
Concise Review: Plasma and Nuclear Membranes
Convey Mechanical Information to Regulate
Mesenchymal Stem Cell Lineage

GUNES UZER,a ROBYN K. FUCHS,b JANET RUBIN,a WILLIAM R. THOMPSON
b

Key Words. LINC • Emerin • Nesprin • Lamin • Vibration • Exercise • Mesenchymal stem cell

ABSTRACT

Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell
fate. While the regulation of stem cell differentiation by soluble factors is well-characterized,
the role of mechanical force in the determination of lineage fate is just beginning to be under-
stood. Investigation of the role of force on cell function has largely focused on “outside-in” sig-
naling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the
cell uses integral membrane proteins, such as those found in focal adhesion complexes to trans-
late force into biochemical signals. Akin to these outside-in connections, the internal cytoskele-
ton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although
structurally and biochemically distinct, these two forms of mechanical coupling influence stem
cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of
how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the
role of force on stem cell differentiation, with focus on the biochemical signals generated at
the cell membrane and the nucleus, and how those signals influence various diseases. While
the interaction of stem cells with their physical environment and how they respond to force is
complex, an understanding of the mechanical regulation of these cells is critical in the design of
novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. STEM
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SIGNIFICANCE STATEMENT

This concise review details the ability of stem cells to regulate their lineage allocation based on
mechanical forces exerted upon them. The mechanical qualities of both the external environ-
ment (the extracellular matrix) and the internal cytoskeleton of stem cells alter how they
respond. Additionally, forces are translated into biochemical signals using different molecular
machinery at the plasma membrane and nuclear membrane. These distinctions have been out-
lined in this paper and the consequent diseases have been described.

INTRODUCTION

Biological systems are fine-tuned to sense,
respond, and adapt to physical stimuli [1]. In
the case of stem cells, the external physical
environment guides stem cell fate decisions
[2]. As such, stem cells, as a prototype of mul-
tiple descendent lineages, possess mechano-
sensory machinery to translate mechanical
signals into biochemical responses. Further-
more, cells adapt and respond to physical
forces by remodeling their internal physical
structures to regulate interactions with the
external physical environment. Application of
mechanical force initiates signaling cascades at
the plasma membrane leading to the genera-
tion and remodeling of filamentous actin
stress fibers, which enhance the cell’s ability

to perceive and transmit mechanical force
intracellularly [3].

For bone marrow mesenchymal stem cells
(MSCs), a more structured cytoskeleton leads
to differentiation into lineages making up tis-
sues with greater mechanical competence (i.e.,
bone, cartilage). It is important to note that
MSCs form heterogeneous populations, distrib-
uted along a dynamic differentiation spectrum.
While the question of whether the contribu-
tion of MSCs to different lineages stem from
direct fate switching or a modular responsive-
ness of different subpopulations remains unre-
solved, it is reasonable to expect that up until
some point the fate of MSC populations
remain plastic, rendering them susceptible to
incoming mechanical signals [4]. In this way,
both “outside-in” and “inside-out” force
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signaling determine MSC lineage fate. In the former, the stiff-
ness of the substrate [5], or application of external mechani-
cal force [6], induces intracellular effects. In inside-out
signaling, scaffolding of intracellular proteins reinforces
integrin-based attachments [7].

At the interface between the basal substrate and adjacent
cells, the plasma membrane uses specific structural proteins
to transduce force into biochemical signals. These structural
proteins gather together to form focal adhesions (FAs), which
span the cell membrane and connect the extracellular matrix
to the actin cytoskeleton. FAs also serve as hubs for signaling
molecules to congregate, where the combination of force
transmission and signal transduction result in further cytos-
keletal remodeling [8]. Recent work also identifies the
nucleus, and its membrane, as mechanosensory organelles,
where anchoring to the cytoskeleton via the LINC (Linker of
Nucleoskeleton and Cytoskeleton) complex enables transmis-
sion of mechanical force between the nucleus, the cytoskele-
ton outward to the external microenvironment [9]. In this
way, mechanical signals have the potential to further regulate
connections between the nucleus and the cell cytoskeleton,
generating another level whereby mechanical input can con-
trol cell behavior. Thus, while it has become accepted that
genetic elements within the nucleus respond to mechanical
challenges indirectly through their transduction into interme-
diary biochemical cascades [1], it has only recently been con-
sidered that applied forces might also directly alter
chromosomal conformations, thus influencing the accessibility
of genetic information for binding of transcriptional enhancers
or repressors [10].

As mechanical signals are critical for directing cellular
responses, dysfunction of the mechanosensory machinery can
lead to disease. One such example at the level of nuclear
force control is Hutchinson-Gilford progeria syndrome, which
manifests symptoms of aging at a very early age. This condi-
tion arises due to due a mutation in Lamin A/C, a structural
protein at the inner nuclear membrane [11]. Thus, unlike dis-
eases of “accelerated aging” including Werner syndrome,
which are caused by defective DNA repair, this “laminopathy”
results from inadequate mechanical support and abnormal
nuclear structure [12]. Thus, the structural relationship of
Lamin A/C and other nuclear membrane scaffolding proteins
represents an interesting target to combat the degenerative
effects of conditions associated with disuse and aging, espe-
cially since the structural relationship of these nuclear mem-
brane scaffolds affects the accessibility and action of
transcriptional regulators.

In this manuscript we focus on the example of the influ-
ence of mechanical force on bone marrow MSC differentia-
tion, especially as it relates to the balance of bone and fat
formation. Stem cells in other tissues, subject to unique
mechanical environments, will have variations on this theme.
The consequences of reduced mechanical loading on bone
marrow MSC lineage allocation will be discussed, as will the
role of various mechanosensory elements, with an emphasis
on the contrasting role of force transduction at the plasma
membrane with that at the nuclear envelope. Additionally, we
will consider the role of mechanobiology in human disease
and explore how disrupted mechanocoupling at differing sub-
cellular locations can lead to pathology.

CELLULAR ARCHITECTURE INFLUENCES MSC DIFFERENTIATION

MSCs are abundantly found within the bone marrow and adi-
pose depots and have the ability to develop into mesenchy-
mal tissues including bone, cartilage, fat, and muscle [13].
MSC lineage fate is strongly dependent upon the context of
the physical environment, both topographical and mechanical
qualities of the surrounding matrix, as well as the dynamic
mechanical environment modulate the allocation of MSCs [1].

Cellular structure is largely determined by its cytoskeleton,
which is a dynamic structure primarily composed of three
types of proteins: microfilaments (actin), microtubules (tubu-
lin), and intermediate filaments [14]. While actin fibers and
microtubules are made up of one type of monomer (actin
and tubulin, respectively), intermediate filaments have a wide
variety of different monomers that form the larger filamen-
tous structures. Hundreds of other proteins associate with the
cytoskeleton including crosslinkers, molecular motors, and sig-
naling effectors. Cytoskeletal fibers, especially actin filaments,
are acutely sensitive to both chemical and physical modula-
tion. For instance, application of mechanical force enables
globular actin monomers (G-actin) to aggregate and form
structured filamentous fibers (F-actin). Formation of actin
fibers, from monomers, is controlled in large part by Rho
GTPases including RhoA, where exchange of GTP induces acti-
vation of RhoA, leading to actin stress fiber polymerization
[15]. Thus, the structure of the cytoskeleton is extremely
dynamic, enabling modification of cellular shape, intracellular
signaling events, and thus cellular behavior and phenotype.

Mechanically, cell structure undergoes a continual balance
of inner and outer forces which allow cellular components to
experience both compression and tension, a process summed
in the concept of tensegrity [16]. The tensegrity structure acts
as a global sensory mechanism for mechanical cues, allowing
for rapid structural responses to static and dynamic mechani-
cal loads [17]. Such structural responses are mediated through
the actin cytoskeleton, where FA connections facilitate the
tensegrity balance, connecting the inner cytoskeleton with the
matrix outside the cell.

Early studies showed that increased matrix stiffness
enhanced the size of FA sites in fibroblasts, while softer sub-
strates resulted in smaller, more mobile FAs [18]. As FAs are
the physical “bridge” between the actin cytoskeleton and the
extracellular matrix (Fig. 1), these studies highlight the ability
of the matrix to signal internally, resulting in adaptation to
the mechanical forces. Additional work using MSCs demon-
strated that confining cell adhesion by plating cells on prede-
termined fibronectin substrate islands was able to control
subsequent cell shape and the level of actomyosin contractil-
ity by regulating RhoA/ROCK signaling [19]. MSCs forced to
attach on smaller fibronectin islands assumed a rounder
shape, consistent with decreased cell stiffness, and showed
increased adipogenic differentiation. In contrast, attachment
to larger island areas resulted in greater cell spreading,
increased RhoA/ROCK activity, and favored osteogenic lineage.
Similarly, matrix elasticity regulates the internal cell tension
and differentiation of MSCs. Soft substrates (0.1–10 kPa)
induce neuronal and adipogenic differentiation [20, 21], while
substrates with stiffness comparable to muscle tissue (�10–
17 kPa) supports allocation to myocytes [22]. Even stiffer sub-
strates (>25 kPa), akin to hard bone surfaces, promote
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osteogenic differentiation [23]. These studies highlight the
influence of RhoA/ROCK pathway on cellular architecture, con-
firming that cellular tension generated by an enhanced cyto-
skeleton informs MSC lineage fate.

How might cellular architecture regulate lineage decisions?
We are now learning that changes in cytoskeletal architecture
not only modulate the physical qualities of the cell but also
direct the reconfiguration of the mechanosensory signaling
mechanisms within the cells. Yorkie-homologues YAP (Yes-
associated protein) and TAZ (transcriptional coactivator with
PDZ-binding motif) are examples of transcription factors that
regulate MSC proliferation and differentiation [24] in response
to mechanical cues [25]. Impaired YAP/TAZ activity was found
when MSCs grown on softer matrices and following disruption
of the actin cytoskeleton, by blocking RhoA activity [25].
These data indicate that MSC fate selection toward osteogenic
or adipogenic lineages is modulated by YAP/TAZ, whose activ-
ity is modulated by both the mechanical properties of the
extracellular matrix and the stiffness of the internal actin
cytoskeleton. Furthermore, knockdown of YAP/TAZ resulted in
loss of mechanical regulation of MSC differentiation, where
depletion of YAP/TAZ not only inhibited osteoblastic differen-
tiation but also promoted adipogenesis [26]. Similarly, adding
adipogenic differentiation media down regulated RhoA/ROCK
activity, leading to an increased monomeric G-actin to poly-
merized filamentous-actin (F-actin) ratio. This relative increase
in monomeric actin is presumably the result of depolymeriza-

tion of F-actin, which indirectly results in export of the tran-
scriptional coactivator MKL1 (megakaryoblastic leukemia 1,
MAL) from the nuclear compartment [27]. Furthermore, the
increase in cytoplasmic G-actin traps MKL1 outside the
nucleus, releasing peroxisome proliferator-activated receptor
gamma (PPARg) repression, with consequent stimulation of
adipogenic pathways. Actin dynamics also regulate the activity
of the serum response factor (SRF), allowing this molecule to
shuttle into the nucleus [28] where it interacts with MKL1,
whose function is specifically dependent on intranuclear actin
polymerization [29]. While F-actin assembly within the nucleus
controls MKL1 function, the responses of F-actin structures to
chemical (i.e., serum) and physical (i.e., integrin engagement)
stimuli remain poorly understood [30].

To further highlight the importance of actin dynamics to
MSC fate, Sen and colleagues recently used cytochalasin D, a
mycotoxin that depolymerizes filamentous actin struts (F-
actin) into globular-actin (G-actin) monomers. Reducing actin
fibers to their monomeric components resulted in mass
import of actin into the nucleus, and once inside the nucleus,
actin monomers facilitated export of YAP, which normally sup-
presses Runt-related transcription factor 2 (Runx2) activity.
The release of Runx2 repression contributes to accelerated
osteogenesis [31]. These data suggest that the idea that F-
actin depolymerization leads to adipogenesis, a dogmatic view
in the field of MSC biology, should be amended. While forma-
tion of F-actin stress fibers pushes MSCs toward the osteo-
genic lineage by increasing the internal physical tension, full
depolymerization of actin polymers leads to translocation of
actin monomers into the nucleus. Localization of G-actin in
the nucleus promotes osteogenic gene transcription, perhaps
representing a secondary level of actin structural control
within the nucleus itself. Importantly, injection of cytochalasin
D into the tibial marrow space of live mice results in abun-
dant bone formation [31]. Thus, both the structural filamen-
tous actin fibers and the monomeric G-actin components
have critical roles in regulating MSC lineage allocation, and
their location in the cytoplasm or within the nucleus might
provide differential control of transcriptional processes.

MECHANICAL FORCE TRANSMISSION AT THE PLASMA MEMBRANE

There are a variety of different mechanosensory structures
capable of conveying mechanical information across the cell
membrane including changes in lipid microdomains [32], G-
protein coupled receptors [33], mechanosensitive ion channels
[34, 35], and FA-based integrin attachments [36]. Integrins are
perhaps the most widely recognized membrane-associated
mechanosensory molecules. These heterodimeric molecules
span the plasma membrane and use linker proteins, including
talin [37] and vinculin [38], to attach to the internal actin
cytoskeleton. Externally, connection of the actin stress fibers
to the extracellular matrix (ECM) enables a functional attach-
ment through which force can be distributed across the cell
membrane to the matrix substrate (Fig. 1).

The physical attributes (i.e., stiffness, topography, and so
on) of the ECM and the type of mechanical signals incurred
(i.e., strain, fluid shear stress, and so on) influence integrin-
mediated force transmission. A stiffer substrate induces osteo-
genic differentiation; whereas, a less stiff substrate leads to

Figure 1. Force transmission across the plasma membrane uses
membrane-spanning integrins, which connect to the actin cytoskel-
eton via talin and paxillin linker molecules. These focal adhesion
sites also serve as signaling hubs for mechanosensitive kinases
such as Fyn and FAK, which restrict mesenchymal stem cell
adipogenesis by activating Akt which both enhances b-catenin
availability and increases RhoA-mediated cytoskeletal assembly.
Abbreviations: FAK, focal adhesion kinase; GSK3b, glycogen syn-
thase kinase 3 beta; mTORC2, mammalian target of rapamycin 2.
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adipogenic lineage fate [5]. Similar changes in MSC differen-
tiation can be achieved by applying dynamic mechanical
loads. Externally applied substrate strain leads to an increase
in FA formation and maturity of bone marrow MSCs [3]. The
increase in matrix attachment contact points is not only corre-
lated with increased actin stress fiber formation but also influ-
ences intracellular signaling. Interestingly, MSCs exposed to a
20-minute bout of mechanical strain (200 cycles at 2% defor-
mation) resulted in a greater reduction of adipogenic commit-
ment than 3,400 continuous strain cycles under the same
deformation parameters [6]. Furthermore, providing a second
bout of strain, following a 3-hour rest period, induced greater
activation of antiadipogenic signals, suggesting that the initial
application of force induces a priming effect, whereby intra-
cellular signals are then positioned to react to the subsequent
mechanical challenge.

The ability of mechanical signaling pathways to be ampli-
fied, depending on the timing of the mechanical regimen, dem-
onstrates that FAs serve as signaling platforms. As such, applied
forces induce recruitment of signaling effectors to FAs, where
they are positioned to acutely respond to the next loading
event (Fig. 2). It has been well-recognized that FAs serve as sig-
naling hubs in many cell types, with molecules such as the Src
family tyrosine kinases, extracellular signal-regulated-kinase
(ERK), and focal adhesion kinase (FAK) functioning in association
with FAs [39]. Following application of mechanical force, FAK is
one of the first signals to arrive at the maturing FA, which is
soon followed by Src. These kinases then induce activation of
downstream signals including the growth-factor-receptor-bound
protein 2 adaptor protein, Ras, and ERK [40].

In bone marrow MSCs, integrin-initiated signals are the
genesis of a cascade that restricts adipogenic lineage fate in
response to mechanical force. While some of the molecular
mechanisms are conserved in the multiple cell types, MSCs
appear to use several unique signaling mechanisms to respond
to mechanical challenges. For example, mechanical activation
of Src and FAK occur readily in fibroblasts [39]; however, in
place of Src, MSCs recruit the Src-family member Fyn to FAs.
Once located in the FA complex, Src and FAK cooperate to
induce Akt phosphorylation at serine 473 (S473) via mamma-
lian target of rapamycin 2 (mTORC2) [41]. ERK1/2 activation is
another mechanically activated pathway in fibroblasts [39].
Some studies suggest that ERK signaling is important for
mechanical control of MSC differentiation, by activating the
osteogenic transcription factor Runx2 [42], while others indi-
cate that ERK1/2 signaling is not involved in force-induced MSC

lineage fate decisions that prevent adipogenesis [41]. These
contrasting results may be due to different types of force
applied to the cells or simply convey the idea that there are
multiple signaling pathways emanating from the FA complexes
that are arbitrarily measured in response to time or input.

Mechanical activation of mTORC2, by Fyn and FAK, results
in adipogenic repression of MSCs by acting through two dis-
tinct, but complementary pathways, one altering transcrip-
tional regulation of adipogenic genes, while the other
enhances cytoskeletal structure resulting in a more rigid cell.
In both cases, recruitment of Fyn and FAK to FAs results in
activation of mTORC2, which in turn phosphorylates Akt at
S473 [41, 43]. To regulate gene expression, Akt phosphoryl-
ates glycogen synthase kinase 3 beta (GSK3b) at serine-9,
resulting in GSK3b inactivation thus preventing proteasomal
degradation of b-catenin (Fig. 1). Nuclear translocation of b-
catenin then presumably enables transcriptional modification
of lymphoid enhancer-binding factor (LEF) and T-cell specific,
HMG-box (TCF) targeted transcription factors, or by directly
repressing PPARg activity, resulting in downregulation of adi-
pogenic genes [44].

While control of b-catenin activity directly regulates adi-
pogenic gene expression, mechanical activation of mTORC2
also impacts MSC lineage by enhancing formation of actin
stress fibers. Similar to the way that a stiff substrate drives
MSCs toward osteogenesis, by altering the physical environ-
ment of the cell, mechanical strain generates enhanced inter-
nal tension by formation of a filamentous actin network.
Assembly of these actin fibers requires activity of RhoA, a
GTPase that is acutely responsive to mechanical force. In
MSCs, RhoA activation occurs after less than 100 cycles of 2%
membrane deformation, followed by stress fiber assembly [3].
Applied substrate force is sensed at FA interfaces, where Fyn
and FAK are recruited to the existing FA complex. Similar to
the pathway resulting in preservation of b-catenin, Fyn acti-
vates mTORC2, resulting in Akt phosphorylation [41]. Recent
work has shown that RhoA requires mechanically activated
Akt to induce cytoskeletal remodeling and restrict entry of
MSCs into the adipogenic lineage [41]. Thus, mechanical force
leads to antiadipogenic pathways that begin at the FA and
diverge to regulate both nuclear b-catenin localization and
formation of actin stress fibers, through RhoA (Fig. 1).

While integrin-mediated attachments at FAs are a primary
site of signal initiation to direct mechanical control of MSC
fate, primary cilia provide another unique mechanosensory
apparatus capable of influencing MSC differentiation. Each cell

Figure 2. Substrate strain (2%, 100 cycles) induces cytoskeletal reorganization with a fivefold increase in focal adhesions (vinculin, red)
and F-actin (green). Scale bars5 25 lm.
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contains only one cilium, a nonmotile microtubule-based
organelle emerging from the distal centriole of the centro-
some of many mammalian cells [45]. In contrast to the
numerous and continually remodeling FAs needed to convey
mechanical force to the cell, only a single hair-like cilia struc-
ture is required to induce biological responses. A compelling
body of literature has shown that these structures mediate
critical mechanosensory effects in various types of bone cells
[46], including mesenchymal bone progenitors [47]. Knock-
down of proteins that form the primary cilium in human
MSCs results in repression of both Runx2 and PPARg expres-
sion, suggesting that primary cilia also regulate osteogenic
and adipogenic differentiation [48]. Additional work has
recently shown that MSCs lacking primary cilia are deficient in
several mechanosensory responses [49].

NUCLEUS AS A FORCE-RESPONSIVE ORGANELLE

The nucleus is poised to recognize physical signals from the
environment as it is mechanically integrated into the cell
structure through proteins that span the nuclear envelope
enabling connections between intranuclear structures and the
intracellular cytoskeleton. These nuclear to cytoplasmic con-
nections not only provide spatial and structural integrity but
also serve to transfer mechanical force across the nuclear
envelope [50]. It is likely that the nucleoskeleton, and tension
associated externally and internally, alter the structure of
chromatin interfaces with the inner nuclear envelope and
influence gene expression.

Lamin A/C scaffolding proteins inside the nuclear envelope
are mechanically coupled to the cytoplasmic cytoskeletal ele-
ments via LINC complex proteins. A key LINC protein group
providing actin connectivity are the actin-binding giant
Nesprin isoforms of the spectrin repeat protein that spans the
nuclear envelope. By using N and C terminal domains located
at opposite ends of the protein, Nesprin attaches to actin
fibers located in the cytoplasm via the calponin homology
domain at the N-termini [51, 52] while the Klarsicht, ANC-1,
Syne Homology domain at the C-termini binds to SUN pro-
teins on the inner nuclear leaflet [53]. As such, Nesprin is
part of a structural scaffold that connects the nucleus to the
actin cytoskeleton providing a continuous connection that per-
ceives and adapts to mechanical challenges [54, 55]. The abil-
ity of force to be transferred between actin fibers and the
nucleus is evidenced by the development of organized struc-
tures, called transmembrane actin-associated nuclear lines
[56] (also called the “actin cap”), which develop when cytos-
keletal stress is increased [57]. Such nucleo-cytoskeletal con-
nectivity not only provides a framework by which the nucleus
is attached to the cytoskeleton but also the connectivity can
itself adapt. As such, forces applied to the nucleus via the
cytoskeleton will recruit LINC complex proteins and Lamin A/C
to specific locales under stress fibers that press on the
nuclear envelope [58]. The local accumulation of LINC proteins
in response to local forces along the nuclear membrane is
analogous to the dynamic maturation and proliferation of FAs
on the plasma membrane in response to mechanical input at
substrate attachment sites. Interestingly, the nuclear envelope,
and by extension LINC complexes at the nuclear envelope,
have been implicated as nucleation points for actin polymer-

ization at the cytoplasmic side of the nucleus [59]. This sug-
gests that, just like FAs, initiation of actin polymerization at
the nuclear envelope can attract other scaffolding proteins
such as a-actinin [60] and zyxin [61]. This leads us to propose
that LINC complexes are the nuclear equivalent of FAs. While
force induces recruitment of proteins including talin, paxillin,
and vinculin to form FAs at the plasma membrane, mechani-
cal force similarly recruits Nesprin, SUN, and lamin proteins to
create focal contacts at the nuclear membrane. As such, focal
attachments, associated with the nuclear envelope play a
direct mechanosensory role by enabling the transmission of
externally or internally generated mechanical signals between
nucleus and the actin cytoskeleton [54, 62, 63]. At this junc-
ture, LINC complexes are being recognized for their contribu-
tion to the mechanosensory function of cells [64, 65]—
including the sensation of sound [66] and mechanical vibra-
tions [63]—but the mechanisms by which they regulate line-
age allocation of MSCs remains unclear.

How might the changes in nuclear structure and connec-
tivity modulate MSC mechanoresponses and differentiation?
Recent evidence suggests that, similar to ECM stiffness, appli-
cation of substrate strain increases the nuclear translocation
of YAP [67]. This response is dependent on the level of cytos-
keletal prestress and nuclear deformation but critically
requires the structural connection between Nesprin-1 and
actin; depletion of Nesprin results in greatly diminished
nuclear YAP translocation [68]. These data suggest that
nuclear transport of YAP requires Nesprin-mediated connec-
tions to the cytoskeleton, and this response is dependent on
mechanical force. Other nuclear transport processes have
been linked to Nesprin including that of b-catenin [69].

Another way in which mechanical force might regulate
MSC fate via nuclear envelope connections is through LINC
attachment to the inner nuclear Lamin A/C network. Lamin A/
C binds to SUN proteins forming a scaffold on the inner leaf-
let of the nucleus [70]. In support of the role of LINC/nucleos-
keleton control, adipogenic differentiation is associated with a
decrease in Lamin A/C expression [71], and both partial or
complete deletion of Lamin A/C accelerates adipogenic differ-
entiation in MSCs [72–74]. In contrast, osteogenic differentia-
tion leads to increased Lamin A/C expression [75], a change
consistent with the increased cellular stiffness of osteoblasts
[76, 77]. Additionally, overexpression of Lamin A/C promotes
osteogenic differentiation [78]. These observations support
the idea that Lamin A/C is associated with MSC lineage deci-
sions, but it remains unclear whether the changes in Lamin
A/C are the cause or effect of differentiation. As cells defi-
cient in Lamin A/C and LINC complex proteins are more sus-
ceptible to mechanical damage [23, 79], it is intriguing to
postulate that MSCs require full function of these structural
proteins to properly respond to physiological forces and adapt
to a changing mechanical microenvironment.

Direct evidence for LINC-mediated force transmission and
regulation of nuclear stiffness has been demonstrated recently
by Guilluy et al. [80], where Nesprin-bound bead motion by
magnetic force caused stiffening of an isolated nucleus
through phosphorylation of the LINC binding partner Emerin
in a Src and Lamin A/C-dependent manner. This suggests that
mechanical signals directly modulate the nucleoskeletal struc-
ture and in turn might influence MSC lineage fate. Recent
work completed using multiple cell lines, demonstrated that
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Lamin A/C polarization within the nucleus is controlled by
cytoskeletal force, and depletion of cytoskeletal tension dis-
rupted this Lamin A/C polarization [81]. Conversely, deletion
or mutation of Lamin A/C alters mechanical actin dynamics
and interferes with MKL1-mediated SRF activity [82]. Interest-
ingly, MKL1 nuclear localization in Lamin A/C deficient cells
was primarily dependent on the localization of Emerin at the
nuclear envelope rather than on LINC-mediated nucleo-cytos-
keletal connectivity [82]. This suggests that Emerin might also
affect intranuclear actin dynamics to regulate MKL1 localiza-
tion and functionality [83].

Consistent with the hypothesis that force can rearrange
nucleoskeletal structure to modulate MSC fate, our lab and
others, have shown that repeated application of mechanical
input, such as substrate strain or high frequency vibration,
sensitizes the cell to subsequent mechanical stimuli [84, 85].
As discussed above, this increased sensitivity to very low
intensity mechanical signals is in part due to augmentation of
FAs and RhoA signaling [3, 41]. Furthermore, increased RhoA
activity has been correlated to enhanced force transfer into
the nucleus [86]. Additional evidence demonstrates that the
physical connections between the nucleus and cytoskeleton
are capable of altering the structure and position of nuclear
proteins. Recent findings show that the dynamic force applica-
tion upon integrins, via substrate strain, directly controls the
displacements of coilin and SMN proteins in Cajal bodies
within the nucleus. Displacement of these proteins within the
Cajal body nuclear suborganelles was directly proportional to
the magnitude of the strain and was dependent on both
cytoskeletal stress and the presence of Lamin A/C [87]. These
findings support the idea that the nucleus participates directly
in sensing forces from outside the cell. Thus it is likely that
LINC-mediated mechanical coupling, between the nucleus and
the cytoskeleton, impacts nuclear structure and function. In
fact, we have shown that the LINC complex acts as a primary
mechanosensory element that senses and initiates signaling in
response to low intensity vibration, while substrate strain can
initiate signaling independently of LINC connectivity [88]. As
such, both low and high intensity mechanical forces, through
the tensegrity continuum, are eventually transferred through-
out the cell. With this in mind, it will be important to con-
sider that alterations in nuclear-cytoskeletal connections may
contribute to the decreased perception of mechanical input
associated with aging, microgravity, or other musculoskeletal
conditions. As such, a loss in LINC complex-dependent mecha-
nosensitivity might even contribute to reported failure of
musculoskeletal tissues by limiting the accessible spectrum of
mechanical information.

DYSFUNCTIONAL MECHANOBIOLOGY

The nuclear envelope has been termed “the most important
border in the eukaryotic cell” [75]. Mutations involving Lamin
A/C, LINC complex proteins, and their binding partners are
associated with a variety of musculoskeletal conditions,
including Hutchinson-Gilford progeria [89], Emery-Dreifuss
muscular dystrophy [90], and dilated cardiomyopathy [91].
Nuclear envelopathies in humans and mice are characterized
by failure of mechanoresponsive tissues, including bone, skel-
etal muscle, and heart; all tissues of mesenchymal origin.

Transgenic mice with alterations in Lamin A have progeria
with cardiomyopathy and sarcopenia, exhibit low bone mass,
and have increased bone marrow adiposity [74]. Our group
previously established that mechanical activation of b-catenin
preserves MSC multipotentiality [92] and daily mechanical
input effectively counteracts adipogenic stimuli, disrupting adi-
pogenesis of MSCs [93, 94]. MSC lineage allocation, as noted
above, is strongly influenced by nucleoskeletal structure and
LINC function. The contribution of LINC complexes may be in
regulating b-catenin compartmentalization, as nuclear translo-
cation of b-catenin first requires binding to Nesprin on the
outer nuclear membrane [69]. Indeed, limiting LINC function
leads to accelerated MSC adipogenesis [88], a phenotype sug-
gested in lamin A-deficient mice, which have musculoskeletal
defects, fatty infiltration in the bone marrow, along with
decreased b-catenin signaling [90]. In contrast, Emerin,
another binding partner of the LINC complex [95], controls
nuclear export of b-catenin; depletion of Emerin preserves
nuclear b-catenin, thus limiting MSC adipogenesis [96].
Although the exact mechanisms through which LINC com-
plexes control intracellular b-catenin compartmentalization
remain poorly understood, it is known that b-catenin requires
direct contact with the nuclear pore complex (NPC) for entry
into the nucleus [97]. Furthermore, disruption of the nuclear
pore protein, Nucleoporin 358 (Nup358), results in suppres-
sion of rapid nuclear b-catenin import [98]. As Nesprin forms
a tight association with bcatenin [69], it is interesting to spec-
ulate that Nesprin, or other LINC proteins, interact with the
NPC to regulate bcatenin availability and therein, MSC fate
decisions (Fig. 3).

Dysregulation of Lamin A/C and the LINC complex each
play an important role in aging. During the aging process, the
Lamin A/C network is diminished [75] and mutated forms of
Lamin A/C arise more frequently [99]. Mutations in Lamin A/C
are detrimental to the formation and maintenance of LINC/
nucleoskeleton connections [100] and may contribute to age-

Figure 3. Model of LINC (Linker of Nucleoskeleton and Cytoskel-
eton)-mediated b-catenin availability in the vicinity of NPC. F-
actin cytoskeleton associates with the calponin domain of
Nesprin, which connects to Sun proteins through the KASH
domain. Sun 1 and 2 link to the inner nuclear LaminA/C cytoskel-
eton. Known association between Nesprin and b-catenin may
increase access of b-catenin to Nucleoporin Nup358, which facili-
tates nuclear import of b-catenin. Abbreviation: NPC, nuclear
pore complex.
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related cell senescence [101]. In mice, aging not only results
in decreased Lamin A/C expression [102] but partial knock-
down of lamin A/C (Lmna1/2) is associated with increased fat
infiltration as well as impaired bone and muscle function [73].
Importantly, Lamin A/C mutant mice do not form bone in
response to exercise, but instead lose bone, resulting in frac-
tures [103].This suggests that physical connections between
the cell cytoskeleton and the nucleus are important in MSC
differentiation and are critical for mechanical competence of
the cell. As such, one might propose that failure of musculo-
skeletal tissues during aging reflects an insufficient MSC
response to the experienced mechanical environment; that is,
an inability of MSCs to repair and reorganize those tissues
subject to mechanical stress.

CONCLUSION

In the last decade considerable progress has been made in
identifying the mechanisms by which cells sense and respond
to both static and dynamic mechanical cues by initiating sig-
naling events and remodeling cellular architecture. Mechani-
cally induced structural changes modulate transmission of
force within cells. Moreover, sensation of the mechanical
qualities of the environment is critical in directing cellular
function and, in the case of MSCs, regulating lineage selec-
tion. In this way, cells maintain a continuous flow of informa-
tion—both mechanical and biochemical—between the
nucleus, the cytoskeleton, and the outside environment. The
importance of the physical connections between the nucleus
and the cellular cytoskeleton have become increasingly appa-
rent in recent years, especially in light of the propensity for
disease accompanying the loss of structures such as Nesprin
or the Lamin A/C network. As stem cells rely on mechanical
cues from the environment to reorganize their structure and
associated signaling mechanisms, it would be logical to expect
the nucleus, as an adaptive and dynamic organelle, to partici-
pate in similar events including b-catenin, YAP, and MKL1-SRF
signaling. To this end, future studies should consider the
nuclear envelope and LINC complexes as an integral part of
the cellular mechanosensory mechanisms that regulate bio-

chemical and physical coupling of the cell to its physical
environment.

As both tissues, and the cells that comprise them, adapt
to mechanical challenges, the type of mechanical input will
dictate the adaptive cytoskeletal architecture and associated
signaling responses. While there remain numerous challenges
within the field, such as understanding the intricate manner
in which mechanical signals interact with hormones or phar-
macological interventions, mechanical input has the potential
to regulate cell and tissue functions in both healthy and dis-
eased states. As such, these and future studies will provide
insight into how mechanical force guides growth and repair of
skeletal tissues. Many questions remain including why aged
cells may be resistant to physical signals, how force can be
integrated into tissue engineering applications, and which
exercise regimens provide optimal responses for specific dis-
ease states. In summary, it is critical that both scientists and
clinicians understand the potential of mechanical forces to
alter cellular and tissue response, with the ultimate goal of
harnessing these signals for the repair and regeneration of
injured or diseased tissues.
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