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Abstract 

Objective: Post-traumatic seizures (PTS) are well-recognized acute and chronic complications of 

traumatic brain injury (TBI). Risk factors have been identified, but considerable variability in who 

develops PTS remains. Existing PTS prognostic models are not widely adopted for clinical use and do 

not reflect current trends in injury, diagnosis, or care. We aimed to develop and internally validate 

preliminary prognostic regression models to predict PTS during acute care hospitalization, and at Year-

1 and Year-2 post-injury.  

Methods: Prognostic models predicting PTS during acute care hospitalization and Year-1 and Year-2 

post-injury were developed using a recent (TBI 2011-2014) cohort from the TBI Model Systems 

National Database. Potential PTS predictors were selected based on previous literature and biological 

plausibility. Bivariable logistic regression identified variables with a p-value<0.20 that were used to fit 

initial prognostic models. Multivariable logistic regression modeling with backward-stepwise elimination 

was used to determine reduced prognostic models and to internally validate using 1000 bootstrap 

samples. Fit statistics were calculated, correcting for over-fitting (optimism).   

Results: Sex, craniotomy, contusion load, and pre-injury limitation in 

learning/remembering/concentrating were significant PTS predictors during acute hospitalization. 

Significant PTS predictors at Year-1 were subdural hematoma (SDH), contusion load, craniotomy, 

craniectomy, seizure during acute hospitalization, post-traumatic amnesia duration, pre-injury mental 

health treatment/psychiatric hospitalization, and pre-injury incarceration. Year-2 significant predictors 

were similar to Year-1: SDH, intraparenchymal fragment, craniotomy, craniectomy, seizure during acute 

hospitalization, and pre-injury incarceration. Corrected concordance (C) statistics were 0.599, 0.747, 

and 0.716 for acute hospitalization, Year-1, and Year-2 models, respectively.  

Significance: The prognostic model for PTS during acute hospitalization did not discriminate well. 

Year-1 and Year-2 models showed fair to good predictive validity for PTS. Cranial surgery, while 

medically necessary, requires ongoing research regarding potential benefits of increased monitoring for 

signs of epileptogenesis, PTS prophylaxis, and/or rehabilitation/social support. Future studies should 

externally validate models and determine clinical utility. 
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Introduction 
 Traumatic brain injury (TBI) is a well-recognized public health problem. Over 2.5 million TBIs 

occur annually in the United States1; approximately 11% require hospitalization, primarily for 

moderate/severe injury. TBI is increasingly recognized as a chronic disease, significantly impacting 

morbidity and mortality2;3. As medicine advances, more individuals are expected to survive 

moderate/severe TBI, increasing the number affected by injury-associated complications.  

 Post-traumatic seizures (PTS) and epilepsy (PTE) are well-recognized TBI complications. PTS 

can develop at any point after TBI and is classified by time of first seizure (immediate: <24hrs, early: 

24hrs to 7d, and late: >7d post-TBI). Immediate and early PTS are considered provoked: directly 

related to the primary injury. Late seizures are attributed to secondary injury cascades and persistent 

epileptogenic mechanisms, and if recurrent and otherwise unprovoked, represent PTE4;5. PTS 

incidence and prevalence vary widely throughout the literature and depend on study design (e.g. length 

of follow-up), population characteristics (e.g. injury severity), and PTS definition. Previous reports after 

primarily closed-head injury indicate a broad range of percent affected (early: 1.4-12%; late: 4.4-

18.9%)6-11. Work using the Traumatic Brain Injury Model System (TBIMS) National Database, including 

individuals with predominantly closed-head moderate/severe TBI, demonstrated prevalence rates of 

8.9% and 1.8% for immediate and early PTS, respectively12. By 1yr post-injury, 20.4% of the cohort 

reported seizures, 12% met criteria for late PTS (i.e. PTE). Late PTS prevalence at 2yrs and 5yrs post-

TBI increased to 16.8% and 20.5%12. Incident seizure risk after severe TBI, beyond 10yrs post-injury, 

remains significantly elevated versus the general population6. These data suggest epileptogenesis can 

follow a prolonged course, and TBI related pathology exerts long-term epileptogenic effects.  

 Prognostic models can estimate an individual’s risk for developing an outcome of interest based 

on specific characteristics13. While many studies examined injury characteristics and associations with 

PTS, few have developed prognostic PTS models. Of these, none have been integrated into routine 

clinical practice. Such models were developed decades ago, using small samples, and examining 

probability based on a single risk factor14;15. A multivariable mathematical model was developed in the 



1970’s and validated using datasets from TBI studies available at the time16. However, these prognostic 

models do not reflect current trends in injury severity, TBI detection and treatment, or seizure 

prophylaxis. Since then, improved neuroimaging allows greater specificity when characterizing 

intracranial pathology. Neurosurgical procedures, including craniectomy, are now more common for 

treating intracranial pathology. Therefore, new prognostic models reflecting current injury, diagnosis, 

and treatment trends are required if models are to be clinically useful. Accurate PTS risk prediction 

could help define high-risk populations in support of clinical intervention trials. Predictive models could 

also inform clinical algorithms to identify individuals likely to benefit from tailored seizure prophylaxis or 

treatment. 

 The TBIMS National Database (TBIMS-ND) is an ongoing, multi-center, longitudinal 

observational study. Currently, there are 16 funded centers collecting demographic, premorbid personal 

and medical history, and injury-specific data upon study enrollment, as well as chronic medical 

conditions, psychosocial, and rehabilitation outcomes. The TBIMS-ND is an excellent source of data for 

prognostic model development involving a variety of TBI-related outcomes for individuals surviving 

acute injury and receiving inpatient rehabilitation. Therefore, the aim of this study was to develop and 

internally validate prognostic models predicting PTS during acute care hospitalization, at Year-1, and 

Year-2 post-injury for a recent cohort in the TBIMS-ND. 

 

Methods 

Study Design and Population 

 Data were obtained from the TBIMS-ND. All participating centers have a Level-I or Level-II 

Trauma Center, acute neurosurgical capabilities, and associated comprehensive inpatient TBI 

rehabilitation. Individuals with moderate/severe TBI [Post-traumatic Amnesia (PTA)>24hrs, or Loss of 

consciousness (LOC)>30min, or emergency department Glasgow Coma Scale (GCS) score<13, or 

positive neuroimaging findings)], admitted to a participating hospital emergency department within 

72hrs of injury, age ≥16yrs, receiving acute care and inpatient rehabilitation within a TBIMS designated 



hospital system were eligible for study inclusion. Patients participating in TBIMS rehabilitation centers 

(defined as having brain tissue injury due to an external blow or force to the head) are referred from 

their affiliated level 1 trauma centers and meet criteria for participation in acute inpatient rehabilitation, 

which is typically defined by assessing patient ability to benefit from, and participate in, a 

multidisciplinary therapy program such that progress during acute inpatient rehabilitation would result in 

a community-based discharge plan. While specific referral patterns may vary somewhat from center to 

center, referral is made on clinical grounds, and the TBIMS-ND is considered to be largely 

representative of individuals with TBI admitted to acute rehabilitation facilities nationally17. All subjects, 

or legal proxy, provided written informed consent to participate in each center’s Institutional Review 

Board approved protocol for TBIMS-ND data collection.  

 Varied definitions for PTS were used at different times within the TBIMS-ND, with the most 

recent variable change occurring in 2012. For consistency with data definitions, and to ensure analyzed 

data reflect current population trends and standards of care, current analyses included participants 

injured between October 1, 2011 and August 31, 2014. Multiple pre-injury predictors of interest were 

not collected until Year-1 follow-up, particularly pre-index injury (aka premorbid) TBI. Therefore, 

individuals injured during this time frame, but not yet eligible for Year-1 follow-up, were excluded from 

analyses 

Data Collection 

 Data were limited to those collected at enrollment, Year-1, or Year-2 post-injury. All data were 

collected using standardized protocols. Enrollment data, collected though chart review and interview, 

included demographic, social, and injury characteristics, International Classification of Disease revision 

9 (ICD-9) codes, pre-injury personal and medical history, and acute hospitalization outcomes. CT scan 

data were classified by trained raters based on a composite of the worst findings on CT scan over the 

first 7 days post-injury. Prospective follow-up data were collected via a semi-structured telephone 

administered battery. Proxy interviews were completed if an individual with TBI could not provide 

reliable responses. A comprehensive syllabus containing data collection definitions and protocols is 



provided at https://www.tbindsc.org/Syllabus.aspx.  All data collectors receive extensive training and 

undergo periodic quality assessments from the TBIMS National Data Center to ensure high fidelity with 

data collection protocols and adherence to data collection definitions.   

Outcome Variable 

PTS status, dichotomized as seizure activity present or absent, was the main outcome, 

determined during the course of acute hospitalization, at Year-1, and Year-2.  

Following discharge from acute hospitalization, TBIMS Center data collectors record up to 20 

ICD-9 codes in the participant’s medical chart related to their TBI admission. To determine PTS status 

during acute hospitalization, all recorded acute care ICD-9 codes were reviewed. ICD-9 codes relating 

to convulsion (780.39), PTS (780.33), and epilepsy (345.0x345.9x) were included as evidence of 

seizure following TBI.  

PTS status at Year-1 and Year-2 were determined prospectively solely via participant (or proxy) 

self-report. Study participants were asked “Have you had a seizure since your TBI?” at follow-up 

interviews. If participants answered yes, they were asked, “Since your discharge from rehabilitation, 

have you had a seizure?” at Year-1 and, “In the past year, have you had a seizure?” at the Year-2 

follow-up interview.  If patients answered yes to the second question, they were counted as having PTS 

at Year-1 and Year-2, respectively. Year-1 and Year-2 PTS status were independent of acute 

hospitalization PTS status, and recurrent seizures at Year-1 and Year-2 are reported. 

Predictors of Interest 

 Predictors of interest included baseline demographics, personal and medical history information, 

and injury characteristics. All predictors were selected a priori based on biological plausibility and 

possible risk factors identified in previous literature6-9;18-20 (Table 1). Demographic variables included 

age, sex, and race. Personal and medical history variables included pre-injury: prior TBI, prior TBI with 

LOC, prior moderate/severe TBI, conditions significantly limiting physical activity, limitation in learning, 

remembering, or concentrating, mental health (MH) treatment, psychiatric hospitalization, suicide 

attempt, drug use, alcohol risk, military service, military combat, and incarceration. Alcohol risk was 

https://www.tbindsc.org/Syllabus.aspx


based on self-report and classified into safe, at risk, or heavy use, adapted from the National Institute 

on Alcohol Abuse and Alcoholism (NIAAA) definitions. Drug use did not delineate specific substances 

used. 

 Injury characteristics included injury severity, duration of post-traumatic amnesia (PTA) in Year-

1 and Year-2 models, confirmed pathology on CT scan, intraparenchymal fragment, penetrating TBI 

(pTBI), craniotomy, craniectomy, and spinal cord injury (Table 1). CT findings were included as 

separate variables for specific pathology type [e.g. subdural hematoma (SDH), epidural hematoma 

(EDH)], coded as present or absent and were not mutually exclusive. pTBI was computed via a coding 

algorithm previously validated in a subsample of the TBIMS21. Also, a contusion load score was 

calculated by summing the number of regions with reported contusion (Table 1). This score was 

collapsed into 0, 1, 2, 3, and 4 or more regions. Acute alcohol use was classified based on ICD-9 codes 

during acute hospitalization (Table 1). At Year-1 and Year-2, seizure during acute hospitalization was 

included as a risk factor. No data were collected on premorbid seizure activity or history of epilepsy.  

Prognostic Modeling 

 Multivariable logistic regression was used to generate prognostic models for PTS during acute 

hospitalization, Year-1, and Year-2; models were internally validated with resampling. For each time-

point (PTS during acute hospitalization, PTS status since discharge from rehabilitation [Year-1], and 

PTS status in the past year [Year-2]), all potential risk factors described above were first examined 

using bivariate logistic regression. All variables with p-value<0.20 were retained for inclusion in 

multivariable model building.  

 A saturated (multivariable) logistic regression model, including all variables identified in the 

above step, was fit for each PTS time-point. After fitting a saturated model, variables were preliminarily 

examined for multicollinearity using Spearman correlation matrices. For each model, retained fragment 

and pTBI were highly collinear (r>0.9); pTBI occurred much less frequently versus retained fragment, 

and therefore, was not included in further prognostic modeling. Premorbid history of MH disorder and 

premorbid psychiatric hospitalization were also highly collinear and were combined to form a four-level 



categorical variable (no MH disorder or hospitalization; MH disorder no hospitalization; hospitalization 

without MH disorder; both MH disorder and hospitalization). The saturated model was refit, and 

variance inflation factors (VIF) and condition indices were calculated.  Correlations between age and 

other predictor variables were explored, however, VIF values did not indicated problematic 

multicollinearity when age was included in each model. 

 Next, backward (step-down) variable selection was performed with an exit criterion of 

alpha=0.05. The reduced model was internally validated via resampling in an automated process using 

the rms: Regression Modeling Strategies package for R22.  Specifically, 1,000 bootstrap samples were 

drawn with replacement from the original data such that each bootstrap sample had an equal number of 

observations as the original dataset. In each bootstrap sample, backward elimination with an exit 

criterion of alpha=0.05, was used to validate the reduced model. The C-statistic, a measure of 

concordance equal to the area under the receiver operating characteristic (ROC) curve, was calculated 

using Somers’ Dxy for the saturated model23. The C-statistic was calculated for the final, reduced model 

selected from the original data, with and without adjustment for optimism.   

 All statistical analyses were completed using SAS version 9.4 (SAS Institute, Cary NC) and R 

version 3.0.324.  

Results 

Population 

 2,136 participants injured October 1, 2011 through August 21, 2014 had ICD-9 codes from 

acute hospitalization recorded, which were used to determine PTS during acute hospitalization 

(Supplemental Figure 1). Of these, 2,042 had data available on all predictors identified in simple 

logistic regression for seizure during acute hospitalization. Some individuals in this study population 

had not yet reached their Year-1 or Year-2 follow-up time-point at the time of analysis. At Year-1, 2,079 

participants had PTS data, and 1,933 participants had data available for all predictors included in the 

saturated regression model. For Year-2 analyses, 1,364 participants had PTS data, and 1,276 had data 

for predictors included in the saturated model. At each time point, demographic and clinical variables 



were similar to previous TBI studies (Table 2). Based on these data, 91% of the population with seizure 

data during acute hospitalization was used to generate Year-1 prognostic models, and 60% of the 

population at acute hospitalization was used to generate Year-2 prognostic models. The Year-2 sample 

size is smaller than acute and Year-1 samples, due to many subjects not yet reaching their Year-2 

follow-up time point.   

Prognostic Models 

 Following bivariate examination of predictors, 15 variables met inclusion criteria (p<0.20) for the 

initial, saturated prognostic model of PTS during acute hospitalization (Supplemental Table 1). After 

backward elimination and bootstrapping, the final model included sex, pre-injury limitation in 

learning/concentrating/remembering, contusion load, and craniotomy. Craniotomy was among the most 

statistically significant predictors in the final prognostic model and was selected in 85% of bootstrapped 

models (Supplemental Table 1). After correction for optimism, the C-statistic in the final model was 

0.599 (Table 3).  

 The Year-1 saturated prognostic model of PTS included 22 predictor variables (Table 4). After 

validation, the final model included injury severity, SDH, contusion load, craniotomy, craniectomy, 

seizure during acute hospitalization, pre-injury condition limiting physical activity, pre-injury MH 

treatment/psychiatric hospitalization, and incarceration. Craniectomy was the most statistically 

significant predictor and was selected in 100% of bootstrap samples (Table 4, Figure 1). After 

adjustment for optimism, the calculated C-statistic for the Year-1 model was 0.747 (Table 3). 

 The Year-2 saturated model included 21 predictor variables (Table 5). After validation, SDH, 

intraparenchymal fragment, craniotomy, craniectomy, seizure during acute hospitalization, and pre-

injury incarceration were retained. Acute hospitalization seizure and craniectomy were the most 

statistically significant predictors of PTS at Year-2 and were selected in 99 and 95% of bootstrap 

samples, retrospectively. After correction for optimism, the C-statistic was 0.716 (Table 3).  

Discussion 



 Over time, observational studies have identified relevant clinical, demographic, and premorbid 

variables that impact PTS risk after TBI6;8;9;19. However, no recent studies have attempted to develop 

and validate prognostic models for PTS based on identified risk factors. Based on this information and 

our hypotheses regarding the relevance of variables collected in the TBIMS, we developed prognostic 

models for PTS during acute hospitalization, at Year-1, and Year-2 following TBI for individuals 

requiring acute hospitalization and receiving inpatient rehabilitation at designated TBIMS centers. We 

internally validated these models using resampling techniques and generated discrimination statistics. 

Within each model, multiple risk factors were significant predictors of PTS. C-statistics demonstrated 

that models had fair to good ability to discriminate between individuals with and without PTS at Year-1 

and Year-2. However, the prognostic model for acute hospitalization did not perform much better than 

chance for predicting PTS. Nonetheless, variables identified as PTS predictors over time may shed light 

on vulnerable risk groups and the temporal nature of specific clinical and demographic PTS risk factors. 

 Previous early PTS studies have not extensively examined demographic characteristics as risk 

factors. Sex was the only significant demographic PTS predictor (men at increased risk) and only in the 

acute care model. This finding must be interpreted with caution because of the model’s poor 

discrimination ability. Age, however, has been documented as a risk factor for early (young children at 

increased risk versus adults7;19) and late PTS (among adults, individuals greater than 65 at increased 

risk). Though we examined age, and it was selected for inclusion in each multivariable model based on 

bivariate logistic regression, age was not a significant predictor in final multivariable prognostic models. 

This finding may be attributed to correlation (shared variance) among age and other variables included 

in final prognostic models such as pre-injury or injury characteristics (SDH, contusion load, limitation in 

learning/remembering/concentrating) (data not shown). Subsequently, when examined in multivariable 

models, other predictors may be stronger indicators of PTS risk, therefore excluding age from models. 

 We identified pre-injury limitation in learning, remembering, or concentrating as a significant 

PTS predictor during acute hospitalization. This variable may capture latent premorbid neurobiological 

differences that increase seizure susceptibility, evidenced by increased epilepsy rates among 



individuals with developmental disabilities25. Pre-injury MH treatment or psychiatric hospitalization was 

a significant PTS predictor at Year-1. Notably in our analyses, 22% of individuals reported history of MH 

treatment and/or hospitalization for psychiatric disorder. Existing research indicates bidirectional 

relationships between psychiatric conditions and epilepsy26. These associations may be attributable to 

common neuropathological mechanisms, such as regional monoaminergic dependent derangements in 

glutamate management and neurotransmission26. Medications for MH disorders including 

antipsychotics (e.g. chlorprothixene, clozapine) and specific antidepressants (e.g. maprotiline, 

venlafaxine), may decrease seizure threshold, further increasing seizure risk after TBI27. Previous work 

suggests depression history, common after TBI and prevalent in 21% of the study population, is 

associated with increased late PTS risk9;28. Many individuals take anti-depressants to address clinical 

symptoms. MH disorders, including depression, may also co-occur with ongoing substance and/or 

alcohol use problems that may impact PTS risk.  History of drug use, alcohol risk, and alcohol 

documented during acute hospitalization were each examined as predictors of PTS. However, none 

were significant predictors in multivariable models. Yet, clinicians may need to weigh seizure risk into 

their selection of antidepressants in this population and screen for substance use disorders when 

assessing PTS risk. Further studies are needed to evaluate seizure risk among individuals receiving 

psychotropic medications after TBI. 

 Pre-injury incarceration was a significant predictor at Year-1 and Year-2. One study reports 

higher percentages of prior arrest and incarceration among individuals with late PTS versus those 

without late PTS29. Incarceration is associated with increased impulsivity30 and associated behaviors 

(e.g. aggression, risk taking, substance use)31. These individuals may have underlying 

neuropathologies involving limbic structures and neurotransmitter disruption in the nucleus accumbens 

that impact cortical cognitive control31, predisposing them to risky behaviors that may result in TBI and 

PTS. Thus, incarceration may represent latent neurobiological traits not otherwise accounted for by 

data collected. Furthermore, incarceration history may also reflect history of or ongoing substance 



and/or EtOH use, as well as developmental disability, psychiatric condition, and history of violence, 

including previous TBI.  

 Contrary to expectation, previous moderate/severe TBI did not predict PTS. To our knowledge, 

no previous study has examined PTS risk after multiple moderate/severe TBI. We hypothesized 

pathology from prior injury increases PTS risk after subsequent injury. However, the lack of significant 

findings may be related to low event rates, with less than 3.5% of the population reporting prior 

moderate/severe TBI. Future work should investigate how multiple TBI affects biosusceptibility to 

complications like PTS.  

 Intraparenchymal fragment was a significant PTS predictor at Year-2, consistent with previous 

research demonstrating higher PTS rates among those with depressed skull fracture6-8 and pTBI32. In 

our analyses, pTBI was very rare, but also partially defined by the intraparenchymal fragment variable, 

and was therefore not examined in prognostic models. Injury severity was examined, but not included 

as a significant PTS predictor at each time point. The lack of predictive ability may be attributed to low 

sample size or inclusion of other variables associated with injury severity (i.e. intracranial pathologies, 

craniectomy).  

SDH was a significant predictor at Year-1 and Year-2, consistent with previous literature6;8;20. 

SDH was not a significant PTS predictor acutely, but the propensity for temporal glial scarring in SDH 

regions, and the fundamental role of glial scarring in epileptogenesis33;34 may explain the temporality of 

this finding. Contusion load was a significant predictor acutely and at Year-1, and is likely a marker of 

multifocal injury throughout the brain; contusion has been identified previously as a risk factor for PTS6; 

8; 20. As contusion load increases, neuronal injury and apoptosis likely increase, disrupting neuronal 

circuits and predisposing focal areas to ictal discharges. Vascular damage after TBI leads to regional 

blood extravasation and subsequent generation of blood breakdown products within CNS tissues, 

perpetuating oxidative stress, another mechanism of epileptogenesis4;5.  

 Seizure during acute hospitalization was a significant PTS predictor at Year-1 and Year-2. 

Although there is debate regarding the “seizure begets seizure” construct35, research consistently 



demonstrates early seizure is associated with increased risk of late PTS7-9;18. Immediate/early seizures 

are considered provoked and non-epileptogenic. However, provoked seizures may exacerbate 

secondary injury cascades affecting neurochemical and synaptic regulation36. Seizures cause reactive 

astrocytosis and altered glutamate management, further promoting TBI-induced excitoxicity33. Reactive 

astrocytosis also perpetuates the injury-induced inflammatory response, propagating an 

inflammation/excitation cycle that may result in subsequent seizures33. Thus, early seizures, and 

associated disruptions in critical neuroregulatory mechanisms after injury, may alter neuronal 

homeostasis, further causing maladaptive neuronal circuit reorganization (plasticity) in what are already 

seizure-prone systems37. While acute hospitalization for the TBIMS population often extends beyond 

the first week post-TBI, the finding that these seizures contribute to longer term PTE risk underscores 

the critical need for effective PTS prophylaxis and revisiting if/how current guidelines for medication and 

treatment duration prevent immediate/early PTS effectively and reduce PTE risk38. 

 Craniotomy and craniectomy are common procedures following severe TBI. Recently, 

decompressive craniectomy (DC) has become a widely used procedure for management of intractable 

intracranial pressure. Cranial surgeries were among the strongest and most statistically significant PTS 

predictors in our models, confirming previously published findings8;20. However, cranial surgery type 

reaching statistical significance within models varied across time. We hypothesize this association may 

stem from both anatomic and physiologic changes from the craniectomy and associated cranioplasty as 

well as late surgical complications.   

 Craniotomy and craniectomy are implicated as risk factors for seizure, even when used to 

address non-traumatic CNS pathologies39. Craniectomy carries increased risk for additional brain tissue 

damage during surgery and secondary to post-operative hematoma and edema40. Chronic 

complications (>1month post-surgery) can occur post-craniectomy, including poor wound healing, 

infection, and hydrocephalus40. Complications and increased morbidity can also occur with subsequent 

duraplasty/cranioplasty41. Thus, delayed pathological mechanisms associated with chronic 

complications and subsequent cranioplasty may explain the temporality of craniectomy as a significant 



PTS predictor. Observational and retrospective studies note more severe injury among individuals 

undergoing craniectomy versus craniotomy or standard care42. Our prognostic models include multiple 

injury severity and pathology measures, yet craniectomy remained among the strongest predictors, 

supporting the idea that craniectomy is associated with increased PTS risk, independent of injury 

severity. PTS prophylaxis guidelines38 do not reflect trends in neurosurgical intervention for TBI 

treatment and may benefit from additional research that considers these issues.  

Although these are the first prognostic models to reflect current trends in TBI severity, 

diagnosis, and treatment which elucidate potentially important PTS predictors, there are important 

limitations to consider. Relative to prognostic studies in general, sample sizes in current analyses were 

small. Ability to discriminate PTS was poor during acute hospitalization. Low acute model performance 

may be due to the fact that seizure status during acute hospitalization does not differentiate between 

immediate, early, and late seizures. As a result, this study could not address the prediction of PTE 

during acute hospitalization per se.  Differentiating between these time points as outcomes could 

improve individual model performance as PTS risk factors temporally evolve. Alternatively, factors 

predicting acute seizures may be so diverse that prognostic models would not be effective. Acute 

seizures may include those detected via electroencephalogram (EEG). However, we do not know if 

EEG was used to capture seizure activity, if specific individuals only were monitored using continuous 

EEG, or if EEG monitoring/screening practices differed across TBIMS centers.  

Misclassification of PTS status during acute hospitalization from ICD-9 codes, the inability to 

determine premorbid seizure/epilepsy disorder, and Year-1/Year-2 PTS misclassification also limit 

model performance. Importantly, PTS status misclassification at Year-1 and Year-2 due to reliance on 

self-report can occur due to psychogenic seizure reporting or misreporting due to recall bias. However, 

for large epidemiological studies, it is not always feasible to determine PTS status through in-depth 

neurological examination or medical record review. Therefore, self-report remains a common practice 

for seizure/epilepsy43 and other types of epidemiological research. Multiple sources of misclassification 



bias may significantly impact effect size estimations, under- or overestimating the effect of predictors of 

interest, according to the predictors association with the cause of misclassification. 

Lack of information on medication use prohibited investigating how psychotropics affect PTS 

risk. Therefore, we cannot determine if inclusion of MH disorder/psychiatric hospitalization is predictive 

or if this variable represents increased PTS risk secondary to psychotropic medication use. We were 

also unable to control for AED effects on acute hospitalization or Year-1/Year-2 seizure risk, including 

differential effects of specific medication type. However, in a single TBIMS center, 96% of individuals 

with severe TBI received seizure prophylaxis during acute care44. It is possible, but cannot be 

confirmed, other TBIMS centers would have similar prophylaxis rates. Additionally, the TBIMS-ND 

includes only individuals surviving acute injuries and receiving acute inpatient rehabilitation after 

moderate-severe TBI. Results here may not extrapolate to all individuals with moderate-severe TBI. 

Lastly, the observational design does not provide causal evidence among relationships with PTS 

outcome.  

Despite limitations, these prognostic models may have added benefit versus prior models, 

which were not used clinically even though they were reliable in multiple study populations14;16. 

Previous models focused on calculating PTS probability or seizure recurrence over time14-16, while our 

prognostic models reflect current trends in TBI diagnosis, treatment, and population characteristics, and 

investigate multiple risk factors identified in previous PTS studies. Regardless, these models must be 

examined in independent study populations to determine discriminability and validity outside the TBIMS 

population. Individuals with characteristics identified in prognostic models as predictors of PTS 

represent subpopulations that may benefit from tailored seizure prophylaxis guidelines addressing 

unique premorbid characteristics, pathologies, and procedures. 

Further study is required to determine whether new evidence of biological PTS risk factors 

improves the clinical utility of prognostic models. Year-1 and Year-2 models had optimism-corrected C-

statistics greater than 0.70 (0.747, 0.716, respectively). While these values indicate good discriminatory 

ability, there remains room for improvement. Moderating factors, including those occurring after the 



index TBI (e.g. ongoing EtOH and substance use, recurrent TBI) may influence the predictive capacity 

of our current models. Of particular interest are genetic factors previously shown to be associated with 

accelerated epileptogenesis and seizure risk after TBI44;45. These studies suggest genetic variation 

remains a significant PTS risk factor after controlling for other factors including injury severity and SDH. 

Data regarding genetic variation in epileptogenic pathways could improve prognostic ability for PTS, 

much the way genetic information improved breast cancer prognostication46.  As modern medical and 

prevention efforts for PTS move toward personalized medicine approaches, personal biology metrics 

like genetic variation and inflammation may contribute meaningfully to prognostication and treatment 

development.  
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Key Points 

1. Prognostic models at Years 1 and 2 post-TBI performed well at discriminating between 

individuals who did and did not develop PTS  

2. Developed models reflect current trends in TBI severity, diagnosis, and treatment 

3. Neurosurgical procedures were among the strongest predictors of PTS in each model 

4. Pre-injury personal and medical history variables were included as significant predictors of PTS 

at each time-point 
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Figure Legends 

Figure 1. Histogram depicting predictors of interest included in prognostic models of PTS during 

acute care hospitalization (blue), at Year-1 (red), and Year-2 (green) post-injury. Y-axis 

represents the percent of bootstrap models the predictor of interest was retained in after 

backward stepwise elimination. Variables without a column for a specific time-point were not 

considered as a predictor of interest for the time-point. PTA=post-traumatic amnesia; 

SDH=subdural hematoma; SAH=subarachnoid hemorrhage; EDH=epidural hematoma; 

SCI=associated spinal cord injury; MH=mental health; Psych Hosp=psychiatric hospitalization. 

 

Supplemental Figure 1. Consort like diagram depicting the flow of individuals evaluated for 

development of prognostic models at progressive time-points within the TBIMS-ND.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Risk Factors Selected for Consideration in Prognostic Models 
 Variable Definition Method 

De
m

o-
gr

ap
hi

cs
 Sex Biological sex  

Age Age at Injury  

Race 
Self-identified race [white, black, other (including 
Asian/Pacific Islander, Native American, Hispanic Origin, 
Other, Race unspecified)  

SR 

Pe
rs

on
al

 a
nd

 M
ed

ic
al

 H
is

to
ry

 

Previous TBI From Ohio State University (OSU) TBI Identifier; number of 
any TBI prior to index injury SR 

Previous 
Moderate/Severe TBI 

From OSU TBI identifier; moderate or severe TBI prior to 
index injury SR 

Previous TBI with loss 
of consciousness  

From OSU TBI ID; TBI with loss of consciousness prior to 
index injury SR 

Alcohol Risk 

Adapted from the National Institute on Alcohol Abuse and 
Alcoholism (NIAAA) categories of risk of alcohol use (safe, at 
risk, heavy); based on self-reported frequency of drinks and 
binge drinking episodes 

CV 

Preinjury Drug Use In the year prior to index injury, did the participant use any 
illicit or non-prescription drugs SR 

Condition Significantly 
Limiting Physical 
Activity 

A condition that substantially limits one or more basic 
physical activities such as walking, climbing stairs, reaching, 
lifting, or carrying prior to injury 

SR 

Limitation in Learning, 
Remembering, 
Concentrating 

Difficulty in learning, remembering, or concentrating due to 
a physical, mental, or emotional condition that has been 
present for at least 6 months prior to injury 

SR 

Treatment for Mental 
Health Condition 

Treatment for any mental health problems prior to injury 
(e.g. depression, anxiety, schizophrenia, and alcohol & drug 
abuse) 

SR 

Psychiatric 
Hospitalization 

Any psychiatric hospitalization prior to injury SR 

Suicide Attempt Suicide attempt prior to injury SR 

Incarceration Any penal incarcerations with conviction for felony prior to 
injury SR 

Military Service  Any military service prior to injury SR 
Military Combat Deployed to a combat zone prior to injury SR 

In
ju

ry
 C

ha
ra

ct
er

is
tic

s 

Injury Severity 

Moderate: normal or abnormal imaging with 30min < LOC < 
24 hours, or 1day<PTA<7days, or GCS 9-12 
Severe: normal or abnormal imaging with -->LOC >24 hours, 
or PTA>7days, or GCS 3-8 

MRR 

Acute Alcohol  Alcohol abuse, dependence, or withdrawal related ICD-9 
code documented during acute hospitalization MRR 

Post Traumatic 
Amnesia (PTA) 

Days of post-traumatic amnesia MRR 

Loss of Consciousness 
(LOC) 

Duration of loss of consciousness MRR 

Subdural Hematoma 
(SDH) 

Presence of extra-axial collection within subdural space 
including hematoma and hygroma MRR 

Subarachnoid 
Hemorrhage (SAH) 

Blood in ambient, basal, interpeduncular cisterns or cisterna 
magna, or along falx or tentorium MRR 

Intra-ventricular 
Hemorrhage (IVH) 

Blood documented within intra-ventricular space MRR 



Epidural Hematoma 
(EDH) 

Presence of extra-axial collection within epidural space MRR 

Contusion Load 

Calculated by summing the number of regions with 
parenchymal contusions documented in medical record. 
Regions were specified by cortical area or non-cortical focal 
contusion. A maximum of 6 regions were documented 
(frontal, temporal, parietal, occipital, focal non-cortical, not 
specified) 

CV 

Retained Fragment Intraparenchymal fragment including fractures displaced 
>2mm, excluding existing surgical clips or coils MRR 

Penetrating TBI 
Calculated via validated algorithm using imaging reports of 
retained fragment and mechanism of injury from medical 
record review. 

CV 

Associated Spinal Cord 
Injury 

Injury to neural elements of spinal cord present or absent MRR 

Seizure during Acute 
Care Hospitalization 

Inclusion of ICD-9 codes 780.39, 780.33, and 345.0x  
345.9x within first 20 ICD-9 codes reported during acute 
care hospitalization 

MRR 

Su
rg

ic
al

 
Pr

o-
ce

du
re

s Craniotomy Surgical procedure, defined as “cranium opened, something 
removed, cranium closed” MRR 

Craniectomy  Surgical procedure, define as “cranium opened and left 
open” MRR 

Method abbreviations: MRR: medical record review; CV: calculated value; SR: self-report 
Variable Abbreviations: GCS: Glasgow Coma Scale; LOC: Loss of Consciousness; PTA: Post-traumatic 
Amnesia; ICD:  International Classification of Disease;  
 
  



 
Table 2: Population Characteristics, N(%) 

  Acute Year 1 Year 2 
Sample Size 2136 2079 1364 
Post-Traumatic Seizure  187 (8.8) 210 (10.1) 139 (10.2) 

Incident Seizure^ 187 (8.8) 173 (82.4) 53 (38.1) 
Recurrent Seizure^   --- 37 (17.6) 85 (61.2) 

Multiple Seizures since last Follow-up^ --- 123 (58.6) 88 (63.3) 
Age at Injury* 44.7 (20.1) 44.7 (20.1) 43.9 (19.9) 

Sex  
Male 1569 (73.5) 1526 (73.4) 1009 (74.0) 
Female 566 (25.5) 552 (26.6) 355 (26.0) 

Race  
White 1446 (67.7) 1402 (67.5) 935 (68.6) 
Black 301 (14.1) 293 (14.1) 197 (14.4) 
Other 388 (18.2) 383 (18.4) 232 (17.0) 

Pre-injury Drug Use 379 (17.8) 368 (17.7) 243 (17.8) 
Pre-injury Alcohol 
Risk 
 

Low Use 1458 (68.3) 1422 (68.3) 918 (67.3) 
At Risk 596 (27.9) 578 (27.8) 396 (29.0) 
Heavy Use 81 (3.8) 78 (3.8) 50 (3.7) 

Pre-injury Incarceration 194 (9.1) 191 (9.2) 129 (9.5) 
Injury 
Severity 

Moderate 448 (21.0) 435 (20.9) 271 (19.9) 
Severe 1688 (79.0) 1644 (79.1) 1093 (80.1) 

Mechanism of 
Injury  

Motorized vehicle 956 (44.8) 925 (44.5) 640 (46.9) 
Violence 179 (8.4) 176 (8.5) 117 (8.6) 
Sport 129 (6.0) 125 (6.0) 81 (5.9) 
Fall 685 (32.1) 669 (32.2) 396 (29.0) 
Hit by Object 29 (1.4) 28 (1.4) 16 (1.2) 
Pedestrian Struck 144 (6.7) 142 (6.8) 107 (7.8) 
Other 14 (0.7) 14 (0.7) 7 (0.5) 

Post Traumatic Amnesia (Days)* 30.1 (37.3) 30.1 (37.2) 30.2 (38.2) 
Length of Acute Stay (Days)* 21.5 (20.6) 21.5 (20.6) 21.9 (21.8) 
Intraparenchymal Fragment 127 (5.9) 121 (5.8) 84 (6.2) 
Subdural Hematoma 1124 (52.6) 1093 (52.6) 727 (53.3) 
Craniotomy 336 (15.7) 326 (15.7) 222 (16.3) 
Craniectomy 296 (13.9) 288 (13.9) 187 (13.7) 
Acute Alcohol  541 (25.3) 525 (25.3) 345 (25.3) 
^of individuals with evidence of seizure activity at time-point 
*mean(SD) 
 
  



Table 3. Final Prognostic Model and Fit Statistics for Prediction of PTS 
Model Number 

Bootstrap 
Samples 

C Statistics Final Prognostic Model for PTS 
Saturated 
Model 

Training 
Model1 

Final 
Model2 

Acute 999 0.638 0.661 0.599 PTS Acute Hospitalization = -3.81 + 0.47*Sex + 0.78*PreInjury 
Limitation Learning, Remembering, Concentrating + 
0.70*Contusion Load 1 + 0.61*Contusion Load 2 + 0.73*Contusion 
Load 3 + 0.62*Contusion Load 4 + 0.63*Craniotomy 

Year 1 984 0.772 0.787 0.747 PTS Year 1 = -3.86 + 0.22*PreInjury Mental Health Treatment + 
0.49*PreInjury Mental Health Treatment and Psychiatric 
Hospitalization + 1.78*PreInjury Psychiatric Hospitalization + 
1.02*PreInjury Incarceration + 0.005*Post-Traumatic Amnesia + 
0.54*Subdural Hematoma + 0.76*Contusion Load 1 + 
0.75*Contusion Load 2 + 0.66*Contusion Load 3 + 0.54*Contusion 
Load 4 + 0.75*Seizure Acute Hospitalization + 0.62*Craniotomy + 
1.29*Craniectomy 

Year 2 1000 0.758 0.789 0.716 PTS Year 2 = -3.23 + 0.76*PreInjury Incarceration + 0.83*Subdural 
hematoma + 0.80*Retained Fragment + 1.27*Seizure Acute 
Hospitalization + 0.49*Craniotomy + 1.00*Craniectomy 

1 Bootstrapped model 
2 Optimism corrected 
 
 
 
 
  



Table 4. Variables Included for Prognostic Model to Predict PTS at Year 1  

Variable* Retained in 
Reduced Model 

Adjusted 
Odds Ratio 

P-value 

Sex (ref=female) No --- --- 
Age No --- --- 
Previous Moderate or Severe TBI No --- --- 
Pre-injury Treatment for mental 
health condition/Psychiatric 
hospitalization (ref=neither) 

Yes --- --- 

Treatment, no hospitalization  1.25 0.30 
Treatment and Hospitalization  1.63 0.103 

Hospitalization  5.96 0.004 
Pre-injury Drug Use No --- --- 
Pre-injury Alcohol Risk No --- --- 
Pre-injury Suicide Attempt No --- --- 
Pre-injury Incarceration Yes 2.78 <0.001 
Pre-injury Military Service No --- --- 
Injury Severity No --- --- 
Acute Alcohol  No --- --- 
Duration PTA (days) Yes 1.01 0.011 
Length of Acute Stay No --- --- 
Subdural Hematoma Yes 1.72 0.003 
Subarachnoid Hemorrhage No --- --- 
Epidural Hematoma No --- --- 
Contusion Load (ref=0) Yes   

1  2.14 0.001 
2  2.11 0.001 
3  1.93 0.018 
4  1.71 0.097 

Retained Fragment No --- --- 
Seizure during Acute Hospitalization Yes 2.12 0.001 
Craniotomy Yes 1.86 0.001 
Craniectomy Yes 3.64 <0.001 
*Variables included in saturated logistic regression model 
Unless noted, reference group for adjust odds ratio is variable not present 
TBI: Traumatic Brain Injury; PTA:  Post-traumatic Amnesia 
 
  



Table 5. Variables Included for Prognostic Model to Predict PTS at Year 2  

Variable* Retained in 
Reduced Model 

Adjusted Odds 
Ratio 

P-value 

Sex (ref=female) No --- --- 
Age No --- --- 
Race No --- --- 
Previous Moderate or Severe TBI No --- --- 
Pre-injury Alcohol Risk No --- --- 
Pre-Injury Condition Limiting 
Physical Activity 

No --- --- 

Pre-injury Treatment for mental 
health condition/Psychiatric 
hospitalization 

No --- --- 

Pre-injury Suicide Attempt No --- --- 
Pre-injury Incarceration Yes 2.14 0.009 
Pre-injury Military Service No --- --- 
Pre-injury Military Combat No --- --- 
Injury Severity No --- --- 
Duration PTA No --- --- 
Length of Acute Stay No --- --- 
Subdural Hematoma Yes 2.29 <0.001 
Contusion Load  No --- --- 
Retained Fragment Yes 2.23 0.010 
Seizure during Acute 
Hospitalization 

Yes 3.57 <0.001 

Craniotomy Yes 1.64 0.036 
Craniectomy Yes 2.71 <0.001 
*Variables included in saturated logistic regression model 
Unless noted, reference group for adjust odds ratio is variable not present 
TBI: Traumatic Brain Injury; PTA:  Post-traumatic Amnesia 
 
  



Supplemental Table 1. Variables Included for Prognostic Model to Predict PTS 
during Acute Care Hospitalization 
Variable* Retained in 

Reduced Model 
Adjusted Odds 
Ratio 

P-value 

Sex (ref=female) Yes 1.60 0.022 
Age No --- --- 
Previous TBI with LOC No --- --- 
Pre-Injury Condition Limiting 
Physical Activity 

No --- --- 

Pre-Injury Limitation in 
Learning, Remembering, or 
Concentrating 

Yes 2.18 0.001 

Pre-injury Treatment for mental 
health condition/Psychiatric 
hospitalization 

No --- --- 

Injury Severity No --- --- 
Acute Alcohol  No --- --- 
Duration PTA No --- --- 
Length of Acute Stay No --- --- 
Subdural Hematoma No --- --- 
Contusion Load (ref=0) Yes   

1  2.02 0.001 
2  1.84 0.008 
3  2.08 0.006 
4  1.85 0.061 

Retained Fragment No --- --- 
Craniotomy Yes 1.86 0.001 
Craniectomy No --- --- 
*Variables included in saturated logistic regression model 
Unless noted, reference group for adjust odds ratio is variable not present 
TBI: Traumatic Brain Injury; LOC: Loss of Consciousness; PTA:  Post-Traumatic 
Amnesia 
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