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Abstract. In this work, we propose a novel and powerful image analysis
framework for hippocampal morphometry in early mild cognitive impair-
ment (EMCI), an early prodromal stage of Alzheimer’s disease (AD).
We create a hippocampal surface atlas with subfield information, model
each hippocampus using the SPHARM technique, and register it to the
atlas to extract surface deformation signals. We propose a new alter-
native to standard random field theory (RFT) and permutation image
analysis methods, Statistical Parametric Mapping (SPM) Distribution
Analysis or SPM-DA, to perform statistical shape analysis and com-
pare its performance with that of RFT methods on both simulated and
real hippocampal surface data. The major strengths of our framework
are twofold: (a) SPM-DA provides potentially more powerful algorithms
than standard RFT methods for detecting weak signals, and (b) the
framework embraces the important hippocampal subfield information
for improved biological interpretation. We demonstrate the effectiveness
of our method via an application to an AD cohort, where an SPM-DA
method detects meaningful hippocampal shape differences in EMCI that
are undetected by standard RFT methods.

1 Introduction

The hippocampus plays an important role in learning and memory, and is a
widely studied brain structure in Alzheimer’s Disease (AD). Hippocampal mea-
sures extracted from magnetic resonance imaging (MRI) scans have been shown
as effective biomarkers for detecting the status of AD or mild cognitive impair-
ment (MCI, a prodromal stage of AD) [4, 8, 9, 14]. Investigation of hippocampal
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morphometry as an early biomarker for detecting early MCI (EMCI) is a sig-
nificant but yet under-explored topic. Cong et al. [2] studied this topic using
random field theory [12, 13] and surface-based morphometry, but identified no
significant difference between healthy control (HC) and EMCI participants.

To bridge this gap, we propose a novel and powerful image analysis frame-
work for hippocampal morphometry in EMCI. We create a hippocampal surface
atlas with subfield information using the method described in [2]. We model
each hippocampus using the SPHARM technique [7] and register it to the atlas
for subsequent analyses. We propose analyzing the resulting data using a new
approach, Statistical Parametric Mapping (SPM) Distribution Analysis or SPM-
DA. SPM-DA methods can provide greater power by more fully exploiting SPM
information than current random field theory (RFT) and permutation methods
which only use information provided by SPM peaks and/or clusters. In addition,
SPM-DA methods use permutation inference to allow the use of algorithms with
mathematically intractable distributions and to avoid restrictive RFT assump-
tions which, if violated, can reduce power. Thus the major strengths of this
work are twofold: (a) SPM-DA provides potentially more powerful algorithms
than current RFT and permutation methods for detecting weak signals and (b)
the work embraces, rather than ignores, the important hippocampal subfield
information for improved interpretation of the identified pattern.

We compare the performance of RFT Peak and RFT Peak methods with
that of a specific SPM-DA histogram method by analyzing simulated and real
(Alzheimer’s Disease Neuroimaging Initiative (ADNI) [10]) data. We also con-
duct a subfield analysis of the ADNI data to fully demonstrate the utility of our
hippocampal morphometric analysis framework.

2 Materials and Methods

ADNI Data: The real data used in this study were downloaded from the ADNI
database [10]. One goal of ADNI has been to test whether serial MRI, positron
emission tomography, other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of MCI and early
AD. For up-to-date information, see www.adni-info.org. We downloaded baseline
3T MRI scans of 172 HC, 267 early MCI (EMCI), and 140 late MCI (LMCI),
along with demographic and diagnostic information.

Hippocampal Surface Modeling and Alignment: Hippocampal seg-
mentation is conducted by FIRST [3], a surface registration and segmentation
tool developed as part of the FMRIB Software Library (FSL). FreeSurfer is not
used here since it tends to yield noisy hippocampal boundary not suitable for
shape analysis [2]. Topology fix is performed on the binary segmentation re-
sults to make sure that each hippocampal surface has spherical topology. The
SPHARM method [7] is used to model each surface. FreeSurfer is used for hip-
pocampal subfield segmentation, because this function is unavailable in FIRST.
Following [2], we create a hippocampal surface atlas labelled with five subfields:
hippocampal tail, CA1, CA2-3, CA4-DG, and SUB (containing both presubicu-



lum and subiculum). Each hippocampal surface is a SPHARM reconstruction
registered to the atlas by aligning its first order ellipsoid. Surface signals are
extracted as the deformation along the surface normal direction of the atlas.

RFT Surface Analysis: Using random field theory (RFT) implemented in
SurfStat [12], the surface signals Ni,j are analyzed using the regression model

Ni,j = β0 + β1,jIi + β2,jagei + β3,jgenderi + ǫi,j , i = 1, . . . , n, j = 1, . . . ,m

in which Ii is the group indicator, e.g., 1 if EMCI and 0 if HC, n is the number
of subjects, m is the number of surface vertices. The SPM consisting of the t
statistics for testing Ho: β1,j = 0, j = 1, . . . ,m, is then analyzed using both peak
amplitude and cluster size statistics as implemented by SurfStat [12, 13].

SPM Distribution Analysis (SPM-DA): The SPM-DA method investi-
gated here captures the information provided by the SPM statistics by estimat-
ing their distribution with a frequency histogram. The histogram bin boundaries
are chosen so that each bin is equally likely under the null (permutation) distri-
bution. The bin frequencies are then analyzed to detect departures from count
uniformity. In these analyses two regression models are employed,

Fi = βuxu,i + ǫi, i = 1, . . . , n, (1)

Fi = βlxl,i + ǫi, i = 1, . . . , n, (2)

in which Fi denotes the frequency of the ith of n = 12 bins. For the first model
in Eq (1), we let x′

u = (0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5)′ be our predictor. Thus, the
coefficient βu will be positive when there is an overabundance of positive SPM
statistics (right-tail values) indicating a positive relationship between image val-
ues and the predictor of interest. Similarly, for the second model in Eq (2), we let
x′

l = (5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0)′ be our predictor. Thus, the coefficient βl will
be positive when there is an overabundance of negative (left-tail) values indicat-
ing a negative relationship. Shown in Figure 2 are a few examples of the Eq (1)
predictor data (i.e., the solid line) and the bin counts computed from the real
hippocampal data (i.e., the “•” values).

To detect a relationship between the image and the predictor of interest
generating the SPM, the following compositive hypotheses are tested:

H0: βu ≤ 0 and βl ≤ 0 versus H1: βu > 0 or βl > 0.

Let β̂u and β̂l denote the least squares estimates of βu and βl from the un-
permuted data. The corresponding one-sided p-values, pu = P (βu ≥ β̂u) and

pl = P (βl ≥ β̂l), are combined using Bonferroni to get the p-value for testing
H0 vs. H1, p = 2min(pl, pu). Simulation is used to compute pu and pl by ran-
domly permuting the predictor (after it’s orthogonalized with respect to covari-
ates if they are present [11]) with respect to the surface data, recomputing the
SPM, and then computing the corresponding permutation coefficient estimates
β̂∗

u andβ̂∗

l . This process is repeated N times and then pu is estimated by

pu = (# of β̂∗

u’s ≥ β̂u)/N ; (3)
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Fig. 1. Normal Q-Q plot of standardized betas for (a-b) example unsmoothed and
smoothed simulations and (c) HC vs EMCI comparison.

pl is estimated similarly. The only requirement for p-values pu and pl to be
valid is the usual permutation assumption of exchangeability. Exchangeability is
satisfied much more readily than the stringent RFT assumptions [11].

If, in addition, the distributions of the permutation coefficient estimates β̂∗

u

and β̂∗

l are normal, as will often be the case for large samples [6] (e.g., those shown
in Figure 1(a-b)) then pu and pl can be computed using the t distribution:

pu = P

(

tN−1 ≥
β̂u − X̄

S
√

1 + 1/N

)

(4)

in which X̄ and S are the sample mean and sample standard deviation of the N
β̂∗

u’s. The factor
√

1 + 1/N in the denominator is needed since Var[β̂u − X̄] =
σ2(1+1/N) under the null hypothesis. Using this approach small p-values can be
accurately estimated with N as small as 30 or so. This procedure, implemented
in R, is used to analyze the hippocampal surface normals and the simulated data
described below. The results are compared with the SurfStat RFT results.

Simulation Studies: SPM-DA and RFT peak and cluster methods are
compared using two simulation studies. For both studies random data on a
hippocampal template surface with 652 vertices are generated for 72 subjects
according to the model

Si,j = βxi + ǫi,j , i = 1, . . . , 72, j = 1, . . . , 126,

= ǫi,j , i = 1, . . . , 72, j = 127, . . . , 652,

in which Si,j represents the surface value at location j for subject i. Both studies
simulate two-sample data with xi equal to -1 for i = 1, . . . , 36 and 1 for i =
37, . . . , 72. Thus the signal, which extends across 126 contiguous locations, is
constant with a magnitude determined by β. For both studies, values for β are
0, 1/12, 1/6, and 1/3. In the first study the random errors ǫi,j are independent
normal (µ = 0, σ2 = 1) pseudorandom numbers. In the second study the ǫi,j
are also independent normal (µ = 0, σ2 = 1) but are smoothed prior to the
signal being added using the heat kernel smoothing method [1] applied to the
hippocampal surface atlas. The resulting data sets are analyzed using SPM-DA



Table 1. Simulation results: The number of rejections (out of 100 runs) at α = 0.05
and 0.01 for the SPM-DA (SDA), RFT Peak (RFP), and RFT Cluster (RFC) methods.

Signal Strength
Unsmoothed Data Smoothed Data

α = 0.05 α = 0.01 α = 0.05 α = 0.01
SDA RFP RFC SDA RFP RFC SDA RFP RFC SDA RFP RFC

0 5 1 0 1 0 0 3 2 0 0 1 0
1/12 92 7 1 65 3 0 83 10 0 60 3 0
1/6 100 57 6 100 17 5 100 47 51 100 17 43
1/3 100 100 5 100 100 5 100 100 49 100 100 44

Table 2. Statistical analysis results on real data using three approaches: SPM-DA,
RFT Peak and RFT Cluster. P values are shown for pairwise comparison among three
groups HC, EMCI and LMCI. N.S. indicates not significant. Note that 2E-04 is the
smallest nonzero p value that can be obtained in our SPM-DA permutation tests.

Comparison P from SPM-DA
Smallest P

RFT Peak RFT Cluster
HC vs EMCI 9.20E-03 1.51E-01 N.S.

EMCI vs LMCI <2E-04 9.46E-08 N.S.
HC vs LMCI <2E-04 1.72E-08 N.S.

(programmed in R [5]) and RFT peak and cluster statistics as implemented
by SurfStat [12, 13]. For each combination of β and choice of unsmoothed or
smoothed random errors, 100 data sets are constructed and analyzed by SPM-
DA and RFT methods to compare their power.

3 Results

In our simulation studies, the distributions of the permutation coefficient esti-
mates by SPM-DA are always normal (see Figure 1(a-b) for a couple of exam-
ples). Thus, pu and pl are computed using the fast approach of Eq (4). However,
in the real data study, the distributions of the permutation coefficient estimates
are nonnormal (see Figure 1(c) for one example). In this case, we compute pu
and pl using Eq (3) with N=10,000 permutations.

Table 1 presents the results of our simulation studies by providing the num-
ber of rejections (out of 100 runs) of the SPM-DA, RFT Peak, and RFT Cluster
methods for significance levels α = 0.05 and 0.01. For the null (signal strength=0)
scenarios, all three methods have type I error rates at or below α. For all non-null
scenarios the SPM-DA method dominates the RFT Cluster method, exhibiting
substantially greater power at all signal strengths. It also dominates the RFT
Peak method in all but the strongest signal case. In particular, its power is at
least eight times greater than RFT Peak for the weakest signals.

Table 2 presents the results of analyzing the three hippocampal pairwise com-
parisons using the three methods. The SPM-DA method was the most powerful,
detecting shape differences at level α = 0.01 for all three comparisons in contrast
to RFT Peak which detected two and RFT cluster which detected none. We be-
lieve that SPM-DA would yield smaller p-values than RFT Peak for the EMCI
vs LMCI and HC vs LMCI comparisons if sufficient permutations, e.g. 109, were
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Fig. 2. Bin counts for (a) HC vs EMCI, (b) EMCI vs LMCI, and (c) HC vs LMCI.
Our linear model in Eq (1) aims to use the values on the solid line to predict the “+”
values (for permuted data) or the “•” values (for real data). Note that the count scales
on the y-axis are different across these three cases, and the significance of the group
difference is driven mainly by the “•” value on the 12th bin in each case.

Table 3. Comparison between RFT Peak and SPM-DA on the signal region size (i.e.,
number of vertices with p < 0.05 and number of vertices with bin value (bv) = 12
respectively) in each subfield. No data are shown for the RFT Cluster method, since
no signals were identified in any RFT cluster analysis on real data.

Hemisphere Left Right
Subfield Tail CA1 CA2-3 CA4-DG SUB Tail CA1 CA2-3 CA4-DG SUB

Total # of vertices 398 389 728 91 956 405 362 735 119 941
RFT Peak: HC vs EMCI 0 0 0 0 0 0 0 0 0 0
# of vertices EMCI vs LMCI 48 15 39 0 92 15 0 49 3 351
with p < 0.05 HC vs LMCI 64 92 204 27 501 94 116 184 28 450
SPM-DA: HC vs EMCI 87 113 260 85 572 128 273 263 80 393
# of vertices EMCI vs LMCI 291 389 441 49 896 242 295 450 97 805
with bv = 12 HC vs LMCI 283 389 507 91 914 278 362 509 117 903

used. The encouraging fact that the SPM-DA method was able to detect HC
vs EMCI shape differences demonstrates the promise of SPM-DA for detecting
early biomarkers in AD studies.

Figure 2 shows the Eq (1) predictor data (i.e., the solid line) and the bin
counts generated by SPM-DA for each of the three comparisons. It is obvious
that the shape differences were detected by the first regression model (see Eq (1))
in each case. In other words, SPM-DA detected trends toward an overabundance
of SPM values in the upper tail of the distribution, indicating hippocampal
atrophy in EMCI compared with HC, in LMCI compared with EMCI, and in
LMCI compared with HC.

Figure 3(b) shows the surface map of the SPM values for HC vs EMCI,
where the red color indicates the atrophy region in EMCI compared with HC.
For comparison, Figure 3(a) shows the t-map of the SurfStat analysis (p-map
not shown due to lack of signal). Although capturing a similar pattern, the RFT
methods used by SurfStat cannot claim the group differences between HC and
EMCI are significant. However, the RFT Peak method used by SurfStat was
able to identify statistical shape differences between EMCI and LMCI (t-map



(a) SurfStat (b) SPM-DA

(c) SurfStat (d) SurfStat

Fig. 3. (a) The SurfStat t-map of the diagnostic effect (HC-LMCI) on surface signals
after removing the effects of age and gender. (b) The SPM-DA bin value map for
the comparison of HC vs EMCI after removing effects of age and gender. (c-d) The
SurfStat t-map and p-map of the diagnostic effect (EMCI-LMCI) on surface signals
after removing the effects of age and gender.

and p-map shown in Figure 3(c-d)) and between HC and LMCI (t-map and
p-map similar to Figure 3(c-d) and thus not shown).

Given that we have a surface atlas of hippocampal subfields, Table 3 shows
the signal region size in each subfield according to RFT Peak and SPM-DA
methods, i.e., number of vertices with p < 0.05 and number of vertices with bin
value (bv) = 12 respectively. Below we summarize the amount of the subfield
atrophy region detected by SPM-DA. (1) HC vs EMCI: EMCI demonstrated
atrophy patterns compared with HC in 27% of tail, 51% of CA1, 36% of CA2-3,
79% of CA4-DG, and 51% of SUB. (2) EMCI vs LMCI: LMCI demonstrated
atrophy patterns compared with EMCI in 66% of tail, 91% of CA1, 61% of
CA2-3, 70% of CA4-DG, and 90% of SUB. (3) HC vs LMCI: LMCI demonstrated
atrophy patterns compared with HC in 70% of tail, 100% of CA1, 69% of CA2-3,
99% of CA4-DG, and 98% of SUB.

4 Discussion

We have proposed a novel and powerful image analysis approach, Statistical
Parametric Mapping (SPM) Distribution Analysis or SPM-DA, and applied it



to statistical shape analysis in hippocampal morphometry coupled with subfield
information. We have compared its performance with that of standard random
field theory (RFT) in surface-based morphometry. Our empirical studies on both
simulated and real hippocampal data demonstrate that the SPM-DA method has
greater power than either RFT Peak or RFT Cluster methods. Of particular im-
portance to early MCI biomarker research, it has substantially greater power
to detect weak signals, e.g., it was able to detect HC vs. EMCI differences un-
detected by RFT methods. These results provide proof of concept evidence for
the core premise of SPM-DA, namely, that greater power can be achieved by
more fully utilizing SPM distribution information. The specific method consid-
ered here used histograms to capture this information. Although this approach
worked well in our proposed hippocampal morphometry analysis framework, one
future direction is to explore other means of fully utilizing SPM distribution in-
formation. Given that SPM-DA is a generic approach, another future direction
is to apply it to other image and/or shape analysis studies.
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