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Serving to connect the eye with the brain, retinal ganglion cells (RGCs) play a critical role in 

transmitting visual information in the central nervous system. As such, damage to or 

degeneration of these important cells often results in visual impairment and eventually 

blindness. While few treatment options exists to repair damaged or degenerating RGCs, 

efforts have often focused upon the restoration of existing RGCs through approaches to 

encourage enhanced survival of these cells as well as efforts to promote axonal 

regeneration[1-4]. However, once a critical number of RGCs have been lost, it will likely be 

necessary to identify a suitable source of cells for replacement purposes, and design 

strategies to encourage proper survival and integration of cells replacement cells.

Human pluripotent stem cells (hPSCs), including both embryonic and induced pluripotent 

stem cells, have received considerable attention in recent years for their potential to serve as 

an effective in vitro model of retinal development and repair[5-14]. Furthermore, RGCs 

differentiated from hPSCs have also been proposed as a powerful, unlimited source of cells 

for neuroprotective and cell replacement applications[15-17]. However, to date there exist 

no effective therapies for RGC damage or degeneration and in order for the potential of 

hPSCs to be realized for such applications, a number of obstacles exist which must be 

overcome.
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Degeneration and damage of RGCs

Damage to RGCs, including the eventual loss of these cells, is characteristic of optic 

neuropathies, often resulting in the severing of communication between the eye and the 

brain[18, 19]. While glaucoma is the most common of the optic neuropathies with a current 

incidence of greater than 60 million people worldwide[20, 21], the optic neuropathies 

include a variety of other disorders including Leber's Hereditary Optic Neuropathy (LHON) 

and ischemic optic neuropathies[22-24]. The end result of each of the optic neuropathies is 

the loss of RGCs, but the underlying causes are many and varied. As such, the development 

of therapeutic approaches for the treatment of optic neuropathies has also been varied. The 

preservation of existing RGCs is often viewed as the most promising approach for the 

development of treatments for optic neuropathies[22-24], due to the fact that existing cells 

are at least partially integrated into the retinal circuitry. In many forms of glaucoma, an 

increase in intraocular pressure (IOP) is thought to serve as a trigger resulting in damage to 

RGCs, and eventually leading to the loss of these cells[25-27]. As such, a common existing 

treatment for glaucomatous neurodegeneration involves the reduction of IOP with 

interventions including eye drops and laser treatments being among the most common 

approaches[28-31]. These approaches to lower IOP have been successful in delaying 

glaucomatous neurodegeneration and prolonging vision, but do not prevent the subsequent 

damage to, and loss of, RGCs. This eventual loss of RGCs is due to the fact that these 

interventions to lower IOP have just transient effects, while elevated IOP will persist beyond 

the treatment period. Furthermore, fluctuations in IOP levels are known to occur, 

particularly those diurnal in nature[32-34]. Thus, existing interventions may not effectively 

prevent subsequent damage to RGCs as IOP levels are known to fluctuate.

Due to the transient nature of interventions to lower IOP, additional strategies to rescue 

RGCs and prevent their eventual loss have been a popular topic of research for a number of 

years. To this end, pharmacological approaches have been particularly attractive for the 

development of neuroprotective strategies. In particular, neurotrophic factors have received 

considerable attention for their potential ability to delay or halt neurodegeneration. Within 

the optic neuropathies, neurotrophic factors including brain-derived neurotrophic factor 

(BDNF), glial-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) 

have been the subject of numerous studies due to their documented ability to prevent 

apoptosis and prolong the viability and functionality of RGCs[35-37]. While these 

neurotrophic factors have been successful in this capacity, this success has been transient in 

nature as these protective effects do not persist for prolonged periods of time and eventually, 

RGCs suffer damage and are lost. While the reasons for this transient nature of neurotrophic 

factors and their effects on RGCs are likely varied, research has demonstrated that RGCs 

tend to become acclimated to elevated levels of these neurotrophic factors and become 

desensitized to their effects, often through the downregulation of specific receptors[38-40]. 

Thus, further examination of factors that may aid in the neuroprotection of RGCs is 

warranted, with the goal of identifying those factors that may confer a long-lasting 

neuroprotective effect and successfully rescue the degenerative phenotype of optic 

neuropathies.
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Stem Cells and Retinal Ganglion Cells

The ability to derive RGCs from stem cells offers numerous exciting opportunities for 

investigation, including the underlying mechanisms responsible for their damage and loss in 

optic neuropathies. Furthermore, stem cell-derived RGCs can also be developed as a tool for 

cell replacement following the degeneration and loss of endogenous RGCs. A variety of 

types of stem cells exist, each with specific properties and characteristics that enable their 

use for a variety of applications, both basic and translational in nature. In recent years, 

however, the ability to derive retinal neurons from pluripotent stem cells has received 

considerable attention and is the subject of ongoing investigation[8-13, 41-49]. Human 

pluripotent stem cells (hPSCs), including both human embryonic stem cells (hESCs) and 

induced pluripotent stem cells (hiPSCs), offer numerous advantages for the development of 

RGC-related approaches. First, hPSCs can be expanded indefinitely in vitro, thus possessing 

the potential to provide an unlimited source of cells for any application. Additionally, unlike 

other stem cell sources, hPSCs possess the innate ability to differentiate into any cell type of 

the body, including RGCs, offering unprecedented access into the developmental 

mechanisms underlying RGC differentiation, as well as those characteristics within RGCs 

that may be responsible for diseases that affect RGCs. Furthermore, when derived from a 

patient-specific source, hiPSCs can serve as effective in vitro models of retinal disease 

progression(9, 48, 50, 51), and may provide an unlimited source of autologous cells for cell 

replacement applications following the loss of endogenous retinal cells[5-7, 14, 52, 53].

Within the past decade, a number of studies have demonstrated the feasibility of deriving 

retinal cells from hPSCs[7-13, 16, 42-49]. Early studies documented this ability in hESCs 

but upon their discovery in 2007[54-57], studies quickly documented the similar ability of 

hiPSCs to yield cells of the retinal lineage as well[9, 10, 13, 16, 42, 58]. These early efforts 

relied upon the treatment of differentiating hPSCs with specific signaling molecules. 

Interestingly, variation in the types of signaling molecules required for retinal differentiation 

was initially reported by a number of groups[8, 12, 13, 42, 58]. Despite these different 

approaches, the similar differentiation of retinal neurons was likely due to an innate, default 

ability of hPSCs to differentiate toward the neural lineage, with the retinal lineage among 

the more common neural lineages generated. Consequently, studies in recent years have 

developed and refined retinal differentiation protocols from hPSCs to minimize or eliminate 

the use of exogenous signaling factors, instead relying upon the innate ability of hPSCs to 

yield a retinal fate[9, 10, 43, 44, 46]. This innate retinal differentiation capacity has been 

further exploited to induce hPSCs to not only differentiate into retinal cell types, but to do so 

in a manner which recapitulates the three-dimensional differentiation and organization of 

retinal cells into a retinal-like tissue[11, 45, 49].

While many studies have demonstrated the ability to derive retinal cells from hPSCs, the 

demonstration of yielding RGCs from hPSCs has been less extensively studied. Most studies 

to date have focused on the differentiation of photoreceptors and retinal pigment epithelium 

from hPSCs[5-10, 12-14, 42, 52, 58-60], likely due in part to the number of prevalence of 

blinding disorders that adversely affect these cell types. Just as important, however, is the 

fact that photoreceptors and retinal pigment epithelium cells can be identified in vitro due to 

the existence of specific markers that can be utilized to identify these cell types. The 
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definitive identification of RGCs, however, proves to be more difficult. While some markers 

can definitely identify RGCs within the retina itself, these markers are not truly specific to 

RGCs. When derived from hPSCs, the pluripotent nature of these cells requires careful 

consideration about the specificity of markers utilized to identify differentiated cell types. 

The definitive identification of RGCs from a pluripotent source necessitates that a number of 

criteria are met (Table 1). First, differentiated hPSCs should express markers characteristic 

of RGCs, including commonly identified markers such as Brn3, Islet1, Pax6, etc. 

Additionally, these prospective RGCs should possess characteristic morphological features. 

In particular, RGCs are unique within the retina due to the extensive outgrowth and 

elongation of axonal projections, as well as the existence of a significant number of dendritic 

extensions[61-64]. Similarly, presumptive hPSC-derived RGCs should possess the ability to 

develop comparable morphological characteristics. Furthermore, due to the fact that many of 

these features are shared with some other non-retinal neuronal populations of the central 

nervous system[65, 66], care should be taken to demonstrate the retinal lineage of 

presumptive hPSC-derived RGCs, particularly through the stepwise, documented 

differentiation of RGCs through all of the major stages of retinogenesis. Finally, upon the 

acquisition of the above phenotypic characteristics of RGCs, the proper physiological 

activity of these cells would need to be documented[67, 68]. As RGCs in vivo are 

responsible for conducting neural information from the eye to the brain, the functionality of 

hPSC-derived RGCs requires their physiological activity.

Given the above criteria necessary for the identification of RGCs from a pluripotent source, 

it is not surprising that a general lack of studies exist focused upon this topic. However, the 

potential for hPSCs to yield RGC-like cells has received increased attention in recent years. 

While not necessarily focused upon the specific differentiation of RGCs, a number of groups 

have documented the expression of some RGC-associated markers in the process of 

differentiating retinal cells from hPSCs (Table 2), particularly the expression of the 

transcription factor Brn3[9, 11, 42, 44-49, 69-71]. Advancing features of RGC 

differentiation have been documented less frequently, although more recent studies have 

demonstrated the development and extension of axonal-like structures from presumptive 

hPSC-derived RGCs, demonstrating the ability of these cells to develop RGC-related 

morphological features[9, 44, 69-71]. Finally, among the most recent studies, efforts have 

been focused on demonstrating some degree of physiological activity from presumptive 

RGCs, including the elicitation of action potentials[70, 71].

As efforts progress in the coming years, it is likely that the ability to derive RGCs from 

hPSCs will become standardized and more routine. Once this occurs, the potential will exist 

for the translational application of these differentiated cells. The ability to utilize patient-

derived hiPSCs as an in vitro model of human disease will likely be among the first 

applications to realize this potential. When hiPSCs are generated from specific patient 

samples, particularly those with a genetic basis underlying a disease phenotype, the 

successful differentiation of the affected cell type can serve as an effective model of disease 

progression[72, 73]. Such an ability has been demonstrated in a variety of other systems, 

including other cell types of the retina including photoreceptors and retinal pigment 

epithelium[9, 16, 51], although similar efforts to model optic neuropathies in vitro have been 
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limited to date. Recently, Tucker et al[48] examined the role of autophagy in RGC-like cells 

derived from hiPSCs that were generated from a patient with a form of normal tension 

glaucoma, with the demonstration that patient hiPSC-derived RGCs exhibited differences in 

LC3 expression associated with autophagy deficits. Similarly, Minegishi et al[74] 

demonstrated the ability to derive hiPSCs from a patient with a related form of normal 

tension glaucoma. Although the differentiation of these hiPSCs to an RGC fate was not 

demonstrated, these cells did demonstrate various features associated with the progression of 

normal tension glaucoma. Thus, while tremendous potential remains for hiPSCs to serve as 

an effective model of disease progression, preliminary studies demonstrate the feasibility of 

such an approach.

Along with the potential for hiPSC-derived RGCs to act as an in vitro disese model, they can 

also serve as a unique tool for drug development purposes[75-77]. Due to the ability to 

obtain unlimited numbers of hiPSCs, along with the ability to direct the differentiation of 

these cells to a retinal lineage (including RGCs), the potential exists to test the efficacy of 

novel compounds upon diseased cell types for their therapeutic potential. Such an ability to 

utilize hiPSCs for drug screening purposes has been preliminarily demonstrated in a variety 

of other system to date, including within the retina[9, 16, 51]. In order for this potential to be 

realized for RGCs, a clearly identifiable and measurable disease-related phenotype must 

exist by which to test the efficacy of such compounds. Given this ability, the potential for 

high-throughput screening approaches exists as well, potentially expediting or enabling the 

development of new drugs for optic neuropathies.

Beyond the applications of hiPSC-derived RGCs in vitro, the potential exists for the 

development of cellular replacement approaches, particularly following the loss of RGCs in 

response to optic neuropathies or other related injuries. Cellular replacement with hPSCs is 

an attractive option for future therapeutic approaches to optic neuropathies, particularly at 

later stages of the disease process. While pharmacological intervention may be effective at 

early stages of disease progression, cellular replacement becomes the only viable option 

once significant cell loss has occurred. The potential for cellular replacement with hPSCs 

has been demonstrated in preliminary studies typically in rodent models, particularly 

including cells of the outer layers of the retina such as retinal pigment epithelium and 

photoreceptors[5-7, 14, 52]. The successful replacement of RGCs, however, will likely be 

more difficult due to certain characteristics of RGCs, particularly their need to extend axons 

across long distances. True replacement of RGCs will need to demonstrate that a number of 

criteria are met. First, transplanted cells will need to integrate into the appropriate location in 

the retina, namely the retinal ganglion cell layer. Following successful integration, these 

cells will need to extend axons into the nerve fiber layer, enter the optic nerve and extend 

further into the visual areas of the brain. This axonal elongation also requires the proper 

ipsilateral or contralateral projection into the brain, particularly in humans and other 

primates[78, 79]. If these requirements are met, axons must match with appropriate post-

synaptic targets and establish functional connections, and axons need to be myelinated to 

properly convey neural impulses. Beyond all of the requirements for axonal elongation and 

synaptogenesis, similar processes must also occur in RGC dendrites to receive synaptic 

input and functionally integrate into the retinal network. Finally, transplanted cells would 
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need to be capable of surviving the local microenvironment, which is often highly toxic to 

RGCs and resulted in the original loss of host cells in the first place[80]. Thus, while the 

potential exists for hPSC-derived RGCs to serve as a tool for cellular replacement 

approaches, their complex and unique nature within the retina also serves to complicate 

efforts to replace them once they have been lost due to disease-related processes.
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Table 1

Degree of RGC Maturation

Property Specific Criteria Degree of RGC Maturation

Neuronal morphology Complex neurite outgrowth

Expression of RGC markers BRN3, ISL1, HuC/D, PAX6, RBPMS

Retinal lineage derivation Differentiated through retinal progenitor intermediary
Expressed in association with other retinal markers
Lack of expression of markers indicating lineages with similar markers

Neuronal Polarization Compartmentalization of axons and dendrites
Distinction of Tau and MAP2 immunostaining

Electrophysiologically active Hyperpolarized resting membrane potential
Voltage-gated ionic currents
Elicitation of action potentials
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Table 2

Demonstrated ability to derive RGC-like cells from hPSCs

Markers: Functionality: Application:

BRN3
TUJ1 (BIII-TUBULIN)

N/A N/A

BRN3 N/A N/A

BRN3
TUJ1 (BIII-TUBULIN)

N/A N/A

BRN3
MAP2
ISLET1

N/A N/A

BRN3 N/A N/A

BRN3
HU C/D

N/A N/A

BRN3a
BRN3b
TUJ1 (BIII-TUBULIN)

N/A N/A

BRN3
TUJ1 (BIII-TUBULIN)
HU C/D
MAP2

N/A N/A

BRN3
γ-SYNUCLEIN
ISLET-1
THY-1
BRN3b
MATH5

Resting potential of −50mV
Ability to evoke EPSC

None

BRN3b
TUJ1 (BIII-TUBULIN)
γ-SYNUCLEIN
ISLET-1
MATH5
TAU
NFL
NFM

Resting potential of −80mV
Able to evoke EPSC

None

BRN3b
TUJ1 (BIII-TUBULIN)
MAP2
THY-1
NF200
ATOH7

None hiPSCs disease model normal tension glaucoma (TBK1 gene duplication)
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