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Abstract

Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent 

membrane proteins involved in translocations of a wide variety of substrates across cellular 

membranes. To understand the chemomechanical coupling mechanism as well as functional 

asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is 

needed. Complementary to experimental approaches, computer simulations based on combined 

quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights 

into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free 

energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical 

sampling on QM/MM potential. A case study shows that brute force sampling of ab initio 

QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme 

simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) 

methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. 

To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) 

has been developed. In RP–FM, specific reaction parameters for a selected SE method are 

optimized against AI reference data along reaction paths by employing the force matching 

technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas 

phase and in solution. The RP–FM method may offer a general tool for simulating complex 

enzyme systems such as ABC transporters.

1. INTRODUCTION

Found in organisms of all three kingdoms of life, adenosine triphosphate (ATP)-binding 

cassette (ABC) transporters represent a family of molecular motor proteins that enable 

translocations of various substrates, including small organic/inorganic molecules, ions, 

lipids, peptides, and toxins, across the cell membranes, at the expense of ATP hydrolysis 

(Davidson, Dassa, Orelle, & Chen, 2008; Hollenstein, Dawson, & Locher, 2007; Schneider 

& Hunke, 1998). ABC transporters are biomedically important because mutations in these 

systems can cause an array of human diseases and clinical problems (Borst & Oude Elferink, 

2002). All ABC transporters share a common architecture of two basic building blocks: a 

dimeric transmembrane domain (TMD) composed of transmembrane helices and a pair of 
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intracellular nucleotide-binding domains (NBDs), which is a highly conserved motor 

ATPase that energizes the transport (Oswald, Holland, & Schmitt, 2006). Forming a channel 

for substrate passage, the TMD exists at least two distinct states, termed the inward- and 

outward-facing conformations (Rees, Johnson, & Lewinson, 2009). Despite the general 

knowledge that the TMD cycles between the inward- and outward-facing conformations as a 

result of ATP binding and hydrolysis in the NBDs (Newstead et al., 2009), the precise 

mechanism of ATP hydrolysis in ABC transporters as well as the extent to which enzyme 

catalysis is coupled to conformational dynamics during substrate translocation have largely 

remained unknown (Davidson et al., 2008).

One intriguing question staying controversial is how many ATP molecules are hydrolyzed 

per translocation cycle. Although the dimeric arrangement of NBDs appears to imply that 

two ATP molecules are consumed, a great body of experimental evidence suggests that the 

two NBDs have intrinsic functional asymmetry and may be catalytically nonequivalent. If 

both sites are able to hydrolyze ATP, are their actions of catalysis concerted or sequential? 

Answers to these questions can provide important insights into understanding the sequence 

of events that controls conformational coupling between TMD and NBD. A quantitative 

model to describe the hydrolysis process also offers an important step toward understanding 

how enzyme catalysis in ABC transporters is coupled to protein dynamics especially when 

NBDs undergo large conformational changes.

Given the mechanistic complexity of ABC transporters, which are large-sized enzymes that 

involve multiple active sites, multiscale computer simulations based on the combined 

quantum mechanical and molecular mechanical (QM/MM) approach are especially useful to 

complement experiments by providing a unique molecular-level understanding of enzyme 

mechanism that synthesizes structural, dynamic, and energetic information. In this chapter, 

we discuss progress and challenges in QM/MM simulations of ABC transporters, which 

have also led to our recent development of a new multiscale approach aimed at overcoming 

the limitations found in the existing methods.

To highlight the problem-driven nature of this development, we organize our discussion by 

first describing the biological questions we seek to answer (Section 2), followed by a brief 

summary of our QM/MM simulations of ATP hydrolysis in a representative ABC transporter 

(Section 3). In Section 4, we discuss challenges in those simulations and limitations in the 

existing computational methods. The newly developed Reaction Path–Force Matching (RP–

FM) method is presented in Section 5. Concluding remarks are provided in Section 6.

2. BIOLOGICAL QUESTIONS

2.1 Overview

Based on the direction of translocation, the ABC-transporter family can be divided into two 

functional categories: importers and exporters (Davidson et al., 2008). To illustrate a typical 

transport cycle, below we use the maltose transporter (an importer) as an example.

The maltose transporter is responsible for uptake of maltose in bacteria. Its TMD (MalFG) 

and NBDs (MalK2) are organized as separate polypeptide chains and assembled into a 

Zhou et al. Page 2

Methods Enzymol. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



membrane-bound complex. The maltose transport cycle is regulated under a peripheral 

maltose-binding protein (MBP) (Davidson & Chen, 2004). Crystal structures of isolated 

NBDs showed that MalK2 can adopt at least three distinct NBD conformations, referred to 

as the open, semiopen, and closed states (Chen, Lu, Lin, Davidson, & Quiocho, 2003). 

These NBD conformations were also observed in crystal structures of intact maltose 

transporter captured at various stages of its working cycle (Fig. 1), including an inward-

facing “resting state” (Khare, Oldham, Orelle, Davidson, & Chen, 2009), an outward-facing 

“catalytic intermediate” (Oldham, Khare, Quiocho, Davidson, & Chen, 2007), and a 

pretranslocation state (denoted “pre-T”) (Oldham & Chen, 2011). In the resting state 

structure, NBD is found in the open conformation and interacts with MalFG that faces the 

cytosolic side of the membrane. The inward- to outward-facing conformational change of 

TMD during the “pre-T” to “catalytic intermediate” transition is primarily driven by MalK2 

dimer closure upon ATP binding. After hydrolysis and product release, the system returns to 

the resting state, and the motor cycle is reset.

Key questions to be answered for ABC transporters include how TMD and NBD are 

mechanically coupled and to what extent enzyme catalysis is coupled to conformation 

transitions of NBD. For a thorough understanding of the chemomechanical coupling 

mechanism in ABC transporters, catalysis needs to be examined as a function of 

conformational change. As the first step, we focus on the ATP hydrolysis mechanism in a 

single-state conformation, ie, the closed conformer of NBD, which is believed to be 

catalytically more active than the open and semiopen conformers. Specifically, we seek to 

answer the following questions.

2.2 How Many ATPs Are Hydrolyzed?

One fundamental question regarding the mechanisms of action in ABC transporters is how 

many ATP molecules are hydrolyzed per translocation cycle. At first glance, the fact that 

most functional NBDs in bacterial ABC transporters are homodimers seems to suggest that 

two copies of ATP need to be hydrolyzed to provide the chemical free energy for substrate 

translocation. Contrary to this intuition, direct measurements of ATP/substrate ratio in ABC 

transporters, however, have given greatly diverging results ranging from 1 to 25 (Davidson et 

al., 2008), indicating that a definitive answer to this question is perhaps difficult to obtain 

experimentally.

A great body of evidence has implied that the two NBDs in ABC transporters are 

functionally nonequivalent for ATP hydrolysis. In many eukaryotic exporters, such as the 

transporter associated with antigen processing (Procko, Ferrin-O’Connell, Ng, & Gaudet, 

2006), the multidrug resistance protein P-glycoprotein (Urbatsch, Sankaran, Weber, & 

Senior, 1995), and the cystic fibrosis transmembrane conductance regulator (Atwell et al., 

2010), NBDs are heterodimeric in that only one of the two NBD active sites contains all 

essential residues required for catalysis, suggesting that only one ATP is hydrolyzed. 

Interestingly, evidence for functional asymmetry has also been reported for ABC 

transporters that contain homodimeric NBDs. For example, vanadate-trapping experiments 

showed that the hydrolysis product is found in only one subunit of the NBD homodimer in 

maltose transporter (Sharma & Davidson, 2000). Intriguingly, mutation to a single NBD 
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active site has been shown to abolish ATPase and transport activities in histidine permease 

(Nikaido & Ames, 1999; Shyamala, Baichwal, Beall, & Ames, 1991), maltose transporter 

(Davidson & Sharma, 1997), and vitamin B12 transporter (Tal, Ovcharenko, & Lewinson, 

2013). Recent crystal structures of NBDs of HlyB, a bacterial exporter, suggested that the 

two NBDs, although identical in sequence, may release their hydrolysis products differently 

(Zaitseva et al., 2006). For the exporter MJ0796, it was found that disabling ATP hydrolysis 

in a single active site leaves dimer dissociation essentially unchanged (Zoghbi & Altenberg, 

2013). Finally, computer simulations of dimeric NBDs of maltose transporter suggested that 

hydrolysis in a single site can trigger dimer interface opening (Wen & Tajkhorshid, 2008).

Quantitative characterization of such functional asymmetry, especially in terms of catalytic 

activity in the dimeric NBD sites, may also help resolve mechanistic controversy existing for 

ABC transporters. Catalytically asymmetric dimer would enhance the chance that only one 

ATP is hydrolyzed at a time, an essential element in the alternating catalysis mechanism 

(Senior, Al-Shawi, & Urbatsch, 1995). Without significant catalytic nonequivalence, the 

transporter would more likely operate under the processive clamp model (Janas et al., 2003), 

which requires both ATP molecules to be hydrolyzed before NBD dimer dissociation.

2.3 What Is the Precise ATP Hydrolysis Mechanism?

The first step to determine whether the two NBD sites are equivalent in catalysis is to obtain 

a quantitative description of their ATP hydrolysis mechanism. The observation that NBDs 

across the ABC-transporter family share a highly conserved active site architecture suggests 

that they hydrolyze ATP by a common mechanism. Below we use the bacterial exporter 

HlyB as an example to describe the enzyme mechanistic questions we seek to answer by 

computation.

Haemolysin B (HlyB) is the inner membrane component of the type I protein secretion 

apparatus that transports the 107 kDa pore-forming toxin haemolysin A out of Gram-

negative bacterial cells (Holland, Schmitt, & Young, 2005). It is well established that HlyB 

functions as an ABC transporter, consisting of two cytosolic NBDs and two TMDs. As the 

molecular motor component of the transporter, HlyB-NBD works as an ATPase that 

catalyzes ATP hydrolysis at a rate constant of kcat =0.2 s−1 (Zaitseva, Jenewein, Jumpertz, 

Holland, & Schmitt, 2005), corresponding to a rate acceleration of more than six orders of 

magnitude compared to the solution phase reaction (k=8×10−8 s−1) (Khan & Mohan, 1973).

Despite a wealth of information accumulated from sequence analyses (Geourjon et al., 2001) 

as well as from biochemical and structural characterizations (Zaitseva, Holland, & Schmitt, 

2004; Zaitseva, Jenewein, Jumpertz, et al., 2005; Zaitseva, Jenewein, Wiedenmann, et al., 

2005; Zaitseva et al., 2006), the precise mechanism of ATP hydrolysis in HlyB remains 

unavailable. Like many members of ABC transporters, HlyB has a pair of NBD active sites 

that contain a collection of highly conserved sequence motifs (Fig. 2A), including the 

Walker A motif (or P-loop: GXXXXGKST, for phosphate tail binding) and the Walker B 

motif (ϕϕϕϕD, for Mg2+ binding), the signature-loop (or C-loop: LSGGQ, from the opposite 

subunit), a conserved Glu (E631, immediately following the Walker B motif ), and the H-

loop that contains a His (H662) (Zaitseva, Jenewein, Jumpertz, et al., 2005). The functional 

HylB-NBD dimer adopts a “head-to-tail” arrangement such that each of the two ATP 
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molecules bound at the dimer interface is sandwiched between the P-loop of one subunit and 

the C-loop of the other subunit.

2.4 Is H-Loop His a “Chemical Linchpin”?

Unlike the relatively well-defined role of the Walker motifs, the role of the H-loop His 

(H662 in HlyB) in catalysis has remained elusive. The H-loop His is located in the switch II 

region of HlyB-NBD (Schmitt, Benabdelhak, Blight, Holland, & Stubbs, 2003). Sequence 

and structural comparisons of ABC transporters and helicases have suggested that the H-

loop His may act as a sensor for the γ-phosphate in ATP (Geourjon et al., 2001), therefore 

reminiscent of the conserved Gln in RecA (Story & Steitz, 1992). Mutagenesis studies 

showed that the mutation of this H-loop His to Ala (H662A) reduces the ATPase activity of 

the NBD in HlyB to background levels (<0.1% residual ATPase activity) (Zaitseva et al., 

2004; Zaitseva, Jenewein, Jumpertz, et al., 2005). The hydrogen bonding interactions 

between the H-loop and the P-loop within the same NBD as well as the D-loop (SALD) in 

the opposite NBD suggest roles of H662 in ATP binding and in conformational signaling 

across the NBD dimer interface (Zaitseva, Jenewein, Jumpertz, et al., 2005). Based on a 

crystal structure of ATP/Mg2+ bound dimeric NBDs of HlyB that contains Ala mutation at 

the position of H662, Schmitt and coworkers proposed that H662 and E631 form a catalytic 

dyad, in which the H662 acts as a “linchpin” (Fig. 2A) that holds other active site residues at 

their catalytically competent configurations (Zaitseva, Jenewein, Jumpertz, et al., 2005).

One key question we asked is whether the H-loop His can explicitly participate in the 

enzyme mechanism, by acting as a “chemical linchpin” (Zhou, Ojeda-May, & Pu, 2013). 

Specifically, two different hydrolysis mechanisms may exist (Fig. 2B). In the first 

mechanism, which is referred to as the general acid catalysis (GAC) mechanism, the H662 

initially serves as a general acid by donating its proton at the Nε position to the γ-phosphate 

of ATP and subsequently accepts a proton from the lytic water. The second mechanism 

utilizes substrate-assisted catalysis (SAC) (Zaitseva, Jenewein, Jumpertz, et al., 2005). The 

two mechanisms differ in the role of the H-loop H662 residue: in the GAC mechanism H662 

explicitly participates in catalysis through proton relay, whereas in the SAC mechanism a 

direct proton transfer takes place in the presence of a spectator H662.

To provide quantitative answers to the questions concerning ATP hydrolysis in ABC 

transporters, free energy requirements need to be examined for various catalytic mechanisms 

in different active sites. To date, the majority of work done in simulating ABC transporters is 

based on classical mechanical force fields (Jones, O’Mara, & George, 2009; Li, Wen, 

Moradi, & Tajkhorshid, 2015; Moradi & Tajkhorshid, 2013; Oloo, Kandt, O’Mara, & 

Tieleman, 2006; Weng, Fan, & Wang, 2010). Classical mechanical simulations, however, are 

not suitable for studying enzyme mechanisms in ABC transporters due to involvement of 

bond rearrangements during catalysis. Combined QM/MM (Gao & Thompson, 1998; 

Warshel & Levitt, 1976) methods provide an especially appealing approach in closing this 

gap. In QM/MM treatment of enzymes, a small-sized reactive subsystem containing active 

site molecules is described by QM, and the rest of the system, including nonreactive protein 

fragments and bulk solvent, is modeled by efficient MM force fields. Despite the popularity 
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of the method, QM/MM had not been applied to simulating any ABC-transporter system 

only until recently by our group.

3. QM/MM SIMULATIONS OF THE ABC-TRANSPORTER HlyB

3.1 QM/MM Potential Energy Study of ATP Hydrolysis in HlyB

In our recent study (Zhou et al., 2013), we have examined both the GAC and SAC 

mechanisms (see Fig. 2B for definition) for ATP hydrolysis in HlyB-NBD by QM/MM 

potential energy calculations. The computer model was constructed based on two crystal 

structures of E. coli HlyB (PDB: 1XEF and 2FGK). The HlyB-NBD dimer was solvated in a 

water sphere with a radius of 30.4 Å (Fig. 3A). The selected active site is partitioned into 

two regions (see Fig. 3B). The QM region, described by the semiempirical AM1 (Dewar, 

Zoebisch, Healy, & Stewart, 1985) Hamiltonian, consists of the three phosphate groups of 

ATP, side chains of S504, K508, and H662, the side chain of S607 in the opposite monomer, 

the lytic water, and five boundary carbon atoms that are treated by the generalized hybrid 

orbital (GHO) method (Gao, Amara, Alhambra, & Field, 1998; Pu, Gao, & Truhlar, 2004) 

(Fig. 3B). The MM region, described by the CHARMM22 (MacKerell et al., 1998) force 

field with CMAP corrections (MacKerell, Feig, & Brooks, 2004), contains the rest of the 

system. The CHARMM program (Brooks et al., 2009) was employed for both the system 

setup and QM/MM energy calculations.

3.2 GAC Mechanism Identified as the Operative Mechanism

In the same study (Zhou et al., 2013), we obtained two-dimensional (2D) QM/MM potential 

energy surfaces (PESs) for both the GAC and SAC mechanisms (Fig. 4). For the GAC 

mechanism (Fig. 4A), RC1 represents a proton relay reaction coordinate (RC) involving the 

H-loop residue H662. For the SAC mechanism (Fig. 4B), RC1 describes a direct proton 

transfer (RC1=OW–HW – HW–O2γ). The phosphoryl transfer reaction coordinate RC2 in 

both mechanisms is the difference between the O3β–Pγ and Pγ–Ow bond distances. Based 

on the reaction pathways identified on these 2D QM/MM PESs, we found that the highest 

barrier in the GAC mechanism is only 22.1 kcal/mol (GAC:TS3). By contrast, the SAC 

mechanism gives a substantially higher barrier of 32.1 kcal/mol (SAC:TS2). These results 

suggest that the GAC mechanism, which involves H-loop assisted proton relay, is 

energetically more favorable than the direct proton transfer pathway in the SAC mechanism.

3.3 QM/MM Minimum Free Energy Path Study of HlyB Using the String Method

To incorporate entropic effects, we have recently obtained QM/MM free energy profiles for 

both the GAC and SAC mechanisms (Zhou, Ojeda-May, Nagaraju, & Pu, 2016). By 

employing the finite temperature string method (Maragliano, Fischer, Vanden-Eijnden, & 

Ciccotti, 2006), we represented minimum free energy paths (MFEPs) by discrete images that 

connect the reactant and product states based on a set of collective variables (CVs) (Zhou et 

al., 2016). After mean forces of the free energy with respect to the CVs were determined 

from restrained QM/MM molecular dynamics (MD) simulations, steepest descent dynamics 

was carried out to minimize the free energy path. To prevent images along the path from 

falling into the nearest minima, the reparametrization step was performed to evenly 

distribute the images along the path (Maragliano et al., 2006). The minimization/
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reparametrization cycles were repeated until the string paths converge. This QM/MM MFEP 

study confirmed our earlier conclusion based on QM/MM PESs. We found that the overall 

free energy of activation for the SAC mechanism is about 10 kcal/mol higher than that for 

the GAC mechanism (Zhou et al., 2016), supporting our “chemical linchpin” proposal (Zhou 

et al., 2013).

4. COMPUTATIONAL CHALLENGES

While our exploratory QM/MM simulations provided valuable new insights into the enzyme 

mechanism in ABC transporters, the computational accuracy needed for characterizing 

functional asymmetry in dimeric NBDs remains to be achieved. As we explain below, 

quantitatively reliable QM/MM free energy simulations of enzymatic ATP hydrolysis have 

posed a grand challenge to existing methods in computational enzymology. Consequently, 

development of new cost-effective QM/MM approach is highly desirable.

4.1 Quantum Mechanics and Statistical Sampling: Can One Avoid the Other?

Hydrolysis of ATP (or guanosine triphosphate, GTP) is an important subject that has been 

investigated extensively by computation in the past for many non-ABC transporter systems 

[see a recent review by Warshel and coworkers (Kamerlin, Sharma, Prasad, & Warshel, 

2013) and references therein]. Reliable free energy simulations of enzymatic ATP 

hydrolysis, however, require sufficient statistical sampling on an accurate QM PES. Such a 

requirement makes combined QM/MM (Gao & Thompson, 1998; Warshel & Levitt, 1976) 

an attractive approach, with which the enzyme active site can be treated by QM, and the rest 

of the protein plus bulk solvents by efficient MM.

In terms of sampling the configuration space, although PES scans can be used to quickly 

explore the major features of the reaction mechanism, such potential energy information is 

often considered unreliable due to the lack of entropic contributions and has been associated 

with various pitfalls in enzyme simulations (Klahn, Braun-Sand, Rosta, & Warshel, 2005). 

Reliable results can be obtained by sampling the system, often along a few selected RCs, 

using MD simulations, based on which proper ensemble averages can be made. For reaction 

mechanism studies, this can be done by using umbrella sampling (Torrier & Valleau, 1974) 

or MFEP techniques, such as the finite temperature string method (E, Ren, & Vanden-

Eijnden, 2005; Maragliano et al., 2006).

For the choice of the QM method in QM/MM, although ab initio molecular orbital (Hehre, 

Radom, Schleyer, & Pople, 1986) methods and density function theory (DFT) (Parr & Yang, 

1994), here collectively referred to as ab initio QM (AI) methods, are considered more 

accurate and reliable, the computational costs associated with AI/MM calculations preclude 

these simulations to be performed with sufficient statistical sampling. Even aided with 

extended Lagrangian (EL) techniques, such as Car-Parrinello (Car & Parrinello, 1985) and 

density matrix propagation (Schlegel et al., 2002) MD, which eliminate self-consistent 

iterations of solving the Schrödinger equation, directly sampling AI/MM PESs for extended 

period of time (eg, ns and beyond), as conventionally done in pure molecular mechanical 

simulations, remains practically infeasible.
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By contrast, semiempirical QM (SE) methods (Thiel, 2014) are several orders of magnitude 

more efficient than AI methods. Their efficiency stems from the use of simplified electronic 

integrals under the neglect of diatomic differential overlap approximation (Pople, Santry, & 

Segal, 1965) as well as the use of minimal basis sets. In spite of being considered less 

reliable, SE methods have been widely used in combined QM/MM simulations, with which 

moderate sampling of the reactive systems becomes feasible. For example, one- or two-

dimensional potential of mean force (PMF) free energy profiles can be routinely obtained 

through umbrella sampling simulations at SE/MM levels (Garcia-Viloca, Truhlar, & Gao, 

2003; Poulsen, Garcia-Viloca, Gao, & Truhlar, 2003).

When both accuracy and efficiency are demanded, one is facing with a dilemma of choosing 

between them. Ideally, one would like to conduct umbrella sampling or MFEP simulations 

on an AI/MM surface for its reliability. However, such a combination is often 

computationally prohibitive. To illustrate the magnitude of this challenge, we tabulate in 

Table 1 the computational costs for QM/MM simulations of ATP hydrolysis in HlyB by 

using various methods. For simulating HlyB-mediated ATP hydrolysis, both proton transfer 

and phosphoryl transfer RCs are needed; explicit inclusion of more than two RCs becomes 

impractical in umbrella sampling simulations, but can be done by using the string method, 

which optimizes MFEPs on the basis of multidimensional CVs (Maragliano et al., 2006; 

Rosta, Nowotny, Yang, & Hummer, 2011).

From Table 1, we can see that attempts of using AI/MM methods to simulate ATP hydrolysis 

in a typical ABC-transporter system are infeasible with commonly available computing 

resources. Although employing the EL techniques (Car & Parrinello, 1985; Schlegel et al., 

2002) can alleviate the problem, these techniques unlikely resolve the computational 

dilemma outlined earlier; the speedup of using ELMD would become less significant when 

smaller integration steps are used to maintain adiabatic separation between the electronic 

and nuclear degrees of freedom. To break even, parallel AI/MM MD simulations need to be 

accelerated by about three orders of magnitude.

Ideally, however, one would like to perform sampling at the cost of SE/MM methods (which 

take ~10 days to complete the free energy profile for the HlyB system; see Table 1) to 

achieve the accuracy of AI/MM. In practice, this goal can be realized, at least in part, by 

improving SE with specific reaction parameters (SRPs) (Gonzalez-Lafont, Truong, & 

Truhlar, 1991). Optimization of SRPs for an SE method typically involves one or more of 

the following steps: (a) construct a training set of gas-phase molecular models that mimic 

the actual reactive systems; (b) obtain benchmark data, such as reaction energies, barrier 

heights, proton affinities, vibrational frequencies, atomic charges, dipole moments, 

geometries, etc., from AI calculations (or from experiments if AI is inaccurate), based on the 

geometries of stationary species, such as separate reactants/products, reactant/product 

complexes, and transition states, optimized at the corresponding AI level; (c) adjust selected 

parameters in the SE method such that the resulting SE-SRP method satisfactorily 

reproduces the AI results; and finally (d) apply the SE-SRP method to gas-phase or 

condensed-phase dynamics simulations.
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The case study presented here led us to conclude that the practical solution to meet the 

competing demands for accuracy and efficiency in enzyme simulations of ABC transporters 

is to use SE(-SRP)/MM methods in conjunction with MFEP samplings. However, as we will 

show below, the existing SE(-SRP) methods have their own limitations.

4.2 Existing SE(-SRP) Methods Are Not Reliable for Simulating ATP Hydrolysis

The standard parametrizations of popular SE methods, such as AM1, are generally 

considered unreliable for studying phosphoryl transfer reactions, owing to the empirical 

nature of its Gaussian treatment of core–core repulsion and the lack of d-orbital description 

(Lopez & York, 2003). Artificial stabilization of pentacovalent phosphorane intermediates 

has been reported when AM1 was used to study model reactions for RNA catalysis (Lopez 

& York, 2003; Nam, Cui, Gao, & York, 2007). There are several SE-SRP methods aimed at 

improved performance for biological phosphoryl transfers, by including d-orbitals and/or 

specific parametrizations. Examples of such SE-SRP methods include MNDO+G-SRP 

(Arantes & Loos, 2006) and AM1/d-PhoT (Nam et al., 2007). Most of these methods were 

optimized with a training set of data primarily composed of monophosphate esters, which 

are considerably different from biological phosphate anhydrides, such as ATP. Data in Table 

2 provide a glimpse of the challenge of using these existing SE(-SRP) methods to study ATP 

hydrolysis, based on the reaction energy of hydrolyzing methyl triphosphate (MTP), which 

serves as a reasonable model for ATP hydrolysis:

Table 2 shows that when SE or SE-SRP methods optimized for other chemical situations are 

used to study ATP hydrolysis, extra care needs to be taken. Both AM1/d-PhoT and MNDO

+G-SRP display large errors (15–25 kcal/mol) in reaction energies compared to the DFT 

benchmark results. Although AM1 seems to agree with the DFT method for the reaction 

energy of MTP hydrolysis, the agreement relies more on fortuitous error cancelation in 

AM1, rather than indicating that AM1 is reliable.

5. A MULTISCALE QM/MM METHOD: RP–FM

The analyses in Section 4 suggest that although SE/MM should be chosen over AI/MM for 

sampling efficiency, currently available SE methods, including those special-purpose SE-

SRP methods obtained using the traditional gas-phase fitting procedures, are unlikely to 

provide the accuracy and reliability needed for determining the ATPase mechanism in ABC 

transporters. To address this challenge, we recently introduced a new multiscale strategy for 

reparametrizing SE-SRP within the framework of QM/MM free energy simulations. The 

new method enables iterative refinements of a selected SE method by fitting accurate forces 

from AI/MM calculations along reaction paths. Because reaction paths are always sampled 

at efficient SE-SRP/MM levels, direct sampling of the expensive AI/MM surface is avoided.

5.1 Overall Strategy

The stationary-point-based gas-phase SE-SRP fitting procedure outlined in Section 4.1 may 

suffer from several limitations. First, only a very limited amount AI data are used for SRP 

fitting. Second, transferability of SRPs relies on the hope that the gas-phase model systems 

closely resemble the condensed-phase systems. Third, gas-phase properties may be over-
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represented in acquiring SRPs. For MTP hydrolysis, the gas-phase reaction energy is −168.0 

kcal/mol (Table 2), in comparison with a reaction free energy of −8.6 kcal/mol in solution 

[based on PCM solvation (Miertus, Scrocco, & Tomasi, 1981)]. This difference highlights 

the importance of taking solvation free energy changes into account when fitting SRPs for 

this reaction. In addition, conformations of molecules can change significantly from the gas 

phase to condensed phases. For example, the β- and γ-phosphates in GTP tend to adopt a 

staggered configuration in the gas phase and in water but are often found in the eclipsed 

configuration when bound in enzyme active sites especially when Mg2+ is present (Rudack, 

Xia, Schlitter, Kotting, & Gerwert, 2012).

Due to these reasons, more robust SE-SRP fitting is expected when condensed-phase 

samples are taken into account. Given that directly sampling AI/MM PESs in condensed 

phases is such a formidable task, an alternative strategy is to parametrize SE-SRPs based on 

condensed-phase reaction-path configurations sampled at efficient SE/MM levels (Zhou & 

Pu, 2014). In addition, we employed the force matching technique (Arkin-Ojo, Song, & 

Wang, 2008; Csanyi, Albaret, Payne, & De Vita, 2004; Doemer, Maurer, Campomanes, 

Tavernelli, & Rothlisberger, 2014; Ercolessi & Adams, 1994; Izvekov, Parrinello, Burnham, 

& Voth, 2004; Izvekov & Voth, 2005; Knight, Maupin, Izvekov, & Voth, 2010; Laio, 

Bernard, Chiarotti, Scandolo, & Tosatti, 2000; Maurer, Laio, Hugosson, Colombo, & 

Rothlisberger, 2007) pioneered by Voth and coworkers (Izvekov et al., 2004; Izvekov & 

Voth, 2005; Knight et al., 2010) for SRP optimization, so that the resulting SE-SRP method 

reproduces the atomic forces computed at a selected target AI/MM level. Because of the 

combined use of reaction path (RP) and force matching (FM) techniques in our approach, 

we named this method as Reaction Path–Force Matching (RP–FM) (Zhou & Pu, 2014).

The RP–FM method can be viewed as repetition of a two-stage process. In the RP stage, an 

ensemble of configurations along a specific reaction path are collected using SE/MM 

simulations; examples of such reaction paths include minimum energy paths (MEPs) [or 

paths along the intrinsic reaction coordinate (IRC) (Fukui, 1981)] and MFEPs obtained by 

the string method (E et al., 2005; Maragliano et al., 2006). In the subsequent FM stage, the 

SE-SRP method is calibrated against the target AI/MM method through force matching. 

Once the AI/MM forces on the selected atoms are reproduced, the resulting SE-SRP method 

is used to resample the configuration space to obtain a new pool of reaction-path 

configurations for the next iteration of force matching. The cycle of “reaction-path 

configuration sampling” (predictor) and “force matching” (corrector) is repeated iteratively 

until convergence is established.

5.2 Generic Procedure

A generic procedure for implementing RP–FM within the QM/MM framework is illustrated 

in Fig. 5. In this flowchart, the steps associated with the RP and FM stages are grouped in 

the red and blue boxes, respectively. For convenience, we define the union of a RP stage and 

the FM stage that immediately follows as a single RP–FM cycle, based on which iterations 

are carried out. For the initial SE method, referred to as SE-0, we assign a token iteration, ie, 

“iteration 0.” For each time a single RP–FM cycle is completed, the iteration number is 

increased by 1. As a convention, the SE-SRP method obtained at the end of the ith RP–FM 
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iteration is labeled as SE-i, which will be used to update the reaction-path configurations in 

the next iteration. In our notation, we define the reaction path sampled consistently on the 

SE-i/MM PES as the SE-i path. Following the same convention, we label the PMF profile 

determined from the SE-i/MM simulations as PMFi, which can be used to monitor 

convergence.

5.3 Case Study: Proton Transfer

In a proof-of-concept study (Zhou & Pu, 2014), we have demonstrated the feasibility of the 

RP–FM method for a proton transfer reaction between ammonium (NH4 +) and ammonia 

(NH3). The Hartree–Fock (HF) (Roothaan, 1951) and PM3 (Stewart, 1989) methods were 

selected as the target AI and SE levels, respectively. The PM3 method has been shown to 

overestimate the barrier height for this reaction by ~9 kcal/mol compared to HF/3–21G (Mo 

& Gao, 2000).

5.3.1 QM/MM Setup and Computer Programs—For a QM/MM treatment of the 

system, the solute molecules are treated by QM (nine QM atoms) at either the PM3 or HF/3–

21G level and a box (40 Å in size) of solvent molecules are represented by the modified 

TIP3P model (Brooks et al., 1983). The MNDO97 (Thiel, 1998) package incorporated in the 

CHARMM (Brooks et al., 2009) program was used for PM3 (-SRP)/MM calculations. The 

Q-Chem (Shao et al., 2006) program combined with CHARMM was used for AI/MM single 

point force calculations. For force matching, a local code of microgenetic algorithm (μGA) 

(Carroll, 1998) was employed to minimize the mean force deviation between the SE-

SRP/MM and target AI/MM levels; a total of 21 SE parameters in PM3 were adjusted for N 

and H (Zhou & Pu, 2014).

5.3.2 RP-FM Based On Gas-Phase Reaction Path—For testing purpose, the RP–FM 

method was first employed to parametrize PM3 along a gas-phase reaction path (Zhou & Pu, 

2014). In this case, we chose to fit AI (HF/3–21G) forces along MEP; this represents the 

“zero-temperature” version of the algorithm. The MEP was determined approximately based 

on a RC defined as RC=r(N+–H)−r(N–H). Restrained geometry optimizations were carried 

out to scan the PES along RC in the range of 0.0–0.8 Å, resulting in an MEP of nine 

configurations. Fig. 6A shows the potential energies along MEPs optimized during five RP–

FM iterations. The HF single point energy (SPE) profile calculated based on the PM3-n path 

(ie, HF/3–21G // PM3-n) are also shown for comparison; these “double-slash” profiles are 

labeled “HF-n.”

It can be seen from Fig. 6A that the reaction barrier height given by the original PM3 

(PM3-0) is 9.5 kcal/mol, which is substantially higher than the barrier of 0.2 kcal/mol given 

by the corresponding HF/3–21 energy profile (HF-0). After the first RP–FM iteration, the 

new PM3 energy profile (PM3-1) is in a closer agreement with the associated HF SPE 

profile (HF-1). Such agreements are steadily improved over RP–FM iterations. After five 

iterations, the optimized PM3-SRP energy files (PM3-5) and the energy profile at the target 

level (HF-5) are almost identical. The RP–FM procedure also successfully shifts the product 

complex minimum from RC=0.7 Å, located on the original PM3 path, to RC=0.3 Å as 
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determined on the HF/3–21 path. As a result, both height and shape of the HF/3–21G barrier 

are reproduced at the optimized PM3-SRP level.

The force deviations between the SE-SRP and AI levels are displayed in Fig. 6B. The 

original PM3 yields an average force deviation of 12 kcal/mol/Å per Cartesian coordinate; 

the deviation is successfully reduced to ~2 kcal/mol/Å after the first round of force matching 

and stabilizes at <1 kcal/mol/Å during the rest of RP–FM iterations.

Decompositions of the force deviations to individual configurations are shown in Fig. 6C. 

Our first observation is that the deviations between the PM3 and HF/3–21G forces vary 

along the MEP. For the PM3-0 method, the transition state (TS) configuration (RC=0.0 Å) 

gives a force deviation of 11.3 kcal/mol/Å per Cartesian coordinate, which is slightly higher 

than that of 10.3 kcal/mol/Å at the reactant configuration (RC=−0.7 Å); a maximal force 

deviation of 14.0 kcal/mol/Å is found at a nonstationary structure (RC=−0.3 Å). After RP–

FM optimization, excellent agreements were obtained between the PM3-SRP and HF/3–21G 

forces on all configurations; force deviations were reduced to <1.5 kcal/mol/Å throughout 

the MEP.

5.3.3 RP–FM for Solution-Phase Proton Transfer—We have also applied the RP–FM 

method for the same proton transfer in solution (Zhou & Pu, 2014). Umbrella sampling 

(Torrier & Valleau, 1974) simulations were used to sample along the reaction path on the 

PM3-SRP/MM PES; seven umbrella windows were placed between the reactant and the 

transition state. PMF profiles were determined by the weighted histogram analysis method 

(Kumar, Bouzida, Swendsen, Kollman, & Rosenberg, 1992). For each window, 10 

configurations were randomly selected over 200 ps of PM3-SRP/MM MD simulations, 

resulting in 70 configurations that correspond to 1,890 Cartesian force components for force 

matching. The PMFs obtained from solution-phase RP–FM, referred to as PM3-iS, are 

shown in Fig. 7, where the PMF determined separately at the HF/3–21G level (with shorter 

sampling of 10 ps/window) is also shown for comparison. One can see from Fig. 7 that 

although initially the original PM3 PMF differs substantially from the HF/3–21G PMF, the 

RP–FM optimization dramatically improves the agreement between the two levels. At the 

end of the fifth RP–FM iteration, PMFs obtained for PM3-5S and HF become essentially 

identical.

5.4 Relation to Other Methods

Before we conclude, we discuss the differences between RP–FM and other related methods. 

The FM technique has been employed in the QM/MM context by others (Arkin-Ojo et al., 

2008; Csanyi et al., 2004; Maurer et al., 2007). These investigations, however, focused on 

using QM/MM as a target level to fit MM force fields or empirical potentials. By contrast, 

RP–FM is designed to simulate chemical and enzymatic reactions involving bond 

rearrangements, for which classical potentials cannot be used. The RP–FM method, in spirit 

similar to the pioneering work of Voth and coworkers (Knight et al., 2010), matches forces 

between a tailored reactive potential and a reference QM potential. In the force-matched 

multistate empirical valence bond (FM-MS-EVB) method developed by Voth and 

coworkers, the reactivity of the tailored potential is introduced through a reactive force field 
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(Knight et al., 2010). In our RP–FM approach, the SE potential being tailored is instead an 

electronic structure-based QM potential. A “reactive” scheme is employed in RP–FM so that 

forces at the two QM levels are matched along reaction paths. The combined use of 

QM/MM methods in both the tailored and reference potentials and force fitting along 

reaction paths makes RP–FM a distinctive approach that enables multiscale “reactive” force 

matching.

The RP–FM method also differs from the “learn-on-the-fly” (LOTF) approach (Csanyi et al., 

2004) in that the tailored potentials in the LOTF approach are empirical functions made 

“reactive” by employing time-dependent parameters, whereas in RP–FM we parametrize a 

true QM potential using semiglobal force fitting along reaction path. The LOTF method has 

been demonstrated for simulating diffusion of point defects on solid surfaces, whereas RP–

FM has a focus on simulating solution-phase and enzymatic reactions.

The iterative nature of fitting the force and resampling the PES in our work resembles the 

spirit of the optimal potential (OP) method (Laio et al., 2000) in solid-phase simulations and 

that of the adaptive force matching method developed by Wang and coworkers (Arkin-Ojo et 

al., 2008). A similar adaptive potential refining procedure has also been employed in the 

“paradynamics” method pioneered by Warshel and coworkers (Plotnikov, Kamerlin, & 

Warshel, 2011; Plotnikov & Warshel, 2012), in which EVB potentials in conjunction with 

Gaussian-type corrections are parametrized against QM/MM data in the free energy 

perturbation framework.

6. CONCLUDING REMARKS

In this chapter, we have discussed recent progress in QM/MM simulations of ATPase 

mechanism in ABC transporters and how the challenges in these simulations fertilize the 

development of the multiscale RP–FM method. As a paradigm molecular motor system, 

ABC transporter may have evolved to couple ATP hydrolysis with conformational dynamics 

through functional asymmetry encoded in its dimeric active sites. Although our exploratory 

QM/MM simulations have provided exciting new insights into the related enzyme 

mechanism, conducting such simulations in a quantitatively reliable manner to achieve the 

ab initio QM/MM accuracy has remained a challenging task. The RP–FM method has been 

developed to offer a multiscale solution to the challenge. We have successfully demonstrated 

the effectiveness of this approach in modeling a proton transfer reaction in the gas phase and 

in solution. To achieve the ultimate goal of determining ATPase mechanism in ABC 

transporters by RP–FM, the next step is to validate the method on more complex reactions 

such as solution-phase ATP hydrolysis and a number of well-characterized enzymatic 

reactions; these investigations are underway.

As we have discussed in this chapter, the RP–FM strategy aims at resolving the dilemma of 

choosing between accuracy and efficiency in QM/MM simulations, which is a long-standing 

challenge in computational enzymology. Therefore, development of the RP–FM method is 

expected to provide not only a feasible way to characterize ATP hydrolysis in ABC 

transporters but also a general tool for chemical and enzyme simulations in condensed 

phases.
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Fig. 1. 
Crystal structures captured for key intermediate states in the working cycle of maltose 

transporter. The TMD/NBD conformations are given in parentheses (TMD: I or O, for 

inward- or outward-facing conformations; NBD: O, S, or C, for open, semiopen, or closed 

conformations).
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Fig. 2. 
(A) Active site of HlyB-NBD. In the “mechanical linchpin” proposal, H662 holds active site 

residues at their catalytically competent configurations. (B) Proposed enzyme mechanisms 

for ATP hydrolysis in ABC transporters. In the GAC mechanism, H662 serves as a 

“chemical linchpin” that explicitly participates in catalysis by providing proton relay. By 

contrast, in the SAC mechanism, a proton is directly transferred from the catalytic water to 

the γ-phosphate of ATP.
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Fig. 3. 
(A) Simulation setup for studying ATP hydrolysis mechanism in HlyB. (B) QM/MM 

partition of the active site of HlyB (“B” refers to QM boundary atoms treated by the GHO 

method). Reproduced from Zhou, Y., Ojeda-May, P., & Pu, J. (2013). H-loop histidine 
catalyzes ATP hydrolysis in the E. coli ABC-transporter HlyB. Physical Chemistry 

Chemical Physics, 15, 15811, doi: 10.1039/C3CP50965F with permission from the PCCP 
Owner Societies.

Zhou et al. Page 21

Methods Enzymol. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
2D potential energy surfaces (AM1/CHARMM) of ATP hydrolysis catalyzed by HlyB-

NBD: (A) the GAC and (B) the SAC mechanisms. The highest barrier found in the GAC 

mechanism (22.1 kcal/mol; GAC:TS3) is substantially lower than that in the SAC 

mechanism (32.1 kcal/mol; SAC:TS2). Reproduced from Zhou, Y., Ojeda-May, P., & Pu, J. 
(2013). H-loop histidine catalyzes ATP hydrolysis in the E. coli ABC-transporter HlyB. 
Physical Chemistry Chemical Physics, 15, 15811, doi: 10.1039/C3CP50965F with 
permission from the PCCP Owner Societies.
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Fig. 5. 
Flowchart of a generic procedure for implementing RP–FM. Reprinted with permission from 
Zhou, Y., & Pu, J. (2014). Reaction path-force matching: A new strategy of fitting specific 
reaction parameters for semiempirical methods in combined QM/MM simulations. Journal 

of Chemical Theory and Computation, 10, 3038–3054. Copyright (2014) American 
Chemical Society.
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Fig. 6. 
Gas-phase RP–FM applied to proton transfer between ammonium and ammonia: (A) Energy 

profiles along MEPs of PM3-SRPs optimized using the RP–FM procedure against atomic 

forces obtained at the HF/3–21 level; (B) Average force deviations between PM3-SRPs and 

HF/3–21G over RP–FM iterations; and (C) Force deviations decomposed to individual 

configurations along MEP. Reprinted with permission from Zhou, Y., & Pu, J. (2014). 
Reaction path-force matching: A new strategy of fitting specific reaction parameters for 
semiempirical methods in combined QM/MM simulations. Journal of Chemical Theory and 

Computation, 10, 3038–3054. Copyright (2014) American Chemical Society.
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Fig. 7. 
PMFs of solution-phase proton transfer between ammonium and ammonia obtained from 

PM3-SRPs/MM and benchmark HF/3–21G/MM simulations; PM3-SRP methods were 

optimized by RP–FM in solution to reproduce atomic forces at the HF/3–21 level.
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Table 2

Reaction Energy of MTP Hydrolysis from SE(-SRP) and AI Methodsa

Method ΔE (H2O Attack) ΔE (OH− Attack)

AM1 −168.1 −103.2

MNDO+G-SRP −144.1 −89.7

AM1/d-PhoT −152.4 −90.7

DFTb −168.0 −103.5

DFT+PCM solvation −8.6 −25.1

a
SE method: AM1; SE-SRP methods: MNDO+G-SRP and AM1/d-PhoT; AI method: DFT (see footnote b); reaction energies (ΔE) are in kcal/mol 

and calculated in the gas phase (except data in the last row) without Mg2+.

b
B3LYP/6–31+G(d,p).
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