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Abstract

Objective—We examined whether circulating concentrations of sex hormones, including 

estradiol, testosterone, sex hormone-binding globulin (SHBG), and dehydroepiandrosterone 

sulfate (DHEAS), were associated with alcohol intake or mediated the alcohol-type 2 diabetes 

(T2D) association.

Methods—Among women not using hormone replacement therapy and free of baseline 

cardiovascular disease, cancer, and diabetes in the Women’s Health Study, 359 incident cases of 

T2D and 359 matched controls were chosen during 10 years of follow-up.

Results—Frequent alcohol intake (≥1 drink/day) was positively and significantly associated with 

higher plasma estradiol concentrations in an age-adjusted model (β=0.14, 95% CI, 0.03, 0.26), as 

compared with rarely/never alcohol intake. After adjusting for additional known covariates, this 

alcohol-estradiol association remained significant (β=0.19, 95% CI, 0.07, 0.30). Testosterone 

(β=0.13, 95% CI, −0.05, 0.31), SHBG (β=0.07, 95% CI, −0.07, 0.20), and DHEAS (β=0.14, 95% 

CI, −0.04, 0.31) showed positive associations without statistical significance. Estradiol alone or in 

combination with SHBG appeared to influence the observed protective association between 

frequent alcohol consumption and T2D risk, with a 12–21% reduction in OR in the multivariate-

adjusted models.
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Conclusions—Our cross-sectional analysis showed positive associations between alcohol intake 

and endogenous estradiol concentrations. Our prospective data suggested that baseline 

concentrations of estradiol, with or without SHBG, might influence the alcohol-T2D association in 

postmenopausal women.

INTRODUCTION

Recent data indicate that endogenous sex hormones play an important role in the 

pathogenesis of type 2 diabetes (T2D) [1]. Sex hormones, including estrogen [1;2], 

testosterone [3–5], sex hormone-binding globulin (SHBG) [4;6;7], and 

dehydroepiandrosterone sulfate (DHEAS) [4;8] have been linked with insulin resistance, 

impaired glucose tolerance (IGT), and T2D risk. There is evidence to indicate significant sex 

differences for the associations between endogenous testosterone and risk of type 2 diabetes 

[1,7]. High testosterone levels were associated with higher risk of type 2 diabetes among 

women but decreased risk of type 2 diabetes among men. With the onset of menopause and 

the concurrent decrease in estrogen, T2D risk increases among postmenopausal women [2]. 

High estradiol levels may be associated with high risk of diabetes in both women and men 

while low SHBG levels were consistently associated with increased diabetes risk.

There is some evidence suggesting that alcohol might be associated with increased 

concentrations of estrogen [9;10] and DHEAS [11–14]. Previous prospective studies have 

documented an inverse association between moderate alcohol consumption and the 

incidence of T2D [15–24]; however, the mechanisms underlying this potential benefit from 

alcohol intake are not completely understood. Given these interrelationships among alcohol 

intake, sex hormones, and T2D, it seems reasonable to hypothesize that sex hormones may, 

at least in part, explain the inverse relations between alcohol consumption and T2D risk. 

However, there is as yet no study directly testing these hormone-mediating pathways linking 

alcohol intake to T2D risk.

The objective of this study was to investigate whether alcohol consumption was associated 

with circulating concentrations of endogenous sex hormones. Also, we aimed to examine 

whether circulating levels of endogenous sex hormones mediate the association between 

alcohol consumption and T2D risk.

MATERIALS AND METHODS

Study Population

The Women’s Health Study (WHS) is a randomized, double-blind placebo-controlled 

clinical trial of aspirin and vitamin E for the primary prevention of cardiovascular disease 

(CVD) and cancer. The participants are 39,876 female health professionals who were 45 

years or older, had no history of CVD and cancer (except nonmelanoma skin cancer). 

Details of this trial have previously been described [25–27]. Among a total of 27,962 

postmenopausal women in the WHS who had not used hormone replacement therapy (HRT) 

and were free of CVD, cancer, and diabetes at baseline, 359 incident cases of T2D and 359 

matched controls were chosen using risk set sampling strategy during a median of 10 year 
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follow-up [28]. Controls were matched on age, race, fasting status at time of blood draw, 

and follow-up time.

Written informed consent was obtained from all participants in the WHS. This study was 

approved by the Institutional Review Boards of Brigham and Women’s Hospital, Harvard 

Medical School, and the University of California at Los Angeles (UCLA).

Assessment of alcohol consumption and other covariates

Baseline information on usual diet, including alcohol intake, was provided by 39,310 (99%) 

of the randomized participants, who completed a 131-item, validated, semiquantitative food-

frequency questionnaire (SFFQ). For each food, a commonly used unit or portion size was 

specified on the questionnaire, and the participants were asked how often on average during 

the previous year they had consumed that amount. The portion sizes for beverages 

containing alcohol were “1 glass, bottle, can” for beer and light beer, “4 oz. glass” for red 

wine and white wine, and “1 drink or shot” for liquor. Nine responses were possible, ranging 

from “never or less than once per month” to “6 or more times per day.” These 9 categories 

were condensed into 4 categories because of the few women who reported frequent alcohol 

consumption. The 4 categories are rarely/never, 1–3 drinks/month, 1–6 drinks/week, and 

1+drinks/day. These 9 categories were also used to calculate alcohol consumption as a 

continuous variable in g/day. We scaled the continuous alcohol variable, measured in 

grams/day by the US standard for one alcoholic beverage, 14 g, according to the 

International Center for Alcohol Policies (ICAP). Women who did not respond to any of the 

alcohol questions were excluded. A detailed description of the SFFQ and procedures used to 

calculate nutrient intake as well as data on its reproducibility and validity in a similar cohort 

was previously reported [29,30]. In brief, Spearman’s correlation coefficient between total 

alcohol consumption as measured by four 1-week diet records and the SFFQ was 0.90 [4].

Other covariates, including body weight, height, family history of diabetes, smoking status, 

and physical activity, were assessed using questionnaires at study entry. Body mass index 

(BMI) was calculated as weight (in kg)/height2 (in m2). Physical activity was assessed using 

a validated questionnaire. At baseline, participants were asked, “How often do you exercise 

vigorously enough to work up a sweat?” The possible responses were rarely or never, one to 

three times a month, once a week, two to four times a week, five or six times a week, or 

daily.

Biomarker measurements

Baseline blood samples were centrifuged and stored in liquid nitrogen freezers until the time 

of laboratory analysis. Matched case-control pairs were handled identically and assayed in 

random sample order in the same analytical run. Laboratory personnel were blinded to case-

control status during all assays. Hankinson and colleagues [31;32] reported that a single 

measurement of plasma levels of sex hormones can reliably reflect average long-term 

hormone levels over a 3-year period, with correlations ranging from 0.66 to 0.92 for plasma 

levels of sex hormones, including estradiol, estrone, estrone sulfate, androstenedione, 

testosterone, dehydroepiandrosterone (DHEA), DHEAS, and SHBG. Details have been 

previously reported. In brief, Chemiluminescent immunoassays (Elecsys autoanalyzer 2010, 
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Roche Diagnostics, Indianapolis, IN) were used to measure sex hormones and SHBG. As 

reported previously, the coefficients of variation from blinded quality control samples were 

5.2% for estradiol, 7.4% for testosterone, 2.8% for DHEAS, and 2.8% for SHBG [33–36].

Statistical Analysis

Age-adjusted, age-and BMI-adjusted, and multivariate linear regression models were used to 

examine the associations between alcohol intake and biomarker concentrations. Adjusted 

geometric means of biomarkers were calculated using a multivariable adjusted regression 

model while controlling for age, smoking, BMI, physical activity, and family history of 

diabetes. To adjust for confounding effects, we included these covariates in the models 

because they are traditional well-established T2D risk factors. Linear regression modeling 

was also conducted with alcohol as a continuous variable.

Conditional logistic regression was performed to assess the impact of sex hormone 

concentrations on the association of alcohol intake with T2D risk. We first adjusted for 

matching factors such as age, ethnicity, and fasting status at time of blood draw. In 

multivariate analyses, we adjusted for BMI (continuous), family history of diabetes (yes or 

no), smoking (never, past, and current smokers), and physical activity (continuous). To 

evaluate whether sex hormone concentrations mediate the association between alcohol 

intake and T2D risk, each sex hormone biomarker (estradiol, testosterone, SHBG, and 

DHEAS) was added individually to the alcohol-T2D model. A change in the OR towards the 

null (OR=1) in estimates of the parameter between the models was used to indicate how 

various sex hormone biomarkers may mediate the pathway between alcohol consumption 

and reduced diabetes risk.

All statistical analyses were conducted using SAS (version 9.2; SAS Institute, Cary, NC). 

All p-values were two-tailed (α=0.05). Figures were constructed using GraphPad Prism 

Software (version 4.0, GraphPad Software Inc., La Jolla, CA).

RESULTS

The amount of alcohol consumption was significantly different between cases and controls. 

Cases tended to consume less alcohol than controls (Table 1). Overall, there were linear 

trends towards positive associations of alcohol consumption with all sex hormone biomarker 

concentrations (Figure 1). Nonetheless, the estradiol linear trend was largely influenced by 

the highest alcohol consumption category and the testosterone trend was not linear, as we 

observed a bimodal trend. These linear trends were adjusted for age, case/control status, 

BMI, smoking physical activity, and family history of diabetes. Specifically, geometric 

means of estradiol (p=0.002), SHBG (p<0.001), and DHEAS (p<0.001) significantly 

increased across increasing alcohol consumption category.

In the linear regression models adjusting for age and case/control status (Model 1) or BMI, 

age and case/control status (Model 2), levels of estradiol were positively associated with 

alcohol consumption (β=0.14, 95% CI,0.03, 0.26 from Model 1 and β=0.17, 95% CI, 0.06, 

0.29 from Model 2) (Table 2). Beta (β) indicates the amount that the sex hormone increases 

in concentration with alcohol consumption compared to rarely/never consumption. Upon 
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further adjustment for smoking, physical activity and family history of diabetes (Model 3), 

estradiol remained significantly associated with alcohol consumption (β=0.19, 95% CI, 0.07, 

0.30). Testosterone, SHBG, and DHEAS were not significantly associated with frequent 

alcohol consumption, although each showed evidence of positive associations in the 

unadjusted model (Model 1). In the full model including alcohol consumption as a 

continuous variable, there were significantly positive associations of alcohol intake with 

estradiol (β=0.07, 95% CI, 0.02, 0.12) and DHEAS (β=0.10, 95% CI, 0.03, 0.18). Beta (β) 

for the continuous variable indicates the amount that the sex hormone increases in 

concentration with each additional alcoholic beverage (14 g alcohol) consumed in a day.

We examined and confirmed the inverse association between alcohol consumption and T2D 

risk in our population. As compared with women who rarely/never drank alcohol, women 

who drank alcohol ≥ 1 drink/day had reduced T2D risk (OR=0.43, 95% CI, 0.19, 0.99) 

(Table 3). Furthermore, we tested for mediation of the alcohol-diabetes association by sex 

steroid hormones. The addition of SHBG in the unadjusted model only suggested mediation 

between alcohol consumption and T2D risk, however this difference was not observed in the 

full model. The addition of DHEAS in the full model did slightly shift the OR towards the 

null value (unadjusted: 3% change; full model: 5% change). Although estradiol did not seem 

to mediate the alcohol-T2D association with a shift in OR towards the null value, it did 

influence the association with a 12% reduction in the OR. In the model with both estradiol 

and SHBG, we observed a 21% reduction in the OR.

DISCUSSION

Our cross-sectional analysis of 718 postmenopausal women suggested a positive association 

between alcohol intake and concentrations of endogenous estradiol, independent of age, 

BMI, physical activity, race, family history of diabetes and smoking. In our nested case-

control study, we found that concentrations of endogenous estradiol alone or together with 

SHBG may influence the prospective association of alcohol consumption and T2D.

Diabetes risk increases in middle-aged women when menopause occurs (with a pronounced 

decrease in estrogen) [2]. As previously reported, circulating concentrations of estradiol and 

testosterone were higher in cases, while SHBG and DHEAS were lower in cases than 

matched controls in our study population [37]. Both DHEAS and estradiol increase insulin 

secretion through their effects on pancreatic β-cells [2;38] and DHEAS improves insulin 

sensitivity by inducing an increase in glucose transport activity [8]. Testosterone was 

reported higher in T2D women in cross-sectional studies and may be positively associated 

with T2D risk in postmenopausal women in prospective studies [1]. Additionally, higher 

SHBG levels have been significantly associated with decreased diabetes risk in women and 

women, although the inverse association appeared to be stronger in women than in men [1]. 

These observations of T2D risk highlight the importance of the sex hormones in the T2D 

biologic pathway in postmenopausal women.

The inverse association between alcohol consumption and type 2 diabetes risk observed in 

our study population is consistent with previous reports [15–24]. Correspondingly, alcohol 

has been suggested to influence the levels of sex hormones. Early reports had mixed results 
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for the association of alcohol consumption and increased estradiol in postmenopausal 

women [39]. HRT was thought to modify this association; only those women taking HRT 

tended to have increased estradiol with alcohol consumption in a majority of the reports 

[39]. The increased estradiol was thought to be due to the inhibition of the conversion of 

estradiol to estrone [39]. More recently, results from a large cross-sectional study showed 

that postmenopausal women who drank more than 25 g alcohol per day had higher estradiol 

and DHEAS concentrations compared to nondrinkers independent of HRT [40]. Possible 

mechanisms for the increased estradiol include decreased catabolism of the sex hormones by 

the liver, increased aromatase activity, causing increased conversion of estradiol from 

androgens, or increased signaling of the adrenal gland to produce DHEAS (a precursor of 

estradiol) [41].

Our study provided suggestive evidence that the beneficial effect of alcohol on type 2 

diabetes risk might occur through its influence on sex hormones, especially estradiol and 

DHEAS. Experimental data indicate that estradiol increases insulin secretion through its 

effects on pancreatic β-cells [2;38]. Given the observed association between alcohol 

consumption and estradiol concentration in this study, it is possible that estradiol exerts its 

modulating effects on the protective effect of alcohol consumption on type 2 diabetes risk. 

Our study results provided some suggestive evidence, but further mechanistic studies are 

warranted to elucidate the causal interrelationships. In addition, since SHBG binds estradiol 

and regulates the amount of available estradiol [42], the interaction of these sex hormones 

may influence the association of alcohol with T2D risk.

DHEAS might be involved in the mechanisms underlying the effect of alcohol consumption 

on T2D risk as well. DHEAS has been shown to enhance insulin secretion in β-cells in vitro 

and in vivo [8] and improve insulin sensitivity by inducing an increase in glucose transport 

activity [8]. We observed an association between alcohol consumption and DHEAS 

concentration in this study. Similar to estradiol, it is conceivable that increased DHEAS 

induced by alcohol consumption may be one pathway by which alcohol exerts its protective 

effect on T2D risk. DHEAS is a precursor of estrogen [43], DHEAS concentrations may 

also be influenced in this pathway. The mediation analysis provided a weak hint of 

mediation, suggesting that DHEAS may be a surrogate of estradiol or other sex hormone 

metabolisms in the pathway by which alcohol consumption reduces T2D risk.

Our study showed mixed results for the association or mediation of SHBG with alcohol 

intake and T2D. This may be explained in part -by the evidence for a possible “U-shaped” 

relationship between alcohol consumption and T2D for both sexes, where moderate alcohol 

consumption was significantly associated with lower risk of T2D with a nadir for diabetes 

risk at the 24 g/day level, and heavy alcohol drinking (above ~50 g/day for women and 60 

g/day for men) were associated with increased diabetes risk [44]. Another explanation could 

be SHBG’s strong correlation with BMI (β= −0.51, p-value=0.008) [45]. Due to this strong 

correlation, the effect of each constituent alone cannot be distinguished from the other. A 

third explanation for the mixed results could be due to low statistical power when small 

numbers of subjects consumed alcohol frequently.
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This study is a risk-set sampled matched nested case-control study within the WHS. It has 

several strengths, including a validation of the food frequency questionnaire, baseline 

biomarker concentration measurements, and prospectively collected disease diagnosis. 

However, there are some limitations that merit consideration. First, cross-sectional 

associations cannot tease out the causal relation between alcohol consumption and 

biomarker concentrations. Second, there may be some measurement error in the biomarkers 

with single measures, due to assay variability or degradation of the biomarkers. This bias 

should be non-differential among cases and controls, and therefore may cause bias to the 

null. Food frequency questionnaires, although validated in this study, may also produce 

some measurement error in the assessment of alcohol consumption. There remains the 

possibility of residual confounding due to unmeasured or poorly measured confounders in 

our observational study. Third, there is a possibility of potential bias using a mediation 

analysis by comparing two regression models [46]. Although such a conventional model 

provided suggestive evidence, development of alternative mediation analysis based on 

longitudinal data and evidence-based causal interrelationship will have potential to extract 

more accurate information about whether sex hormone biomarkers truly mediate the relation 

between alcohol intake and T2D. Finally, the results had wide confidence intervals, 

indicating the presence of instability in the estimates, partially due to inadequate statistical 

power with the small numbers of women who consumed alcohol frequently.

CONCLUSION

The cross-sectional analysis in our study suggested a positive association between alcohol 

intake and endogenous estradiol concentrations. Our prospective results also suggested that 

baseline concentrations of estradiol alone or with SHBG may contribute, in part, to the 

alcohol-T2D association in postmenopausal women. Further investigation of our findings 

and possible biological mechanisms is warranted.
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Figure 1. 
Adjusted baseline sex hormone concentrations across categories of alcohol consumption. 

Geometric mean and 95% confidence intervals are presented. Geometric mean was adjusted 

for case/control status, age, BMI, smoking, physical activity, and family history of diabetes.
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Table 1

Baseline characteristics of 718 postmenopausal women participated in this prospective case-control study of 

type 2 diabetes

Variable Cases (n=359) Controls (n=359) p

Mean±SD Age (years) 59.6 ± 6.1 59.6 ± 6.1 —

Race/Ethnicity

 White 332 [93] 332 [93] —

 Black 8 [2] 8 [2]

 Hispanic 5 [1] 5 [1]

 Asian/Pacific Islander 9 [3] 9 [3]

 Other/Unknown 5 [1] 5 [1]

Mean±SD BMI (kg/m2) 30.9 ± 6.1 26.0 ± 5.0 <0.001

Strenuous Physical Activity

 Rarely/Never 183 [51] 142 [40] 0.0021

 <1 time/week 65 [18] 78 [22]

 1 time per week 28 [8] 28 [8]

 2–3 times/week 50 [14] 70 [19]

 4–6 times/week 23 [6] 27 [7]

 7+ times/week 9 [3] 14 [4]

Smoking

 Never 52 [15] 49 [14] 0.571

 Past 136 [38] 132 [37]

 Current 170 [47] 178 [49]

Total alcohol consumption

 Rarely/Never 218 [61] 169 [47] <0.0011

 1–3 drinks/month 49 [14] 55 [15]

 1–6 drinks/week 74 [20] 94 [26]

 ≥ 1 drinks/day 18 [5] 41 [12]

Presented as frequency [percent] unless otherwise noted as Mean ± SD. Age and Race/Ethnicity were matching variables and therefore were the 
same for cases and controls.

1
Mantel Haenszel Chi Square test for differences between cases and controls.
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