolutions were 1 dB/cmMHz for attenuation slopes

and 5 m/s for velocities. Frequency-domain data were ana-

lyzed over the range from 300 kHz to 1.5 MHz. This method

has been shown to produce accurate estimates of attenuation

slopes and phase velocities in simulations based on parame-

ters reported in the literature for cancellous bone (Wear,

2013). In addition, it has been shown to be consistent with

the broadband deconvolution method (Wear, 2014) for fast

and slow wave detection in bovine cancellous bone (Wear

et al., 2014).

F. Estimation of apparent frequency

In Fujita et al. (2013), the apparent center frequencies of

the fast waves and slow waves at each sample length were

determined using time intervals of peaks and zero-crossings in

the time-domain signals. As discussed in Nelson et al. (2011),

time-domain analysis methods may be inappropriate for

broadband ultrasonic wave propagation. Since the Bayesian

probability theory technique can recover the individual fast

and slow waves, it permits the spectral content of the individ-

ual fast and slow waves to be determined using frequency-

domain methods. This analysis is useful for determining

whether fast and slow waves that overlap in the time-domain

also overlap in the frequency domain. (If not, the wave separa-

tion task is relatively straightforward.) The shifted center fre-

quencies of the Bayesian-separated fast and slow waves were

determined by calculating the centroid of the linear power

TABLE I. Prior probability distributions for each model parameter. The

means and standard deviations define Gaussian distributions that are

bounded by the minimum and maximum values.

Afast Aslow

bfast bslow cfast (1 MHz) cslow (1 MHz)

(dB/cm/MHz) (m/s)

Minimum 0 0 0 0 1500 1300

Mean 0.5 0.5 25 25 2000 1500

Maximum 1.0 1.0 50 50 2500 1700

Standard deviation 0.5 0.5 25 25 500 200
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spectrum of the fast and slow waves at each sample thickness.

(The centroid or center-of-mass was employed rather than the

maximum value because the majority of the spectra were ei-

ther asymmetric or contained multiple peaks of similar ampli-

tude.) The experimental spectral shifts in frequency of the fast

and slow waves were compared to the spectral shifts predicted

by the theory of Ophir and Jaeger (1982). When a wideband

ultrasonic pulse propagates through a lossy medium whose

attenuation coefficient increases with frequency, the higher

frequency components will be attenuated more than lower fre-

quency components. This results in a downshift in the center

frequency of the received power spectrum. In the case of a lin-

ear-with-frequency attenuation coefficient (Hosokawa and

Otani, 1997; Njeh et al., 1999; Laugier and Ha€ıat, 2011), the

spectral shift is given by

Df ¼ f0 � fc ¼ 2bkdr2; (6)

where f0 is the center frequency of the reference signal, fc is

the downshifted center frequency, bk is the slope of the

attenuation coefficient (nBUA), d is the propagation dis-

tance, and r2 is the variance of the spectrum of the transmit-

ted pulse (Ophir and Jaeger, 1982). The predicted spectral

shifts for the fast and slow waves were determined using Eq.

(6) with r2¼ 0.08 MHz2, d being the sample thickness, and

bk being the Bayesian-estimated nBUA.

III. RESULTS

A. Radiofrequency data

The received signals that traveled through each of the

sample thicknesses are shown in Fig. 1. Separated fast and

slow waves are clearly evident at the larger sample thick-

nesses, ranging from 11.8 mm to 6 mm. Samples thinner than

�6 mm produced a sample signal that had either overlapping

fast and slow waves or appeared to be only a single wave.

The effects of sample thickness on the presence of fast and

slow waves are more clearly observed in the right column of

Fig. 1, in which the slow wave was normalized to unit ampli-

tude for each trace. As the sample thickness decreased, the

location of the fast wave moved closer to the location of

the slow wave. The slow wave also shifted to earlier times as

the sample thickness decreased.

B. Apparent frequency

The apparent frequencies of the fast and slow waves as

determined by the centroids of the Bayesian-separated fast

and slow waves are shown as functions of sample thickness

in Fig. 2. The fast waves exhibited a rapid downshift in cen-

ter frequency from the original center frequency of f0¼ 1

MHz with longer sample lengths. At the longest sample

length (d¼ 11.8 mm), the downshifted center frequency of

the fast wave was 507 kHz, which is approximately half of

the center frequency of the reference signal. This behavior is

consistent with the findings of Hasegawa et al. (2010) and

Nagatani and Tachibana (2014), who found that the fre-

quency of the fast wave dropped to 0.55 MHz or lower when

the transmitted signal had a center frequency of 1 MHz. The

slow waves also displayed a downshifted center frequency,

although not as significant as the fast wave. At the longest

sample thickness, the center frequency of the slow wave was

�814 kHz. The results of the (frequency-domain) centroid

frequencies were compared to both the time-domain appa-

rent frequencies, determined using the methods reported in

Fujita et al. (2013), and the predicted center frequencies, fc,

determined by Eq. (6). The downshifted center frequencies

determined by the centroid agreed well with the predicted

apparent frequencies calculated using Eq. (6) at all thick-

nesses and with the time-domain-derived apparent frequency

(Fujita et al., 2013) for thicknesses of 4 mm and above, as

shown in Fig. 2. These results support previous reports that

FIG. 1. Acquired radiofrequency sig-

nals transmitted through equine cancel-

lous bone for 24 sample thicknesses

ranging from 11.8 mm down to

0.5 mm. The right column magnifies

the vertical scale of the left column by

normalizing the maximum voltage to

unity for each sample thickness, per-

mitting the fast wave in the longer

sample lengths to be visible.
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the fast wave slope of attenuation (nBUA) is often greater

than the slow wave slope of attenuation, thus, leading to the

fast wave having a greater downshift in frequency than the

slow wave (Hosokawa and Otani, 1997; Cardoso et al.,
2003; Waters and Hoffmeister, 2005).

Figure 2 shows that for the thinnest samples, where the

wave separation was the most challenging, the centroids for

fast and slow waves were near 1 MHz, indicating substantial

overlap in the frequency domain, as well as the time-domain.

A Gaussian fit to the source spectrum, proportional to

exp[�(f � f0)2/2r2], yielded r¼ 283 kHz, indicating substan-

tial frequency-domain overlap when the difference between

fast and slow centroids was <283 kHz. The difference

between fast and slow centroids increased from near zero at

small thicknesses to a maximum value of 307 kHz at a thick-

ness d¼ 11.8 mm.

C. Separation using time gates

The phase velocities of the fast and slow waves, deter-

mined using conventional phase spectroscopy, for sample

thickness ranging from 6.0 mm to 11.8 mm, all exhibited

positive dispersion. A signal containing parts of both fast

and slow waves might display negative dispersion when ana-

lyzed conventionally (Marutyan et al., 2006; Anderson

et al., 2008, 2010; Bauer et al., 2008). The fact that only pos-

itive dispersions were observed suggests, but does not prove,

that sufficient separation of the fast and slow waves was

achieved using time gating.

Figure 3 shows the average signal losses of the fast and

slow waves as functions of frequency. The zero-frequency

intercepts of the signal losses, which should correspond to

the insertion losses, were subtracted from the signal loss

curves to obtain the attenuation coefficients of the individual

fast and slow waves. Additional evidence supporting good

separation of the fast and slow waves using conventional

techniques was that the attenuation coefficients of the sepa-

rated fast waves and slow waves showed, approximately, a

linear dependence with frequency over the usable

bandwidth.

D. Bayesian estimation

In order to illustrate the results of Bayesian analysis, the

experimental data and the model constructed from Bayesian

parameter estimation are shown in Fig. 4 for four selected

sample thicknesses. For a sample thickness of 1.1 mm, only

one wave was apparent. For a thickness of 4.0 mm, the fast

and slow waves were significantly overlapped. For a sample

thickness of 7.0 mm, the fast and slow waves were just

barely separated. For a thickness of 11.0 mm, the fast and

slow waves were completely separated. The residuals, the

difference between the experimental trace and the model

trace, are shown in the middle panel of each subplot, and

were scaled to be consistent with the overall amplitude of

the experimental signal.

In order to quantify the goodness-of-fit between the

Bayesian-generated model and the experimental signal, the

coefficient of variation (CV) of the root-mean-square-devia-

tion (RMSD) given by

FIG. 2. (Color online) Comparison of the apparent frequencies of the fast

waves and the slow waves using three methods. The squares show the shift-

ing center frequencies of the two waves using the (frequency-domain) cent-

roid of the Bayesian-separated fast and slow waves. The triangles represent

the apparent frequency determined using time-domain methods described in

Fujita et al. (2013). The stars represent the predicted center frequency deter-

mined using Eq. (6).

FIG. 3. (Color online) Average 6 one standard deviation signal loss of the

fast waves and slow waves over 13 sample lengths ranging from d¼ 6.0 mm

to 11.8 mm determined using conventional analysis methods. Also displayed

are the linear fits over the usable bandwidth. In principle, the zero-frequency

intercepts of the linear fits represent the insertion losses of the fast and slow

waves.
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CV RMSDð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼n

i¼1

xdata;i � xmodel;ið Þ2

n

vuuut
�xdata

; (7)

was calculated at each sample thickness. It was observed

that the Bayesian algorithm provided better fits to the experi-

mental signals from the thicker samples than the signals

obtained from the thinner samples. For sample lengths

�3.5 mm, the CV of the RMSD was approximately constant,

suggesting that the Bayesian algorithm achieved reliable

separation of the fast and slow waves. However, for sample

thicknesses <3.5 mm, the CV (RMSD) increased by

�200%. There are several potential explanations for this

decrease in the quality of the Bayesian fit. One aspect of this

is the presence of higher frequency components in the refer-

ence signal. At shorter sample lengths, these high frequency

components may still be present in the signal, but their pres-

ence is not explicitly accounted for in the propagation

model. In contrast, for longer sample lengths, these compo-

nents have been significantly reduced by the attenuation

occurring within the sample. Another aspect is that at thick-

nesses <3.5 mm, the wavelengths of the fast and slow waves

are comparable to or larger than the sample thickness. Under

those conditions, the current one-dimensional propagation

model may not be able to properly characterize the true

propagation phenomena and may need to be generalized to a

three-dimensional propagation model. A third feature is that

at very thin sample lengths, a multiply reflected (within the

sample) wave, which has traveled 3 � d, might interfere

with the transmitted wave that has traveled 1 � d. The cur-

rent propagation model does not include these reflected fast

and slow waves that have traveled 3 � d. Based on these

considerations, the Bayesian estimates for the fast and slow

waves are reported for sample thicknesses ranging from

3.5 mm to 11.8 mm, a total of 18 lengths.

E. Comparison of conventional, Bayesian,
and MLSP 1 CF results

Figure 5 shows a comparison of the average signal loss

at 1 MHz for the fast and slow waves determined using con-

ventional, Bayesian, and MLSPþCF methods. A study by

Wear (2013) found that signal loss, given by

SLkðf Þ ¼ Ak exp ½�bkfd� (8)

at the center frequency of the signal, is a more stable param-

eter than the individual measurements of Ak and bk. The val-

ues shown for all three methods are the average values over

sample thicknesses from 6.0 mm to 11.8 mm, even though

the Bayesian and MLSPþCF techniques permitted reliable

parameter estimates down to the thickness of 3.5 mm. For

both the fast wave and slow wave, the Bayesian-estimated

and MLSPþCF-estimated values for signal loss agreed

quite well with the signal loss determined using conventional

analysis. The difference in the average value for signal loss

between the Bayesian method and the conventional method

was 1.3 dB (3.6%) for the fast wave and only 0.03 dB (0.2%)

for the slow wave. Similar values were found for the

MLSPþCF method.

FIG. 4. (Color online) Model results

constructed using the parameters esti-

mated from Bayesian probability

theory for four representative thick-

nesses of the equine sample. For each

sample thickness: the top panel shows

the experimental data along with the

model constructed from the Bayesian

estimates, the middle panel shows the

residual or difference between the data

and model, and the bottom panel

shows the individual fast and slow

waves that make up the model signal.

In each panel, the vertical scale was

adjusted to facilitate visualizing the

signals.
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Table II displays a comparison of the average fast and

slow wave parameters determined by the three methods of

analysis. Very good agreement among the three methods was

observed for the phase velocity, nBUA, and amplitude, A, of

the slow wave. The differences in the average values between

conventional and Bayesian analysis methods for the slow

wave were 1.5 m/s (0.1%) for the phase velocity, 0.45 dB/cm/

MHz (3.9%) for the nBUA, and 0.02 (5.1%) for the A term.

The Bayesian-estimated average phase velocity for the

fast wave also agreed quite well with the average phase veloc-

ity determined using conventional phase spectroscopy with a

difference of 6.2 m/s (0.3%). The MLSPþCF-estimated aver-

age phase velocity showed a somewhat higher difference of

17.2 m/s (0.7%). The average estimates for the nBUA and A
term of the fast wave determined using Bayesian analysis and

MLSPþCF methods were significantly different from the av-

erage values determined using conventional analysis methods.

For both nBUA and A, the Bayesian and MLSPþCF esti-

mated values were smaller than the values determined by con-

ventional techniques. A value of A¼ 1 means that the total

input signal is transmitted into and out of the sample with no

reflection losses at either boundary. The Bayesian-estimated

and MLSPþCF-estimated values for A were smaller than the

conventionally derived A, suggesting that the Bayesian and

MLSPþCF algorithms estimated more loss at the boundaries

than did the conventional method. The Bayesian-estimated

and MLSPþCF-estimated values for nBUA were also

smaller than the conventionally determined nBUA, suggesting

that the Bayesian and MLSPþCF methods estimated that

less loss occurred within the sample than for the case of con-

ventional method. Note that the differences in A and nBUA

compensated for each other appropriately in order to maintain

similar values of signal loss at the center frequency for all

three methods.

IV. DISCUSSION

In this study, the phase velocity and attenuation proper-

ties of fast and slow waves were measured in a systemati-

cally shortened equine cancellous bone specimen using

conventional frequency-domain methods, a Bayesian proba-

bility theory method, and the MLSPþCF method. However,

in many experimental situations with cancellous bone, con-

ventional analysis methods cannot be employed due to the

strong overlap of fast and slow waves in both time and fre-

quency domains. In the current study, conventional analysis

could not be used for sample lengths under 6.0 mm. In con-

trast, Bayesian probability theory and MLSPþCF methods

were able to estimate the fast and slow wave ultrasonic pa-

rameters for almost all sample lengths. For sample lengths

that were sufficiently long as to permit conventional analy-

sis, all three techniques yielded comparable values for the

phase velocities and signal losses of the fast and slow waves.

Therefore, this study demonstrates that the Bayesian proba-

bility theory approach and the MLSPþCF method yield

reliable estimates of fast and slow wave parameters that are

consistent with those determined by conventional techniques

and, additionally, can successfully isolate fast and slow

waves in cases of significant temporal overlap when conven-

tional methods cannot be applied.

Although the three methods can be used to evaluate sim-

ilar parameters, there are fundamental differences among

them that may lead to disparities in their results.

Conventional and MLSPþCF analysis are carried out

entirely in the frequency domain, whereas the Bayesian algo-

rithm does the comparison of the model-generated wave and

the experimental wave in the time-domain. Additionally, the

frequency bands used in the analysis may be different among

the three approaches since the frequency range is not re-

stricted to a certain bandwidth in the Bayesian algorithm.

The Bayesian and MLSPþCF approaches also assume that

the attenuation coefficient and the phase velocity are related

by the relationship in Eq. (3), which could lead to errors in

the phase velocity/dispersion if the attenuation coefficient is

not linear with frequency. The value of A for conventional

analysis was determined by extrapolating the signal loss to

zero frequency, which is significantly outside the frequency

bandwidth of the measurement. Therefore, small errors in

the slope of the linear fit of the signal loss over the usable

FIG. 5. (Color online) Comparison of the average (6one standard deviation)

signal loss at the center frequency (1 MHz) for the fast wave and slow wave

using conventional analysis (squares), Bayesian parameter estimation

(circles), and MLSPþCF (triangles) over sample thicknesses ranging from

6.0 mm to 11.8 mm (N¼ 13).

TABLE II. Comparison of average (6 one standard deviation) parameter

values obtained using the three methods for sample thicknesses ranging

from 11.8 mm to 6.0 mm.

Parameter Conventional Bayesian MLSPþCF

cfast (1 MHz) (m/s) 2412.2 6 11.8 2418.4 6 9.7 2429.4 6 7.6

cslow (1 MHz) (m/s) 1404.8 6 1.1 1403.4 6 1.3 1404.9 6 2.2

bfast (dB/cm/MHz) 37.7 6 1.4 30.8 6 0.7 30.6 6 1.4

bslow (dB/cm/MHz) 11.8 6 0.6 11.3 6 0.5 11.1 6 0.8

Afast 0.65 6 0.11 0.37 6 0.03 0.36 6 0.03

Aslow 0.49 6 0.05 0.47 6 0.06 0.47 6 0.06

SLfast (1 MHz) (dB) 37.4 6 5.3 36.1 6 4.8 36.2 6 4.9

SLslow (1 MHz) (dB) 16.8 6 3.4 16.8 6 3.4 16.7 6 3.3
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frequency range may result in much larger errors in the esti-

mate of A.

A. Trends with sample thickness

In a homogeneous medium that is thick enough so that

reverberation effects may be neglected, all six ultrasonic pa-

rameters (Afast, Aslow, bfast, bslow, cfastðf0Þ, cslowðf0Þ) should be

approximately constant with sample thickness because they

are intrinsic properties of the material. Although some varia-

tion is to be expected because trabecular bone is heterogene-

ous, relatively small, systematic changes with sample length

were observed, as shown in Fig. 6 for measurements of

phase velocity (at 1 MHz) and the slope of the attenuation

coefficient (nBUA). While the ultrasonic properties of the

slow wave showed little dependence as a function of sample

thickness, the properties of the fast wave displayed system-

atic, almost linear trends with sample thickness. Micro-CT

measurements on this equine bone sample revealed a rela-

tively consistent bone volume fraction throughout the speci-

men. Similar trends with sample thickness for all the fast

and slow wave parameters were observed for the three analy-

sis methods studied. For four of the six parameters (Aslow,

bslow, cfast, cslow), the three methods agreed very well. For the

other two parameters (Afast, bfast), there was a discrepancy

between the conventional results and the other two methods,

which was also observed in the average values shown in

Table II. However, when the signal loss at 1 MHz of the fast

wave was calculated using Eq. (8) for each sample thickness,

the three analysis methods agreed fairly well, as seen in Fig.

7. This is because the signal loss takes into account both the

losses occurring within the sample, which are described by

the nBUA term, and the losses occurring at the front and

back boundaries, which are described by the A term. The dis-

crepancies in Afast and bfast observed among the methods

suggest that the analysis methods distribute total signal

losses between surface losses (Afast) and bulk losses (bfast) in

slightly different proportions. Since A is an extrapolation of

signal loss to zero frequency, which is far outside the

FIG. 6. (Color online) Measurements

of phase velocity (at 1 MHz) and

nBUA determined using conventional

analysis methods, Bayesian analysis

methods, and MLSPþCF as functions

of sample thickness for fast waves (left

column) and slow waves (right

column).

FIG. 7. (Color online) Comparison of the signal loss at 1 MHz for the fast

wave and slow wave using conventional analysis (squares), Bayesian param-

eter estimation (circles), and MLSPþCF (triangles) as a function of sample

thickness.
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measurement band of frequencies, signal loss at the center

frequency may be a more meaningful and stable measure-

ment than A. As expected, the signal loss at the center fre-

quency for both fast and slow waves increased linearly with

sample thickness since signal loss is not normalized by bone

thickness.

Similar trends with sample thickness were observed in

measurements of phase velocity and signal loss of the fast

and slow waves in bovine cancellous bone by Wear et al.
(2014). In the Wear et al. (2014) study, two alternative algo-

rithms to the Bayesian algorithm (MLSPþCF and bandlim-

ited deconvolution) were employed to separate fast and slow

waves. Since similar trends with sample thickness occurred

for the three different methods, this may indicate that the

observed trends are not simply artifacts caused by the esti-

mation algorithms. However, the two-mode propagation

models used both in this study and in Wear et al. (2014) are

quite similar, and it is possible that the models are not prop-

erly accounting for all the experimental factors. Possible

contributions for the systematic dependences on sample

length that are not explicitly taken into account in the model

include diffraction effects (Xu and Kaufman, 1993;

Kaufman et al., 1995), phase cancellation at the face of the

finite aperture phase-sensitive receiving transducer (Langton

and Subhan, 2001; Bauer et al., 2007; Wear, 2007; Wear,

2008; Cheng et al., 2011), refraction artifacts, and multipath

interference.

B. Segmental attenuation

In Fujita et al. (2013) and in other studies (Nagatani

et al., 2008; Nelson et al., 2011), the reported attenuation

properties of the fast and slow waves were for thin slabs, or

segments, of the bone sample instead of for the entire bulk

of the bone specimen, as was employed in this study. In both

Fujita et al. (2013) and Nagatani et al. (2008), a time-

domain method comparing the peak amplitudes of the fast

and slow waves for successive sample thickness was

employed to determine the apparent (segmental) attenuation

for the fast and slow waves. However, it was shown in

Nelson et al. (2011) that applying time-domain analysis

methods to broadband signals may introduce a small sample

thickness dependence to the attenuation coefficient, and that

frequency domain analysis applied to completely separated

fast and slow waves was the least susceptible to sample-

thickness-dependent artifacts.

In this study, the segmental attenuations of the fast and

slow waves were carried out on the Bayesian-separated fast

and slow waves obtained at each sample thickness. This anal-

ysis method is a combination of the conventional analysis

detailed above (because it occurs in the frequency-domain)

and the Fujita et al. (2013) time-domain attenuation analysis

(because it compares the loss at successive sample thick-

nesses). The segmental attenuation coefficient is given by

aseg fð Þ ¼
10 log j ~Vn fð Þj2

� �
� 10 log j ~Vnþ1 fð Þj2

� �h i
Dd

;

(9)

where j ~Vðf Þj are the magnitudes of the Fourier transforms for

sample thicknesses corresponding to length indices n and

nþ 1, and Dd is the difference between those sample lengths.

Segmental attenuation coefficients were determined for com-

binations of Dd¼ 0.5 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm,

and 11 mm. At Dd¼ 8 mm, for example, there are eight com-

binations of sample lengths that yield values of the segmental

attenuation coefficient given by Eq. (9). The Dd¼ 11 mm seg-

mental attenuation coefficients compared the longest and the

shortest sample lengths. For both the fast and slow waves, the

segmental attenuation varied dramatically with sample length

position for small values of Dd. These large variations in the

segmental attenuation might be due to actual inhomogeneities

in the bone sample, but may be artifacts caused by uncertain-

ties in the sample lengths. However, as Dd became larger, the

segmental attenuation coefficients of both fast and slow waves

became more consistent. In spite of these variations, the aver-

age within any one Dd produced a value for the attenuation

coefficient that was in good agreement with the segmental

attenuation coefficient averaged over all Dd s. This was also

true for the slope of the segmental attenuation coefficient

(segmental nBUA) as shown in Fig. 8.

V. CONCLUSION

Conventional, Bayesian, and MLSPþCF analysis meth-

ods yielded comparable results for the ultrasonic properties of

fast and slow waves in equine cancellous bone. The Bayesian

probability theory approach and the MLSPþCF method

were able to separate the fast and slow waves and provide rea-

sonable estimates of the fast and slow wave properties even

when the waves overlapped in the time and frequency

FIG. 8. (Color online) Segmental

slopes of the attenuation coefficient

(nBUA) of the fast waves (left) and

slow waves (right) for Dd¼ 0.5 mm,

2 mm, 4 mm, 6 mm, 8 mm, 10 mm, and

11 mm. The stars show the mean

nBUA for each value of Dd. As the

thickness, Dd, of the segment

increases, the estimate of the nBUA

appears to improve. Note the change in

scale for the slow wave nBUA.
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domains, thus, not permitting application of conventional

analysis methods. The Bayesian and MLSPþCF methods

provided consistent results even though the former is a time-

domain algorithm while the latter is a frequency-domain algo-

rithm and the two methods are predicated on different

assumptions. This consistency reinforces confidence in both

methods. These algorithms offer useful tools for investigating

mechanisms underlying the interaction between ultrasound

and poro-elastic media, such as cancellous bone.
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