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Daniel F. Levey

Towards Personalized Medicine in Psychiatry: Focus on Suicide

Psychiatric disorders cost an estimated $273 billion annually. This cost
comes largely in the form of lost income and the chronic disability that often strikes
people when they are young and can last decades. While the monetary costs are
quantifiable, the suffering of each individual patient is no less vital. As many as 1
in 5 persons diagnosed with mental illness will commit suicide, a contributing factor
in suicide being the second leading cause of death of people age 15-34. There is
a critical need to find better ways to identify and help those who are at risk.

Understanding mental illness and improving treatment has been difficult
due to the heterogeneous and complex etiology of these illnesses. A significant
challenge for the field is integrating findings from diverse laboratories all over the
world contributing to the ever expanding literature and translating them into
actionable treatment. Our lab employs a convergent functional genomics
approach which incorporates multiple independent lines of evidence provided by
genetic and functional genomic data published in the primary literature as a
Bayesian strategy to prioritize experimental findings.

Heritability and genetics clearly play an important role in psychiatric
disorders. We looked at schizophrenia and alcoholism in separate case-control
analyses in order to identify and prioritize genes related to these disorders. We

were able to reproduce these findings in additional independent cohorts using
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polygenic risk scores. We found overlap in these disorders, and identified possible
underlying biological processes.

Genetics play an important role in identifying clinical risk, particularly at the
population level. At the level of the individual, gene expression may provide more
proximal association to disease state, assimilating environmental, genetic, as well
as epigenetic influence. We undertook N of 1 analyses in a longitudinally followed
cohort of psychiatric participants, identifying genes which change in expression
tracking an individual’s change in suicidal ideation. These genes were able to
predict suicidal behavior in independent cohorts. When combined with simple
clinical instruments these predictions were improved. This work shows how multi-
level integration of genetic, gene expression, and clinical data could be used to

enable precision medicine in psychiatry.

Andrew J. Saykin, Psy. D. - Chair
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Introduction: Precision Medicine

Psychiatric disorders are the manifestation of a synthesis of underlying
genetics, biology, and psychology interacting with environmental stressors. Some
individuals may be more or less predisposed to iliness. Some find themselves in
privileged idyllic environments while others are deprived of nutrition,
entertainment, education, stability, etc. It is in this complex interplay that an
individual is forged. There is a growing understanding that none of these factors
appear single-handedly sufficient for the development of psychopathology. It may
therefore be necessary to take a personalized medicine approach, embracing the
complexity of each individual patient and taking full advantage of developing tools
from genetics, neuroscience, and psychology to improve nosology, diagnosis, and
treatment.

The American Heart Association (AHA) defines heart failure as “a complex
clinical syndrome that can result from any structural cardiac disorder that impairs
the ability of the ventricle to fill or eject blood.” This definition seems to embrace
the pluropotentiality for distinctly different underlying structural dysfunction, in
combination and interactions, arriving at a similar outcome. Diabetes mellitus,
coronary heart disease, and hypertension are known risk factors of mechanistically
dissimilar etiology. 1! If complex and interacting risk factors influence the
pathology and predictability of heart failure, might brain disorders also be

influenced by a confluence of interacting risk factors?



Not everyone responds the same way to treatments and interventions.
Numerous studies indicate clozapine may be an effective alternative medication
for schizophrenia patients who are ‘treatment-resistant’ to other typical and
atypical anti-psychotics?. But the term itself, ‘treatment-resistant’, seems to imply
that some patients with the same underlying disease pathology fail to see relief
from the same drug. It is possible, however, that while patients appear to have
similar symptoms the totality of underlying pathology that yields the symptoms
may not be identical. Indeed, while it was thought that the benefits of clozapine
in treatment resistant patients might be shared by other atypical antipsychotic
medications, this may not be the case. 3

The environment of an individual plays an important role in the
development of psychopathology. Childhood trauma appears to be associated with
psychopathology. This may be related to increased hypothalamic pituitary adrenal
(HPA) axis activity and cortisol secretion in patients with a history of trauma.
Rhesus monkeys exposed to social separation at 6 months of age they showed
increased plasma cortisol. Those subjects who showed increased plasma cortisol
also voluntarily consumed significantly more alcohol.# This system has been widely
implicated as a risk factor in psychiatric disorders® and for suicide. The
dexamethasone suppression test (DST) is a quantitative assessment of adrenal
gland function, classically used to aid in the diagnosis of Cushing’s syndrome® and
still used today’. It consists of an IV injection of dexamethasone into the patient

and measurement of cortisol levels in response on the following day. A patient



with normative HPA function should show reduced cortisol levels in response to
dexamethasone through suppression of the adrenocorticotropic hormone (ACTH)
secretion from the anterior pituitary. A failure to suppress cortisol levels suggests
hyperactivity in the system. It has been used as a measure for diagnosis and for
suicide risk assessment8, though it has not proven to be sufficiently sensitive or
specific to be clinically useful®. It does appear to have at least population level
utility as a risk factor. Limitations at the level of individual patients could be due
to heterogeneity in the clinical populations, and certain subtypes of individual may
be better served with this kind of test.

Monozygotic twins of patients with psychiatric disorders tend to have a
higher risk for psychopathology but the outcome is far from certain, though genetic
predisposition as measured by singular markers or mutations are often neither
necessary nor sufficient alone. Multiple common and de novo mutations probably
interact to yield an observable disease phenotype, which might explain the reduced
or incomplete penetrance often used to describe false positive or false negative
findings from genetic risk factors. Additionally, development of disease may
require additional environmental or acute pathological insult. This is why many
modern theories posit that multiple ‘hits’ lead to iliness. 1°

Some of the strongest common heritable findings in genetics, such as the
APOE E4 allele as a risk factor for Alzheimer’s disease (AD), represent significant
increases (as much as 11x) of relative risk to develop the disorder. APOE E4 can

be defined by two SNPs, the T allele of rs429358 and the C allele of rs7412, and



can be assessed in individuals by personal genomics companies such as 23andMe.
But even those with the allele are not certain to develop AD, and disease risk is
modified by factors such as gender. Additionally, ~40% of AD patients do not
carry an E4 allele, showing that mutations in this gene have a powerful but perhaps
not necessary role in the disease. 1! While the evidence is convincing that APOE
E4 modifies risk in a dose dependent fashion and modifies population level average
age of onset, it also displays incomplete penetrance and is likely influenced by
genetic background and environmental context, and is therefore not sufficient in
the development of AD.12 Studies which embrace the complexity of interactions
of a gene of large influence such as APOE with additional genetic risk modifiers
such as CR1 and tie them to related amyloid pathology phenotype may point to
future ways to better chart the disease risk and progression in individuals. 13
Personalized medicine studies, sometimes called N-of-1 trials where a single
individual is followed with significantly greater clinical and multi-omic depth, are
beginning to gain traction. A landmark paper published in Cell by Michael Snyder
and his lab at Stanford University follow a single individual over a period of 14
months. * The participant in this study was followed very closely with multiple
high throughput methods and integrations of genomic, transcriptomic, proteomic,
and metabolomic data. Various genetic markers, known to influence disease risk
at the population level, were identified in the individual and used to prioritize
biomarkers associated with diseases identified as highest risk were monitored,

notably for elevated risk for diabetes. Over the course of the study the participants



blood glucose became elevated following an acute viral infection, and lifestyle
changes were made along with beginning a low dose acetylsalicylic acid treatment.
Risk factors were identified and This is an example of how personalized medicine
can help inform choices made in treatment.

Personalized medicine offers the possibility of using established risk factors
from epidemiological, molecular neuroscience, and psychological studies, which
have population or sample level significance to disease, and integrate these factors
at the level of the pathology of an individual patient. To that end we have worked
to develop genetic and peripheral blood biomarkers. Initial work focused on
identifying population level genetic risk factors using genome wide association
studies (GWAS). These risk factors were identified in independent GWAS at a
single nucleotide polymorphism level (SNP), converted into nearest associated
genes, and then validated by multiple independent lines of evidence using a
convergent functional genomics (CFG) approach, and top findings were finally
integrated into a polygenic genetic risk prediction score (GRPS) and tested in
multiple independent GWAS. Later work focused on longitudinal within subject
designs for gene expression tracking the phenotype of individual study
participants. Deep databases of quantitative phenotypes allowed for the
integration of multiple different psychological and environmental modalities.

In this way we were able to begin to embrace the complexity of the

individual and develop multi-dimensional genetic and phenomic biomarkers for



more personalized and accurate risk assessment of suicidal behavior in psychiatric

patients.



Convergent Functional Genomics

Convergent functional genomics is an algorithmic approach that leverages
large genomic datasets with the relevant peer reviewed primary literature to find
reproducible disease relevant genes and biomarkers. Initially, high throughput
technologies behind GWAS studies, microarray, RNA-Seq etc. produce a potentially
large list of genes which are differentially associated with a target disease or
phenotype. Nominally significant findings are then prioritized by integrating with
an exhaustive database of all disease relevant primary literature to create a
polyevidence CFG score. The primary literature is produced by a number of
different labs utilizing a wide array of different approaches. Human studies of
genetics and peripheral blood provide specificity to human disease, while human
brain studies provide additional specificity to the likely target tissue, the brain.
Animal studies provide sensitivity of in vivo analysis of implicated pathology and
pathways.

It is essential to note that only those genes initially identified in the
discovery analyses or experiments are made available for prioritization by CFG.
This is crucial to the CFG process. What makes the CFG so effective is that it, by
default, requires that prioritized genes from primary work done in the discovery
analysis replicate peer reviewed research by multiple independent studies, often
in multiple tissues and animal models. It prioritizes and cross-validates primary
findings, which still means a great deal of importance and care must be invested

in the quality and precision of the initial discovery analysis.



CFG has prior success in the identification of blood biomarkers for mood
state in bipolar patients.!> The resulting panel of 10 biomarkers showed sensitivity
and specificity for predicting high and low mood states in 2 bipolar cohorts and 1
cohort with psychotic disorders (schizophrenia and schizoaffective). More
importantly, this panel (which was previously shown to track elevated mood state)
has been shown to increase following cognitive behavioral therapy treatment for
depressed patients (an increased score indicates an elevated mood state) and to
track changes in Hamilton Depression Rating Scale scores.'® This highlights one
of the key advantages of CFG: built in reproducibility. There is a wealth of excellent
peer-reviewed literature available. Unlike a simple literature search, CFG cross-
validates and enriches primary analyses by utilizing the literature in an a priori
empirical and unbiased fashion to prioritize the most relevant findings.

Universal Materials and Methods
GWAS Studies

GWAS methodology is particular to the individual study, and will be
discussed in greater detail in the appropriate chapter.
Gene Expression Studies

Human participants

Live psychiatric participants are part of a larger ongoing longitudinal cohort
that is continuously collected. Participants are recruited from the patient
population at the Richard L. Roudebush Veteran Affairs Medical Center (VAMC)

and Indiana University School of Medicine (IUSM) in Indianapolis through referrals



from care providers, brochures left in plain sight in public areas, and mental health
clinics through word of mouth. All participants understood and signed informed
consent forms detailing research goals, procedure, caveats, and safeguards, per
institutional review board approved protocol. Participants completed a Diagnostic
Interview for Genetic Studies (DIGS) at the initial baseline visit, followed by up to
6 testing visits, generally 3-6 months apart or whenever a new psychiatric
hospitalization occurred. At each testing visit they received a series of
psychiatric rating scales and blood was drawn. Whole blood (10 ml) was collected
in two RNA-stabilizing PAXgene tubes, labeled with deidentified ID number and
stored at -80° C in a locked freezer until the time of future processing. Whole-
blood RNA was extracted for microarray gene expression studies from the PAXgene
tubes, as described below.

Postmortem subjects of suicide completers were used to validate findings
from live participants, and were obtained through the Marion County coroner’s
office. We required a last observed alive postmortem interval of 24 hours or less,
and cases selected had completed suicide by means other than overdose, which
could affect gene expression. See the demographic tables for cause of death and
age at time of death.

Medications

Live participants were all diagnosed with various psychiatric disorders.
Their psychiatric medications were listed in their electronic medical records and

documented at the time of each testing visit. Participants were on a variety of
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different psychiatric medications. Medications can have a strong influence on gene
expression. Because we focused our discovery of differentially expressed genes
on within-participant analyses, and therefore relative within-participant gene
expression changes, this influence is of negligible effect on our results. There was
no consistent pattern in any particular type of medication or between type of
medication and change in phenotype on the rare occasions where there was a
medication change between visits.
Human blood gene expression experiments and analyses
Whole blood (2.5 — 5 ml) was collected into each PAXGene tube by routine
venipuncture. PAXGene tubes contain proprietary reagents for the stabilization of
RNA. The cells from whole blood were concentrated by centrifugation, the pellet
washed, resuspended and incubated in buffers containing Proteinase K for protein
digestion. A second centrifugation step was done to remove residual cell debris.
After the addition of ethanol for an optimal binding condition, the lysate was
applied to a silica-gel membrane/column. The RNA bound to the membrane as
the column was centrifuged and contaminants were removed in three wash steps.
The RNA was then eluted using diethlypyrocarbonate-treated water. The protocol
for RNA extraction is carried out on a QIAgen QIAcube.
Sample labeling
Sample labeling was performed using the Ambion MessageAmp II-
BiotinEnhanced antisense RNA (aRNA) amplification kit. The procedure is briefly

outlined below:
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1. Reverse transcription to synthesize first-strand cDNA was primed with T7
oligo(dT) primer to synthesize cDNA containing a T7 promoter sequence.

2. Second-strand cDNA synthesis converted the single-stranded cDNA into a
double-stranded DNA template for transcription. The reaction employed
DNA polymerase and RNase H to simultaneously degrade the RNA and
synthesize the second-strand cDNA.

3. cDNA purification removed RNA, primers, enzymes, and salts that would
have inhibited in vitro transcription.

4. In vitro transcription to synthesize aRNA with biotin-NTP Mix generated
multiple copies of biotin-modified aRNA from the double-stranded cDNA
templates; this is the amplification step.

5. aRNA purification removed unincorporated NTPs, salts, enzymes and
inorganic phosphate to improve the stability of the biotin-modified aRNA.

6. aRNA fragmentation: the amplified RNA is fragmented in a reaction the
employs a metal-induced hydrolysis to fragment the aRNA. The
fragmented labeled aRNA is now ready for hybridization to the Affymetrix
microarray chip (Affymetrix, Santa Clara, CA, USA).

Microarrays
Biotin-labeled aRNAs were hybridized to Affymetrix HG-U133 Plus 2.0

GeneChips (Affymetrix; with over 40,000 genes and expressed sequence tags),
according to manufacturer’s protocols

http://media.affymetrix.com/support/downloads/manuals/expression analysis te



http://media.affymetrix.com/support/downloads/manuals/expression_analysis_technical_manual.pdf
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chnical manual.pdf. Arrays were stained using standard Affymetrix protocols for

antibody signal amplification and scanned on an Affymetrix GeneArray 2500
scanner with a target intensity set at 250. Quality-control measures, including
30/50 ratios for glyceraldehyde 3-phosphate dehydrogenase and B-actin, scale
factors, background and Q-values, were within acceptable limits.
Convergent Functional Genomics

Databases

The Niculescu Lab of Neurophenomics has created a manually curated
database of all of the primary literature for human and nonhuman gene expression
(post-mortem brain, blood and cell cultures), genetic, (association, copy number
variants, linkage, and transgenic) published to date on psychiatric disorders. We
added only those findings which were described as significant by the authors, using
their particular methodology. This database only contains primary literature and
not reviews, meta-analyses, or other secondary analyses. This was done to avoid
circularity with results already found in the primary literature. These databases
are constantly updated as new research is published.

Human post-mortem brain, blood and other peripheral tissue gene
expression

Literature search was performed in PubMed

(http://www.ncbi.nlm.nih.gov/pubmed), searching the primary literature with

various keyword combinations, human, brain, postmortem, lymphocytes, blood,
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cells, gene expression, along with specific keywords for the disease or phenotype
of interest.

Human genetic evidence (association, linkage)

We took special care to omit studies where subjects in our discovery cohorts
overlapped with published studies scored for CFG. For linkage the location of each

gene was obtained through GeneCards (http://www.genecards.org/). We input

the chromosome location and start position into the Rutgers Map Interpolator!’

http://compgen.rutgers.edu/mapinterpolator to receive a sex-averaged

centimorgan position. To be scored for linkage a gene had to map to within 5
centimorgans of a marker for linkage. Only published markers with a LOD score
of >=2 were scored for convergence.

Animal model brain and blood gene expression

We used animal model evidence reported in the literature to score
convergence. Where applicable we used data generated by our own lab, as
described in the relevant chapters below.

Animal model genetic evidence

PubMed searches were performed, using project specific keywords, for
relevant animal models for the disease or phenotype of interest. In addition we
searched the Mouse Genome Informatics database

(http://www.informatics.jax.org/) for transgenic studies using project specific

categories.


http://www.genecards.org/
http://compgen.rutgers.edu/mapinterpolator
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CFG scoring

Internal score: Genes which were significantly associated with the disease
of interest were first identified. The methods for identifying these genes are
discussed in detail in the relevant chapters for schizophrenia, alcoholism, and
suicide. Following the internal scoring of genes, external scoring was carried out
on the same genes,

External score: There were a maximum possible of 6 lines of evidence
which could be used to calculate a CFG score. Each line of evidence was capped
in such a way that a positive hit within a line of evidence in the database would
result in maximum points, no matter how many positive hits were present. This
was done to avoid popularity biases. In the schizophrenia work, each line of
evidence could contribute 1 single point, for a maximum possible CFG score of 6.
All other work weighted the lines of evidence such that human evidence received
twice as much as nonhuman evidence, and brain evidence received twice as many
points as evidence from genetics or peripheral tissue. In this way, human brain
evidence was given 4 points, human peripheral or genetic evidence would be given
2 points each, nonhuman brain evidence was given 2 points, and nonhuman
peripheral, genetic, or transgenic evidence received 1 point each. In this weighting
the maximum possible score was 12 (4 human brain, 2 human genetic, 2 human
peripheral, 2 nonhuman brain, 1 nonhuman genetic, 1 nonhuman peripheral =

12).
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Workflow

A vital part of our methodology is the work flow that we use. All of our
projects have maintained an evolution of the basic framework of discovering
markers in an initial independent cohort, prioritizing these findings with a
polyevidence CFG score, and using top prioritized findings to predict in additional
independent cohorts. Once we have demonstrated a consistency and
reproducibility across cohorts we dig deeper into the biology and pathology of our
findings, identifying overlap with other psychiatric disorders and treatments.
Discovery

Discovery is always performed in an independent cohort. In the case of
GWAS, findings came from analyzing data in a standard case control design. All
SNPs with a p < 0.05 were deemed to be nominally significant. For the initial
suicide gene expression study a similar methodology was employed, with
nominally significance required to proceed to the next step of analysis. Later gene
expression studies applied a newer and different approach, and are defined in
greater detail in the appropriate chapters.
Prioritization

Prioritization was applied to all genes deemed to be nominally significant in
the first step. All nominally significant were prioritized with a CFG score as

described above.
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Validation

This step was not employed yet in the schizophrenia work. In all other
studies validation was performed as an additional step to show reproducibility in
other cohorts or approaches. This is discussed in greater detail in the following
chapters, but briefly, an in house stress reactive alcohol consuming animal model
was used to validate findings from the alcohol study. In the suicide study cohorts
of gender and age matched suicide completers collected in collaboration with the
Marion County Coroner’s office were used to validate peripheral blood gene
expression findings.
Prediction

In all studies outside independent cohorts were used to replicate findings.
Understanding

All work is completed naive and blind to the actual nature of the biological
processes and implications of findings. Only once findings have been
independently discovered, prioritized, validated, and predicted do we dig deeper
into the possible underlying biology. In this way work proceeds unbiased by
favored genes or popularity effects. Once findings were verified we dug deeper
into the biological implications, canonical pathways, overlap with other disorders,

and treatment possibilities.
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Chapter 1: Schizophrenia

Schizophrenia is a heterogeneous syndrome of serious and chronic cognitive
dysfunction effecting as many as 51 million people worldwide. It is generally
diagnosed by a co-occurrence of at least two positive and negative symptoms with
the presence of delusions, hallucinations, or disorganized speech.

Disorganized speech could be thought of as an outwardly observable
manifestation of fragmented thinking. This commonly may come in the form of
tangential and hard to follow loose associations in conversation.

Hallucinations are the illusion of sensation in the absence of sensory stimuli.
It commonly occurs in the form of hearing voices (auditory hallucination) or seeing
things that do not exist (visual hallucination).

Firmly held but clearly false ideas make up the third major symptom of
schizophrenia, delusions. Delusions may be particularly difficult to identify in
screening as it requires identifying false ideas that a patient may not voluntarily
express to a caregiver and may be difficult to distinguish from simply overvalued
ideas without further probing.

Although environmental influences are important, genetics and heritability
may play a significantly greater role. Schizophrenia has a high rate of heritability
as evidenced by countless studies over the last 60 years (Nuechterlein and
Dawson, 1984). Recent advances in the field of genetics have led to the
hypothesis that schizophrenia heritability is probably not the result of the influence

of any one gene but rather through the interaction of several different genes.
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Genetics offer the potential of identifying individuals with a predisposition towards
schizophrenia and intervening early in life to minimize additional environmental
risks.

We sought to identify and prioritize a set of genes involved in schizophrenia.
We began by using an independent GWAS study from the International
Schizophrenia Consortium (ISC) for the discovery of genes, integrating all single
nucleotide polymorphisms (SNPs) with a nominally significant p-value of <0.05
into the nearest gene. We then used CFG to prioritize these findings with a
polyevidence score, resulting in a panel of 42 genes containing 542 SNPs.

We next validated these prioritized findings by creating a polygenic risk
score derived entirely from the top SNPs identified in the discovery cohort and
tested it in 4 independent cohorts provided by the Genetic Association Information
Network (GAIN) and Molecular Genetics of Schizophrenia (MGS) non-GAIN studies.
A polygenic panel of all 542 nominally significant SNPs was able to successfully
separate schizophrenia cases from controls in all independent cohorts while a panel
consisting of only the top SNP from each of the 42 genes failed to do so. This may
be due to the small effect size of each individual SNP.

In post hoc analysis examining reproducibility across independent GWAS,
we carried out discovery analysis in the GAIN cohorts, taking all nominally
significant SNPs, integrating them at the nearest gene, and prioritizing with CFG.
What we found was that there was very little overlap at the level of individual SNPs

(0.4%), but we found increasing reproducibility between GWAS as we integrated
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SNPs with the nearest gene (54.2%), with increasing CFG evidence (83.3%), and
integrating genes at the level of canonical pathways (97.1%). This may reveal the
importance of moving beyond simple statistical relevance of a SNP and shows the
added value examining the impact of SNPs at the level of genes and the pathways
in which they interact.

Along these lines we also sought to understand the biological roles of our
top genes and how they interact in pathways by using our top findings from each
independent GWAS with a CFG polyevidence score >3. As mentioned above, we
found a striking consistency of findings across GWAS when results were integrated
at the pathway level, with glutamate signaling in particular implicated as the top
enriched pathway in 2 independent cohorts (ISC and GAIN EA) and the second
highest enrichment in a third (GAIN AA). The danger in broadly implicating a
neurotransmitter system such as glutamate is that they have been so widely study
by so many labs and so many different approaches that the potential exists for
popularity bias in the algorithm. With that said, many of the promising novel
therapeutics in the literature are targeting this system. 18

Given the heterogeneous nature of symptoms associated with
schizophrenia, it has been an understandably difficult to understand and treat.
Indeed, its definition has been evolving since early psychiatrists labeled the disease
dementia praecox, through each iteration of the Diagnostic and Statistical Manual
of Mental Disorders (DSM), currently on its fifth edition, through today. As method

and technique continue to be refined, this work points to the possibility of



20

quantitative genetic risk assessment for predisposition to schizophrenia, and opens

the door to early preventative interventions.
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Convergent functional genomics of schizophrenia: from comprehensive
understanding to genetic risk prediction
Introduction

Schizophrenia is a devastating disorder affecting ~1% of the population.
While there is clear evidence for roles for both genes and environment, a
comprehensive biological understanding of the disorder has been elusive so far.
Most notably, there has been until recently a lack of concerted integration across
functional and genetic studies, and across human and animal model studies,
resulting in missed opportunities to see the whole picture.

As part of a translational convergent functional genomics (CFG) approach,
developed by us over the last decade,?,2°,21,22,1> and expanding upon our earlier
work on identifying genes for schizophrenia?® and biomarkers for psychosis,?* we
set out to comprehensively identify candidate genes, pathways and mechanisms
for schizophrenia, integrating the available evidence in the field to date. We have
used data from published genome-wide association studies (GWAS) data sets for
schizophrenia.?>,26 We integrated those data with gene expression data---human
postmortem brain gene expression data, human induced pluripotent stem cell-
derived neuronal cells?’” and human blood gene expression data?* published by
others and us, as well as with relevant animal model brain and blood gene
expression data generated by our group?® and others. In addition, we have
integrated as part of this comprehensive approach other genetic data---human

genetic data (linkage, copy number variant (CNV) or association) for
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schizophrenia, as well as relevant mouse model genetic evidence (Figure 1-1,
Table 1-1 and Figure 1-2). Animal model data provide sensitivity of detection, and
human data provide specificity for the iliness. Together, they help to identify and
prioritize candidate genes for the illness, using a polyevidence CFG score, resulting
in essence in a de facto field-wide integration putting together the best available
evidence to date. Once that is done, biological pathway analyses can be conducted

and mechanistic models can be constructed (Figure 1-3).

Convergent Functional Genomics
Multiple Independent Lines of Evidence
For Identification and Prioritization

ISC GWAS
Genes
Animal Model Studies with SNP(s) p<0.05 Other Human Studies
(Pharmacogenomic, Transgenic)
Animal Model Genetic ¢ Human Genetic
(Transgenic) (Association, CNV, Linkage)
Evidence (1 pt) ) ~ <7 Evidence (1 pt)
Candidate
Gene/
Animal Model Brain Biomarker Humgn Po:tmor‘tern Brain
Gane B . ene Expression
e = <« Cheencs
Animal Model Blood / \ Human Blood
Gene Expression Gene Expression
Evidencz (1 pt) Evidence (1 pt)
< >
Sensitivity Specificity

Figure 1-1. Convergent Functional Genomics.
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An obvious next step is developing a way of applying that knowledge to
genetic testing of individuals to determine risk for the disorder. On the basis of our
comprehensive identification of top candidate genes described in this paper, we
have chosen the nominally significant single-nucleotide polymorphisms (SNPs)
inside those genes in the GWAS data set used for discovery (International
Schizophrenia Consortium, ISC), and assembled a genetic risk prediction (GRP)
panel out of those SNPs. We then developed a genetic risk prediction score (GRPS)
for schizophrenia based on the presence or absence of the alleles of the SNPs
associated with the illness in ISC, and tested the GRPS in independent cohorts
(GAIN European Americans (EA), GAIN African Americans (AA), nonGAIN EA,
nonGAIN AA) 26 for which we had both genotypic and clinical data available,
comparing the schizophrenia subjects to normal controls. Our results show that a
panel of SNPs in top genes identified and prioritized by CFG analysis can
differentiate between schizophrenia subjects and controls at a population level,
although at an individual level the margin is minimal. The latter point suggests
that, like for bipolar disorder,?® the contextual cumulative combinatorics of
common variants and environment3° plays a major role in risk for iliness. Moreover,
the genetic risk component identified by us seems to be stronger for classic age
at onset schizophrenia than for early onset and late-onset schizophrenia,
suggesting that those subtypes may be different, either in having a larger

environmental component or having a different genetic component.
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We have also looked at genetic heterogeneity, overlap and reproducibility
between independent GWAS for schizophrenia. We show that the overlap is
minimal at a nominal P-value SNP level, but increases dramatically at a gene level,
then at a CFG-prioritized gene level and finally at a pathway level. CFG provides a
fit-to disease prioritization of genes that leads to generalizability in independent
cohorts, and counterbalances the fit-to-cohort prioritization inherent in classic SNP
level genetic-only approaches, which have been plagued by poor reproducibility
across cohorts. Finally, we have looked at overlap with candidate genes for other
psychiatric disorders (bipolar disorder, anxiety disorders), as well as with other
disorders affecting cognition (autism, Alzheimer disease (AD)), and provide
evidence for shared genes.

Overall, this work sheds comprehensive light on the genetic architecture
and pathophysiology of schizophrenia, provides mechanistic targets for therapeutic
intervention and has implications for genetic testing to assess risk for illness before
the illness manifests itself clinically.

Materials and Methods

Genome-wide association studies data for schizophrenia

The GWAS data from the ISC was used for the discovery CFG work. 2> This
cohort consists of EA subjects (3322 schizophrenics and 3587 controls). SNPs with
a nominal allelic P-value <0.05 were selected for our analysis. No Bonferroni

correction was performed.
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Four independent cohorts, 26 two EA (GAIN EA 1170 schizophrenics and
1378 controls; nonGAIN EA 1149 schizophrenics and 1347 controls) and two AA
(GAIN AA 915 schizophrenics and 949 controls; nonGAIN AA 78 schizophrenics
and 20 controls), were used for testing the results of the discovery analyses. The
GWAS GAIN and nonGAIN data used for analyses described in this paper were
obtained from the database of Genotype and Phenotype (dbGaP) found at
www.ncbi.nlm.nih.gov.

The software package PLINK (http://pngu.mgh.harvard.edu/~purcell) was

used to extract individual genotype information for each subject from the GAIN
GWAS data files. We analyzed EA, and separately, AA, schizophrenia subjects and
controls.

Gene identification

To identify the genes that correspond to the selected SNPs, the lists of SNPs
from the GWAS were uploaded to NetAFFX (Affymetrix, Santa Clara, CA, USA;
http://www.affymetrix.com/analysis/index.affx). We used the Netaffx na32
Genotyping Annotation build. In the cases where a SNP mapped to multiple genes,
we selected all the genes. SNPs for which no gene was identified were not included
in our subsequent analyses.

Keywords for Convergent Functional Genomics

Methods were as described above in the introduction, except that keywords

used for scoring convergence were schizophrenia and psychosis. Additionally, in


http://pngu.mgh.harvard.edu/~purcell
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this work all converging lines of evidence were weighted equally, with a maximum
possible score of 6.

Pathway analyses

IPA 9.0. (Ingenuity Systems, Redwood City, CA, USA) was used to analyze
the biological roles, including top canonical pathways, of the candidate genes
resulting from our work (Table 1-2 and Supplementary Table S1-5), as well as
used to identify genes in our data sets that are the target of existing drugs
(Supplementary Table S1-2).

Intra-pathway epistasis testing

As an example, 2 the ISC GWAS data were used to test for epistatic
interactions among the best P-value SNPs in genes from our data set present in a
top canonical biological pathway identified by Ingenuity pathway analysis
(Supplementary Table S1-4). SNPxSNP allelic epistasis was tested for each distinct
pair of SNPs between genes, using the PLINK software package.
Genetic risk prediction panel and scoring

As we had previously done for bipolar disorder, 2° we developed a polygenic
GRPS for schizophrenia based on the presence or absence of the alleles of the
SNPs associated with illness, and tested the GRPS in independent cohorts for which
we had both genotypic and clinical data available, comparing the schizophrenia
subjects to normal controls. We tested two panels: a smaller one (GRPS-42)
containing the single best P-value SNP in ISC in each of the top CFG prioritized

genes (n = 42), and a larger one (GRPS-542), containing all the nominally
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significant SNPs (n = 542) in ISC in the top CFG prioritized genes (n = 42; Tables
1-3, 1-4, Supplementary Table S1-3, and Figure 1-4).

Of note, our SNP panels and choice of affected alleles were based solely on
analysis of the ISC GWAS, which is our discovery cohort, completely independently
from the test cohorts. Each SNP has two alleles (represented by base letters at
that position). One of them is associated with the illness (affected), the other not
(non-affected), based on the odds ratios from the discovery ISC GWAS. We
assigned the affected allele a score of 1 and the non-affected allele a score of 0.
A two-dimensional matrix of subjects by GRP panel alleles is generated, with the
cells populated by 0 or 1. A SNP in a particular individual subject can have any
permutation of 1 and 0 (1 and 1, 0 and 1, 0 and 0). By adding these numbers, the
minimum score for a SNP in an individual subject is 0, and the maximum score is
2. By adding the scores for all the alleles in the panel, averaging that, and
multiplying by 100, we generate for each subject an average score corresponding
to a genetic loading for disease, which we call Genetic Risk Predictive Score
(GRPS).

The software package PLINK (http://pngu.mgh.harvard.edu/~purcell) was
used to extract individual genotype information for each subject from the GAIN
and nonGAIN GWAS data files. We analyzed separately EA and AA schizophrenia
subjects and controls, to examine any potential ethnicity variability (Tables 1-3

and 1-4, and Supplementary Table S1-3). To test for significance, a one-tailed t-
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test was performed between the schizophrenia subjects and the control subjects,
looking at differences in GRPS.
Figures

Each figure in this chapter was completed by Mikias Ayalew, Helen Le-
Niculescu, and Daniel Levey. This work has been published. 3!
Results

Top candidate genes

To minimize false negatives, we initially cast a wide net, using as a filter a
minimal requirement for a gene to have both some GWAS evidence and some
additional independent evidence. We thus generated an initial list of 3194 unique
genes with at least a SNP at P<0.05 in the discovery GWAS analyzed (ISC), 2° that
also had some additional evidence (human or animal model data), implicating
them in schizophrenia (CFG score >1; Table 1-5). This suggests, using these
minimal thresholds and requirements, that the repertoire of genes potentially
involved directly or indirectly in cognitive processes and schizophrenia may be
quite large, similar to what we have previously seen for bipolar disorder. #°

To minimize false positives, we then used the CFG analysis integrating
multiple lines of evidence to further prioritize this list of genes, and focused our
subsequent analyses on only the top CFG scoring candidate genes. Overall, 186
genes had a CFG score of 3 and above (=50% of maximum possible score of 6),
and 42 had a CFG score of 4 and above (Tables 1-1 and 1-5, and Figure 1-2). Our

top findings from ISC (Table 1-1) were over-represented in two independent
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schizophrenia GWAS cohorts, the GAIN EA and GAIN AA. In total, 37 of the top 42
genes identified by our approach (88.1%) had at least a SNP with a P-value of
<0.05 in those independent cohorts, an estimated twofold enrichment over what
would be expected by chance alone at a genetic level (as there were 9002 genes
at P<0.05 in the GAIN-EA GWAS, and the number of genes in the human genome
is estimated at 20,500,32 the enrichment factor provided by our approach is
(37/42)/(9002/20 500) =~ 2). Of note, there was no correlation between CFG
prioritization and gene size, thus excluding a gene-size effect for the observed

enrichment (Supplementary Figure S1-1).

Top Candidate Genes for

Schizophrenia
CFG analysis of ISC GWAS

CFG Score

Blood biomarker candidates-increased gene expression

DISC1
HSPA1B
MBP
TCF4

5.0

MOBP NCAM1 4.5
NDUFV2 NRCAM RAB18
ADCYAP1 ALDH1A1 ANK3 BDNF CD9 CNR1 COMT
CPLX2 DRD2 DTNBP1 FABP7 GABRB3 GAD1 GNBIL 4.0

GRIA1 GRIA4 GRIN2B GRMS GSN HINT1 HTRZA
KALRN KIF2A NR4A2 NRG1 PDE4B PRKCA RELN
RGS4 SLC1A2 SNAP2S SYN2 TNIK

Figure 1-2. Top Candidate Genes for Schizophrenia
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Table 1-1. Top candidate genes for schizophrenia - CFG analysis of ISC
GWAS data. Top genes with a CFG score of 4 and above (n= 42) are shown. A
more complete list of genes with CFG score of 3 and above (n= 186) is available

in the Supplementary Information section
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Candidate blood biomarkers

Of the top candidate genes from Table 1-1 (see also Figure 1-2), 15 out of
42 have prior human blood evidence for change in schizophrenia, implicating them
as potential blood biomarkers. The additional evidence provided by GWAS data
suggests a genetic rather than purely environmental (medications, stress) basis

for their alteration in disease, and their potential utility as trait rather than purely

state markers.
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Biological pathways
Pathway analyses were carried out on the top genes (Table 1-2), and on all the
candidate genes (Supplementary Table S1-5). Notably, glutamate receptor
signaling, G-protein--coupled receptor signaling and cAMP-mediated signaling
were the top canonical pathways over-represented in schizophrenia, which may
be informative for new drug discovery efforts by pharmaceutical companies.

Genetic risk prediction

Once the genes involved in a disorder are identified, and prioritized for
likelihood of involvement, then an obvious next step is developing a way of
applying that knowledge to genetic testing of individuals to determine risk for the
disorder. Based on our identification of top candidate genes described above using
CFG, we pursued a polygenic panel approach, with digitized binary scoring for
presence or absence, similar to the one we have devised and used in the past for
biomarkers testing'> and for genetic testing in bipolar disorder. 2 Somewhat
similar approaches but without CFG prioritization, attempted by other groups, have
been either unsuccessful®? or have required very large panels of markers. °,34

We first chose the single best P-value SNPs in each of our top CFG prioritized
genes (n = 42) in the ISC GWAS data set used for discovery, and assembled a
GRP
Table 1-2. Ingenuity Pathway analyses of top candidate genes.
Discovery in ISC and reproducibility in two independent cohorts, GAIN EA and

GAIN AA.



85

Top Canonical Pathways CFG > 3 P-Value Ratio

ISC (n=186 genes)

Glutamate Receptor Signaling 9.25E-13 12/69 (0.174)
27/530
G-Protein Coupled Receptor Signaling 9.33E-13
(0.051)
17/202
CREB Signaling in Neurons 1.76E-12
(0.084)
17/219
cAMP-mediated signaling 3.55E-11
(0.078)
Neuropathic Pain Signaling In Dorsal Horn 13/112
3.64E-11
Neurons (0.116)

GAIN EA (n=173 genes)

Glutamate Receptor Signaling 4.57E-16 14/69 (0.203)
18/202
CREB Signaling in Neurons 4.72E-14 (0.089)

27/530(0.051
G-Protein Coupled Receptor Signaling 2E-13 )
18/219

cAMP-mediated signaling 1.2E-12  (0.082)
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Synaptic Long Term Potentiation

GAIN AA (n= 201 genes)

cAMP-mediated signaling

Glutamate Receptor Signaling

Synaptic Long Term Potentiation

G-Protein Coupled Receptor Signaling

CREB Signaling in Neurons

1.58E-12

7.6E-17

1.09E-16

2.24E-15

2.43E-14

4.52E-14

14/114

(0.123)

23/219
(0.105)

15/69 (0.217)
17/114(0.149
)

30/530
(0.057)
19/202

(0.094)
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Figure 1-3. Schizophrenia as a Disease of Disconnection.

A. Biology of Schizophrenia B. Gene-Environment Interplay



88

panel out of those SNPs (Table 1-3). We then developed a GRPS for schizophrenia
based on the presence or absence of the alleles of the SNPs associated with the
illness, and tested the GRPS in independent cohorts (GAIN EA and GAIN AA),
comparing the schizophrenia subjects to normal controls (Table 1-3). The results
were not significant. We concluded that genetic heterogeneity at a SNP level is a
possible explanation for these negative results. We then sought to see if we get
better separation with a larger panel, containing all the nominally significant SNPs
(n = 542) in the top CFG prioritized genes in ISC (n = 42), on the premise that a
larger panel may reduce the heterogeneity effects, as different SNPs might be
more strongly associated with iliness in different cohorts. We found that our larger
panel of SNPs was indeed able to significantly distinguish schizophrenics from
controls in both GAIN EA and GAIN AA, two independent cohorts of different
ethnicities. To verify this unexpectedly strong result, we further tested our panel
in two other independent cohorts, nonGAIN EA and nonGAIN AA, and obtained

similarly significant results (Table 1-4 and Figure 1-4).
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Figure 1-4. Genetic Risk Prediction of Schizophrenia in four

independent cohorts

schizophrenia (defined by us as ages 15 to 30 years) from early onset (before 15
years) and late-onset (after 30 years) illness. Our results show that classic age of
onset schizophrenia has a significantly higher GRPS than early or late-onset

schizophrenia, in three out of the four independent cohorts of two different

ethnicities (Figure 1-5).
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Figure 1-5. Genetic Risk Score and Age at Onset of Schizophrenia. AA,

African American; AAO, age at onset; EA, European American; GRPS, genetic

risk prediction score.
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Finally, as we had done previously for bipolar disorder, 2° we developed a
prototype of how the GRPS score could be used in testing individuals to establish
their category of risk for schizophrenia (Figure 1-6). The current iteration of the
test, using the panel of 542 SNPs, seems to be able to distinguish in independent
cohorts who is at lower risk for classic age of onset schizophrenia in two out of
three EA subjects, and who is at higher risk for classic age of onset schizophrenia

in three out of four AA subjects.
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Table 1-3. GRPS-42: non- differentiation between schizophrenics and
controls in independent cohorts using a panel composed of the single
best SNP from ISC in each of the top candidate genes (42 SNPs, in 42

genes).

Description of panel GAIN-EA

p= 0.10308 p= 0.13567
Single Best p-value SNPS
in each of the top 42 candidate
39 37
genes from ISC GWAS
out of the 42 ISC out of the 42 ISC

SNPs were present in | SNPs were present
n=42
GAIN-EA in GAIN-AA
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Table 1-4. GRPS-542: differentiation between schizophrenics and
controls in four independent cohorts using a panel composed of all the
nominally significant SNPs from ISC in the top candidate genes (542

SNPs in 42 genes).

GAIN EA

p= 0.03213
p= 0.00847

516 SNPs in 42 genes

527 SNPs in 41 genes

were present in GAIN-AA
were present in GAIN-EA

nonGAIN EA

nonGAIN AA

p= 0.03829
p= 0.00664

537 SNPs in 42 genes

537 SNPs in 42 genes

were present in nonGAIN AA
were present in nonGAIN EA
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Figure 1-6. Prototype of how GRPS testing could be used at an individual rather
than population level, to aid diagnostic and personalized medicine approaches. We
used the average values and standard deviation values for GRPS from the GAIN
samples from each ethnicity (EA and AA) as thresholds for predictive testing in the
independent nonGAIN EA and nonGAIN AA cohorts. The average GRPS score for
schizophrenics in the GAIN cohort is used as a cut-off for schizophrenics in the test
cohort (i.e., being above that threshold), and the average GRPS score for controls
in the GAIN cohort is used as a cutoff for controls in the test nonGAIN cohort (i.e.,
being below that threshold). The subjects who are in between these two
thresholds are called undetermined. Furthermore, to stratify risk, we categorized

subjects into risk categories (in red increased risk, in blue decreased risk):
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4

Category 1 if they fall within one standard deviation above the schizophrenics
threshold, and Category -1 if they fall within one standard deviation below the
controls threshold. Category 2 and -2 subjects are between one and two standard
deviations from the thresholds, Category 3 and -3 between two and three standard
deviations, and Category 4 and -4 are those who fall beyond three standard
deviations of the thresholds. The positive predictive value (PPV) of the tests
increases in the higher categories, and the test is somewhat better at
distinguishing controls in EA (i.e., in a practical application, individuals that are
lower risk of developing the iliness), and schizophrenics in AA (i.e., in a practical

application, individuals that are higher risk of developing the illness).
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Overlap among studies

We examined the overlap at a nominally significant (P<0.05) SNP level
between ISC, GAIN EA and GAIN AA, and found that a minority of these SNPs
(0.4%) overlap (Table 1-5 and Figure 1-7). We then examined the overlap at a
gene level, then CFG prioritized genes level and finally biological pathways level,
and found increasing evidence of commonality and reproducibility of findings

across studies.

Overlap Between Independent GWAS
ISC vs. GAIN EA vs. GAIN AA

Pathways for geneswith CFG 24
Pathways for geneswith CFG =3
Pathways for geneswith CFG 21
Genes CFG 24 83.30%
GenesCFG 23 72.00%
Genes CFG 21 63.00%

Genes 54.20%

SMPs (P=0.05) | 0.40%

0.00% 10.00% 2000% 30.00% 40.00% 50.00% 6000% 70.00% B80.00% ©90.00% 100.00%

Figure 1-7. Overlap Between Independent GWAS. AA, African American;
EA, European American; CFG, convergent functional genomics; ISC, International

Schizophrenia Consortium; SNP, single-nucleotide polymorphism.
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Table 1-5. Reproducibility between independent GWAS.
Increasing consistency and overlap observed from nominally significant SNPs
(0.4%) to genes, then to CFG prioritized genes , and finally to pathways of CFG

prioritized genes (97.1%).

Numbers VS.

and GAIN-EA

overlap VS.

acCross

studies

163
45,972 | 42,336 | 57,118 (2,649 |2,986 |2,839

(0.4%)

5,518
10,180 | 9,002 | 11,260 | 6,470 |7,583 |6,807

(54.2%)

2,012
3,194 2,913 |3,524 |2,243 |2,564 |2,384

(63.0%)

134
186 173 201 147 160 153

(72.0%)

35
42 41 45 37 37 38

(83.3%)
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Pathways

for genes 176
217 210 205 194 188 180
with  CFG (81.1%)

=1

Pathways
for genes 72
79 85 108 72 76 81
with  CFG (91.1%)

>3

Pathways

for genes 33
34 50 75 33 34 48
with  CFG (97.1%)

=>4

Discussion

Our CFG approach helped prioritize genes, such as DISC1 and MBP, with
weaker evidence in the GWAS data but with strong independent evidence in terms
of gene expression studies and other prior human or animal genetic work.
Conversely, some of the top findings from GWAS, such as ZNF804A, have fewer
different independent lines of evidence, and thus received a lower CFG

prioritization score in our analysis (Supplementary Information Table S1-1),
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although ZNF804A is clearly involved in schizophrenia-related cognitive
processes.3* While we cannot exclude that more recently discovered genes have
had less hypothesis driven work done and thus might score lower on CFG, it is to
be noted that the CFG approach integrates predominantly non-hypothesis driven,
discovery-type data sets, such as gene expression, GWAS, CNV, linkage and
quantitative traits loci. We also cap each line of evidence from an experimental
approach (Figure 1-1) at a maximum score of 1, to minimize any ‘popularity’ bias,
whereas multiple studies of the same kind are conducted on better-established
genes. In the end, it is gene-level reproducibility across multiple approaches and
platforms that is built into the approach and gets prioritized most by CFG scoring
during the discovery process. Our top results subsequently show good
reproducibility and predictive ability in independent cohort testing, the litmus test
for any such work.

At the very top of our list of candidate genes for schizophrenia, with a CFG
score of 5, we have four genes: DISC1, TCF4, MBP and HSPA1B. An additional five
genes have a CFG score of 4.5: MOBP, NRCAM, NCAM1, NDUFV2 and RAB18.

DISC1 (Disrupted-in Schizophrenia 1), encodes a scaffold protein that has
an impact on neuronal development and function,3¢, 37, 38 including neuronal
connectivity.3? DISC1 has been identified as a susceptibility gene for major mental
disorders by multiple studies.*°,41,42 DISC1 isoforms are upregulated in expression
in blood cells in schizophrenia, thus serving as a potential peripheral biomarker as

well.3,** Developmental stress interacts with DISC1 expression to produce
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neuropsychiatric phenotypes in mice.* Notably, its interacting partners PDE4B,%
TNIK,* FEZ1*® and DIXDC1% are also present on our list of prioritized candidate
genes, with CFG scores of 4, 4, 3.5 and 2.5, respectively (Table 1-1 and
Supplementary Table S1-1).

TCF4 (transcription factor 4) encodes a basic helix-turn-helix transcription
factor, expressed in immune system as well as neuronal cells. It is required for the
differentiation of subsets of neurons in the developing brain. There are multiple
alternatively spliced transcripts that encode different proteins, providing for
biological diversity and heterogeneity. Defects in this gene are a cause of Pitt-
Hopkins syndrome, characterized by mental retardation with or without associated
facial dimorphisms and intermittent hyperventilation. TCF4 has additional genetic
evidence for association with schizophrenia-relevant phenotypes.9,°1,52,33 It is
changed in expression in postmortem brain,”* induced pluripotent stem cell-
derived neurons?’” and blood from schizophrenia patients. 2* Notably, it is a
candidate blood biomarker for level of delusional symptoms (decreased in high
delusional states) based on our previous work. 24

MBP (myelin basic protein) is a major constituent of the myelin sheath of
oligodendrocytes and Schwann cells in the nervous system. MBP-related
transcripts are also present in the bone marrow and the immune system. MBP has
additional genetic evidence for association with schizophrenia.>> It is decreased in
expression in postmortem brain® and blood®” from schizophrenia patients. MBP is

also changed in expression in the brain and blood of a pharmacogenomics mouse
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model of schizophrenia, based on our previous work. 23 It was also decreased in
expression in a stress-reactive genetic mouse model of bipolar disorder, > and
treatment with the omega-3 fatty acid docosahexaenoic acid led to an increase in
expression. Notably, MBP is a candidate blood biomarker for level of mood
symptoms (increased in high mood states in bipolar subjects), based on our
previous work. > Overall, the data indicate that MBP and other myelin-related
genes>®,%0 may be involved in the effects of stress on psychosis and mood.
Demyelinating disorders such as multiple sclerosis tend to be precipitated and
exacerbated by stress, and have co-morbid psychiatric symptoms.6! Of note, other
myelin-related genes are also present on our list of prioritized candidate genes:
MOBP and MOG, with CFG scores of 4.5 and 3, respectively (Table 1-1 and
Supplementary Table S1-1).

HSPA1B (heat-shock 70-kDa protein 1B), a chaperone involved in stress
response, stabilizes existing proteins against aggregation and mediates the folding
of newly translated proteins. HSPA1B has additional genetic evidence for
association with schizophrenia.®? It is changed in expression in postmortem brain®3
and induced pluripotent stem cell-derived neurons?’ from schizophrenia patients.
HSPA1B is also increased in expression in the brain and blood of a
pharmacogenomics mouse model of schizophrenia, based on our previous work.
23 Tt was also codirectionally changed in the brain and blood in a
pharmacogenomics mouse model of anxiety disorders, we have recently

described,®* as well as in a stress-reactive genetic mouse model.40 Treatment with
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the omega-3 fatty acid docosahexaenoic acid reversed the increase in expression
of HSPA1B in this stress reactive genetic mouse model.®> Another closely related
molecule, HSPA1A (heat-shock 70-kDa protein 1A), is also present on our list of
prioritized candidate genes, with a CFG score of 3.5 (Supplementary Table S1-1).
Heat-shock proteins may be involved in the biological and clinical overlap and
interdependence between response to stress, anxiety and psychosis.

NRCAM (neuronal cell adhesion molecule) encodes a neuronal cell adhesion
molecule. This ankyrin-binding protein is involved in neuron--neuron adhesion and
promotes directional signaling during axonal cone growth. NRCAM is also
expressed in non-neural tissues and may have a general role in cell--cell
communication via signaling from its intracellular domain to the actin cytoskeleton
during directional cell migration. It is decreased in expression in postmortem
brain® and peripherally in serum® from schizophrenia patients. NRCAM is also
changed in expression in the brain of a pharmacogenomics mouse model of
schizophrenia, based on our previous work. 2> It was also increased in the
amygdala in a stress-reactive genetic mouse model studied by our group.40
Another closely related molecule, NCAM1 (neural cell adhesion molecule 1), is
among our top candidate genes as well. These data support a central role for cell
connectivity and cell adhesion in schizophrenia.

Another top candidate gene is CNR1 (cannabinoid receptor 1, brain). CNR1
is @ member of the guanine-nucleotide-binding protein (G-protein) coupled

receptor family, which inhibits adenylate cyclase activity in a dose-dependent
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manner. CNR1 has additional genetic evidence for association with
schizophrenia.®,% It is decreased in expression in postmortem brain from
schizophrenics.”? The other main cannabinoid receptor, CNR2 (cannabinoid
receptor 2), is among our top candidate genes too (Supplementary Table S1-1),
and is decreased in expression in postmortem brain from schizophrenics as well.
These data support a role for the cannabinoid system in schizophrenia, perhaps
through a deficiency of the endogenous cannabinoid signaling that leads to
vulnerability to psychotogenic stress,” and is accompanied by increased
compensatory exogenous cannabinoid consumption that may have additional
deleterious consequences.”?

A number of glutamate receptor genes are present among our top
candidate genes for schizophrenia (GRIA1, GRIA4, GRIN2B and GRM5), as well as
GAD1, an enzyme involved in glutamate metabolism, and SLC1A2, a glutamate
transporter (Table 1-1). Other genes involved in glutamate signaling present in
our data, with a lower scores, are GRIN2A, SLC1A3, GRIA3, GRIK4, GRM1, GRM4
and GRM7 (Supplementary Table S1-1). Glutamate receptor signaling is one of the
top canonical pathways over-represented in our analyses (Table 1-2), and that
finding is reproduced in independent GWA data sets (Table 1-2). One has to be
circumspect with interpreting such results, as glutamate signaling is quasi-
ubiquitous in the brain, and a lot of prior hypothesis-driven work has focused on
this area, potentially biasing the available evidence. Nevertheless, our results are

striking, and contribute to the growing body of evidence that has emerged over
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the last few years implicating glutamate signaling as a point of convergence for
findings in schizophrenia,’? as well as for autism’4 and AD.”> Glutamate signaling
is the target of active drug development efforts,”® which may be informed and
encouraged by our current findings.

Our analysis also provides evidence for other genes that have long been of
interest in schizophrenia, but have had previous variable evidence from genetic-
only studies: BDNF, COMT, DRD2, DTNBP1 (dystrobrevin binding
proteinl/dysbindin; Table 1-1). In addition, our analysis provides evidence for
genes that had previously not been widely implicated in schizophrenia, but do have
relevant biological roles, demonstrating the value of empirical discovery-based
approaches such as CFG (Table 1-1): ANK3, % ALDH1A1 and ADCYAP1, which is
a ligand for schizophrenia candidate gene VIPR2,77,78 also present in our data set,
albeit with a lower CFG score of 2. Other genes of interest in our full data set
(Supplementary Table S1-1) include ADRBK2 (GRK3), first described by us as a
candidate gene for psychosis, 1 CHRNA7,7° and PDE10A,8° which are targets for
drug development efforts.

Pathways and mechanisms

Our pathway analyses results are consistent with the accumulating evidence
about the role of synaptic connections and glutamate signaling in schizophrenia,
most recently from CNV studies®! (Table 1-2, Supplementary Table S1-5, Figure 1-
3). Very importantly, the same top pathways were consistent across independent

GWA studies we analyzed (Tables 1-2, 1-5, and Supplementary Table S1-5). We
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also did a manual curation of the top candidate genes and their grouping into
biological roles examining them one by one using PubMed and GeneCards, to come
up with a heuristic model of schizophrenia (Figure 1-3). Overall, while multiple
mechanistic entry points may contribute to schizophrenia pathogenesis (Figure 3a-
1), it is likely at its core a disease of decreased cellular connectivity precipitated
by environmental stress during brain development, on a background of genetic
vulnerability (Figure 1-3b).

Genetic risk prediction

Of note, our SNP panels and choice of affected alleles were based solely on
analysis of the discovery ISC GWAS, completely independently from the test GAIN
EA, GAIN AA, nonGAIN EA and nonGAIN AA GWAS. Our results show that a
relatively limited and well-defined panel of SNPs identified based on our CFG
analysis could differentiate between schizophrenia subjects and controls in four
independent cohorts of two different ethnicities, EA and AA. Moreover, the genetic
risk component identified by us seems to be stronger for classic age of onset
schizophrenia than for early or late-onset iliness, suggesting that the latter two
may be more environmentally driven or have a somewhat different genetic
architecture. It is likely that such genetic testing will have to be optimized for
different cohorts if done at a SNP level. Interestingly, at a gene and pathway level,
the differences between studies seem much less pronounced than at a SNP level,
if at all present (Table 1-5), suggesting that gene-level and pathway-level tests

may have more universal applicability. In the end, such genetic data, combined
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with family history and other clinical information (phenomics),8? as well as with
blood biomarker testing, > may provide a comprehensive picture of risk of
illness.83,84

Reproducibility among studies

Our work provides striking evidence for the advantages, reproducibility and
consistency of gene-level analyses of data, as opposed to SNP level analyses,
pointing to the fundamental issue of genetic heterogeneity at a SNP level (Table
1-5 and Figure 1-7). In fact, it may be that the more biologically important a gene
is for higher mental functions, the more heterogeneity it has at a SNP level®> and
the more evolutionary divergence,® for adaptive reasons. On top of that, CFG
provides a way to prioritize genes based on disease relevance, not study-specific
effects (that is, fit-to-disease as opposed to fit-to-cohort). Reproducibility of
findings across different studies, experimental paradigms and technical platforms
is deemed more important (and scored as such by CFG) than the strength of
finding in an individual study (for example, P-value in a GWAS). The CFG prioritized
genes show even more reproducibility among independent GWAS cohorts (ISC,
GAIN EA, GAIN AA) than the full list of unprioritized genes with nominal significant
SNPs. The increasing overlap and reproducibility between studies of genes with a
higher average CFG score points out to their biological relevance to disease
architecture. Finally, at a pathway level, there is even more consistency across
studies. Again, the pathways derived from the top CFG scoring genes show more

consistency than the pathways derived from the lower CFG scoring genes. Overall,
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using our approach, we go from reproducibility between independent studies of
0.4% at the level of nominally significant SNPs to a reproducibility of 97.1% at the
level of pathways derived from top CFG scoring genes.

Overlap with other psychiatric disorders

Despite using lines of evidence for our CFG approach that have to do only
with schizophrenia, the list of genes identified has a notable overlap with other
psychiatric disorders (Figure 1-8, Supplementary Table S1-1). This is a topic of
major interest and debate in the field.3°,8” We demonstrate an overlap between
top candidate genes for schizophrenia and candidate genes for anxiety and bipolar
disorder, previously identified by us through CFG (Figure 1-8), thus providing a
possible molecular basis for the frequently observed clinical co-morbidity and
interdependence between schizophrenia and those other major psychiatric
disorders, as well as cross-utility of pharmacological agents. In particular, PDE10A
is at the overlap of all three major psychiatric domains, and may be of major
interest for drug development.8® The overlap between schizophrenia and bipolar
may have to do primarily with neurotrophicity and brain infrastructure (underlined
by genes such as DISC1, NRG1, BDNF, MBP, NCAM1, NRCAM, PTPRM). The
overlap between schizophrenia and anxiety may have to do primarily to do with
reactivity and stress response (underlined by genes such as NR4A2, QKI, RGS4,
HSPA1B, SNCA, STMN1, LPL). Notably, the overlap between schizophrenia and
anxiety is of the same magnitude as the previously better appreciated overlap

between schizophrenia and bipolar disorder, 23,88 supporting the consideration of
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a nosological domain of schizoanxiety disorder,%* by analogy to schizoaffective
disorder. Clinically, while there are some reports of co-morbidity between
schizophrenia and anxiety,?? it is an area that has possibly been under-appreciated
and understudied. ‘Schizoanxiety disorder’ may have heuristic value and pragmatic

clinical utility.

Schizoanxiety Schizoaffective

Figure 1-8. Genetic Overlap Among Psychiatric Disorders.
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We also looked at the overlap with candidate genes for autism and AD from
the literature (Supplementary Table S1-1), to elucidate whether schizophrenia,
autism and AD might be on a spectrum, that is, whether autism might be a form
of ‘schizophrenia praecox’, similar to schizophrenia being referred to as ‘dementia
praecox’ (Kraepelin). We see significant overlap between the three disorders
among the top genes with a CFG score of 4: a third of the genes overlap between
schizophrenia and autism, and a quarter between schizophrenia and AD. Additional
key genes of interest are lower on the list as well, with a CFG score of 3: CNTNAP2
for autism, MAPT and SNCA for AD (Supplementary Table S1-1).

Conclusions and future directions

First, in spite of its limitations, our analysis is arguably the most
comprehensive integration of genetics and functional genomics to date in the field
of schizophrenia, yielding a comprehensive view of genes, blood biomarkers,
pathways and mechanisms that may underlie the disorder. From a pragmatic
standpoint, we would like to suggest that our work provides new and/or more
comprehensive insights on genes and biological pathways to target for new drug
development by pharmaceutical companies, as well as potential new uses in
schizophrenia for existing drugs, including omega-3 fatty acids (Supplementary
Table S1-2).

Second, our current work and body of work over the years provides proof
how a combined approach, integrating functional and genotypic data, can be used

for complex disorders-psychiatric and non-psychiatric, as has been attempted by
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others as well.?%,°1 What we are seeing across GWAS of complex disorders are not
necessarily the same SNPs showing the strongest signal, but rather consistency at
the level of genes and biological pathways. The distance from genotype to
phenotype may be a bridge too far for genetic-only approaches, given genetic
heterogeneity and the intervening complex layers of epigenetics and gene
expression regulation.?? Consistency is much higher at a gene expression level
(Table 1-5),°> and then at a biological pathway level. Using GWAS data in
conjunction with gene expression data as part of CFG or integrative genomics®
approaches, followed by pathway-level analysis of the prioritized candidate genes,
can lead to the unraveling of the genetic code of complex disorders such as
schizophrenia.

Third, our work provides additional integrated evidence focusing attention
and prioritizing a number of genes as candidate blood biomarkers for
schizophrenia, with an inherited genetic basis (Table 1-1 and Figure 1-2). While
prior evidence existed as to alterations in gene expression levels of those genes in
whole-blood samples or lymphoblastoid cell lines from schizophrenia patients, it
was unclear prior to our analysis whether those alterations were truly related to
the disorder or were instead related only to medication effects and environmental
factors.

Fourth, we have put together a panel of SNPs, based on the top candidate
genes we identified. We developed a GRPS based on our panel, and demonstrate

how in four independent cohorts of two different ethnicities, the GRPS
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differentiates between subjects with schizophrenia and normal controls. From a
personalized medicine standpoint, genetic testing with highly prioritized panels of
best SNP markers may have, upon further development (Figure 1-6) and
calibration by ethnicity and gender, a role in informing decisions regarding early
intervention and prevention efforts; for example, for classic age of onset
schizophrenia before the illness fully manifests itself clinically, in young offspring
from high-risk families. After the illness manifests itself, gene expression
biomarkers and phenomic testing approaches, including clinical data, may have
higher yield than genetic testing. A multi-modal integration of testing modalities
would be the best approach to assess and track patients, as individual markers are
likely to not be specific for a single disorder. The continuing re-evaluation in
psychiatric nosology®*,°> brought about by recent advances will have to be taken
into account as well for final interpretation of any such testing. The complexity,
heterogeneity, overlap and interdependence of major psychiatric disorders as
currently defined by DSM suggests that the development of tests for dimensional
disease manifestations (psychosis, mood and anxiety)®* will ultimately be more
useful and precise than developing tests for existing DSM diagnostic categories.
Finally, while we cannot exclude that rare genetic variants with major
effects may exist in some individuals and families, we suggest a contextual
cumulative combinatorics of common variants genetic model best explains our
findings, and accounts for the thin genetic load margin between clinically ill

subjects and normal controls, which leaves a major role to be played by gene
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expression (including epigenetic changes) and the environment. This is similar to
our conclusions when studying bipolar disorder,2? and may hold true in general for
complex medical disorders, psychiatric and non-psychiatric. Full-blown illness
occurs when genetic and environmental factors converge, usually in young
adulthood for schizophrenia. When they diverge, a stressful/hostile environment
may lead to mild or transient illness even in normal genetic load individuals,
whereas a favorable environment may lead to supra-normative functioning in
certain life areas (such as creative endeavors) for individuals who carry a higher
genetic load. The flexible interplay between genetic load, environment and
phenotype may permit evolution to engender diversity, select and conserve alleles,
and ultimately shape populations. Our emerging mechanistic understanding of
psychosis as disconnectivity, mood as activity?? and anxiety as reactivity®® may
guide such testing and understanding of population distribution as being on a

multi-dimensional spectrum, from supra-normative to normal to clinical illness.
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Chapter 2: Alcoholism

Alcohol is one of the most widely used recreational drugs in the U.S., with
82.1 percent of people over the age of 12 having drank alcohol at some point in
their lifetime. There has been mixed data over potential health benefits of drinking
alcohol. Light to moderate consumption has been associated in epidemiological
investigations with reduced relative mortality risk®®, while heavy drinking is
associated with increased risk, forming a distinctive and often replicated U or J-
shaped curve when relative risk is plotted against average alcohol intake. °7 %
While drinking itself can be socially normative and part of a healthy lifestyle, many
people struggle with alcohol use disorders (AUD), and this can have a profoundly
negative impact on both quality®® and quantity of lifel00,

This study sought to identify genes involved in alcohol use disorders in a
similar fashion to prior work on schizophrenia. We began with an independent
GWAS provided by collaborators in Germany. We again identified SNPs which were
nominally significant with a p < 0.05, which were then converted into nearest
gene. In this analysis we implemented an internal score based on purely on the
data from the discovery cohort. This was calculated using the ratio of nominally
significant SNPs associated with a gene to total SNPs tested for a gene. Genes in
the top 0.1% of the distribution scored 4 points, genes in the top 5% received 3
points, and the remaining genes received 2 points. This provides additional weight
to the primary analysis, and this internal score was added to the external score as

described below.
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Converted genes were then prioritized with a polyevidence CFG score.
Keywords used to determine convergence for this project were alcohol and
alcoholism, in addition to tissue or species relevant search terms. We used the
Jackson Laboratory Mouse Phenome Database to find relevant transgenic animal
models by searching the relevant phenotype categories as described below. This
analysis used the variation as described previously by weighting the lines of
evidence such that human evidence received twice as much as nonhuman
evidence, and brain evidence received twice as many points as evidence from
genetics or peripheral tissue. In this way, human brain evidence was given 4
points, human peripheral or genetic evidence would be given 2 points each,
nonhuman brain evidence was given 2 points, and nonhuman peripheral, genetic,
or transgenic evidence received 1 point each. In this weighting the maximum
possible score from CFG was 12 (4 human brain, 2 human genetic, 2 human
peripheral, 2 nonhuman brain, 1 nonhuman genetic, 1 nonhuman peripheral =
12). This was added to the internal score derived from the primary GWAS so that
the maximum possible score overall could be 16 (4 from internal score, 12 from
CFG).

Using the exact same methodology as the schizophrenia paper, we set the
prioritization cutoff as being half the possible max score, in this case >8. 135
genes and 713 SNPs met this criterion, and were used to generate a polygenic
GRPS. This showed a trend towards significance (p=0.053) in separating cases

from controls in an additional independent German GWAS test cohort.
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Prior work by the Niculescu lab had identified the D-Box binding protein
(DBP) as a potential candidate gene for bipolar disorder!®. D-box elements are
important factors in circadian regulation. DBP is a transcription factor that binds
to these elements, and plays a role in activating downstream circadian output
genes. In previous studies of transgenic mice with a homozygous deletion of the
DBP gene found that animals increased ethanol consumption in response to stress
when compared to wild type animals. % Koob and many others have implicated
stress systems in driving drug seeking behavior. 11 We sought to validate our
top GWAS genes by finding the overlap with top candidate genes from the stress-
reactive DBP knockout (KO) mouse model. Validation in the animal model
produced 11 genes with 66 SNPs.

We used this smaller panel of genes and SNPs to create polygenic GRPS
scores which were tested in the independent German GWAS as well as 2 additional
independent GWAS from the United States. This smaller panel validated by the
animal model showed nominally significant separation between cases and controls
in the German GWAS (p=0.041) as well as in United States cohorts of alcohol
dependence (p=1.3E-5) and alcohol abusers (p=1.2E-4).

We used a combination of three pathway enrichment tools (Ingenuity,
KEGG, and GeneGO) to help further our understanding of the biology of our top
genes. Pathway analysis explicitly identified addiction (cocaine) as well as

implicating signaling pathways and neurogenesis.
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Alcohol can be part of a healthy lifestyle. But for the many people who are
susceptible to AUDs, alcohol can have a highly deleterious effect on health and
mortality. It is important to recognize that while this study attempts to identify
genetic predisposition, context and environmental stress plays a large role as
evidenced by the enrichment by the stress reactive animal model. Reinforcing
prior findings in schizophrenia, this study points to how we can begin to use

genetic predisposition to inform the choices of an individual.
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Genetic Risk Prediction and Neurobiological Understanding of
Alcoholism
Introduction

Alcohol use and overuse (alcoholism) have deep historical and cultural
roots, as well as important medical and societal consequences!®?, While there is
evidence for roles for both genes and environment in alcoholism, a comprehensive
biological understanding of the disorder has been elusive so far, despite extensive
work in the field. Most notably, there has been until recently insufficient
translational integration across functional and genetic studies, and across human
and animal model studies, resulting in missed opportunities for a comprehensive
understanding.

As part of a translational Convergent Functional Genomics (CFG) approach,
developed by us over the last 15 years 39, and expanding upon our earlier work on
identifying genes for alcoholism 22 38 65 we set out to comprehensively identify
candidate genes, pathways and mechanisms for alcoholism, integrating the
available evidence in the field to date. We have used data from a published German
genome-wide association study for alcoholism 193, We integrated those data in a
Bayesian-like fashion with other human genetic data (association or linkage) for
alcoholism, as well as human gene expression data - postmortem brain gene
expression data, and peripheral (blood, cell culture) gene expression data. We also
used relevant animal model genetic data (transgenic, QTL), as well as animal

model gene expression data (brain and blood) generated by our group and others
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(Figures 2-1 and 2-2). Human data provides specificity for the illness, and animal
model data provides sensitivity of detection. Together, they helped identify and
prioritize candidate genes for the illness using a polyevidence CFG score, resulting
in essence in a de facto field-wide integration putting together all the available
evidence to date. Once that is done, biological pathway analyses can be conducted
and mechanistic models can be constructed.

An obvious next step is developing a way of applying that knowledge to
genetic testing of individuals to determine risk for the disorder. Based on our
comprehensive identification of top candidate genes described in this paper, we
have chosen all the nominally significant p-value SNPs corresponding to each of
those 135 genes from the GWAS dataset used for discovery (top candidate genes
prioritized by CFG with score of 8 and above (>=50% max. possible CFG score of
16), and assembled a Genetic Risk Prediction (GRP) panel out of those 713 SNPs.
We then developed a Genetic Risk Prediction Score (GRPS) for alcoholism based
on the presence or absence of the alleles of the SNPs associated with the iliness
from the discovery GWAS, and tested the GRPS in an independent German cohort
104 to see if it can differentiate alcohol dependent subjects from controls,
observing a trend towards significance.

In order to validate and prioritize genes in this panel using a behavioral
prism, we then looked at the overlap between our panel of 135 top candidate

genes and genes changed in expression in a stress-reactive animal model for
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alcoholism developed by our group, the DBP knock-out mouse®®6>, We used this
overlap to reduce our panel to 11 genes (66 SNPs).

This small panel of 11 genes was subsequently tested and shown to be
able to differentiate between alcoholics and controls in the three independent test
cohorts, one German 1% and two US based!%, suggesting that the animal model
served in essence as a filter to identify from the larger list of CFG-prioritized genes
the key behaviorally relevant genes. Our results indicate that panels of SNPs in
top genes identified and prioritized by CFG analysis and by a behaviorally-relevant
animal model can differentiate between alcoholics and controls at a population
level (Figure 2-5), although at an individual level the margin may be small (Figure
S2). The latter point suggests that, like for bipolar disorder 2° and schizophrenia
31 the contextual cumulative combinatorics of common gene variants and
environment 1% plays a major role in risk for illness.

Lastly, we have looked at overlap with candidate genes for other major
psychiatric disorders domains (bipolar disorders, anxiety disorders, schizophrenias)
from our previous studies, and provide evidence for shared genes (Figures 2-3 and
2-4) as well as shared genetic risk (Figure 2-6).

Overall, this work sheds light on the genetic architecture and
pathophysiology of alcoholism, provides mechanistic targets for therapeutic
intervention, and has implications for genetic testing to assess risk for illness
before the illness manifests itself clinically, opening the door for enhanced

prevention strategies at a young age. As alcoholism is a disease that does not exist
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if the exogenous agent (alcohol) is not consumed, the use of genetic information
to inform lifestyle choices could be quite powerful.
Materials and Methods

Human subject cohorts

Discovery cohort (cohort 1): Data for the discovery CFG work (Cohort 1)
were obtained from a GWAS of self-reported German descent subjects, consisting
of 411 alcohol dependent male subjects and 1307 population-based controls (663
male and 644 female subjects). 193 Individuals were genotyped using HumanHap
550 BeadChips (Illumina Inc, San Diego, CA, USA). SNPs with a nominal allelic P-
value <0.05 were selected for analysis. No Bonferroni correction was performed.

Test cohort 2 (alcohol dependence, Germany): An independent test cohort
of German descent 1% consisting of 740 alcohol-dependent male subjects and 861
controls (276 male and 585 female subjects) was used for testing the results of
the discovery analyses. Individuals were genotyped using Illumina Human 610
Quad or Illumina Human660w Quad BeadChips (Illumina Inc). The controls were
genotyped using Illumina HumanHap550 Bead Chips.

Test cohort 3 (alcohol dependence, United States) and test cohort 4 (alcohol
abuse, United States): The sample consisted of small nuclear families originally
collected for linkage studies, and unrelated individuals, Caucasians and African-
American, male and female subjects. The subjects were recruited at five US clinical
sites: Yale University School of Medicine (APT Foundation; New Haven, CT, USA),

the University of Connecticut Health Center (Farmington, CT, USA), the University
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of Pennsylvania Perelman School of Medicine (Philadelphia, PA, USA), the Medical
University of South Carolina (Charleston, SC, USA) and McLean Hospital (Belmont,
MA, USA). All subjects were interviewed using the Semi-Structured Assessment for
Drug Dependence and Alcoholism to derive diagnoses for lifetime alcohol
dependence, alcohol abuse and other major psychiatric traits according to the
DSM-1V criteria. There were 1687 male subjects with alcohol dependence, 366
male subjects with alcohol abuse and 475 male controls. There were 1081 female
subjects with alcohol dependence, 234 female subjects with alcohol abuse and 786
female controls (Table 2-1). Individuals were genotyped on the Illumina
HumanOmnil-Quad v1.0 microarray (988,306 autosomal SNPs). GWAS
genotyping was conducted at the Yale Center for Genome Analysis and the Center
for Inherited Disease Research. Genotypes were called using the GenomeStudio

software V2011.1 and genotyping module version 1.8.4 (Illumina Inc). 19
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Table 2-1. Discovery and Test Cohorts

Discovery
Cohort 1
Alcohol Dependence | Control

GWAS
Germany
Male 411 663
Female 0 644

All
Ethnicity All Caucasians

Caucasians
Test
Cohort 2 Alcohol Dependence | Control
Germany
Male 740 276
Female 0 585

All
Ethnicity All Caucasians

Caucasians
Test Alcohol Alcohol

Control

Cohorts 3 and 4 Dependence | Abuse




123

United States

Male 1687 366 475
Female 1081 234 786
Male Ethnicity

(Caucasian/African- 802/885 201/165 | 168/307
American)

Female Ethnicity

(Caucasian/African- 471/610 123/111 | 220/566
American)
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Gene identification in discovery cohort 1

Quality control: Genotype data had been filtered using stringent quality-
control criteria as described earlier'® and accounted for call rate, population
substructure, cryptic relatedness, minor allele frequency and batch effects.

Association test in discovery sample: Association testing was performed
using PLINK 1.07 (http://pngu.mgh.harvard.edu/ ~ purcell) 197 software
package. A logistic regression modelling approach was applied to correct for
population stratification. Therefore, principal component analysis was conducted
considering only independent autosomal SNPs with minor allele frequency >0.05
and pairwise R? <0.05 within a 200-SNP window. LD filtering resulted in a set of
28,505 SNPs used for principal component analysis, which was carried out using

GCTA 1.04 (http://www.complex-traitgenomics.com/software/gcta/). 1% The first

two principal components resulting from this analysis were included as covariates
in the logistic regression model.

Assignment of SNPs to genes: Genes corresponding to SNPs were identified
initially  using the annotation file from the Illumina website
(http://www.illumina.com, HumanHAP550v3_Gene_Annotation). Next, genes
were cross-checked with GeneCards (http://www.genecards.org) to ensure that
each gene symbol was current. Any gene symbol that matched to a different gene
symbol in Gene Cards was checked to verify chromosome number and location
match with the original gene, and was replaced with the current GeneCards gene

symbol. SNPs from the original annotation files that had no gene matches in the
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annotation file and UCSC Genome Browser (that is, not falling within an exon or
intron of a known gene) were assumed to regulate and thus implicate the gene
closest to the SNP location, using the refSNP database from NCBI
(http://www.ncbi.nlm.nih.gov/snp/?SITE= NcbiHome&submit = Go).

Convergent functional genomic analyses

Databases and scoring were as previously described.

Prioritizing top alcoholism candidate genes that overlap with a
stress-reactive animal model of alcoholism

Stress has been proposed as a driver of alcoholism, notably by Koob and
colleaguest® 110, as well as by Heilig and colleagues!l. We have previously
identified the circadian clock gene D-box Binding Protein (DBP) as a candidate
gene for bipolar disorder 1°, as well as for alcoholism 22, using a Convergent
Functional Genomics (CFG) approach. In follow-up work, we established mice with
a homozygous deletion of DBP (DBP KO) as a stress-reactive genetic animal model
of bipolar disorder and alcoholism>8. We reported that DBP KO mice have lower
locomotor activity, blunted responses to stimulants, and gain less weight over
time. In response to a stress paradigm that translationally mimics what can happen
in humans (chronic stress-isolation housing for 4 weeks, with acute stress on top
of that- experimental handling in week 3), the mice exhibit a diametric switch in
these phenotypes. DBP KO mice are also activated by sleep deprivation, similar to
bipolar patients, and that activation is prevented by treatment with the mood

stabilizer drug valproate. Moreover, these mice show increased alcohol intake
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following exposure to stress. Microarray studies of brain and blood revealed a
pattern of gene expression changes that may explain the observed phenotypes.
CFG analysis of the gene expression changes identified a series of candidate genes
and blood biomarkers for bipolar disorder, alcoholism and stress reactivity.
Subsequent studies by us showed that treatment with the omega-3 fatty acid
docosahexaenoic acid (DHA) normalized the gene expression (brain, blood) and
behavioral phenotypes of this mouse model, including reducing alcohol
consumption®3,

We examined the overlap between the top candidate genes for alcoholism
from the current analysis and the top candidate genes from the DBP KO stress
mice, thus reducing the list from 135 to 11 (Figure 2-3).

Pathway Analyses

IPA 9.0 (Ingenuity Systems, www.ingenuity.com , Redwood City, CA) was used to

analyze the biological roles, including top canonical pathways and diseases, of the
candidate genes resulting from our work (Tables 2-3 and S2-2), as well as used to
identify genes in our datasets that are the targets of existing drugs (Table S2-3).
Pathways were identified from the IPA library of canonical pathways that were
most significantly associated with genes in our data set. The significance of the
association between the data set and the canonical pathway was measured in 2
ways: 1) a ratio of the number of molecules from the data set that map to the
pathway divided by the total number of molecules that map to the canonical

pathway is displayed; 2) Fisher's exact test was used to calculate a p-value
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determining the probability that the association between the genes in the dataset
and the canonical pathway is explained by chance alone. We also conducted a
KEGG pathway analysis through the Partek Genomic Suites 6.6 software package,
Partek Inc., Saint Louis, MO), and GeneGo MetaCore from Thomson Reuters, New

York, NY) pathway analyses (https://portal.genego.com/).

Epistasis testing

The test cohort 2 data were used to test for epistatic interactions among
the best p-value SNPs in the 11 top candidate genes from our work. SNP-SNP
allelic epistasis was tested for each distinct pair of SNPs between genes, using the
PLINK software package (Table S2-5).

Genetic Risk Prediction

The software package PLINK 1.07 (http://pngu.mgh.harvard.edu/~purcell)
107 was used to extract individual genotype information for each subject from the
test cohorts 2, 3 and 4 data files. As we had previously done for bipolar disorder
and schizophrenia, we developed a polygenic Genetic Risk Prediction Score (GRPS)
for alcoholism based on the presence or absence of the alleles of the SNPs
associated with illness in the discovery GWAS cohort 1, and tested the GRPS in
three independent cohorts, from different geographic areas, ethnicities, and
different types of alcoholism. We tested two panels: a larger panel containing all
the nominally significant SNPs in top CFG scoring candidate genes (n=135) from

the discovery GWASL1 in the top CFG prioritized genes (Tables S2-1 and S2-4) and
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a smaller one (n=11) containing genes out of the larger panel that were cross-
validated using an animal model of alcoholism.

Of note, our genes, SNP panels, and choice of affected alleles were based
solely on analysis of the discovery GWAS1, which is our discovery cohort,
completely independently from the test cohorts.  Each SNP has two alleles
(represented by base letters at that position). One of them is associated with the
illness (affected), the other not (non-affected), based on the odds ratios from the
discovery GWAS1. We assigned the affected allele a score of 1 and the non-
affected allele a score of 0. A two-dimensional matrix of subjects by GRP panel
alleles is generated, with the cells populated by 0 or 1. A SNP in a particular
individual subject can have any permutation of 1 and 0 (1 and 1, 0 and 1, 0 and
0). By adding these numbers, the minimum score for a SNP in an individual subject
is 0, and the maximum score is 2. By adding the scores for all the alleles in the
panel, averaging that, and multiplying by 100, we generated for each subject an
average score corresponding to a genetic loading for disease, which we call
Genetic Risk Predictive Score (GRPS)?%31, To test for significance, a one-tailed t-
test with unequal variance was performed between the alcoholic subjects and the
control subjects, looking at differences in GRPS.

ROC Curves

ROC curves were plotted using IBM SPSS Statistics 21. Diagnosis was

converted to a binary call of 0 (control) or 1(alcohol dependent or abuser) and



129

entered as the state variable, with calculated GRPS entered as the test variable
(Figure S2-2).
Figures

Each figure in this chapter was completed by Daniel Levey and Helen Le-
Niculescu. This work has been published. 112
Results

Top candidate genes

To minimize false negatives, we initially cast a wide net, using as a filter a
minimal requirement for a gene to have both some GWAS evidence and some
additional independent evidence. Thus, out of the 6085 genes with at least a SNP
at p<0.05 in the discovery GWAS cohort 1, we generated a list of 3142 genes that
also had some additional evidence (human or animal model data), implicating
them in alcoholism (CFG score >=2.5 (>=2 internal) + (>=0.5 external)). This
suggests, using these minimal thresholds and requirements, that the repertoire of
genes potentially involved directly or indirectly in alcohol consumption and
alcoholism may be quite large, similar to what we have previously seen for bipolar
disorderi!3 and schizophrenia3l. To minimize false positives, we used an internal
score based on percent of SNPs in a gene that were nominally significant, with 4
points for those in the top 0.1% of the distribution (n= 77), 3 points for those
in the top 5% of the distribution (n=561) and 2 points for the rest of the
nominally significant SNPs (n=5447). We then used the CFG analysis and scoring

integrating multiple lines of evidence to prioritize this list of genes (Figure 2-1),
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and focused our subsequent analyses on only the top CFG scoring candidate
genes. Overall, 135 genes had a CFG score of 8 and above (>=50% of maximum

possible score of 16).
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Table 2-2. Top candidate genes for alcoholism. Top genes with a CFG score
of 8 and above that overlapped with top genes from the stress-reactive animal
model are shown (n=11) (Figure 2-3). Best p-value SNP within the gene or
flanking regions is depicted. A more complete list of genes with CFG score of 8
and above (n= 135) is available in the Supplementary Information section (Table
S1). I-increased; D — decreased in expression; PFC - prefrontal cortex; AMY -
amygdala; CP - caudate putamen; NAC - nucleus accumbens; VT - ventral
tegmentum; TG- transgenic. P1- paradigm 1, P2- Paradigm 2, P3-paradigm 3 in
the Rodd, Bertsch et al. 2007. Association- association evidence; Linkage-

linkage evidence. Underlined gene symbol represents means gene is a blood

biomarker candidate. Bold p-values <0.001.
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Convergent Functional Genomics

Multiple Independent Lines of Evidence
For Cross-Validation of GWAS Data

Discovery GWAS
(nominally significant SNPs)

(4pt.)
Animal Model Studies

(Pharmacogenomic, Transgenic, Selected Strains) Other Human Studies

Animal Model Genetic ¥ Human Genetic
(Transgenic, QTL) - <« (Association, Linkage)
Evidence (1 pt) Evidence (2 pt)
Candidate Gene/
Biomarker —_—
Animal Model Brain o €« Human Postmortem Brain
Gene Expression Gene Expression
Evidence (2 pt) P Evidence (4 pt)
Animal Model Blood Human Blood
Gene Expression Gene Expression
Evidence (1 pt) Evidence (2 pt)
Sensitivity Specificity

Figure 2-1. Convergent Functional Genomics. Schematic for

Alcoholism study.

Of note, there was no correlation between CFG prioritization and gene size, thus
excluding a gene-size effect for the observed enrichment (Supplementary Figure

S2-1).
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Top Candidate Genes for
Alcoholism CFG
Score
CFG a!'lal_y_sis gf GW.-AS SNCA 13
and prioritization using
DBP Animal Model
GFAP 9.5
DRD2  GRM3 9.0
MBP MOBP 8.5
GNAIL MOG RXRG SYT1 TIMP2 8.0

Figure 2-2. Top candidate genes for alcoholism.
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Biological pathways and drug targets

Pathway analyses were carried out on the top candidate genes (Table 2-3).
Notably, Gai signaling, cocaine addiction, and transmission of nerve impulses, were
the top biological pathways in alcoholism, which may be informative for treatments
and drug discovery efforts by pharmaceutical companies. Of note, these top
candidate genes were identified and prioritized only for evidence for alcoholism
prior to pathway analyses, so the overlap with cocaine addiction is a completely
independent result, suggesting a shared drive and neurobiology. Consistent with
that, two of our 135 top candidate genes for alcoholism (CPE and VWF) had SNPs
with p<10-5 in a recent GWAS of cocaine addiction?>8,

Some of the top alcohol candidate genes have prior evidence of being
modulated by the omega-3 fatty acid DHA in our DBP mouse animal model (Tables
2-2 and S2-1). That is of particular interest, as we have previously shown that
treatment with the omega-3 fatty acid docosahexaenoic acid (DHA) decreased
alcohol consumption in that animal model, as well as in another independent
animal model, the alcohol preferring P rats®>. Omega-3 fatty acids, particularly
DHA, have been described to have alcoholism, mood, psychosis, and suicide
modulating properties, in preclinical models as well as some human clinical trials
and epidemiological studies. For example, deficits in omega-3 fatty acids have
been linked to increased depression and aggression in animal models 19160 and
humans 161162, DHA prevents ethanol damage in vitro in rat hippocampal slices!63.

Omega-3 supplementation can prevent oxidative damage caused by prenatal
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alcohol exposure in rats!®4, Of note, deficits in DHA have been reported in
erythrocytesi®> and in the postmortem orbitofrontal cortex of patients with bipolar

disorder, and were
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Table 2-3. Pathway Analyses. Pathway Analyses of top candidate genes.

A. Biological Pathways. B. Disease and Disorders.
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GRPS-
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[Top DBP
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score
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genes
(N=11

genes)

Diseases and Molecu P-

# P-Value Diseases Ratio
Disorders les Value
Hereditary 1.66E-08 — 1.476E11/103

1 9 Schizophrenia
Disorder 1.29E-02 -10 3
Neurological 1.66E-08 — 1.076E

2 10 Suicide 6/151
Disease 1.64E-02 -09
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Psychological 1.66E-08
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greater in those that had high vs. those that had low alcohol abuse 1%, Low DHA
levels may be a risk factor for suicide 167168, Omega-3 fatty acids have been
reported to be clinically useful in the treatment of both mood!6® 170 171,172 gnd
psychotic disorders 173 174 175,

Other existing pharmacological drugs that modulate alcohol candidate
genes identified by us include, besides benzodiazepines, dopaminergic agents,
glutamatergic agents, serotonergic agents, as well as statins (Table S2-3).

Genetic risk prediction score (GRPS)

Once the genes involved in a disorder are identified, and prioritized for
likelihood of involvement, then an obvious next step is developing a way of
applying that knowledge to genetic testing of individuals to determine risk for the
disorder. Based on our identification of top candidate genes described above using
CFG, we pursued a polygenic panel approach, with digitized binary scoring for
presence or absence, similar to the one we have devised and used in the past for
biomarkers testing 22,176 and for genetic testing in bipolar disorder #° and
schizophrenia 3! . Somewhat similar approaches but without CFG prioritization,
attempted by other groups, have been either unsuccessfull’” or have required very
large panels of markers!78,

We chose all the nominally significant p-value SNPs (p<0.05) in each of our
top CFG prioritized genes (n=135 with CFG score>=8) (Table S2-1) in the GWAS1
data set used for discovery, and assembled a GRPS-135 panel out of those SNPs

(Table 2-4). We then tested the GRPS-135 in the independent German test cohort
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2, based on the presence or absence of the alleles of the SNPs associated with the
illness, comparing the alcoholic subjects to controls (Table 2-4), and showed that,
while there was a trend, we were not able to distinguish alcoholics from controls
in both independent test cohorts.

We then prioritized a smaller panel of 11 genes (Table 2-2) out of this larger
panel, by using as a cross-validator the top genes from a stress-reactive mouse
animal model for alcoholism, the DBP knock-out mouse®® (Figure 2-3). The small
panel (GRPS-11) showed more robust results than the larger panel (Table 2-4),

suggesting that it captures key behaviorally-relevant genes.

Table 2-4. Genetic Risk Prediction Score (GRPS)- Panels from
Discovery Cohort 1. Differentiation between alcoholics and controls in three
independent test cohorts using : GRPS-135, a panel composed of all the
nominally significant SNPs from GWASL in the top candidate genes prioritized by
Convergent Functional Genomics (CFG); GRPS-11, a panel additionally
prioritized by a stress-reactive animal model for alcoholism, the DBP KO stressed
mouse; and GRPS-SNCA, the top candidate gene from our analyses. P-values

depict one-tailed t-test results between alcoholics and controls.
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GRPS-135
Genes with CFG score of >=8

all nominally significant SNPs in each

gene (n=713)

Test

in Cohort 2

Alcohol

Dependent vs.

Control

P=0.053

(135 genes, 713 SNPs)

GRPS-11

Top animal model (DBP mouse) prioritized
genes

out of genes with CFG score of >=8
SNPs in each

all  nominally significant

gene (n=66)

GRPS-11
Top animal model (DBP mouse) prioritized
genes

out of genes with CFG score of >=8

P=0.041

(11 genes, 66 SNPs)

Test
in Cohort 3

Alcohol

Dependent vs.

Control

P=0.00012

(10 genes, 34 SNPs present)
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all nominally significant SNPs in each gene

(n=66)

GRPS-SNCA
Top CFG gene

all nominally significant SNPs in it (n=4)

P= 0.000013

(1 gene, 1 SNP rs17015888
present)

Test

in Cohort 4

Alcohol Abuse vs. Control

GRPS-11

Top animal model (DBP mouse) prioritized
genes

out of genes with CFG score of >=8

all nominally significant SNPs in each gene

(n=66)

P=0.0094

(10 genes, 34 SNPs present)

GRPS-SNCA
Top CFG gene

all nominally significant SNPs in it (n=4)

P= 0.023
(1 genes, 1 SNP rs17015888

present)
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Discussion

Our CFG approach helped prioritize a very rich in signal and biologically
interesting set of genes (Tables 2-2 and S2-1). Some, such as SNCA, CPE, DRD2
and GRM3, have weaker evidence based on the GWAS data but strong
independent evidence in terms of gene expression studies and other prior human
or animal genetic work. Conversely, some of the top previous genetic findings in
the field 172, such as ADH1C & (CFG score of 9), GABRA2 18! (CFG score of 8), as
well as AUTS2 (CFG score of 7), CHRM2 and KCNJ6 (CFG scores of 4) have fewer
different independent lines of evidence, and thus received a lower CFG
prioritization score in our analysis (Table S2-1), although they are clearly involved
in alcoholism-related processes. While we cannot exclude that more recently
discovered genes have had less hypothesis driven work done and thus might score
lower on CFG, it is to be noted that the CFG approach integrates predominantly
non-hypothesis driven, discovery-type datasets, such as GWAS data, linkage,
quantitative traits loci, and particularly, gene expression. We also cap each line of
evidence from an experimental approach (Figure 2-1), to minimize any ‘popularity’
bias, whereas multiple studies of the same kind are conducted on better-
established genes. In the end, it is gene-level reproducibility across multiple
approaches and platforms that is built into the approach and gets prioritized most
by CFG scoring during the discovery process. Our top results subsequently show
good reproducibility and predictive ability in independent cohort testing, the litmus

test for any such work.
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At the very top of our list of candidate genes for alcoholism, with a CFG
score of 13, we have SNCA (synuclein alpha), a pre-synaptic chaperone that has
been reported to be involved in modulating brain plasticity and neurogenesis, as
well as neurotransmission, primarily as a brake 182, 183, On the pathological side,
low levels of SNCA might offer less protection against oxidative stress 18, while
high levels of SNCA may play a role in neurodegenerative diseases, including in
Parkinson Disease (PD). SNCA has been identified as a susceptibility gene for
alcohol cravings 14 and response to alcohol cues 185, The evidence provided by
our data and other previous human genetic association studies suggest a genetic
rather than purely environmental (alcohol consumption, stress) basis for its
alteration in disease, and its potential utility as trait rather than purely state
marker.

Alcoholics carry a genetic variant that leads to reduced baseline expression
of SVCA (Janeczek et al. 2012). SNCA is also downregulated in expression in the
frontal cortex and caudate-putamen of inbred alcohol preferring rats 124, as well
as in the brain (amygdala) and blood of our stress-reactive DBP animal model of
alcoholism, prior to exposure to any alcohol. SNCA is upregulated in expression in
blood in human alcoholism 119120, as well as in the blood of monkeys consuming
alcohol, and in rats after alcohol administration (Rodd, Bertsch et al. 2007). Thus,
it may serve as a blood biomarker. Overall, we may infer that, while low levels of
SNCA may predispose to cravings for alcohol and consequent alcoholism, possibly

mediated through increased neurobiological activity and drive (the SNCA deficit
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hypothesis), excessive alcohol consumption then increases SNCA expression
beyond that seen in non-alcohol consuming controls, potentially compounding risk
for neurodegenerative diseases in individuals that have mutations that lead to its
aggregation. This observation is also biologically consistent with the fact that
dementia is often observed late in the course of alcohol dependence.

GFAP (glial fibrillary acidic protein), a top candidate gene with a CFG score
of 9.5, is an astrocyte intermediate filament-type protein involved in neuron-
astrocyte interactions, cell adhesion, process formation and cell-cell
communication. It is decreased in expression in postmortem brain of alcoholics,
but increased in expression in brains of animal models of predisposition to
alcoholism, prior to exposure to alcohol (Table 2-2). This is consistent with a model
for increased physiological robustness in individuals predisposed to alcoholism 22,
as well as with the neurodegenerative consequences of protracted alcohol use.

DRD2 (dopamine receptor D2), another top candidate gene with a CFG
score of 9, has prior human genetic association evidence. It is reduced in
expression in the frontal cortex in human brain from alcoholics, as well as in the
DBP animal model prior to any exposure to alcohol. One possible interpretation
would be that lower levels of dopamine receptors are associated with reduced
dopaminergic signaling and anhedonia, leading individuals to overcompensate by
alcohol and drug abuse. Another interpretation, consistent with the low SNCA and
consequently higher neurotransmitter (including dopamine) levels, would be that

these individuals are in fact in a compulsive, hyperdopaminergic state, which drives
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them to hedonic activities and leads to compensatory homeostatic downregulation
of their DRD2 receptors. Consistent with this later scenario, mice that have a
constitutive knock-out of their DRD2 receptors, not due to a hyperdopaminergic
state, in fact consume less alcohol!3¢, unless they are exposed to stress!8é,

Another top candidate gene, GRM3, is also involved in neurotransmitter
signaling. Prior evidence in the field had implicated another metabotropic
glutamate receptor, GRM2 17,

Other top candidate genes in the panel (MOBP, MBP, MOG) are involved in
myelination (Table 2-2). They are decreased in expression in the pre-frontal cortex
of human alcoholics, as well as in our stress-reactive DBP animal model of
alcoholism, prior to exposure to any alcohol. Decreased myelination may lead to
decreased connectivity. Interestingly, MOBP and MBP are increased in expression
in the amygdala in the DBP mice, opposite to the direction of change in the PFC,
consistent with a frontal deactivation and a limbic hyperactivity, which could lead
to impulsivity.

Epistasis testing of top candidate genes for alcoholism.

For the top 11 candidate genes, best p-value SNPs from GWAS1 were used
to test for gene-gene interactions in GWAS2 (Table S2-5). Nominally significant
interactions were found between SNPs in SNCA and RXRG, DRD2 and SYT1, MOBP
and TIMP2. As a caveat, the p-value was not corrected for multiple comparisons.
The corresponding genes merit future follow-up work to elucidate the biological

and pathophysiological relevance of their interactions.
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Pathways and mechanisms

Our pathway analyses (Tables 2-3 and S2-2) results are consistent with the
accumulating evidence about the role of neuronal excitability and signaling in
alcoholism?188,189 178,

Overlap with other psychiatric disorders

Despite using lines of evidence for our CFG approach that have to do only
with alcoholism, the list of genes identified has a notable overlap at a pathway
analysis level ( Tables 2B-2 and S2B-2.) and at a gene level (Figures 2-4 and 2-
5) with other psychiatric disorders. This is a topic of major interest and debate in
the field. We demonstrate an overlap between top candidate genes for alcoholism
and top candidate genes for schizophrenia, anxiety and bipolar disorder, previously
identified by us through CFG (Figure 2-4), thus providing a possible molecular basis
for the frequently observed clinical co-morbidity and interdependence between
alcoholism and those other major psychiatric disorders, as well as cross-utility of
pharmacological agents. Moreover, we tested in alcoholics genetic risk predictive
panels for bipolar disorder 2° and for schizophrenia 3! generated in previous studies
by us, and show that they are significantly different in alcoholics vs. controls
(Figure 2-6), beyond the overlap in genes with alcohol. There seems to be an
increased genetic load for bipolar disorder, consistent with increased drive, and a
decreased genetic load for schizophrenia, consistent with increased connectivity
prior to alcohol use. These results led us to develop a heuristic, testable model of

alcoholism (Figure 2-5). Some people may drink to be calm- mitigating the effects
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of stress and anxiety, some people may drink to be happy- the common drive with

bipolar disorder,
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Comparison p-value
Alcohol Dependence All (2768) vs. Control (1261) 0.00012486
Alcohol Dependence Females {1081) vs. Control Females (786) 0.00196973
Alcohol Abuse All (600) vs. Control (1261) 0.00939608
Alcohol Abuse Females ( 234) vs. Control Females (786) 0.02399935
Alcohol Dependence Males ( 1687) vs. Control Males (475) 0.03215217
Alcohol Abuse Males (366) vs. Control Males (475) 0.13134934

Figure 2-3. Genetic Risk Prediction using a panel of top candidate

genes for alcoholism (GRPS-11). Testing in independent cohorts 3 and 4.

and some people may drink to be drunk- to disconnect from reality and/or get
unstuck from internal obsessions and ruminations.

Genetic risk prediction

Of note, our SNP panels and choic