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Synopsis

Stem cell transplantation (SCT) is an established first-line or adjunctive therapy for a variety of 

neonatal and adult diseases. New evidence in preclinical models as well as a small number of 

human studies show the potential utility of SCT in neuroprotection and in the modulation of 

inflammatory injury in at risk-neonates. In this review we briefly summarize current 

understanding of human stem cell biology during ontogeny and present recent evidence supporting 

SCT as a viable approach for post-insult neonatal injury.
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Introduction

Stem cell transplantation (SCT) is an established first-line or adjunctive therapy for a variety 

of neonatal diseases, including those involving inborn errors of metabolism, types of 

primary immune deficiencies, certain neutrophil disorders, and hematologic malignancies 

such as neonatal leukemia. The utility of SCT in these and related conditions have been 

extensively discussed in the literature, and are beyond the scope of the present review1–6. 

We here briefly summarize current understanding of human stem cell biology during 

ontogeny and present recent evidence of the potential role of SCT for the treatment of post-

insult neonatal injury.
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Stem Cell Biology: A Brief Review

Stem cell theory: Pluripotent stem cells and tissue specific somatic stem cells

Two main types of stem cells have been described: Pluripotent stem cells (PSCs) and 

somatic stem cells. The PSCs are multipotent stem cells that can differentiate into all cell 

types in the body and include embryonic stem cells (ESCs) and inducible pluripotent stem 

cells (iPSCs). Tissue specific somatic stem cells give rise to organ-specific cell types. 

Embryonic stem cells (ESCs) are first established from the inner cell mass of the blastocysts 

in a fertilized egg7–9. In vitro studies have shown that cultured ESCs display self-renewal 

ability and have the capacity for multi-lineage differentiation. ESCs can differentiate into 

cell types that include all three germ layers, and in vivo studies have shown that ESCs can 

form teratomas when inoculated into immune deficient mice. Murine studies have shown 

that when a fertilized egg is injected with ESCs and implanted into a pseudo-pregnant dam, 

ESC-derived cells contribute to all embryonic cell types, forming a chimeric animal. The 

multi-lineage differentiation ability of ESCs both in vivo and in vitro highlights their 

potential utility for stem cell therapies (SCT). However, this therapeutic potential is 

accompanied by ethical problems since ESCs can be derived only from fertilized eggs.

More recently, embryonic stem (ES)-like pluripotent stem cells have been established from 

postnatal mouse testis and adult mouse/human somatic cells following the introduction of 

“stemness genes” such as Oct4, c-myc, Sox2, and Klf410–12. These ‘inducible pluripotent 

stem cells’ (iPSC) overcome the ethical problems associated with ESCs; thus, iPSC biology 

and its possibilities for clinical applications have been the focus of intensive research. 

However, although mESC/iPSC have been shown to differentiate into somatic stem cells in 

vivo in chimeric animals, the induction of tissue-specific somatic stem cells from iPS cells 

remains a challenging problem. One primary reason for this is the difficulty in maintaining 

iPS-derived stem cells in cell lineages that require rapid cell cycling of their progenitors to 

maintain cellular homeostasis (such as in the blood, skin, and skeletal muscles). Thus, the 

use of iPSC to produce functional progenitor cells, or even mature cells, may be most 

successful when cellular targets have relatively slow intrinsic cycling rates and thus do not 

require rapid somatic cellular replacement. Recent major advances in iPS-derived cell 

therapy have been reported in a non-human primate spinal injury model and in a clinical trial 

of iPS-derived retinal pigment epithelium replacement13;14.

According to currently accepted stem cell theory, each tissue in the body is maintained by 

tissue-specific stem cells with the capacity for self-renewal and specific lineage 

differentiation. During embryonic organogenesis, stem cells differentiate into lineage cells 

that form specific tissues. These stem cells are maintained in the tissues even during 

adulthood: for example, cell types such as hair, skin, melanocytes, blood, muscle, intestinal 

epithelium, and sperm are continuously regenerated by tissue specific stem/progenitor cells. 

Although the healthy liver does not typically undergo tissue regeneration, if damaged the 

liver becomes a regenerative organ. Stem/progenitor cells, which have been identified in 

every tissue/organ, reside in a special microenvironment, called a niche, which facilitates the 

maintenance of self-renewal capacity. Although the brain and nervous system were not 

previously considered to have regenerative abilities, recent studies have identified stem/
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progenitor cells and their niches even in adult animals15–17. These cells may play a role in 

the maintenance of tissue homeostasis and can acquire the ability to produce lineage-specific 

cells for tissue regeneration following injury.

Recent technological advances have facilitated the identification, isolation, and purification 

of human somatic stem cells. The hematopoietic stem cell (HSC), the first stem cell to be 

experimentally proven in humans, resides in the bone marrow and is thus readily accessible 

for clinical purposes. Blood stem/progenitor cells have a homing ability that enables their 

migration to and engraftment in the bone marrow of the recipient when administered 

intravenously, without the need for surgical “implanting” procedures. HSC transplantation 

has been successfully performed to treat a wide spectrum of hematopoietic disorders and 

malignancies.

The hematopoietic system is the best in vivo example of the somatic stem cell theory. Post-

transplantation bioassays have defined HSCs and confirmed their self-renewal and multi-

lineage blood cell differentiation capacities. Long term (LT-) HSCs exhibit prolonged 

engraftment in recipient BM (more than 4 months in mice, 4–8 months in humans) and are 

secondary transplantable. LT-HSCs sit at the apex of the hematopoietic hierarchy system 

(Figure) and give rise to short term (ST)- HSCs, or multipotent progenitor cells (MPP), that 

engraft recipient BM for less than 4 months. ST-HSCs/MPPs differentiate into lymphoid-

primed progenitor cells (LMPP) and common myeloid progenitor cells (CMP) in mice, or 

multilymphoid progenitors (MLPs) and CMP in humans. Murine LMPPs and human MLPs 

are primarily lymphoid progenitors that produce B and T cells but still retain myeloid 

potential. The more lineage-specific CMPs give rise to erythrocyte, megakaryocytes, 

granulocytes, monocytes/macrophages, and dendritic cells. Thus, HSCs produce a wide 

variety of blood cells and are maintained by self-renewal mechanisms within the 

hematopoietic BM niche.

Since the discovery of HSCs in umbilical cord blood (CB) and the first successful CB 

transplantation in a patient with Fanconi anemia in 1989, CB has been widely used for HSC 

transplantation in addition to BM or mobilized peripheral blood (PB) HSCs18–20. In this 

chapter, we will describe the development of HSCs in in the human embryo/fetus and other 

stem/progenitor cells found in CB. We will also discuss ongoing and possible clinical 

applications utilizing CB and related stem cells.

Hematopoietic Stem Cells

Human Embryonic HSC Development in Mice and Humans

The first HSCs are produced during embryogenesis, but are also found in the adult BM 

niche at steady state. Human cord blood contains proportionately greater numbers of 

circulating CD34+ HSCs than does the peripheral blood of adults21.

Developmental hematopoiesis has been well described in mice, an ideal model given a short 

(19-day) gestation.22. The first site of hematopoiesis, the extra-embryonic yolk sac (YS) at 

embryonic day (E) 7.5, consists of mainly large erythroid cells, called primitive 

erythrocytes23. Primitive erythrocytes express embryonic-type hemoglobin molecules and 
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have a large nucleus24. Erythroid progenitor cells that express adult type hemoglobin 

molecules are called definitive erythroid progenitor cells and are detected from E8.0 YS 

together with myeloid progenitors25. The progenitors of definitive erythroid cells and 

myeloid cells are called erythro-myeloid progenitors (EMPs) and are produced mainly in the 

YS during E8 to 1026. The first murine HSCs that can reconstitute lethally irradiated adult 

marrow by transplantation assay are detectable at E11 in the aorta-gonado-mesonephros 

(AGM) region27;28. These EMPs and HSCs are all derived from endothelial cells, called 

hemogenic endothelial cells (HECs)29–32. The transition from HECs to hematopoietic cells 

occurs between E7.5 to E11.533. HSCs produced by the HECs in the aortic area migrate into 

the fetal liver and placenta, where they subsequently undergo a massive expansion34–36. 

HSCs migrate into the spleen and bone marrow at the end of gestation, just before birth, and 

HSCs ultimately reside in the bone marrow niche to maintain hematopoiesis throughout the 

life.

Similarly, in humans, hematopoiesis is first observed in the YS as early as embryonic day 18 

(presomite stage)37. Primitive and definitive hematopoiesis are observed in the YS up to 7 

weeks of gestation and are gradually replaced by fetal liver hematopoiesis, which has been 

initiated by gestational day 3038;39. Hematopoietic clusters expressing CD34 and CD45 

have been observed in the ventral wall of the dorsal aorta beginning on day 2740–42. These 

clusters rapidly increase in size and can attain several hundreds of cells by day 36. The intra-

aortic CD34+ cells express important hematopoietic transcriptional factors including tal/

SCL, c-myb, and GATA2, as well as CD143 (angiotensin-converting enzyme), which is 

known to enrich HSC activity in CB CD34+ cells43;44. Studies have shown that NOD/SCID/

IL2Rγcnull (NSG) mice can be reconstituted with human HSC45, and active human colony 

forming activities are detectable in the recipient mouse bone marrow. The first human HSCs 

shown to reconstitute NSG mice for up to 8 months have been identified in the day 32 AGM 

region46. These AGM-derived HSC are detectable in the peripheral blood of recipient mice 

3 months post transplantation. Their numbers gradually increase over time, reaching up to 

90% of chimerism by 8 months following transplantation. Human AGM-derived cells also 

reconstitute secondary recipient mice and display self-renewal capacity (a key measure of 

stem cell function), generating at least 300 daughter HSCs46. HSC in the AGM region 

express CD34, CD45, VE-cadherin, c-kit, thy-1, and endoglin, but not CD3847. Since VE-

cadherin is an endothelial specific marker, these observations suggest that human HSCs are 

derived from HECs as has been observed in murine HSCs. Fetal liver HSCs are first 

detected on gestational day 42 and express CD34, CD45. VE-cadherin is also initially 

expressed on these HSCs, although this is lost after 10 weeks of gestation48.

Circulating CD34+ HSCs are found in both full term and preterm CB49;50. The proportions 

of CD34+ cells in preterm CB are generally higher than in full term CB, although the 

absolute numbers of CD34+ cells reported has been variable. While preterm CB CD34+ 

cells exhibit higher colony forming ability than full term CB CD34+ cells49, preterm CD34+ 

cells may have lower repopulating ability48. The ability of transplanted CD34+ cells to 

repopulate the bone marrow in patients with severe combined immune deficiency (SCID) 

has been shown to correlate with the expression level of CXCR4, a surface receptor 

involved in cellular migration, or homing, to the bone marrow39. Thus functional differences 
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between preterm and term CD34+ cells may be linked to a relative developmental deficiency 

of CXCR4 in preterm CD34+ cells49.

Mesenchymal stem cells (MSCs)

Original observations showed that implantation of BM cells (without bone) into non-

hematopoietic tissues (such as under skin or peritoneal cavity) induced the development of 

reticular tissue followed by bone formation that could sustain ectopic hematopoiesis51–53. 

This ectopic bone formation is derived from a non-hematopoietic cell population that forms 

a clonal fibroblastic colony in vitro, the CFU-F54. The progeny of CFU-F contribute to bone 

formation following transplantation and can differentiate into multiple skeletal tissues 

including bone, cartilage, adipose tissue, and fibroblastic tissue in vivo. This rare BM 

population was first named an osteogenic stem cell or a BM stromal stem cell55;56. The 

discovery of this cell type was important in that it identified the presence of a second stem 

cell population in the BM in addition to HSCs. The currently used term, mesenchymal stem 

cell (MSC), was first proposed in 1991 based on the capacity to differentiate into cells of the 

mesenchymal lineage (bone, cartridge, tendon, ligament, BM stroma, adipocytes, dermis, 

muscle, and connective tissue)57. However, the “multipotency” of MSCs remains 

controversial56;58. Furthermore, while MSCs are often referred to as “stem cells”, they do 

not meet strict criteria regarding self-renewal capacity and multilineage potential at the 

single cell level55. A more conservative definition of MSCs (mesenchymal stromal cells59 or 

skeletal stem/progenitors60) include the following: 1) They possess CRU-F that can form 

fibroblastic colonies in vitro; 2) They have the capacity to differentiate into adipocytes, 

osteocytes, and chondrocytes in vivo and in vitro; and 3) They support hematopoietic 

development.

MSCs can be derived from embryonic limbs, postnatal BM, umbilical cord blood and other 

tissues in mouse and man51;57;61–63, including the perivascular area or BM sinusoids64. 

Their developmental origins are primarily from mesoderm but they also originate in part 

from neuroepithelium65. MSCs express unique surface antigens including Sto-1, CD271, 

CD146, but lack hematopoietic and endothelial markers (CD45, CD14, CD11b, CD79, 

CD19, HLA-DR, CD34, and CD31).

MSC exhibit poor engraftment capacity following intravenous injection, and the small 

number that do engraft survive for only a short time in the recipient animals66. Despite this 

shortcoming, MSCs may be useful for: 1) Direct cell replacement for tissue regeneration; 

and 2) Indirect effects on damaged tissue related to MSC secretion of immunosuppressive 

factors. The therapeutic benefit of MSCs appears to be greatest for the treatment of 

inflammatory diseases through the release of anti-inflammatory cytokines.

Endothelial progenitors: endothelial colony forming cells (ECFC)

The first putative endothelial progenitors were isolated from human adult PB in 1997 by 

Asahara et al.67. The major discovery that endothelial progenitor cells (EPCs) circulate in 

the peripheral blood led to the concept that these “EPCs” contribute to the repair of vascular 

injuries. However, this nomenclature was unfortunate, as it has created long-standing 

confusion regarding the true definition of “EPCs”: the cells originally defined as EPCs have 
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since been designated as hematopoietic cells, not endothelial cells68. The term that now 

most reliably defines circulating endothelial progenitors obtained from human PB or CB is 

endothelial colony-forming cell (ECFC)69. ECFCs are strictly defined as endothelial 

progenitors and are differentiated from “EPCs” based on specific criteria. These include: 1) 

The in vitro ability of cloned cells to form large colonies with high proliferative potential 

that can be re-cultured to form secondary colonies; 2) The in vivo capacity to form 

capillaries that anastomose with host vessels; 3) The in vitro capacity to form tubes with 

lumens when plated in collagen; 4) Absence of hematopoietic surface markers, but surface 

expression of other unique markers including CD31, CD146, CD144, CD105, CD34 

(partially), KDR, vWF, and lectins; and 5) Lack of phagocytic function. ECFCs or 

endothelial cells do not have phagocytic function, whereas “EPCs” or macrophages easily 

phagocytize E. coli fragments.

ECFCs are quite rare in CB (2 out of 108 CB MNCs); however, their numbers are relatively 

enriched in CB compared to adult PB. CB-ECFCs have long telomeres and their HPP is also 

much higher than adult PB-ECFC69. While the cells currently designated as EPCs are not 

true endothelial cells, they share similarities to the recently reported pro-angiogenic 

AC133+CD34+CD45dimlin− hematopoietic stem/progenitor cells and may contribute to 

neovascularization in cardiovascular disease or tumor progression70–72.

iPS and iPS-derived ECFC

Human iPS cells have been established in various human cells. Although CB does not 

contain truly pluripotent stem cells, CB can be induced into iPS cells when cultured in the 

presence of defined factors73;74. Cord blood iPS cells are hardy: a recent report showed that 

CB MNCs cryopreserved for over 20 years could still be utilized for HSC transplantation, 

ECFC isolation and the induction of iPS cells75. In addition, a novel culture system to 

produce ECFCs from human iPS has been established76. Human iPS derived-ECFCs display 

high clonal proliferative ability and have the capacity to form human vessels in mice. 

Importantly, these pluripotent cells can repair ischemic regions in mouse retina and limb 

injury models without inducing secondary teratoma formation. Thus, CB is useful not only 

for its stem cell populations but also for the induction of iPS cells that can be stored for 

future clinical use.

Stem Cells for the Treatment of Post-Insult Injury in Neonates

Neonates are highly susceptible to inflammatory and/or ischemic insults, particularly to 

critical organs such as the brain and lungs; this risk is considerably higher in the most 

immature, preterm infants77–79. The damaging and often permanent effects related to these 

newborn insults are associated with high economic and societal costs, while the personal 

suffering of the afflicted and their families is incalculable80;81. Thus, the successful 

prevention or treatment of insult-related injury is of utmost and immediate importance.

Neonatal injury and its inherent complications have been intensively studied for many years. 

Investigations in relevant animal models and human studies have advanced our 

understanding of the underlying mechanisms; however, treatments to prevent or to arrest 

injury as a result of these insults in many cases have been disappointing, until recently. A 
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growing body of evidence and exciting new discoveries indicate the potential (and in some 

cases, actual) regenerative role of SCT in the treatment of neonatal injury, as briefly 

reviewed below.

Brain injury and SCT

Hypoxic-ischemic encephalopathy—Studies in animal models have been critical to 

defining the mechanisms underlying post-insult brain injury. These models have been based 

on approaches that focus on either cellular/molecular mechanisms or that recapitulate the 

physiologic events that produce injury; these have been recently elegantly reviewed82. 

However, existing evidence has been distilled from studies using a spectrum of animal 

models and SCT approaches, primarily involving human amnion epithelial-derived cells 

(hAECs), MSC, whole cord blood and neural stem cells. Thus, the reparative benefits of 

SCT for post-insult brain injury and the specific cells involved remain unclearly defined 

(reviewed in83).

Umbilical cord blood is a repository of a plethora of stem cell types, including those of 

hematopoietic, endothelial and mesenchymal origin, as was discussed in the first part of this 

review. Rodent models of neonatal hypoxic-ischemic brain injury have exhibited structural 

and behavioral improvements following transplantation with human cord blood cells, 

including measurable improvements in cognition{de Paula S., 2012 19297 /id;Wasielewski, 

2012 20076 /id;Geissler, 2011 20087 /id}. However, the specific stem cell type(s) or cell 

combinations in cord blood that confer therapeutic properties have not been well defined. 

The underlying mechanisms are also unclear; evidence of poor engraftment in animals that 

respond positively to SCT suggest that the ameliorative effects are not due to the 

regenerative capabilities of the administered stem cells87. A relationship has been 

established between neuroprotection and indirect (paracrine and trophic) modulatory effects 

of administered stem cells, including MSCs and hAECs, on inflammatory and excitotoxic 

neural responses88;89. Administration of hAECs to sheep fetuses was also shown to confer 

protection from inflammation-induced brain injury90.

Studies of cord blood SCT in humans, while sparse, are increasing. In a recently reported 

prospective trial, 23 infants with hypoxic-ischemic encephalopathy received both head 

cooling and autologous cord blood transfusion within the first 72 hours of life91. The authors 

concluded that this form of SCT was both safe and feasible even in outborn infants 

transferred to a tertiary care hospital. However, no firm conclusions could be made 

regarding hospital and developmental outcomes or 1-year survival. In a feasibility pilot 

study, the transfusion of autologous cord blood from private cord blood banks to young 

children with neurologic disorders was found to be safe92. In a Korean study of 96 infants 

and children with cerebral palsy, subjects who received matched allogeneic cord blood cells 

with erythropoietin fared better developmentally six months later than did their counterparts 

given erythropoietin only or placebo93. Importantly, this study highlights the potential 

therapeutic utility of banked allogeneic donor cord blood cells in SCT of brain injury.

Neonatal stroke—Stroke is a primarily ischemic event that occurs in the fetal or neonatal 

periods and involves ischemia of cerebral arteries or periventricular venous infarction94. 
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Strokes in the perinatal period commonly (60% of cases) result in neurologic deficits, with 

hemiplegic cerebral palsy being a frequent complication. A variety of preclinical studies 

have shown potential therapeutic value of stem cell populations derived from human 

umbilical CB in limiting injury and in promoting functional recovery. In rodent stroke 

models, the administration of neural stem cells lead to glial and neuronal differentiation at 

sites of injury, while transplanted MSCs were indirectly beneficial by inducing the release of 

neuroprotective trophic factors that dampened inflammation95;96. Human CB-derived 

AC133+ EPCs limited infarct size and shortened the resolution period in a rat stroke 

model97. Stem cell types in addition to those derived from CB may also be of value. The 

administration of amniotic fluid-derived stem cells to adult rats with ischemic stroke also 

resulted in significant functional recovery98. However, the most beneficial stem cell type for 

the treatment of stroke remains unclear. Transplantation with the broader array of stem cells 

contained in human CD34+ cells bestowed a limited benefit in one rodent stroke model, 

while another study showed greater therapeutic effect and less inflammation in animals 

receiving CB mononuclear cells compared to CB MSCs99;100. While the potential 

therapeutic utility of SCT in neonates with stroke is supported by preclinical studies, 

however its actual utility in human neonates, while promising, remains to be defined101.

Lung injury and SCT

Extremely preterm infants are at high risk for numerous long-term complications, of which 

bronchopulmonary dysplasia (BPD) is the most common102. The “new” BPD is associated 

with lung growth arrest as well as abnormal vascularization and fibrosis, and it can result in 

disabling lung abnormalities that persist into adulthood79. Studies in neonatal animal models 

of BPD have shown that transplantation with MSC or soluble MSC-derived proteins (the 

MSC “secretome”) can modulate BPD by dampening inflammatory processes96;103–105. In a 

recently reported phase I dose-escalation trial, a small group of extremely preterm infants 

who received intra-tracheal autologous MSC had diminished BPD severity and lowered 

inflammatory cytokine levels in tracheal aspirates compared to historical controls106. 

Importantly, MSC treatment was clinically well tolerated in these tiny babies and was not 

associated with discernable short-term safety issues. The potential benefits of cord blood 

MSCs have stimulated numerous ongoing clinical trials addressing their use for the 

treatment of diverse disorders in adults and several in preterm infants.

Intestinal injury and SCT

Necrotizing enterocolitis (NEC), an intestinal inflammatory disorder with infectious 

components, is a common and potentially devastating complication of prematurity107. The 

etiology of NEC is multifactorial and includes ischemia-reperfusion injury, disturbances of 

the intestinal microbiome and prior inflammatory exposure. The potential role of SCT in the 

treatment of neonatal NEC has only recently been addressed. In an in vivo neonatal rat 

model of NEC, intraperitoneal administration of bone-marrow derived MSCs was associated 

with attenuated histologic intestinal injury, improved weight gain, and decreased clinical 

illness scores108. MSC homing to intestinal tissue was enhanced in the pups with NEC 

compared to normal controls, suggesting a potentiating role for inflammation in the 

engraftment of MSC. In another study, neonatal rats with NEC that were treated with 

amniotic fluid stem cells showed improved gut structure, survival and reduced inflammatory 
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mechanisms mediated via COX-2109. Despite these encouraging preclinical data, a role for 

SCT in the treatment of NEC in human neonates has not been reported to date.

Utility of Neonatal SCT: General Considerations

A number of critical questions remain to be answered through well-designed pre-clinical 

large animal models and human clinical trials before the use of umbilical CB or specific 

stem cells afford reasonable therapeutic options. One important issue is that of the optimal 

timing of SCT administration in the context of the injury. Studies in infants with brain injury 

have shown a secondary post-injury period during which inflammatory and excitatory 

mechanisms become pronounced, thus the time between the initial insult and this later phase 

may be the ideal window to institute SCT as a therapeutic measure110. Conversely, a Korean 

study showed benefit of SCT in children with cerebral palsy, even in those who were 10 

years of age111, which suggests a possible benefit despite long-standing neurologic injury.

Another key issue to be addressed is the identification of the ideal stem cell source for a 

specific type of tissue injury. As detailed earlier in this review, umbilical cord blood 

contains numerous stem cell types, including those of hematopoietic, endothelial, and 

mesenchymal origins. However, it remains unclear if and how the perinatal factors 

contributing to neonatal hypoxic-ischemic encephalopathy or other injury could potentially 

influence the functionality and intrinsic properties of the cord blood stem cells 

themselves112.

The role of specific stem cell types in various target organs also remains incompletely 

defined. Mesenchymal stem cells (MSC) derived from developing humans exhibit a high 

degree of mesodermal pluripotency (the capacity to differentiate into multiple cell types); in 

addition, these MSC are associated with a low induction of immune responses in the 

recipient and exhibit anti-inflammatory properties96;113. Another type of cell with 

pluripotent properties is the hAEC114. Like MSCs, hAECs are anti-inflammatory and appear 

to be immunologically well-tolerated115;116. Studies in fetal sheep showed that AEDC 

administration was protective against brain inflammation, including periventricular white 

matter injury90. As also observed with MSCs, the beneficial effect of hAECs may be 

primarily related to the release of soluble protective factors87.

In addition to the optimal stem cell type and timing of administration necessary for 

therapeutic efficacy, other questions that remain to be answered include: the most ideal stem 

cell sources (autologous versus allogeneic, cord blood versus isolated stem cells, primary 

cells versus derived or genetically modified cells), host tolerance, and safety, among 

others110;117. While short-term safety may be acceptable, as suggested by the very small 

number of recent human studies, long-term effects remain unknown. This latter point may 

be of particular importance to very preterm infants who are still undergoing developmental 

maturation, including of the immune and hematopoietic systems. Another critical safety 

feature to be defined involves the potential tumorgenicity or cancerous conversion of the 

transplanted stem cells, a question that remains enigmatic.
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Summary

True stem cells or cells with pluripotent properties are found in a variety of tissues and 

organs. Umbilical cord blood can provide a spectrum of stem or pluripotent progenitor cells, 

many of which have a greater potential for proliferation (although not necessarily 

engraftment) compared to similar cells mobilized from the bone marrow into the peripheral 

blood of adults. Preclinical studies have shown a therapeutic benefit of SCT in perinatal and 

neonatal injuries, including those involving the brain, lungs and intestines. The very few 

human studies to date suggest short-term safety of MSCs or cord blood (both autologous and 

allogeneic) SCT and have variably shown measurable improvements in functional or 

inflammatory parameters. However, the therapeutic mechanisms remain incompletely 

defined, and the optimal usage of SCT for a particular type of injury is also unclear. Thus, 

despite its exciting potential for currently untreatable neonatal disorders, extensive studies in 

both preclinical models and in humans will be necessary before SCT becomes an accepted 

form of therapy. Although still quite limited relative to studies in adults, an increasing 

number of human trials now address these issues in neonates (https://ClinicalTrials.gov).
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Key Points

• Umbilical cord blood contains a plethora of stem cells and multipotent 

progenitor cells.

• In preclinical animal models, transplantation with cord blood or specific stem-

like cells can limit brain and lung injury and/or preserve or restore function in 

part through anti-inflammatory mechanisms.

• The small number of human studies to date suggests the short-term safety of 

cord blood-derived stem cells, however additional preclinical and human studies 

are needed to establish therapeutic efficacy and long-term safety.
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Figure 1. Hematopoietic hierarchy system
Long-term hematopoietic stem cells (Lt-HSCs) sit on the apex of the hematopoietic 

hierarchy system. LT-HSCs that reside in the bone marrow hematopoietic niche maintain 

self-renewal and multi-lineage differentiation capacity through asymmetric cell division. 

SH-HSC: short-term hematopoietic stem cell, MPP: multipotent progenitor cell, MLP: 

multilymphoid progenitor cell, CMP: common myeloid progenitor cell, ETP: earliest T 

lymphoid progenitor cell, GMP: granulocyte-macrophage progenitor cell, MEP: 

megakaryocyte-erythroid progenitor cell.
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