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Abstract

Polygenic prediction using genome-wide SNPs can provide high prediction accuracy for complex 

traits. Here, we investigate the question of how to account for genetic ancestry when conducting 

polygenic prediction. We show that the accuracy of polygenic prediction in structured populations 

may be partly due to genetic ancestry. However, we hypothesized that explicitly modeling 

ancestry could improve polygenic prediction accuracy. We analyzed three GWAS of hair color, 

tanning ability and basal cell carcinoma (BCC) in European Americans (sample size from 7,440 to 

9,822) and considered two widely used polygenic prediction approaches: polygenic risk scores 

(PRS) and Best Linear Unbiased Prediction (BLUP). We compared polygenic prediction without 

correction for ancestry to polygenic prediction with ancestry as a separate component in the 

model. In 10-fold cross-validation using the PRS approach, the R2 for hair color increased by 66% 

(0.0456 to 0.0755; p<10−16), the R2 for tanning ability increased by 123% (0.0154 to 0.0344; 

p<10−16) and the liability-scale R2 for BCC increased by 68% (0.0138 to 0.0232; p<10−16) when 

explicitly modeling ancestry, which prevents ancestry effects from entering into each SNP effect 

and being over-weighted. Surprisingly, explicitly modeling ancestry produces a similar 

improvement when using the BLUP approach, which fits all SNPs simultaneously in a single 

variance component and causes ancestry to be underweighted. We validate our findings via 

simulations, which show that the differences in prediction accuracy will increase in magnitude as 

sample sizes increase. In summary, our results show that explicitly modeling ancestry can be 

important in both PRS and BLUP prediction.
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Introduction

Genome-wide association studies (GWAS) have identified many single nucleotide 

polymorphisms (SNPs) associated with complex traits [Visscher et al. 2012]. Genetic 

prediction based on genome-wide significant SNPs from GWAS provides some predictive 

ability [Wray et al. 2007; Meigs et al. 2008; Kraft and Hunter 2009; So et al. 2011], but 

polygenic prediction, using genetic variants that do not achieve genome-wide significance, 

can improve prediction accuracy [de los Campos et al. 2010; Chatterjee et al. 2013; 

Dudbridge 2013]. Polygenic prediction has been applied to many complex traits, such as 

schizophrenia and height [Evans et al. 2009; Purcell et al. 2009; Wei et al. 2009; Bush et al. 

2010; Lango Allen et al. 2010; Machiela et al. 2011; Makowsky et al. 2011; Stahl et al. 

2012; Vazquez et al. 2012; Wei et al. 2013; Smoller et al. 2013; Rietveld et al. 2013; Ripke 

et al. 2014; Wood et al. 2014].

Polygenic prediction accuracy may be partly due to genetic ancestry, especially for complex 

traits that are known to be associated with ancestry. For example, differences in height 

between Northern Europeans and Southern Europeans (e.g. due to natural selection) explain 

5% of the variance of height in European Americans from the Framingham Heart Study, 

accounting for most of the polygenic prediction accuracy in 1,997 unrelated individuals 

from this sample [Makowsky et al. 2011; Wray et al. 2013; Turchin et al. 2012]. Other traits 

that are well-known to be associated with ancestry in European-ancestry populations include 

hair color, eye color, skin pigmentation, skin cancer, multiple sclerosis, rheumatoid arthritis, 

type 1 diabetes, Crohn’s disease, Alzheimer’s disease, coagulation factor VII (FVII) plasma 

level, hemoglobin disorders, and educational attainment [Candille et al. 2012; Nan et al. 

2009a; Rosati 2001; Cimmino et al. 1998; Patterson et al. 2009; Kenny et al. 2012; Panza et 

al. 2003; Bernardi et al. 1997; Angastiniotis and Modell 1998; Borjas 1994]. Thus, it is 

possible that polygenic prediction studies of these traits may likewise owe some of their 

accuracy to genetic ancestry [Evans et al. 2009; Wei et al. 2009; Bush et al. 2010; 

Makowsky et al. 2011; Stahl et al. 2012; Vazquez et al. 2012; Wei et al. 2013; Rietveld et al. 

2013]. In genetic association studies, ancestry is a confounder that may cause false positive 

associations with no biological significance [Price et al. 2010]. On the other hand, if the 

ultimate goal is to conduct prediction in the same population, polygenic predictions that are 

partly due to ancestry may be useful. However, it is important to understand how much of 

polygenic prediction accuracy is due to ancestry, as this will affect prediction accuracy in 

other populations.

An open question is how to make use of ancestry information in polygenic prediction. Most 

studies of polygenic prediction ignore ancestry information, but this may not be optimal. We 

propose to correct for ancestry in the polygenic model using principal components, while 

incorporating associations between ancestry and the trait as a separate component in the 
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prediction model. We hypothesize that explicit modeling of ancestry in this fashion can 

improve polygenic prediction accuracy, by preventing ancestry from entering into each SNP 

effect and being overweighted. In this study, we investigated the impact of explicit modeling 

of genetic ancestry on polygenic prediction accuracy by analyzing GWAS samples of 

European Americans for three pigmentation-related traits, including natural hair color (HC), 

childhood and adolescent tanning ability (TA), and basal cell carcinoma (BCC). We 

employed cross-validation schemes to ensure that improvements in prediction accuracy were 

not caused by over-fitting. We determined that explicitly modeling ancestry can 

significantly improve prediction accuracy across different polygenic prediction approaches, 

such as polygenic risk scores and best linear unbiased predictors. We note that although 

polygenic risk scores may not be the optimal prediction method when raw genotypes are 

available, we have chosen to include them as one of the main focuses of our analyses, 

because they are currently the most widely used approach for polygenic risk prediction in 

humans.

Materials and Methods

GWAS data

We performed analyses of 3 genome-wide association studies (GWAS) of hair color (HC), 

tanning ability (TA), and basal cell carcinoma (BCC) nested in the Nurses’ Health Study 

(NHS) and the Health Professionals Follow-up Study (HPFS). The sample collection, 

genotyping and quality control for each GWAS were described previously [Hunter et al. 

2007; Nan et al. 2011; Qi et al. 2010; Rimm et al. 1991; Curhan and Taylor 2008; Taylor et 

al. 2005]. All samples are self-reported European Americans. We included only SNPs 

genotyped with call rate >99% and minor allele frequency >1% and excluded A/T and C/G 

SNPs to avoid strand ambiguity. The missing genotypes were mean-imputed in the 

subsequent analyses. We extracted samples with complete phenotype and self-reported 

ancestry information into 3 GWAS sets. We obtained 7,440 samples with HC, 9,822 

samples with TA, and 2,086 BCC cases and 6,173 controls. We applied LD pruning by 

genomic position with a R2 threshold of 0.2 to obtain 71,557, 71,549 and 71,575 

independent SNPs for HC, TA, and BCC, respectively.

In addition to the genotyped SNPs, we obtained imputed genotypes for variants that showed 

genome-wide significant association with HC, TA and BCC. This included 12 SNPs and one 

two-SNP haplotype associated with each of HC, TA and BCC and 6 additional SNPs 

associated with BCC only (Table S1) [Gerstenblith et al. 2010]. Note that some of these 

genome-wide significant SNPs were identified in the samples analyzed here, especially for 

TA; therefore, higher prediction accuracy based these genome-wide significant SNPs is 

expected [Han et al. 2008; Nan et al. 2009a; Nan et al. 2009b]. The imputation was done 

with using BEAGLE (for phasing) and MaCH using the 1000 Genomes Project Interim 

Phase I release as the reference panel [The 1000 Genomes Project Consortium 2012; Li et 

al. 2010; Browning and Browning 2007].
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Phenotype definitions

The phenotype information was collected from prospective questionnaires. The natural hair 

color at 20 years of age was collected in 4 levels: blonde, light brown, dark brown, and 

black. We excluded samples with red hair color, which is a distinct trait from other hair 

colors and is mainly determined by the MC1R gene [Han et al. 2008]. The childhood and 

adolescent tanning ability with more than 2 hours of sun light exposure was collected in 4 

levels: practically none, light tan, average tan, and deep tan. A previous study showed that 

deeper tan denotes a better response to sun light exposure and is associated with lower risk 

of skin cancer [Nan et al. 2009a]. Both hair color and tanning ability were analyzed as 

quantitative traits. The BCC cases were identified through biennial self-report; the validation 

rate of BCC self-reports was 90% in NHS and HPFS [Han et al. 2006; Hunter et al. 1990].

Self-reported ancestry

The participants were assigned to 1 of the 4 self-reported ancestry groups: Scandinavian, 

Southern European, Ashkenazi Jewish, and Other European (which includes samples with 

no self-reported European sub-population ancestry information). We calculated the mean 

and standard deviation for each trait by self-reported ancestry groups. We also tested for 

association between self-reported ancestry and each trait with a Wald test for HC and TA 

and a χ2 test and odds ratios with 95% confidence intervals for BCC.

Inference of genetic ancestry

To infer genetic ancestry, we performed principal component analysis (PCA) with 

EIGENSTRAT software to obtain principal components as measure of genetic ancestry 

[Price et al. 2006; Patterson et al. 2006]. We performed PCA on the 3 GWAS and obtained 

the top 10 PCs specific to each GWAS. These PCs were used in all primary analyses. We 

also performed additional analyses in which we derived the top PCs independently for 

training and validation sets with an external European American reference panel (see 

Discussion). We plotted PC1 and PC2 to show the structure of these GWAS samples with 

color-coding by self-reported ancestry. To further investigate population structure, we 

projected the samples from Eastern European countries in the Population Reference Sample 

(POPRES) to the PC space derived from the TA GWAS samples, which contained most of 

our merged GWAS samples. The collections and methods for the Population Reference 

Sample (POPRES) are described by Nelson et al. (2008). The datasets used for the analyses 

described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/

projects/gap/cgibin/study.cgistudy_id=phs000145.v1.p1 through dbGaP accession number 

phs000145.v1.p1. The PC projection was done by applying the SNP weights, which were 

calculated with principal components and eigenvalues derived from the TA GWAS samples, 

to the POPRES samples [Chen et al. 2013]. To compare the structure of POPRES samples 

and our GWAS samples, we plotted the projected PC1 and PC2 of POPRES samples with 

the PC1 and PC2 of the TA GWAS samples.

Prediction using genetic and self-reported ancestry

We demonstrated the prediction ability of ancestry by building prediction models with 1) 

self-reported ancestry, 2) PC1 and PC2, 3) the top 5 PCs, and 4) the top 5 PCs plus self-
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reported ancestry in all samples. To control for over-fitting, we also employed 10-fold cross-

validation: we built prediction models by estimating model coefficients with the training set 

which includes 90% of the total sample size and applied the estimated model coefficients to 

the validation set, which includes 10% of the total sample size excluded from the training 

set, and calculated predicted phenotypes for the validation samples. A predicted phenotype 

was calculated for each validation sample as  where k indexes the predictors, 

including PCs and/or self-reported ancestry, βk is the regression coefficient estimated in the 

training set and xk is the covariate value for the validation set. We repeated this process 10 

times and pooled the validation samples with predicted phenotypes to calculate out-of-

sample R2 between predicted and true phenotypes. We note that the PCs used in all primary 

analyses were derived with all samples together.

R2 was calculated for each model and a likelihood ratio test (LRT) was used to compare 

models. We used R2 on the observed scale for HC and TA and R2 on the liability scale for 

BCC. The R2 on the observed scale were obtained by fitting linear regression models with 

HC and TA as continuous outcomes and with self-reported ancestry and PCs as predictors. 

To obtain the R2 on liability scale for BCC, we first obtained R2 on the observed scale for 

BCC by treating the BCC case-control status as a continuous outcome where all BCC cases 

take value 1 and controls take value 0 and fitted linear regression models with the 

continuous BCC outcome and the predictors. We then transformed the R2 on the observed 

scale for BCC to the R2 on the liability scale by applying the method based on the liability 

threshold model described in Lee et al. 2012. The transformation of observed scale R2 to 

liability scale R2 assumes a disease liability that follows the standard normal distribution 

and assumes all disease cases have disease liability exceeding a certain threshold value. We 

determined the threshold based on the population prevalence of the disease estimated in 

previous studies [Lear and Smith 1997; Lee et al. 2012]. The transformation is 

 where  and 

. K is the population prevalence of BCC (0.3); t is the threshold 

according to K (0.52); Z is the height of a normal density at the threshold (0.35); m is the 

mean liability for BCC cases (1.16); P is the proportion of BCC cases in the case-control 

sample (0.25). In all analyses, the observed scale and liability scale R2 were obtained using 

the same method. To obtain the LRT p-values, we used linear regression for HC and TA and 

logistic regression for BCC.

Prediction using Genetic Risk Scores (GRS) based on genome-wide significant SNPs

We built prediction models based on genetic risk scores (GRS) using genome-wide 

significant SNPs associated to HC, TA and BCC and compared GRS models to models 

based on both GRS and ancestry. We considered prediction models including 1) GRSunadj, 

2) GRSadj, 3) GRSadj and the top 5 PCs, and 4) GRSadj and the top 5 PCs and self-reported 

ancestry (described in detail below). We employed both 10-fold cross-validation, which 

gives in-sample R2, and 10×9-fold nested cross-validation which gives out-of-sample R2 

that accounts for model over-fitting.
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For 10-fold cross-validation, we estimated effect sizes of the known associated SNPs in the 

training sets by fitting the following models in the 90% training samples:

(1)

or

(2)

where SNPj is the genotype of genome-wide significant SNP j and GWAS is a 6×1 vector of 

6 indicator variables indicating which of the 7 individual GWAS the sample is from. We 

then applied the effect size estimates to the validation samples to construct GRSunadj. We 

calculated GRSunadj for the 10% validation samples by

(3)

where β̂unadj, j is the estimated regression coefficient using the training samples from model 

(1) and (2) and SNPi,j is the genotype of validation sample i at SNP j. We also calculated 

GRSadj by fitting models:

(4)

or

(5)

where SNPj and GWAS are as previously defined and PC is a 5×1 vector of the top 5 PCs. 

The GRSadj was then calculated as

(6)

where β̂adj, j were estimated from model (4) and (5). We then pooled the samples from 10 

mutually exclusive validation sets with GRSunadj and GRSadj constructed with estimates 

from their corresponding training samples and fitted models. In-sample R2 and LRT p-

values were calculated in the validation set for these models, where GRS and other 

predictors (PCs/self-reported ancestry) we treated as univariate predictors.

For the 10×9-fold nested cross-validation, the GWAS samples were split into 2 parts with 

90% of the total samples as the training set and 10% of the total samples as validation set in 

each fold of the nested cross-validation. For the 90% training set, we further split the 

samples into 2 training sets. The first training set had 80% of the total samples and the 

second training set had 10% of the total samples. We used the first training set to estimate 
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effect sizes of the genome-wide significant SNPs and used those effect sizes to construct the 

GRS for the second training set as well as the validation set. We then fit prediction models 

that include GRS (and PCs/self-reported ancestry) in the second training set. The predicted 

phenotype was calculated for each validation sample as  where k index the 

predictors, including GRS and/or PCs/self-reported ancestry, βk is the regression coefficient 

estimated in the second training set and xk is the covariate value for the validation sample. 

For each of the 10 folds of validation samples, we repeated this model building process for 

each of the 9 folds of first and second training sets and averaged the predicted phenotypes of 

validation samples across the 9 folds. With the pooled validation samples from the 10×9-

fold nested cross-validation, we calculated out-of-sample R2 between true phenotypes and 

predicted phenotypes. The out-of-sample R2 were always calculated between a single 

predicted phenotype (Ŷ) and the true phenotype of validation samples and the potential 

inflation of R2 due to increased number of predictors was eliminated. We note that the PCs 

used in all primary analyses were derived with all samples together.

Polygenic prediction using Polygenic Risk Scores (PRS) based on genome-wide SNPs

For the polygenic model with explicit modeling of ancestry, we adjusted for the top 5 PCs 

when constructing the PRS and added the top 5 PCs to the polygenic model as additional 

covariates. We compared prediction models constructed with 1) PRSunadj, 2) PRSadj, 3) 

PRSadj and the top 5 PCs, and 4) PRSadj and the top 5 PCs and self-reported ancestry. We 

first did the analyses with 10-fold cross-validation using R2 and likelihood ratio test as 

figures of merit and then repeated the analyses in 10×9-fold nested cross-validation. Both 

10-fold cross-validation and 10×9-fold nested cross-validation were performed in a similar 

fashion as described above for GRS model comparisons.

We adopted the polygenic risk score method to build polygenic prediction models [Evans et 

al. 2009; Purcell et al. 2009]. We used around 72,000 LD-pruned, independent genome-wide 

SNPs in PRS. To construct PRS without ancestry correction (PRSunadj), we fitted regression 

models (1) and (2) for each of the independent genome-wide SNPs individually using the 

90% training samples. To construct PRS with ancestry correction (PRSadj), we fitted models 

(4) and (5) for each independent genome-wide SNP individually. The β̂unadj, j and β̂adj, j 

were used as weights to construct PRSunadj and PRSadj, respectively. Models (3) and (6) 

were used to construct PRS, except that we included all independent genome-wide SNPs in 

the PRS. We also constructed PRSunadj and PRSadj using different numbers of genome-wide 

SNPs determined by the association p-value (calculated for each training set) for the SNP 

and the target phenotype: 5×10−8, 1×10−7, 1×10−6, 1×10−5, 1×10−4, 0.001, 0.01, 0.05, 0.1, 

0.5, and 1.0. For BCC, we did not construct PRS with p-value threshold smaller than 1×10−5 

because no SNP showed association p-value smaller than 1×10−5 for BCC in our data.

We further extended the polygenic models above to include 1) both GRSunadj and 

PRSunadj,-gs, 2) both GRSadj and PRSadj,-gs, 3) both GRSadj and PRSadj,-gs plus the top 5 

PCs, and 4) both GRSunadj and PRSunadj,-gs plus the top 5 PCs. Here, PRSunadj,-gs and 

PRSadj,-gs are PRS that excluded SNPs with genome-wide significant association for the 

target trait in previous GWAS (which are included in GRS), and SNPs in LD with those 
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genome-wide significant SNPs (pairwise R2 > 0.2). The GRS and PRS were combined in the 

prediction model by either summing the GRS and PRS to make one score or including GRS 

and PRS as two separate components of the model.

We used in-sample R2 and LRT to compare these models in the validation set in the 10-fold 

cross-validation, where all predictors were treated as univariate predictors in the model. We 

calculated out-of-sample R2 in the 10×9-fold nested cross-validation, where the predicted 

phenotypes for each validation sample were calculated as  where k index the 

predictors, including PRS and/or PCs/self-reported ancestry, βk is the regression coefficient 

estimated in the second training set and xk is the covariate value for the validation sample. 

We note that the PCs used in all primary analyses were derived with all samples together.

Polygenic prediction using Best Linear Unbiased Predictors (BLUP) based on genome-
wide SNPs

In addition to PRS, we performed polygenic prediction based on BLUP by fitting linear 

mixed models to estimate genome-wide SNP effect sizes simultaneously [Yang et al. 2010]. 

We compared prediction models based on 1) BLUPunadj, 2) BLUPadj, 3) BLUPadj plus the 

top 5 PCs, 4) BLUPunadj,-gs, 4) BLUPadj,-gs, and 5) BLUPadj,-gs plus the top 5 PCs, where –

gs denotes excluding genome-wide significant SNPs from the random effects of linear 

mixed model and entered the model as fixed effects. We note that the PCs used in all 

primary analyses were derived with all samples together. We adopted 10-fold cross-

validation to fit linear mixed models in the 90% training samples and output the random 

effects and fixed effects estimates with GCTA. The linear mixed model we used to obtain 

effect size estimates takes the general form:

(7)

where β is a vector of fixed effects, g is the total genetic effects of the training samples with 

, A is the genetic relationship matrix derived from SNP genotypes, ε is the 

residual with  [Yang et al. 2010]. In our case, the fixed effects included 

individual GWAS study indicator, PCs, and/or genome-wide significant SNPs. The effect 

sizes of SNPs used to calculate PRS were calculated as  where V−1 is the 

inverse of the phenotypic covariance matrix of the training samples and m is the number of 

SNPs used to calculated the genetic relationship matrix. We then apply the effect estimates 

to the 10% validation samples to construct PRS, GRS, and PCs. The calculation of PRS in 

the validation samples is the same as models (3) and (6). We used in-sample R2 and LRT to 

compare these models in the 10-fold cross-validation with the pooled validation samples, 

where all predictors were treated as univariate predictors in the model.

Simulations comparing polygenic prediction using polygenic risk scores

It is widely known that polygenic prediction accuracy is predominantly determined by the 

training sample size. In our analysis using real GWAS samples, the training sample size is 

fixed. To examine the performance of different PRS approaches under different training 
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sample sizes, we performed the following simulation study. We simulated a quantitative trait 

with 100,000 independent SNPs, where all SNPs were causal and the proportion of 

phenotypic variance explained by these SNPs was 0.5. We simulated sets of 1,000, 5,000, 

10,000, 50,000, 100,000, 500,000, 1,000,000 training samples and 10,000 validation 

samples. Training samples and validation samples were each drawn from two 

subpopulations POP1 and POP2, with minor allele frequency equal to 0.50 in POP1 and 

drawn from a normal distribution with mean 0.50 and standard deviation 0.05 in POP2, so 

that the fixation index FST(POP1, POP2)=0.005. The signs of marker effect sizes were 

flipped so that with probability 0.51, the allele with higher frequency in POP2 had positive 

effect, with the result that POP2 had systematically higher trait mean and subpopulation 

ancestry had an R2 of 0.044 with the trait. We compared three approaches: PRSunadj, PRSadj, 

and PRSadj + ancestry, which is equivalent to PRSadj + top PC except that ancestry is 

assumed to be inferred with perfect accuracy. (We did not consider additional PCs because 

the data was simulated to contain only one dimension of population structure.) Results were 

averaged across 100 simulations. We compared the simulation results to the results from our 

PRS analysis using real GWAS samples.

Results

Inference of genetic ancestry

We performed analyses in three genome-wide association studies (GWAS) of hair color 

(HC), tanning ability (TA), and basal cell carcinoma (BCC) with samples from the Nurses’ 

Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). We investigated 

the population structure in our GWAS samples using principal component analysis (PCA) 

[Price et al. 2006; Patterson et al. 2006], and compared the top principal components (PCs) 

to self-reported European ancestry. We first plotted PC1 and PC2 to investigate the 

population structure in the three GWAS (Figure 1). The PCA plot was color-coded with self-

reported European ancestry, which has four categories: Scandinavian, Southern European, 

Ashkenazi Jewish, and Other European. We found that samples of self-reported Southern 

European ancestry had relatively lower PC1 values than samples of self-reported 

Scandinavian ancestry, while self-reported Ashkenazi Jewish samples had the lowest PC1 

on average. In addition, the average PC1 and PC2 of Other European samples are close to 

the average PC1 and PC2 of Scandinavian samples, suggesting that Other European samples 

are predominantly of Northern European ancestry. The structure we identified in our GWAS 

sample is different from the canonical PC1 and PC2 in European American samples shown 

in Price et al. (2008) perhaps because the current data set has more samples of Eastern 

European ancestry than the samples analyzed in that paper. By projecting POPRES samples 

onto PC1 and PC2, we determined that samples with high PC2 value represent Eastern 

European ancestry (Figure S1) [Nelson et al. 2008]. This result suggests that lower PCs may 

capture additional structure. In the prediction analyses below, we include either PC1 and 

PC2 or the top 5 PCs; including more than 5 PCs (up to 10 PCs) did not change any of the 

results.
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Prediction using genetic and self-reported ancestry

Pigmentation-related traits are associated with ancestry, due to positive selection on lighter 

pigmentation in populations in regions of higher latitude [Sulem et al. 2007]. Indeed, our 

data showed that HC, TA and BCC are strongly associated with genome-wide ancestry and 

self-reported ancestry (Table 1). Compared with self-reported Scandinavian samples, 

Southern European samples on average have darker hair color (2.60 in Southern European 

vs. 2.08 in Scandinavian), increased tanning ability (2.67 in Southern European vs. 2.36 in 

Scandinavian), which corresponds to better protection against ultraviolet radiation, and 

lower risk of BCC (odds ratio [OR] for Scandinavian vs. Southern European (ref) = 1.075, 

95% confidence interval [CI]: 1.036, 1.116). Ashkenazi Jewish samples on average had the 

darkest hair color (2.76), which is consistent with their lower PC1 value vs. South 

Europeans, but also had the lowest tanning ability (2.30) and highest risk of BCC among 4 

self-reported ancestry groups (OR = 1.123, 95% CI: 1.074, 1.174), which are not consistent 

with their lower PC1 value vs. South Europeans. The Scandinavian samples had similar but 

slightly more extreme phenotypes than the Other European samples, consistent with the 

similar but slightly higher average PC1 for Scandinavian vs. Other European samples.

Motivated by these observations, we fitted prediction models based on ancestry. We first 

examined models based on self-reported ancestry only, where the in-sample R2 was 0.0397 

for HC, 0.0081 for TA, and 0.0072 for BCC (Table 2). We then examined prediction models 

based on PCs only. The model based on top 5 PCs achieved R2 of 0.0724 for HC, 0.0350 for 

TA, and 0.0202 for BCC in the in-sample analysis (Table 2). We also showed that adding 

PC3 to PC5 in addition to PC1 and PC2 improved model prediction accuracy significantly 

for all 3 phenotypes (p < 10−16 for HC and TA; 1.93×10−15 for BCC). This suggests that 

including the subtle structure captured by later PCs provided additional value in predicting 

these phenotypes. However, including more than 5 PCs did not change any of the results. 

The R2 obtained by using self-reported ancestry are lower than the R2 obtained by using the 

top 5 PCs. Interestingly, we found including self-reported ancestry in the models in addition 

to the top 5 PCs further improved prediction accuracy (Table 2). The improvement was 

significant for HC (p = 1.32×10−9) and TA (p = 5.70×10−3) but not for BCC (p = 0.18) in 

the in-sample analysis. In addition, we showed that the added information in self-reported 

ancestry for HC (where this effect is strongest) is primarily due to self-reported 

Scandinavian ancestry, which is not completely captured by the Northwest-Southeast 

European cline of PC1 (Table S2). We also performed out-of-sample analyses using 10-fold 

cross-validation and obtained similar results (Table S3). Overall, we showed that both PCs 

and self-reported ancestry explained part of the phenotypic variation and can be used to 

build prediction models for these pigmentation-related traits. Furthermore, while models 

based on PCs have higher prediction accuracy than models based on self-reported ancestry, 

self-reported ancestry can still improve prediction accuracy over PCs.

Prediction using Genetic Risk Scores (GRS) based on genome-wide significant SNPs

To investigate the potential improvement of genetic risk prediction models by incorporating 

ancestry information, we compared genetic risk prediction models based on genetic risk 

scores (GRS) [Meigs et al. 2008]. We used imputed genotypes of SNPs shown to be 

genome-wide significant in previous GWAS to create GRS for each of the 3 phenotypes 
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(Table S1). The models we compared included GRS without ancestry correction (GRSunadj), 

GRS with ancestry correction (adjusted for the top 5 PCs) (GRSadj), and GRS with explicit 

modeling of ancestry (GRSadj+PCs). In 10-fold cross-validation, GRSunadj attained an R2 of 

0.2236 for HC (p < 10−16), 0.1311 for TA (p < 10−16), and 0.0266 (p < 10−16) for BCC 

(Table 3). The R2 of GRSadj were lower than the R2 of GRSunadj for HC and BCC, but 

slightly higher for TA (R2 = 0.1324). In 10×9-fold nested cross-validation, the R2 of GRSadj 

were consistently lower than R2 of GRSunadj for all 3 phenotypes (Table S3). The R2 of 

GRSunadj and GRSadj were much higher than the models based on ancestry. However, we 

showed that the prediction accuracy was improved (relative to either GRSunadj or GRSadj) 

by including PCs in the GRSadj model (Table 3). We repeated the GRSunadj, GRSadj and 

GRSadj+PCs model comparison by fitting all known genome-wide significant SNPs in one 

model simultaneously to obtain effect size estimates for constructing GRS (Table S4). The 

results showed similar patterns to the results from fitting genome-wide significant SNPs 

individually (Table 3). The improvement also remains for the out-of-sample R2 from 10×9-

fold nested cross-validation (Table S3). We also calculated the R2 between the top 5 PCs 

and the predicted phenotypes based on GRSunadj and GRSadj (Table S5). We found that the 

R2 between PCs and GRSadj were only slightly lower than the R2 between PCs and 

GRSunadj, which suggests that the genome-wide significant SNPs used to calculate GRS 

have systematically different allele frequencies across European subpopulations, e.g. due to 

natural selection [Turchin et al. 2012]. In addition to PCs, we also showed that including 

self-reported ancestry further improved prediction accuracy on top of GRSadj + PCs for HC 

(R2 from 0.2378 to 0.2423; p = 1.24×10−9) and TA (R2 from 0.1384 to 0.1397; p = 

2.73×10−3), but not BCC (R2 from 0.0372 to 0.0385; p = 0.108) (Table S6).

Polygenic prediction using Polygenic Risk Scores (PRS) based on genome-wide SNPs

We investigated the impact of explicitly modeling ancestry on polygenic prediction by 

comparing 3 polygenic models: 1) the polygenic risk score (PRS) without ancestry 

correction (PRSunadj), 2) a polygenic risk score with correction for ancestry (PRSadj), and 3) 

a polygenic model with explicit modeling of ancestry, where we corrected for ancestry but 

added a separate ancestry component (PRSadj+PCs) [Purcell et al. 2009; Evans et al. 2009]. 

We compared PRS models with PRS that included all available SNPs across the genome 

after LD pruning. Results are displayed in Table 4. Comparing PRSadj+PCs to PRSunadj, the 

R2 improved 67% (from 0.0473 to 0.0789) for hair color, 114% (from 0.0162 to 0.0347) for 

tanning ability and 62% (from 0.0145 to 0.0235) for BCC. The model improvements were 

significant with p-value < 10−16. We found that PRSadj attained a lower R2 than the other 

models (0.0055 for HC; 0.0003 for TA; 0.0029 for BCC). Notably, the improvement in R2 

of PRSadj+PCs over PRSadj was much larger than the R2 of PRSunadj in each case, 

suggesting that PRSunadj suffered from a mis-specified weighting of ancestry effects, which 

enter into each SNP effect in the unadjusted model. The low R2 of PRSadj is consistent with 

the relatively small sample size in our analyses [Chatterjee et al. 2013; Dudbridge 2013], 

and indicates that the prediction accuracy of PRSunadj was largely due to ancestry. Indeed, 

we observed R2 as large as 0.9250 between PC1 and PRSunadj (Table S5). This is consistent 

with our simulations, in which the prediction R2 for PRSunadj was consistently biased toward 

the same number, 0.044, which is the R2 between ancestry and the target trait. However, the 

prediction R2 of PRSadj increased from 0.003 to 0.439 as the training sample size increased 
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from 1,000 to 1,000,000, and PRSadj+ancestry consistently outperformed both PRSunadj and 

PRSadj (Table 5). Results for PRSadj were close to the values predicted by theory in the 

absence of ancestry effects (see Equation (1) of Wray et al. 2013 Nat Rev Genet) [Wray et 

al. 2013]. These simulations show that explicit modeling of genetic ancestry can improve 

polygenic prediction accuracy, and that the magnitude of this improvement can become 

extremely large as sample sizes grow.

We also compared the 3 types of polygenic models with GRSunadj or GRSadj included as a 

component separate from PRSunadj or PRSadj in the model (PRSunadj + GRSunadj, PRSadj + 

GRSadj, and PRSadj + GRSadj + PCs). We excluded genome-wide significant SNPs (and 

SNPs in LD with known associated SNPs) from PRSunadj and PRSadj, since GRS based on 

genome-wide significant SNPs were included in the model as a separate component. 

Comparing the models with both PRS + GRS to the models with PRS only, the R2 in general 

improved and the improvements were consistent with the R2 from the GRS models (Table 

4). The improvement in R2 due to explicit modeling of ancestry remained but with a smaller 

magnitude, similar to the analysis using GRS only (Table 3); similar relative results were 

obtained when using GRSadj in each model. For the PRS + GRS analyses, we also 

constructed GRS by fitting all known genome-wide significant SNPs in one model 

simultaneously to obtain effect size estimates (Table S7). The results showed similar 

patterns to the results from fitting genome-wide significant SNPs individually (Table 4). We 

also performed out-of-sample analyses using 10×9-fold nested cross-validation and obtained 

similar results (Table S3).

In addition to the 3 polygenic models described above, we evaluated the models of 

PRSunadj+PCs and PRSunadj+GRSunadj+PCs and found that these models attained lower R2 

than PRSadj + PCs and PRSadj+GRSadj+PCs (Table 4). This result may be caused by the fact 

that PRSunadj and PCs are correlated due to ancestry information in both, which is not 

optimally modeled. Finally, we considered models including self-reported ancestry in 

addition to PCs as ancestry measures. The polygenic models with explicit modeling of 

ancestry were further improved by self-reported ancestry for HC and TA, but not BCC 

(Table S6), consistent with predictions using ancestry only (Table 2).

In addition to using all independent SNPs across the genome to construct PRS, we applied a 

p-value threshold based on association tests between individual SNPs and corresponding 

phenotypes to select SNPs entering PRS. We used p-value thresholds from 5×10−8 to 1 and 

constructed PRS corresponding to each p-value threshold [Evans et al. 2009; Purcell et al. 

2009]. We fitted the 3 types of polygenic models with PRS only and the 3 types of 

polygenic models with both PRS and GRS, using PRS subject to different p-value thresholds 

(Figure 2). The prediction accuracy for the polygenic models varied with p-value thresholds 

and showed different patterns for the 3 traits. The R2 of PRSadj+PCs model for HC and TA 

increased with more stringent p-value threshold, while R2 of PRSadj+PCs model for BCC 

remained stable. Overall, polygenic models with explicit modeling of ancestry had higher R2 

than models without ancestry correction across all p-value thresholds applied to PRS. In 

addition, the difference between R2 from the model with explicit modeling of ancestry and 

the model without ancestry correction remained constant across p-value thresholds. For the 

PRS only models, the R2 changed with the p-value threshold for PRS but the magnitude of 
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change was relatively small. For the models with both PRS and GRS components, the R2 

were still improved with a smaller magnitude by explicitly modeling ancestry, compared 

with PRS only models. We also repeated the analyses in 10×9-fold nested cross-validation 

and the results were similar to 10-fold simple cross-validation (Figure S2). Overall, we 

showed that explicit modeling of genetic ancestry improves polygenic prediction accuracy, 

and that this pattern persists when including known associated SNPs via a GRS, and when 

using p-value thresholds.

Polygenic prediction using Best Linear Unbiased Predictors (BLUP) based on genome-
wide SNPs

As a comparison to PRS, which use SNP effect sizes obtained by fitting models for each 

SNP individually, we compared the 3 types of polygenic models based on best linear 

unbiased predictors (BLUP), which use SNP effect sizes obtained by fitting all SNPs using a 

linear mixed model [Henderson 1975; Haile-Mariam et al. 2013; de los Campos et al. 2013; 

Habier et al. 2013; Bolormaa et al. 2013]. We created 3 polygenic models: BLUP without 

ancestry correction (BLUPunadj); BLUP with ancestry correction (BLUPadj); and BLUP with 

explicit modeling of ancestry (BLUPadj+PCs); in BLUPadj and BLUPadj+PCs, ancestry was 

modeled using fixed effects (see Methods). In general, the R2 of BLUP exhibited similar 

patterns as the R2 of PRS (Table 6). In particular, BLUPadj+PCs substantially outperformed 

BLUPunadj. As with PRS, the improvement in R2 of BLUPadj+PCs over BLUPadj was much 

larger than the R2 of BLUPunadj in each case, suggesting that BLUPunadj suffered from a 

mis-specified weighting of ancestry effects; although BLUP fits all SNPs simultaneously, it 

does not allow for different weights for different ancestry effects (e.g. PCs). BLUPadj had 

low R2 due to small sample size, indicating that the prediction accuracy of BLUPunadj was 

largely due to ancestry (Table S5). In models with BLUP and GRS as 2 separate 

components (where genome-wide significant SNPs were included in the GRS but not in 

BLUP), BLUPadj+GRSadj+PCs had significantly higher R2 than BLUPunadj+GRSunadj 

(Table 6). Adding self-reported ancestry in the BLUPadj+GRSadj+PCs and the 

BLUPadj+PCs models improves the prediction accuracy significantly for HC and TA, but 

not BCC (Table S6).

Discussion

Polygenic prediction using genome-wide SNPs has been widely applied to many complex 

traits. The most widely used polygenic prediction method is to construct a polygenic risk 

score (PRS), which is the sum of allele counts weighted by effect sizes estimated 

individually for each SNP, optionally restricting to SNPs with association p-value below a 

certain threshold [Chatterjee et al. 2013; Dudbridge 2013]. (It has previously been noted 

(Chatterjee et al. 2013) that other model selection and shrinkage methods, such as least 

absolute shrinkage and selection operator (LASSO)-type threshold methods that analyze all 

SNPs simultaneously, may modestly outperform the standard polygenic prediction 

approach). In previous studies using PRS, some of them adjusted for ancestry (PRSadj) 

[Purcell et al. 2009; Stahl et al. 2012; Smoller et al. 2013; Rietveld et al. 2013, PGC 2014 

Nature], and some of them did not (PRSunadj) [Evans et al. 2009; Bush et al. 2010; Lango 

Allen et al. 2010; Machiela et al. 2011; Wood et al. 2014 Nat Genet]. However, a separate 
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point is that modeling genetic ancestry as a separate component (PRSadj+PCs) can improve 

polygenic prediction accuracy relative to either PRSunadj or PRSadj, as we showed for HC, 

TA and BCC; the same result is expected to hold for other traits associated to ancestry in 

subtly structured populations; this could explain why recent GWAS of height, which have 

reported that their association results may be impacted by very subtle population 

stratification [Lango Allen et al. 2010; Wood et al. 2014 Nat Genet], have attained 

prediction R2 using PRS that are lower than predicted by theory [Daetwyler et al. 2008 

PLoS ONE]. In addition, the result still holds when including known associated SNPs via a 

genetic risk score (GRS), and when using p-value thresholds. In the European American 

data we analyzed, using 5 PCs to model ancestry improved our results relative to using 2 

PCs. Surprisingly, including self-reported ancestry in addition to 5 PCs improved results 

further, as self-reported ancestry contains information about Scandinavian ancestry that is 

not well-captured by the PCs. Thus, PCs are not guaranteed to capture all ancestry 

information in subtly structured populations.

When applying methods that do not model genetic ancestry as a separate component (e.g. 

PRSunadj or PRSadj), it is still of interest to understand how much of polygenic prediction 

accuracy is due to ancestry, as this will affect prediction accuracy in other populations. For 

example, Rietveld et al. reported a polygenic prediction R2 of 0.02 (p < 10−16) in an analysis 

of unrelated samples but a polygenic prediction R2 of only 0.003 (p = 0.001) in a within-

family analysis immune to ancestry effects (see Table S25 of Rietveld et al.) [Rietveld et al. 

2013]. Unmodeled population structure provides one plausible explanation for this 

discrepancy. We note that although Rietveld et al. adjusted for 4 PCs in their analyses 

(PRSadj), there is no guarantee that PCs capture all ancestry information in subtly structure 

populations. In addition, it is possible that PRSadj+PCs might attain a higher prediction R2 

than PRSadj in unrelated samples in the Rietveld et al. data, as we showed for HC, TA and 

BCC.

A previous study analyzed GWAS data from the Framingham Heart Study to compare 

prediction models for skin cancer risk using either pedigree information, or PCs, or 

polygenic prediction using Bayesian Lasso [Vazquez et al. 2012]. This study reported that 

polygenic prediction attained the highest prediction accuracy, PCs attained the next highest 

prediction accuracy, and pedigree information attained the lowest prediction accuracy. 

However this study did not explicitly model ancestry in the polygenic prediction model. 

Based on our results, it is possible that polygenic prediction with explicit modeling of 

ancestry might attain higher accuracy than the polygenic prediction approach employed by 

ref. [Vazquez et al. 2012]. It is also possible that combining pedigree information with 

polygenic predictions might improve prediction accuracy, although we have not explored 

that approach here [Haile-Mariam et al. 2013].

Alternatives to the widely used PRS approach for polygenic prediction include Best Linear 

Unbiased Prediction (BLUP) and its Bayesian extensions, which fit all markers 

simultaneously [de los Campos et al. 2013; Habier et al. 2013; Zhou et al. 2013; Bolormaa et 

al. 2013]. The potential benefits of explicitly modeling ancestry in this context may depend 

on the prior distribution of effect sizes that is assumed. Under an infinitesimal (Gaussian) 

prior, fitting all marker effects simultaneously may implicitly capture the effects of ancestry. 
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However, our results showed that BLUP still showed an improvement in prediction accuracy 

when explicitly modeling ancestry. Although previous work has argued against including 

PCs as separate fixed effects in a mixed model when estimating components of heritability 

[Janss et al. 2012], and has shown that including PCs as separate fixed effects is generally 

not necessary when using standard mixed model methods for association [Yang et al. 2014], 

those studies did not consider prediction accuracy. Our recommendations for prediction are 

different from those recommendations for heritability estimation and association.

A limitation of our study is that the increased accuracy of PRSadj+PCs (relative to PRSadj) is 

contingent on validation samples having the same population structure as the training 

samples, as was the case in our cross-validation experiments. If validation samples do not 

have the same population structure then prediction accuracy will be lower, although 

PRSadj+PCs is still an appropriate strategy. (For example, if validation samples are from a 

homogeneous population, then PRSadj+PCs will produce predictions virtually identical to 

PRSadj.) Another potential limitation of our study is that it may not be feasible to compute 

PCs by running PCA on raw genotypes from the union of training and validation samples, as 

was done here; for example, this will not be feasible if only summary statistics are available 

for training samples. However, in this case, the top PCs for validation samples can be 

computed using weights derived from external reference panels (as projected PCs), as we 

have described previously [Chen et al. 2013]. We repeated the main analyses with top 

projected PCs derived for both training and validation samples using an external European 

American reference panel and obtained similar results to the results using PCs derived from 

raw genotypes of training and validation samples (Tables S8–S12). (We note that our main 

analyses use only training sample genotypes and phenotypes and validation sample 

genotypes to predict validation sample phenotypes, which is appropriate.)

We conclude by emphasizing the dependence of polygenic prediction accuracy on sample 

size. Both PRSadj (with or without P-value thresholding to impose model selection) and 

BLUPadj attained low R2 in our analyses at modest sample sizes (<10,000), consistent with 

theoretical derivations [Daetwyler et al. 2008; Wray et al. 2013] and simulations suggesting 

that very large training sample sizes (100,000 or more) are needed to achieve high prediction 

accuracy [Chatterjee et al. 2013; Dudbridge 2013]. This limitation is in no way specific to 

the PRS approach. At larger sample sizes, it is likely that polygenic prediction will have 

significant clinical ramifications [Chatterjee et al. 2013; Dudbridge 2013]; indeed, 

prediction R2 has improved in recent very large studies [Ripke et al. 2014]. Notably, our 

simulations specifically show that the impact of explicit modeling of genetic ancestry will 

become extremely large as sample sizes grow.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PCA plots for tanning ability GWAS samples, color-coded with self-reported ancestry
Black circles with color-coded interior denote average PC values for each self-reported 

ancestry. The tanning ability GWAS had the largest samples size among the 3 GWAS 

analyzed. Results for hair color and basal cell carcinoma GWAS samples, which are largely 

overlapped with the tanning ability GWAS samples, were extremely similar.
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Figure 2. R2 for polygenic prediction using PRS with different association p-value thresholds, 
GRS and PCs in 10-fold cross-validation
(A): Hair color (B): Tanning ability (C): Basal cell carcinoma
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Table 5

Comparison between prediction R2 of PRSunadj, PRSadj, and PRSadj + ancestry in simulations with different 

training sample sizes

The fluctuations in R2 of PRSunadj are not statistically significant based on the number of simulations 

performed.

R2

Training sample size (N) PRSunadj (SE) PRSadj (SE) PRSadj + ancestry (SE)

1,000 0.041 (0.0016) 0.003 (0.0002) 0.042 (0.0016)

5,000 0.041 (0.0020) 0.014 (0.0004) 0.051 (0.0019)

10,000 0.043 (0.0019) 0.027 (0.0005) 0.064 (0.0018)

50,000 0.045 (0.0020) 0.111 (0.011) 0.139 (0.0019)

100,000 0.044 (0.0020) 0.182 (0.0011) 0.201 (0.0017)

500,000 0.042 (0.0020) 0.380 (0.0015) 0.384 (0.0016)

1,000,000 0.042 (0.0018) 0.439 (0.0012) 0.440 (0.0013)

SE: standard error
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