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Abstract

As one of the key nutrient sensors, insulin signaling plays an important role in integrating 

environmental energy cues with organism growth. In adult organisms, relative insufficiency of 

insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. 

However, little is known about how insulin signaling feedback might influence neogenesis of β 

cells during embryonic development. Using genetic approaches and a unique cell transplantation 

system in developing zebrafish, we have uncovered a novel role for insulin signaling in the 

negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the 

pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and 

promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling 

promoted β cell regeneration and destabilization of alpha cell character. These data indicate that 

insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early 

development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that 

loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β 

cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell 

mass in the host. Altogether, our results indicate that modulation of insulin signaling will be 

crucial for the development of β cell restoration therapies for diabetics; further clarification of the 

mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in 
vivo and in vitro β cell generation.
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 1. Introduction

Insulin is a crucial gluco-regulatory peptide hormone that is produced by pancreatic beta (β) 

cells and released in proportion to levels of circulating glucose. Under conditions of 

fluctuating metabolic demands and energy availability, the effective functional β cell mass 

(insulin releasing capacity of the pancreas) is regulated to match physiological demands 

through β cell compensation. The failure of β cell compensation to meet insulin demand 

results in diabetes mellitus, a metabolic disease of insufficient insulin signaling that is 

characterized by uncontrolled hyperglycemia and its associated morbid complications. 

While compensation can be transiently mediated in part via increased insulin production and 

release from existing β cells, long term β cell compensation involves the expansion of β cell 

mass by multiple mechanisms (Asghar et al., 2006; Wang et al., 2015; Weir and Bonner-

Weir, 2004). For instance, in mice physiological stresses like over-nutrition and pregnancy 

can accelerate β cell replication (Kim et al., 2010; Lee and Nielsen, 2009; Tanaka and 

Wands, 1996). However, the replicative capacity of β cells varies widely among vertebrates 

by species and age. The capacity of human β cells is lower than that of most model 

organisms used to study replication (Kulkarni et al., 2012). Furthermore, β cell replicative 

capacity diminishes sharply after adolescence (Kulkarni et al., 2012; Linnemann et al., 

2014). In addition, using model organisms, β cells have been shown to arise via neogenesis 

from non-β cell sources, including differentiation from facultative progenitor cells and 

conversion from other pancreatic endocrine cells (Bonner-Weir et al., 2010; Chera et al., 

2014; Chung et al., 2010; Thorel et al., 2010; Xu et al., 2008; Ye et al., 2015). Stimulating β 

cell neogenesis and replication in humans will be crucial for restoring β cell function and 

ultimately curing diabetes. Thus, a comprehensive understanding of the molecular 

mechanisms that sense insulin insufficiency and translate it into β cell compensatory 

responses will impact the design of better diabetes therapies.

Several growth factors and cytokines have been shown to regulate β cell replication in 

response to metabolic demand. In the adult islet, insulin secreted by β cells has been shown 

to feedback upon β cells to regulate islet size and β cell mass (Withers et al., 1999). 

Activation of the insulin receptor triggers its autophosphorylation, which is followed by 

downstream signal propagation via the key effector Insulin Receptor Substrate 1/2 (IRS1/2)) 

to the Akt and Mitogen Activated Protein Kinase (MAPK) pathways; these pathways 

mediate many growth and metabolic responses (Siddle, 2011). Deletion of the insulin 

receptors in β cells (βIRKO) abolished compensatory β cell mass expansion in adult mice 

and resulted in hyperglycemia (Okada et al., 2007). Further, this suggests that reported 

influences of glucose on β cell replication (Otani et al., 2004) may be due in part to the 

indirect effects of augmenting insulin secretion. Although much is known about replication-

mediated β cell mass compensation, little is known regarding the cellular and molecular 

mechanisms of de novo neogenesis-mediated β cell mass compensation.
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It is likely that some mechanisms regulating β cell compensation via neogenesis are common 

to both the mature and developing pancreas, and the embryo is an especially amenable 

system in which to study β cell formation. However, while the intrinsic developmental 

programs regulating endocrine differentiation have been very well characterized (Pan and 

Wright, 2011), the extrinsic signals that control induction and differentiation of β cells, as 

well as those signals that match β cell mass to the needs of the embryo are less well 

understood. Among the pathways studied are fibroblast growth factor and Notch signaling, 

which suppress differentiation of pancreas progenitors (Apelqvist et al., 1999; Jensen et al., 

2000; Norgaard et al., 2003) and epithelial growth factor signaling, which influences β cell 

neogenesis (Cras-Méneur et al., 2001; Miettinen et al., 2008; Suarez-Pinzon et al., 2005). 

Surprisingly, the roles of the pancreatic hormones have not been extensively studied during 

islet development. While glucagon signaling has been shown to regulate alpha (α) cell mass 

by proliferation, neogenesis, and cell fate switching mechanisms (Ye et al., 2015; Gelling et 

al., 2003; Hayashi et al., 2009; Prasadan et al., 2002), it is not clear whether other islet 

hormones like insulin have a significant role in the acquisition and stability of cell fates in 

the developing islet. Even though the insulin signaling pathway has been studied using 

mouse knockout models, the results from previous developmental studies appear 

contradictory. Mice lacking the insulin receptor exhibit severe hyperglycemia at birth despite 

the presence of normal islets (Accili et al., 1996; Joshi et al., 1996; Kitamura et al., 2003). 

However, deletion of either or both of the mouse insulin orthologues (Duvillié et al., 1997) 

or downstream effectors such as Akt lead to marked islet hyperplasia (Buzzi et al., 2010). 

Therefore, further investigation is required to resolve how insulin signaling regulates β cell 

neogenesis during development as well as in pathologies like diabetes.

Zebrafish are a relevant and powerful system for the study of β cell formation and 

homeostasis: they share key features of both carbohydrate metabolism and their β cell 

differentiation program with mammalian systems (Kinkel and Prince, 2009) while also 

affording many experimental advantages (Grunwald and Eisen, 2002). As in mice and 

humans, the zebrafish pancreas arises from two discrete endodermal progenitor domains that 

fuse to establish the architecture of the pancreas (Field et al., 2003; Jørgensen et al., 2007; 

Pauls et al., 2007). In zebrafish, the dorsal bud appears at approximately 14 hours post 

fertilization (hpf) and gives rise exclusively to differentiated endocrine cell types, which then 

cluster to form the principal islet by 24 hpf. Emerging around 34 hpf, the ventral bud engulfs 

the principal islet while differentiating into both exocrine and endocrine cell lineages. In this 

study, we have used zebrafish to explore the role of insulin signaling during embryonic β cell 

formation. Using genetic approaches in zebrafish that either inhibit insulin production or 

impair transduction through the insulin signaling pathway, we have shown that insulin 

signaling has an inhibitory role during early pancreas development: loss of insulin signaling 

drove the precocious differentiation of pancreatic progenitors into β cells. Using chimera 

analysis we found that insulin signaling within the endoderm itself suppresses β cell 

differentiation. Moreover, using a novel blastomere-to-larva transplantation strategy, we 

found that loss of insulin signaling in endoderm-committed blastomeres fostered their 

differentiation into β cells, and that the extent of this differentiation was dependent on the 

function of the host β cell mass. Taken together, our data suggest that manipulation of the 

insulin signaling pathway will be crucial for regenerative medicine approaches to diabetes 
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therapies, including β cell differentiation from in situ progenitors during regeneration, and 

from stem cells in vitro.

 2. Results

 2.1. Intracellular blockade of insulin signaling promotes embryonic β cell formation

To determine whether pancreatic progenitor cells are competent to receive insulin signals, 

we performed whole mount in situ hybridization and quantitative PCR to evaluate the 

expression of insulin receptors at key time points during pancreas development. There are 

two isoforms of the zebrafish insulin receptor, insulin receptor a (insra) and insulin receptor 
b (insrb) (Toyoshima et al., 2008). Both were strongly expressed in zygotes, indicating that 

maternal contribution may affect early embryonic development (Fig. 1A, Fig. S1A–B). Only 

insrb was expressed in the embryonic pancreatic endoderm during early pancreas 

development, as visualized by co-localization with endoderm marker sox17 at 48 hours post 

fertilization (hpf) (Fig. 1B–C). In 108 hpf larvae, both insra and insrb were expressed in the 

pancreas, liver and intestine, which may reflect a metabolic role for insulin signaling during 

later developmental stages (Fig. 1A, Fig. S1C–D′).

To investigate the influence of insulin signaling on β cell differentiation, we generated a 

truncated mutant form of zebrafish IRS2 in which GFP is substituted for the C-terminal 

SH2-binding domains, while retaining the N-terminal pleckstrin homology (PH) and 

phosphotyrosine binding (PTB) domains (Fig. 2A; Fig. S2A). As reported with similar 

constructs (Tanaka and Wands, 1996), this mutant protein (hereafter dnIRS2-GFP) is 

expected to non-productively bind to the insulin receptor and act as a dominant negative 

regulator of insulin signaling. Indeed, when dnIRS2-GFP mRNA was injected into zygotes, 

we observed that dnIRS2-GFP protein was enriched at the plasma membrane in 5 hpf 

embryos (Fig. 2B,C) and remained expressed in the embryos through 24 hpf (Fig. S2B). To 

determine whether this mode of insulin signaling blockade affected the formation of β cells, 

we counted cells expressing insulin in dnIRS2-GFP mRNA-injected embryos at 24 hpf. 

Relative to controls, we observed a 32% increase in the number of ins+ β cells marked by 

dsRed in Tg(insa:dsRed) embryos (Fig. 2D–F). Previous studies have shown that 

homeodomain transcription factor Pdx1 is essential for β cell differentiation and fate 

maintenance (Ahlgren et al., 1998; Jonsson et al., 1994; Offield et al., 1996). These roles of 

Pdx1 are conserved in zebrafish during β cell formation (Kimmel et al., 2011; Yee et al., 

2001). We therefore checked the expression of pdx1 in dnIRS2-GFP injected embryos; 

consistent with the increased β cell quantity, we observed a marked increase in pdx1 
expression in the pancreatic region at 24 hpf (Fig. S2C,D). Concordantly, blockade of the 

Akt branch of insulin signaling via treatment with the PI3 kinase inhibitor wortmannin 

(Standaert et al., 1996) also resulted in increased β cell formation at 30 hpf as marked by 

CFP in Tg(insa:CFP-NTR) embryos (Fig. 2G–I). In contrast, blockade of the MAPK 

pathway via the Erk inhibitor U0126 (Favata et al., 1998) did not significantly influence β 

cell quantity at this stage (Fig. S2E–G). Taken together, these data indicate that the excess β 

cell differentiation induced by insulin signaling deficiency may be primarily regulated via 

the Akt/PI3K branch of the insulin signaling pathway.
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Next, we generated a transgenic model based on the HOT-Cre system (Hesselson et al., 

2009) that conditionally mis-expresses dnIRS2-GFP; this permits inducible and sustained 

knockdown of insulin signaling. This transgenic line, Tg(hs:loxp-mcherry-stop-loxp-
dnIRS2-GFP;cryaa:CFP), was crossed with Tg(hs:Cre) (Le et al., 2007) to generate double 

transgenic embryos in which heat shock induces ubiquitous expression of dnIRS2-GFP (Fig. 

3A); these double transgenic fish are hereafter termed HOT:dnIRS2 for simplicity. Embryos 

bearing Tg(hs:loxp-mcherry-stop-loxp-dnIRS2-GFP; cryaa:CFP) alone, without Cre, were 

used as the control group. We verified the efficiency of insulin signaling blockade in 

HOT:dnIRS2 embryos at 54 hpf with an immuno-blot for phospho-Akt protein: after 

multiple heat shocks at 10, 24, 28, 32, 36, and 48 hpf the HOT: dnIRS2 embryos showed a 

65% relative decrease in phosphorylated Akt as compared with controls (Fig. 3B). 

Importantly, we detected GFP fluorescence only after heat shock induction, and the induced 

dnIRS2-GFP appeared ubiquitous (see Fig. 3C,D,F,G; Fig. S3A″,B″). Next, we used 

HOT:dnIRS2 transgenic zebrafish to analyze islet development. As with both prior 

approaches—dnIRS2 mRNA injection and PI3K inhibitor treatment—the HOT:dnIRS2 
double transgenic embryos showed increased β cell quantity at 54 hpf when heat shocked as 

above (Fig. 3C–E). Interestingly, we also noted a significant decrease in the number of 

glucagon+ α cells (Fig. 3C–E). We also examined Pdx1 protein distribution after 

misexpression of dnIRS2. In control 24 hpf embryos, Pdx1 was expressed predominantly in 

dorsal endocrine cells and weakly in adjacent pancreatic endoderm (Fig. 3F,F′); however, in 

HOT:dnIRS2 embryos that were heat shocked at 10 hpf, Pdx1 expression was strongly 

increased in both the principal islet (arrows) and the adjacent pre-pancreatic endoderm 

(arrowheads, Fig. 3G,G′). This result suggests that an increased Pdx1 expression domain in 

the ventral pancreatic endoderm precedes the early differentiation of ventral progenitor cells 

into β cells. Taken together, our genetic and pharmacological data indicate that insulin 

signaling blockade results in the following phenotypes: increased Pdx1 expression, 

increased formation of β cells, and decreased generation of α cells.

 2.2. Knockdown of insulin drives the early differentiation of β cells

To further delineate the mechanisms of insulin signaling in pancreatic progenitor 

differentiation and β cell development, we used splice-blocking morpholinos (MOs) to 

knockdown insulin during embryogenesis. First, a MO targeting the exon 2-intron 2 

boundary was used to disrupt zygotic insulin a (hereafter insa) pre-mRNA splicing (Fig. 

S4A). Injection of insa MO (insaMO) resulted in two aberrant splicing products of insa pre-

mRNA, demonstrating its efficacy (Fig. S4B–D); however, no general developmental defects 

were observed in insaMO-injected embryos (Fig. S4E). Using immunofluorescent staining, 

we observed a sustained absence of insulin protein in insaMO-injected β cells at 72 hpf and 

96 hpf (Fig. S5). Finally, to confirm the specificity of our insaMO-mediated knockdown, we 

co-injected an mRNA encoding Insulin a protein with the insaMO. In embryos at 24 hpf, we 

found that the expanded β cell phenotype caused by insaMO (Fig. S6A–B′) was “rescued” to 

normal levels (Fig. S6C–D).

Due to genomic duplication, zebrafish have a second orthologue of insulin, insulin b (insb) 

(Papasani et al., 2006). In contrast to the two murine Insulin paralogues that are expressed 

nearly identically (Duvillié et al., 1997; Leroux et al., 2001; Soares et al., 1985), the 
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expression patterns of zebrafish insulin paralogues differ significantly. Specifically, while 

insa is expressed only in pancreatic β cells, insb is widely expressed, particularly in the head 

and somatic musculature; this suggests that in zebrafish the two insulin genes execute 

distinct developmental functions (Papasani et al., 2006). To test this hypothesis, we knocked 

down insb using a MO that targeted the exon 4-intron 4 boundary (Fig. S7A). In insbMO-

injected embryos we observed efficient disruption of insb splicing (Fig. S7B) and severe 

developmental defects, including microcephaly and shortening of the antero-posterior axis 

(Fig. S7C). We observed no change in insa splicing in insbMO-injected or insb splicing in 

insaMO-injected embryos (Fig. S7D,E). Furthermore, insbMO injection affected neither the 

expression of insulin protein in the islet, nor the number of pancreatic β cells (Fig. S7F–H).

Next, we examined β cell formation during development in insa-deficient embryos. For this, 

we analyzed the differentiation of β cells from both progenitor cell sources: the dorsal 

(early) and ventral (late) pancreatic buds. β cells derived from each pancreatic bud can be 

distinguished using a label retaining cell (LRC) assay (Hesselson et al., 2009) in which 

embryonic cells are initially uniformly labeled by zygotic injection of H2B-RFP mRNA. As 

development proceeds, the fluorescence intensity of the encoded fluorescent protein is 

diluted by mitosis. Differences in H2B-RFP signal strength among cell populations reflect 

differences in their proliferative histories. The dorsal bud-derived β cells (DBCs), which 

differentiate early and become quiescent, remain H2B-RFP positive. In contrast, ventral bud-

derived progenitor cells lose H2B-RFP signal via extensive proliferation before ventral bud-

derived β cells (VBC) differentiate. Using this approach we quantified the number of DBCs 

and VBCs in insaMO-injected pancreata throughout development. We found that only DBCs 

were present in the principal islet of control embryos at 24 hpf—consistent with our 

previous findings (Ye et al., 2015; Hesselson et al., 2009)—and that insaMO did not 

influence DBC number (Fig. 4A–G). In contrast, H2B-RFP-negative VBCs were detected 

after 48 hpf and continued to increase throughout development (Fig. 4H). Strikingly, a 

significant number of precocious H2B-RFP-negative VBCs were detected in insaMO-

injected embryos at 24 hpf (Fig. 4D,H). Similarly, we found that treatment with the PI3K 

inhibitor wortmannin also increased VBC but not DBC formation (Fig. S8). We excluded the 

possibility that these precocious VBCs were derived from hyper-proliferative DBCs since 

both phospho-histone H3 (PHH3) immunofluorescence and EdU DNA incorporation assays 

revealed no proliferation in control or insaMO-injected pancreata at 24 hpf (Fig. S9A–D″). 

These data support the interpretation that the excess VBCs in insaMO-injected embryos 

arose by neogenesis from ventral bud sources. Concordantly, in 24 hpf insaMO-injected 
pancreata, but not in control pancreata, ectopic Pdx1+ cells were detected in the ventral 

endoderm (Fig. S10A–D′).

However, despite the early increase in VBCs, we found that the total β cell quantity in 

insaMO-injected embryos had normalized and was indistinguishable from controls at 72 and 

96 hpf (Fig. 4H) even though Insulin protein was still undetectable (Fig. S5). Similarly, 

HOT:dnIRS2 embryos that were received daily heat shocks also normalized their β cell mass 

by 96 hpf (Fig. S3C). Together, these results suggest that normalization of β cell mass after 

an early differentiation of β cells is not as a result of a particular experimental mode of 

insulin signaling blockade, but rather is likely to be biologically relevant. These data support 

the interpretation that insulin expression and release from the early pancreatic islet feeds 
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back to inhibit precocious differentiation of β cells from the ventral bud. Additional non-

insulin dependent mechanisms further may influence the total β cell mass between 24 and 72 

hpf.

To analyze the mechanisms underlying insulin-directed pancreatic progenitor differentiation, 

we analyzed the expression of Pdx1 in both control and insaMO-injected embryos. In 24 hpf 

embryos, Pdx1 expression was strongly expressed in the principal islet; at 48 hpf after the 

induction of the ventral pancreatic bud, Pdx1 was expressed in both the principal islet and 

adjacent endoderm (Fig. 4I,J). After insaMO knockdown, we observed increased Pdx1 

expression in the principal islet region (Fig. 4K,L, arrow), which is consistent with our 

interpretation that a reduction of insulin drives excess β cell differentiation from the ventral 

pancreas. In addition, insaMO also promoted ectopic pdx1 expression in the adjacent 

endoderm from which the ventral pancreatic progenitor cells are derived (Fig. 4K–L, 

arrowheads). An increase in Pdx1 expression at early stages of pancreas development (24 

and 48 hpf), but not during later stages (72 and 96 hpf) was confirmed by quantitative PCR 

(Fig. 4M).

Expression of Pdx1—together with the transcription factor Ptf1a—defines the pancreatic 

progenitor domain in mammals (Burlison et al., 2008). During zebrafish early ventral bud 

development we performed immunofluorescent staining of Pdx1 in Tg (ptf1a:EGFP)jh1 

embryos at 41 hpf. We found that all Ptf1a-positive cells in the ventral pancreatic endoderm 

were also Pdx1-positive (Fig. 4N, inset); suggesting that these are the equivalent of 

mammalian multipotent pancreatic progenitor cells. This interpretation is concordant with 

ptf1a lineage tracing studies in zebrafish (Wang et al., 2015). We next asked how loss of 

insulin affected development of this progenitor domain in our model. In sharp contrast to the 

expansion of the Pdx1+ domain observed with insaMO knockdown, pancreatic ptf1a:GFP 

expression was decreased after insaMO knockdown, as was the number of double positive 

Pdx1+ ptf1a:GFP+ pancreatic progenitors (Fig. 4O,P). These findings indicate that 

knockdown of insulin induces early differentiation of progenitor cells into β cells, which 

consequently diminishes the ventral pancreatic progenitor cell pool. In accord with this 

finding, we also observed decreased exocrine pancreas size in insaMO-injected larvae (data 

not shown). Overall, our findings suggest that insulin signaling is part of a feedback loop 

through which newly formed β cells govern the ongoing differentiation of the pancreatic 

progenitor cells. As such, the loss of insulin induces a compensatory increase of β cell 

differentiation during early islet development.

 2.3. Knockdown of insulin induces ectopic Pdx1 expression in α cells and destabilizes α 
cell fate

We next investigated how insulin signaling impacts specification of other endocrine cell 

types during development. First, α cells were examined by immunofluorescent staining of 

glucagon in insaMO-injected islets. Characteristically, α cells are located in the islet mantle 

and β cells are clustered in the islet core in both zebrafish and mouse islets. However, We 

noted a striking disorganization of islet cells in the insaMO-injected larvae: in insaMO-

injected islets, the islet architecture was inverted such that there was a core of glucagon+ α 

cells was surrounded by insulin+ β cells (Fig. 5A,B; Fig. S11). As observed in HOT:dnIRS2 
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embryos (Fig. 3E), insaMO-injected islets also contained a decreased number of α cells at 

54–100 hpf (Fig. 5C). Moreover, we found that the impaired α cell development in the 

insaMO-knockdown embryos persisted in adulthood at 2 months post fertilization (Fig. 5D–

E′). In contrast to the α cell population, there was no significant change in the number of 

somatostatin+ delta (δ) cells (Fig. S12A–C). Also, the total endocrine cell number, as 

marked by Tg(neurod: GFP), only slightly increased in 24 hpf insaMO-injected embryos, 

but was unchanged at 2, 3, and 4 dpf (Fig. S12D–L). Together, these data indicate that part 

of the increased β cell mass may come at the expense of α cell fate in insulin-deficient 

embryos.

To test this interpretation, we first examined the expression of Pdx1 in the α cells of control 

and insaMO-injected islets. In insaMO-injected islets Pdx1 expression was often aberrantly 

co-expressed in glucagon+ α cells (Fig. 5F–H and S13A–E); this suggests that α cell 

maturation fails and that α cell identity is destabilized. Indeed α cells exhibit a degree of 

plasticity during development and regeneration. For instance, in zebrafish (Ye et al., 2015) 

and mouse (Chung et al., 2010; Thorel et al., 2010) models of extreme β cell ablation, α 

cells can spontaneously transdifferentiate into β cells through an intermediate Pdx1+ 

Glucagon+ stage. Furthermore, mis-expression of Pdx1 induces α cell fate instability and 

results in α to β transformation in some contexts (Yang et al., 2011). Based on this, we 

hypothesized that ectopic Pdx1 expression in α cells of insaMO-injected islets would result 

in the instability of α cell identity, particularly during β cell regeneration. To test this, we 

ablated β cells in Tg(insa:CFP-NTR)s892 embryos using metronidazole (Curado et al., 2007; 

Pisharath et al., 2007) and allowed islets to recover for one day (Fig. 6A). In regenerating 

control and insaMO-injected islets we quantified cells that were either CFP-NTR+ (β cells), 

Glucagon+ (α cells), or bihormonal CFP-NTR+ Glucagon+. In insa knockdown islets we 

observed increased β cell regeneration, and many regenerated β cells were co-labeled with 

Glucagon (Fig. 6B–C′,F). To distinguish between the possibilities that these double positive 

cells had formed by (1) de novo neogenesis, or (2) the transdifferentiation of Glucagon+ α 

cells, we used the LRC assay, in which all early differentiated endocrine cells (<40 hpf) in 

the principal islet are labeled. In this experiment, a cell of any endocrine subtype that 

transdifferentiated into a β cell during regeneration would have been labeled with H2B-RFP, 

while those that arose by de novo neogenesis would have been unlabeled (Ye et al., 2015). 

Consistent with our interpretation of α to β cell transdifferentiation, we found that the β cell 

ablated insaMO-injected islets showed a 2.5-fold increase of regenerated H2B-RFP-positive 

β cells, but no change in the quantity of regenerated H2B-RFP-negative β cells (Fig. 6D–E

′,G). As a second test of α cell transdifferentiation, we also performed genetic α cell lineage 

tracing using the HOTcre system. Specifically, through combination of the transgenic lines 

Tg(gcga:Cre)s962 and Tg(hsp70l:loxp-mcherry-stop-loxp-H2B-GFP;cryaa:CFP)s923, α cells 

were labeled with H2B-GFP by heat-shock before β cell ablation (Ye et al., 2015). In these 

islets, if α cell identity was lost during β cell regeneration, then pre-labeled α cells would be 

detectable as both glucagon-negative and H2B-GFP-positive. Indeed, in insaMO-injected 

embryos we found that a significant population of α cells pre-labeled in this fashion lost 

glucagon expression during β cell regeneration (Fig. S13F–H); thus α cell plasticity appears 

to increase after insulin knockdown. The loss of glucagon expression could indicate that α 

cells have de-differentiated, or have been converted into another endocrine cell type; 
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however, we hypothesize that α to β cell conversion predominates after loss of insulin 

signaling, as observed in previously published studies of transdifferentiation after β cell 

ablation in zebrafish (Ye et al., 2015). In summary, we have demonstrated that blocking 

insulin signaling via insaMO decreases α cell formation and induces Pdx1 expression in α 

cells. Furthermore, the increased β cell regeneration via α to β cell conversion in insaMO 
embryos may result from instability of α cell fate and α to β cell conversion consequent to 

diminished insulin signaling.

 2.4. Loss of insulin signaling in transplanted blastomeres promotes β cell formation

To distinguish whether the precocious β cell differentiation observed in our insulin 

signaling-knockdown models was due specifically to loss of insulin signaling in endodermal 

lineages, we generated endodermal chimeras via blastomere transplantation. Specifically, 

sox32 mRNA was injected into donor zygotes to drive endoderm formation while sox32 MO 

was used to block host embryo endoderm formation (Stafford et al., 2006). In these 

chimeras, transplanted donor cells (endoderm-committed blastomeres; ECBs) replaced 

nearly all endodermal tissues in host embryos (Fig. 7A–B). Thus, we generated chimeric 

embryos in which endodermal gene expression could be independently manipulated. When 

we blocked insulin signaling in the transplanted ECBs—by injection of dnIRS2-GFP mRNA 

into donor zygotes—we found that the differentiating donor endoderm exhibited an 

expanded Pdx1+ domain identical to that seen with global dnIRS2 over-expression (Fig. 7C–

D″). This indicates that endodermal progenitor cells directly respond to insulin signaling by 

limiting Pdx1 expression.

Overall, our data indicate that insulin signaling acts as a negative regulator in a 

developmental context, inhibiting the early differentiation of ventral pancreatic progenitors. 

We next asked whether blocking insulin signaling in transplanted multipotent progenitor 

cells could promote their differentiation into β cells in a more mature pancreatic setting. To 

approach this in a manner that might have relevance to therapies involving stem cell 

transplantation, we developed a novel blastula to larvae cell transplantation assay (Fig. 

8A,B). For this, blastomeres were collected from sox32 mRNA-injected donor blastula stage 

embryos; these ECBs were transplanted into the pancreatic region in larval stage hosts, and 

the survival and integration of donor endoderm into host tissues was verified. RFP-

expressing ECBs from Tg(ubi:zebrabow) embryos were transplanted into Tg(kdrl:GFP) 

hosts with GFP-expressing vasculature; blood vessels pervaded the transplanted donor tissue 

in chimeras (Fig. 8C), demonstrating a close interaction between the donor and host tissues. 

Approximately 80% of host embryos (33 of 41) at one day post transplantation (dpt) had 

successfully integrated the transplanted ECBs.

We next analyzed the differentiation of these transplanted ECBs in the context of wild type 

or β cell-ablated hosts. First, we found that control donor ECBs differentiated into 

sox17:GFP+ endodermal cells by 1 dpt in wild type hosts; however, these ECBs did not 

further differentiate into Pdx1+ cells. In contrast, β-cell-ablated host larvae promoted the 

expression of Pdx1 in control donor ECBs (Fig. 8D,E–F′), which demonstrates that the host 

β cell mass influences the differentiation of transplanted donor ECBs at a distance. Next, to 

test whether insulin was essential for this action, dnIRS2 mRNA-injected donor cells—with 
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impaired insulin signaling—were transplanted. dnIRS2 ECBs in control hosts showed a 

clear increase in Pdx1+ cell quantity; this increase was even more striking in dnIRS2 donor 

ECBs that had integrated into β cell-ablated chimeras (Fig. 8D,G–H′). Together, these results 

indicate that insulin signaling intrinsically regulates Pdx1 expression in the endodermal 

progenitor-like ECBs. Furthermore, these ECBs are also influenced by β cell function at a 

distance.

Next, to determine whether donor ECBs can differentiate into pancreatic endocrine cells, at 

2 dpt we examined Insulin and Glucagon protein expression. Neither hormone was detected 

in donor cells that were transplanted into non-ablated host larvae (data not shown); this is 

consistent with the minimal Pdx1 induction observed in ECBs in a non-ablated host 

environment. In contrast, when ECBs were transplanted into β cell-ablated host larvae, these 

donor cells differentiated into both insulin+ cells and glucagon+ cells (Fig. 9A–B‴, Fig. 

S14A–B′). Furthermore, when dnIRS2 mRNA-injected ECBs were transplanted into β cell-

ablated hosts, there was a marked increase in the number of insulin-expressing cells in the 

transplant; in contrast, no glucagon+ cells were detected (Fig. 9C–E, Fig. S14C,C’). This is 

concordant with our earlier results that showed that inhibition of insulin signaling impairs α 

cell differentiation. Interestingly, in addition to an increase of β cell differentiation in 

dnIRS2 donor ECBs, we observed transplanted dnIRS2 ECBs can influence host β cell 

regeneration as well. We observed a significant increase of β cells in the principal islets of 

host larvae when they were transplanted with dnIRS2 donor ECBs (Fig. 9F, Fig. S15). In 

summary, we have demonstrated that insulin signaling in transplanted endoderm-committed 

blastomeres regulates Pdx1 expression and β cell formation both in donor and host tissues.

 3. Discussion

The coordinated growth and development of the pancreatic β cell mass involves many 

phases, including specification and expansion of the pancreatic progenitor cell population, β 

cell differentiation, and β cell proliferation. Here, we provide evidence that insulin signaling 

acts as a negative feedback signal to regulate pancreatic progenitor cell differentiation during 

development. We have used multiple approaches to block insulin signaling—including mis-

expression of dominant negative pathway effectors, knock down of insulin ligand with 

morpholinos, and small molecule inhibitors—to show that this pathway regulates the 

neogenesis of both β cells and α cells. With loss of insulin signaling during embryonic 

development, we observed increased Pdx1 expression, a precocious differentiation of β cells, 

and a coordinated loss of α cell identity. In addition, using a novel blastomere-to-larva 

transplantation strategy, we found that loss of insulin signaling promoted the differentiation 

of endoderm committed blastomeres (ECBs) into β cells. Taken together, our data suggest 

that appropriate modulation of insulin signaling may be important for the optimal generation 

β cells in vitro and in vivo, and thus may facilitate β cell replacement strategies for the 

treatment of diabetes.

 3.1. A conserved role for insulin signaling in islet development

Our results in zebrafish are consistent with a role for insulin as a physiologically relevant 

signal that feeds back to regulate pancreas progenitor differentiation during the expansion of 
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the β cell mass. The release of active insulin from nascent functional β cells would provide a 

direct means for progenitors to sense and interpret embryonic requirements for β cells: 

matching β cell number with changing physiological needs of the growing embryo. 

Consistent with this, a comparable response was also observed in the β cell mass of mutant 

mice lacking insulin expression. Although loss of both mouse Insulin orthologues is required 

to induce hyperglycemia, islet hyperplasia was observed in the single Ins1 and Ins2 
knockouts, and double null mice (Duvillié et al., 1997). Indeed, islet size is significantly 

increased in Ins1−/−Ins2−/− mice at birth, and the β cell mass in Ins2−/− mice was increased 

almost three-fold at 7 weeks of age, indicating that increased β cell mass expands to 

compensate for low insulin production (Duvillié et al., 1997; Leroux et al., 2001). This is 

further supported by the finding that expression of human INSULIN in the Ins1−/−; Ins2−/− 

mouse reverses the compensatory β cell hyperplasia (Karaca et al., 2007). These findings, 

together with our results, support the hypothesis that insulin acts as a negative regulator for β 

cell formation during development (Duvillié et al., 1997; Leroux et al., 2001).

In contrast to Insulin gene mutants, Insr−/− mice initially appear unaffected as neonates, 

showing a normal β cell mass (Accili et al., 1996; Joshi et al., 1996). Moreover, immediately 

after feeding severe insulin resistance in these mutants results in hyperglycemia, 

hyperinsulinemia and neonatal death (Accili et al., 1996; Joshi et al., 1996). On the surface, 

these data appear contrary to our hypothesis. However, this contradictory result may be due 

to compensatory/redundant activation of IGF-1 receptors in the absence of insulin receptors 

(Kitamura et al., 2003). Local production of IGF-1 in the pancreas may act as negative 

regulatory factor of β cell mass, as knockout of Igf1 in the pancreas increases β cell 

differentiation and a 2.3-fold enlarged islet cell mass (Lu et al., 2004). Thus, any de-

repression of β cell differentiation resulting from loss of insulin signaling through InsR is 

likely countered by redundant activation of IGF1R signaling. On the other hand, our data 

does not exclude the possibility that insulin regulates pancreatic progenitor cell 

differentiation in part via activation of IGF1R, given the complex interaction between the 

insulin and IGF1 signaling pathways (Siddle, 2011; Kitamura et al., 2003). However, given 

that Insulin binds the IGF1R and InsR/IGF1R heterodimers with much lower affinity than 

InsR (Pandini et al., 2002; Soos et al., 1993), it is likely that our manipulations affect insulin 

receptor signaling rather than IGF1R signaling. In further support of this interpretation, 

knockdown either of igf1 or igf1r in zebrafish results in severe neural and gross 

developmental defects (Eivers et al., 2004; Zou et al., 2009), which are significantly 

different from the insulin knockdown phenotypes reported here. This supports our assertion 

that the insulin receptor is the major member of the insulin receptor family that suppresses 

the differentiation of pancreas progenitor cells.

In addition to a direct effect of insulin signaling on the differentiation of pancreas 

progenitors, additional indirect actions are also possible. For instance, in the absence of 

insulin signaling, we expect that free glucose levels will be increased in developing 

zebrafish, as we have previously shown after β cell ablation (Ye et al., 2015; Andersson et 

al., 2012). Glucose can act both as a β cell mitogen (reviewed in Oh (2015)) and as a factor 

promoting de novo β cell neogenesis/differentiation (Soggia et al., 2012; Guillemain et al., 

2007; Ninov et al., 2013). However, our transplantation experiments intimate that glucose 

levels cannot mediate the differentiation effect alone. First, in our endodermal chimeras, 
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insulin signaling, and thus glucose disposal, should be unaffected in all non-endodermal 

tissues, including skeletal muscle; yet Pdx1 expression was clearly increased in dnIRS2-

injected endoderm. The heterochronic ECB transplants provide more convincing evidence: 

in these, dnIRS2 induced the expression of Pdx1 even when host β cells, and also 

carbohydrate metabolism, were unperturbed. These data support a model in which insulin 

ligand signals the undifferentiated endoderm directly. There are at least two explanations for 

the additive effects of dnIRS2 expression in ECBs and host β cell-ablation upon the 

differentiation of β cells. Most simply, the loss of insulin release via β cell ablation could 

further depress the insulin signaling knock down elicited by dnIRS2. Alternately, it could 

result from the combined effects of decreased insulin signaling and increased free glucose 

levels. The coordinated actions of glucose and insulin would provide a integrated 

mechanism to regulate differentiation of β cells, under varied physiological conditions. Both 

insulin signaling (Nakae et al., 2002; Martinez et al., 2006) and glucose sensation (Housley 

et al., 2008) can modulate the activity of the Foxo1, a transcription factor that regulates the 

expression of β cell characteristics (Talchai et al., 2012). Whether molecular integration of 

both insulin and glucose sensing pathways is mediated by Foxo1 during β cell development 

and regeneration is an exciting hypothesis that requires more study.

When we transplanted dnIRS2-expressing ECBs into zebrafish larvae, we also found that 

these pluripotent “insulin resistant” blastomeres promoted β cell regeneration in host tissues. 

This may reveal a bidirectional interchange between the ECB-derived progenitors and their 

environment. This proposition is consistent with previous studies that show that transplanted 

stem cells can secrete angiogenic factors and growth factors (Gnecchi et al., 2008; Horie et 

al., 2011). In fact, some functional benefits observed after stem cell transfer might be due in 

part to the secretion of soluble factors that act as paracrine or endocrine fashion to promote 

tissue regeneration (Gnecchi et al., 2008; Kono et al., 2014; Mirotsou et al., 2007). Thus, we 

propose that in our model that the transplanted donor blastomeres interact through the 

release of secreted signaling factors that act as paracrine or systemic signals (Fig. 9G). 

Additional studies are needed to test this hypothesis and to identify whether there are 

additional signaling factors besides insulin and glucose; unveiling these mechanisms will be 

essential for understanding the deficiencies of β cell compensation that are seen in insulin-

resistant and diabetic states.

 3.2. Insulin signaling regulates endocrine subtype differentiation during development 
and transdifferentiation during regeneration

In addition to regulating pancreatic progenitor cell differentiation into β cells, our data also 

indicate that insulin plays a crucial role in the specification of the α cell endocrine subtype. 

After blockade of insulin signaling we found an increase of β cell formation from the 

pancreatic progenitor cells, and a decrease of α cell fate. This function of insulin signaling is 

likely to be mediated in part by its repressive actions on Pdx1, as our results show that loss 

of insulin signaling promotes Pdx1 expression in glucagon positive α cells as well as 

pancreas progenitor cells and transplanted endoderm-committed blastula cells. In mice, 

enforcing expression of Pdx1 in pancreatic endocrine progenitor cells results in increased β 

cell number and decreased α cell number during embryonic stages (Yang et al., 2011). As 

one of the key transcription factors required for β cell specification and function, Pdx1 
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enhances transcription of β cell-expressed genes such as Insulin, Glut2, Glucokinase, and 

Mafa but inhibits α cell-expressed genes such as Arx and Glucagon (Gao et al., 2014; 

Waeber et al., 1996; Wang et al., 2001). Besides regulating pancreatic progenitor cell 

differentiation, Pdx1 has also been shown to directly drive an α to β cell fate switch. In 

mouse models, mis-expressing Pdx1 in α cells drove postnatal conversion of these cells into 

β cells (Yang et al., 2011). Moreover, we have previously shown that in zebrafish models, 

Pdx1 mis-expressing immature “α-like” cells are unstable, and can transdifferentiate into β 

cells (Ye et al., 2015). In the current study, we show that loss of insulin during development 

also induces the formation of Pdx1+ glucagon+ “α-like” cells. These “α-like” cells are likely 

to be the source of increased α to β cell transdifferentiation after loss of insulin signaling.

 3.3. Insulin signaling maintains pluripotency in multiple contexts

Insulin has been classically viewed as a mitogen (Siddle, 2011); however, insulin also plays 

key roles in maintaining stem cell fate and regulating stem cell differentiation (Bendall et al., 

2007; Choi et al., 2011; Shim et al., 2012; Wang et al., 2007). For example, self-renewal of 

human embryonic stem (ES) cells requires the activation of insulin and IGF signal pathways; 

blocking these signals promotes ES cell differentiation (Bendall et al., 2007; Wang et al., 

2007). Also, in Drosophila larvae, starvation reduces the number of hematopoietic 

progenitor cells by increasing their differentiation, and these starvation effects are mediated 

by the insulin signaling pathway (Shim et al., 2012; Benmimoun et al., 2012). Furthermore, 

reduced systemic insulin signaling and down-regulation of the downstream insulin signaling 

component Akt/PI3K promotes hematopoietic and skin stem cell differentiation (Shim et al., 

2012; Sadagurski et al., 2006).

Our study clearly supports a role for insulin in regulating pancreatic cell differentiation that 

is similar to the well-described role of the Notch signaling pathway. Notch sustains Ptf1a 

expression in early pancreatic progenitors, stimulates progenitor self-renewal and blocks 

endocrine cell differentiation via repression of the bHLH transcription factor Neurog3 (Lee 

et al., 2001; Shih et al., 2012; Ahnfelt-Rønne et al., 2012). Accordingly, disruptions of 

Notch signaling induce premature endocrine cell differentiation and diminish the size of the 

pancreatic progenitor cell pool (Shih et al., 2012; Fujikura et al., 2006). The strong 

phenotypic similarities between the loss of insulin signaling and the loss of Notch signaling 

suggest that these pathways interact—that insulin signaling may act as a positive regulator of 

Notch signaling in pancreatic progenitor cells. Indeed, there is evidence that supports that 

PI3K/Akt and Notch pathways cross talk: during megakaryocyte development the 

PI3K/AKT pathway is activated by Notch stimulation, which in turn enhances Notch-

dependent differentiation (Cornejo et al., 2011). Cooperation between Notch and insulin 

signaling may therefore integrate environmental and metabolic cues to regulate progenitor 

cell maintenance and differentiation. Therefore, it is plausible that insulin signaling in 

pancreatic progenitor cells maintains a positive circuit between PI3K/Akt and Notch that 

blocks the endocrine differentiation program and prevents the premature differentiation of β 

cells. Clearly it will be important to further clarify the interaction of the notch and insulin 

signaling pathways during progenitor differentiation.
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Lastly, recent studies have indicated that endogenous pancreatic multipotent progenitor cells 

are present in adult pancreas both in human (Meier et al., 2006; Patti et al., 2005; Phillips et 

al., 2007) and mouse (Xu et al., 2008; Razavi et al., 2015), and that metabolic stress can 

influence their proliferation and differentiation into β cells (Razavi et al., 2015). Maintaining 

the balance of self-renewal and differentiation in these progenitor cells is likely to be crucial 

for long-term β cell compensation in response to metabolic stresses. Given our findings that 

insulin signaling plays an important role in regulating progenitor cell differentiation during 

development, understanding the roles and mechanisms of insulin signaling in adult 

pancreatic progenitors, and how to appropriately manipulate insulin signaling in these 

populations, may prove to be critical for developing new regenerative therapies for diabetes.

 4. Materials and methods

 4.1. Zebrafish maintenance and strains

Zebrafish were raised under standard laboratory conditions at 28 °C. In order to induce 

dnIRS2-GFP overexpression via the HotCre system, heat shock activations were performed 

at 38.5 °C for 20 min at the stages indicated in the text. All animal procedures were 

conducted in accordance with OLAW guidelines and were approved by the Indiana 

University Institutional Animal Care and Use Committee. The following transgenic lines 

were used: Tg (sox17:GFP)s870 (Sakaguchi et al., 2006), Tg(insa:CFP-NTR)s892 (Curado et 

al., 2007), Tg(insa:dsRed)m1018 (Anderson et al., 2009), Tg (insa:Flag-
NTR;cryaa:mCherry)s950 (Andersson et al., 2012), Tg (neurod:GFP) (Obholzer et al., 2008), 

Tg(gcga:GFP)ia1 (Pauls et al., 2007), Tg(gcga:cre; cryaa:YFP)s962 (Ye et al., 2015), 

Tg(hs:loxp-mcherry-loxp-H2B-GFP)s925 (Hesselson et al., 2009), Tg(kdrl:GFP)s844 (Jin et 

al., 2005), Tg(ubi:zebrabow)a131 (Pan et al., 2013), Tg(hs:cre) (Le et al., 2007) and 

Tg(hs:loxp-mcherry-loxp-dnIRS2-GFP). To construct the hsp70L-loxP-mCherry-STOP-
loxP-dn-irs2a-GFP transgene, the N-terminus of irs2a was amplified from BAC 

DKEYP-24D6 using the oligos: 5′-GGCGC GCCAC CATGG CGAGT CCGCC GCCG and 

5′-CTCGC CCTTG CTCAC CATGG CTGCC ATGCT GTCAG T and GFP was amplified 

from using: 5′-ACTGA CAGCA TGGCA GCCAT GGTGA GCAAG GGCGA G and 5′-

CGAGC TGTAC AAGTA AAGCG GCCGC. The two resulting products were fused by 

PCR and cloned into plasmid hsp70L-loxP-mCherry-STOP-loxP-H2B-GFP_cryaa-cerulean 
(Addgene #24334) using AscI and NotI; Transgenesis was performed as described 

(Hesselson et al., 2009).

 4.2. Detection of protein, mRNA and proliferation

Whole mount immunofluorescent staining and western blotting was performed as described 

before (Anderson et al., 2009). In situ hybridization and quantitative PCR were used to 

detect mRNA expression. In order to detect cell proliferation, an EdU incorporation assay 

was performed as described (Anderson et al., 2009). The following antibodies were used for 

immunofluorescence staining: anti-GFP (Aves Labs); anti-insulin (Biomeda); anti-glucagon 

(Sigma); anti-dsRed (Clontech); anti-PHH3 (Cell Signaling); anti-Alcam (Zn-8); anti-Pdx1 

(gift of Dr. C. Wright, Vanderbilt U.). Alexa Fluor-conjugated secondary antibodies were 

used for visualization (Life Technologies). For immunoblotting, anti p-Akt473 (Cell 

Signaling) was used. The relative expression level of p-Akt473 was determined by 
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normalizing to α-tublin (Santa Cruz). For in situ hybridization, the primer sets in Table 1 

were used to PCR amplify probe templates from cDNA which were then synthesized and 

labeled in vitro using the DIG RNA labeling kit T7 (Roche). in situ hybridization was 

performed as described (Anderson et al., 2009) and color was developed with BM purple AP 

Substrate (Roche). For fluorescent in situ hybridization, Vector Red (Vector Inc.) was used 

for color develoment. For quantitative PCR, mRNA was extracted with Trizol (Life 

Technologies) and reverse transcribed with iScript (BioRad). The Mastercycler Realplex 
PCR system (Eppendorf) was used with Sybr Green mix and Mytaq (BioLine) to generate 

Ct values. The relative expression of each sample was determined by normalizing to β-actin 
using the relative standard curve method (Hesselson et al., 2009). The primer sets in Table 2 

were used for quantitative PCR analysis.

 4.3. Microinjections

H2B-RFP mRNA, dnIRS2-GFP mRNA, insulin mRNA and sox32 mRNA were transcribed 

with SP6 mMessage machine kit (Invitrogen) in vitro. In order to label the differentiated 

dorsal pancreatic endocrine cells, 100 pg of H2B-RFP mRNA were injected into zygotes. 

Immunostaining with anti-dsRed (Clontech) and Alexa 568 (Life Technologies) antibodies 

was used to enhance signal strength. In order to block insulin signaling or to misexpress 

insulin, 200 pg dnIRS2-GFP mRNA or 200 pg insulin mRNA were injected into zygotes, 

respectively. Immunostaining with anti-GFP (Aves Labs) and Alexa 488 (Life Technologies) 

antibodies was used to enhance the dnIRS2-GFP signal strength. To induce endoderm 

differentiation, 200 pg sox32 mRNA were injected into zygotes. To knockdown gene 

expression, antisense morpholinos (Gene Tools, LLC) were injected into zygotes (Table 3): 

insaMO (4 ng, unless indicated), insbMO (2 ng, unless indicated) and sox32MO (4 ng). 

insaMO and insbMO were designed to bind the exon-intron junction of the target gene pre-

mRNA and disrupt splicing. For assessment of insaMO and insbMO efficiency, mRNA was 

extracted from 2 dpf control and MO-injected embryos and cDNA was synthesized as 

described above. The PCR product was then run through a 1% agarose gel and imaged with 

Carestream Gel Logic system. The primers 5′-CATTC CTCGC CTCTG CTTC and 5′-

GGAGA GCATT AAGGC CTGTG were used to assess insaMO efficiency and primer set 

5′-CAGAC TCTGC TCACT CAGGA AA and 5′-GCGTG TAATG GTCAT TTATT GC 

were used for insbMO. The amplified cDNA products were purified from the gel and 

sequenced.

 4.4. Chemical treatments

For β cell ablations, Tg(insa:CFP-NTR)s892 embryos were incubated in 0.1% DMSO 

(Sigma) ± 10 mM Metronidazole (MTZ, sigma) in egg water. After 24 h of treatment, from 

54 hpf to 78 hpf, embryos were washed extensively with fresh egg water, and recovered for 

1 day. In the mosaic analyses, Tg(insa:Flag-NTR;cryaa: mCherry)s950 embryos were treated 

± 10 mM MTZ from 3 dpf to 4 dpf and MTZ was washed out 2 h prior transplantation. For 

inhibition of the Akt pathway, Tg(insa:CFP-NTR)s892 embryos were incubated in 0.1% 

DMSO ± 1 µM wortmannin (Sigma) from 14 hpf and fixed at 30 hpf or 42 hpf. For 

inhibition of MAPK pathway, Tg (insa:CFP-NTR)s892 were incubated in 0.1%DMSO ± 100 

µM U0126 (Sigma (Hawkins et al., 2008)).
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 4.5. Cell transplantations

To analyze the roles of insulin signaling in the endoderm, chimeric zebrafish embryos were 

generated by cellular transplantation (Anderson et al., 2013). sox32 mRNA was synthesized 

in vitro and injected (200 pg/embryo) into donor zygotes and 4 ng sox32MO was injected 

into host zygotes to promote the endoderm replacement by donor cells. Tg(sox17:GFP)s870 

donor embryos were used to distinguish the transplanted endoderm. To analyze the 

differentiation of blastomeres in zebrafish host larvae, Tg(sox17: GFP)s870 donor embryos 

were injected with 200 pg sox32 mRNA alone or together with 200 pg dnIRS2-GFP mRNA. 

De-chorionated donor blastulae were immobilized in agarose molds and 4 dpf host larvae 

were immobilized with 2% methylcellulose. About 20–40 cells were extracted from the 

donor and injected into host larvae in the abdominal cavity behind the liver and above the 

pancreas. To examine blood vessel infiltration of transplanted donor tissue, 

Tg(ubi:zebrabow)a131 donor embryos were injected with 200 pg sox32 mRNA and 

transplanted into 4 dpf Tg(kdrl:GFP)s844 host larvae.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Expression of insulin and insulin receptors during zebrafish endoderm development. (A) In 
situ hybridization for insra and insrb in the developing zebrafish embryos. (B–C) 

Fluorescent in situ hybridization of insrb (red) in Tg(sox17:GFP) endoderm (green) at 48 

hpf. Abbreviations: z, zygote; ed, endoderm; p, pancreas; li, liver; in, intestine.
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Fig. 2. 
Insulin signaling blockade increases embryonic β cell formation. (A) Schematic of a 

dominant negative IRS2 construct designed to block transmission of insulin signaling; C-

terminal effector binding domains are replaced with GFP. (B,C) 5 hpf embryo injected with 

dnIRS2-GFP mRNA (B) Photomicrograph of epifluorescence shows ubiquitous distribution 

of GFP. (C) Confocal plane shows the localization of dnIRS2-GFP to the plasma membrane 

while co-injected H2B-RFP mRNA labels cell nuclei red. (D, E) Confocal projections of 

control (D) and dnIRS2-GFP mRNA-injected islets in 24 hpf Tg(ins:dsRed) embryos. (F) 
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Quantification of insa:dsRed+ β cells in 24 hpf control (n = 12) and dnIRS2-GFPmRNA 

injected embryos (n = 10). (G,H) Confocal projections of DMSO-treated control (G) and 1 

µM wortmannin-treated islets in 30 hpf Tg(ins:CFP-NTR) embryos. (I) Quantification of β 

cells in DMSO-treated control (n = 18) and 1 µM wortmannin-treated (n = 17) islets in 30 

hpf embryos. Student t-test was used to determine significance in F and I.
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Fig. 3. 
Inducible genetic blockade of insulin signaling promotes β cell formation. (A) Schematic of 

genetic insulin signaling blockade strategy. In double transgenic embryos, heat shock 

induces Cre expression and recombination of the mCherry-switch-dnIRS2-GFP transgene as 

well as expression of the recombined dnIRS2-GFP transgene. (B) Immunoblot of pi-Akt in 

Cre-negative control versus Cre-positive embryos showing that induction of dnIRS2-GFP 

effectively blocks insulin signaling. (C,D) Confocal planes of 54 hpf control and 

HOT:dnIRS2 islets stained for GFP (green), Insulin (red), and Glucagon (white). Embryos 

were heat shocked repeatedly, at 10, 24, 28, 32, 36, and 48 hpf; dnIRS2-GFP was induced 

ubiquitously, but only in Cre-positive HOT:dnIRS2 embryos. (E) Quantification of Insulin+ 

β cells and Glucagon+ α cells in control (gray, n = 8) and dnIRS2-expressing HOT:dnIRS2 
(red, n = 6) groups. (F–G′) Merged and single channel confocal projections of 24 hpf control 

and HOT:dnIRS2 pancreatic endoderm stained for GFP (green) and Pdx1 (red). dnIRS2-

GFP is induced ubiquitously in HOT:dnIRS2 embryos, which show expanded Pdx1 protein 
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expression in the principal islet (arrows) and adjacent ventral endoderm (arrowheads). 

Student t-test was used in B and two-way ANOVA was used in E to determine significance.
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Fig. 4. 
Insulin knockdown increases Pdx1 expression and drives early pancreatic progenitor 

differentiation into β cells. (A–F) Confocal projections of 24 hpf, 48 hpf, and 80 hpf 

Tg(insa:CFP-NTR) control (A–C) and insaMO-injected (D–F) islets that were co-injected 

with H2B-RFP mRNA to distinguish dorsal (H2B-RFP-positive DBCs) and ventral (H2B-

RFP-negative VBCs) bud-derived β cells. Islets were immuno-stained for CFP (β cells, 

green) and insulin (blue). Insulin protein was not detectable in insaMO-injected islets. (G,H) 

Quantification of H2B-RFP-positive DBCs (G) and H2B-RFP-negative VBCs (H) in control 

(black line) and insaMO-injected (red line) islets from 24 hpf to 96 hpf (n ≥ 8 islets at each 

stage). VBC count is increased early at 24 and 48 hpf, but normalizes to control levels by 72 

hpf. (I–L) In situ hybridization of pdx1 expression in 24 hpf and 48 hpf control (I,J) and 

insaMO-injected (K,L) embryos. pdx1 expression was increased in the principal islet (arrow) 

and adjacent endoderm (arrow heads). (M) Real time PCR to detect Pdx1 expression in both 

control and insaMO-injected embryos from 24 hpf to 96 hpf (n = 3). (N,O) Confocal planes 

of 41 hpf Tg(ptf1a:GFP) control (N) and insaMO-injected (O) endoderm stained for GFP 

(green) and Pdx1(red). Pdx1 expression was increased while ptf1a:GFP expression was 

decreased in insaMO-injected embryos. (P) Quantification of double positive Pdx1+ ptf1a+ 

pancreatic progenitor cells in both control (n = 6) and insaMO (n = 6) injected embryos. 

Abbreviations: pi, principal islet; vp, ventral pancreas. ANOVA was used in G,H, and O and 

Student's t-test was used in P to determine significance.
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Fig. 5. 
Insulin knockdown impairs α cell development and destabilizes α cell fate. (A,B) Confocal 

projections of 100 hpf Tg(insa:CFP-NTR) control (A) and insaMO-injected (B) islets 

stained for Glucagon (red) and CFP (β cells, green). α cell count is decreased and α/β cell 

architecture is inverted. (C) Quantification of Glucagon-positive cells in 54 hpf, 80 hpf and 

100 hpf control (gray) and insaMO-injected (red) islets (n ≥ 5 for all time points except 54 

hpf control, n = 3). (D–E′) Confocal projections (D,E) and confocal planes (D′,E′) of 2 

months post fertilization (mpf) control (D,D′) and insaMO-injected (E,E′) islets stained for 

Glucagon (red), Insulin (green) and DNA (blue). Reduction of α cell mass was sustained 

into adult stages. (F,G) Confocal planes of 100 hpf control (F) and insaMO-injected (G) 

islets immunostained for Glucagon (white) and Pdx1 (red). Double positive Glucagon+ 

Pdx1+ cells (arrows) were increased with insaMO-injection. (H) Quantification of double 
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positive Glucagon+ Pdx1+ cells in 100 hpf control (n = 6) and insaMO-injected (n = 10) 

islets. Two way ANOVA was used in C and Student's t-test was used in H to determine 

significance.
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Fig. 6. 
Insulin knockdown enhances regeneration of β cells. (A) Schematic of β cell ablation and 

regeneration experiments. Control and insaMO-injected insa:CFP-NTR embryos were 

treated with MTZ from 52 to 80 hpf, recovered in fresh egg water for 1 day, and analyzed at 

~100 hpf (1 day post ablation; dpa). (B–C′) Merged (B,C) and single channel (B′,C′) 

confocal projections of regenerated 100 hpf control (B,B′) and insaMO-injected (C,C′) islets 

immunostained for Gcg (red), CFP (β cells, green), and DNA (blue). Arrows indicate the 

expansion of strongly double positive Ins+ Gcg+ cells. (D–E′) Merged (D,E) and single 

channel (D′,E′) confocal projections of 100 hpf control (D,D′) and insaMO-injected (E,E′) 

islets immunostained for CFP (green) and DNA (blue). All islets expressed zygotically-

injected H2B-RFP (red) to mark DBCs. Arrows indicate the expansion of double positive 

H2B-RFP+ Ins+ cells; this indicates conversion of non-β endocrine cells into β cells. (F) 
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Quantification of insa+, Gcg+, and insa+ Gcg+ cells in 1 dpa control (n = 17) and insaMO-

injected (n = 22) islets. (G) Quantification of H2B-RFP+ insa+ and H2B-RFP− insa+ 

regenerating β cells in 1 dpa control (n = 17) and insaMO-injected (n = 13) islets. Student's 

t-test was used in G to determine statistical significance.
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Fig. 7. 
Insulin signaling blockade in transplanted endodermal committed blastomeres promotes 

Pdx1 expression. (A) Scheme of endoderm replacement transplantation experiments. sox32-

injected blastomeres termed “Endoderm Committed Blastomeres” (ECBs) were isolated 

from donor Tg(sox17:GFP) blastulae with or without injected dnIRS2-GFP mRNA. ECBs 

were transplanted into endoderm deficient, sox32MO-injected host blastulae. (B) 24 hpf 

chimera shows extensive replacement of endogenous endoderm with transplanted 

Tg(sox17:GFP) donor cells. (C–D″) Merged and single channel confocal projections of 24 
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hpf embryos with endoderm transplants from sox32 mRNA (C–C″, n = 8) or sox32 and 

dnIRS2 mRNA (D–D″, n = 7) injected donors. Embryos were immunostained for GFP 

(green), Pdx1 (red), and DNA (blue). dnIRS2-GFP-expressing endoderm showed increased 

Pdx1 expression.
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Fig. 8. 
Insulin signaling blockade in endodermal committed blastomeres promotes Pdx1 expression 

after transplantation into β-cell ablated hosts. (A) Blastula ECB to 4 dpf Tg (insa:flag-NTR) 

larva cell transplantation scheme. (B) 5 dpf host shows Tg(sox17:GFP) donor cells at 1 day 

post transplantation (dpt). (C) Confocal projection of Tg(kdrl:GFP) (green) host with 

transplanted Tg(ubi:zebrabow) donor cells (red) at 1 dpt shows engraftment. (D) Percentage 

of transplanted ECBs that are Pdx1-positive. Chimeras were generated with the following 

four combinations: (1) wild type ECBs (−dnIRS2) into non-ablated host (n = 4); (2) ECBs 

+dnIRS2 into non-ablated host (n = 6); (3) wild type ECBs (−dnIRS2) into β ablated host (n 
= 6); and (4) ECBs +dnIRS2 into β ablated host (n = 8). (E–H′) Merged and single channel 

confocal planes of chimeras showing Tg(sox17: GFP) donor ECBs (outlined) at 1 dpt, 

stained for GFP (green), Pdx1 (red), Alcam (white), and DNA (blue). (E–F′) sox32 mRNA-

injected blastomeres transplanted into β intact (E′ E′) and β cell-ablated hosts (F–F′). Few 

transplanted ECBs expressed Pdx1. (G–H′) sox32 and dnIRS2 mRNA-injected blastomeres 
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transplanted into β cell-intact (G–G′) and β cell-ablated (H–H′) hosts. Loss of β cells 

increases Pdx1 expression in transplanted ECBs. Student t-test was used for statistical 

analysis in D. Abbreviations: sb, swim bladder; p, pancreas; ib, intestine bulb; li, liver.
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Fig. 9. 
Insulin signaling blockade in ECB donor cells promotes Insulin expression and host β cell 

regeneration. (A–D′) Merged and single channel confocal projections of transplanted 

Tg(sox17:GFP) donor ECBs in β cell-ablated host larvae stained for GFP (green), Insulin 

(red) and Glucagon (white) at 2 days post transplantation (dpt). (B–B′, D–D′) Higher 

magnification of boxed region in panels A–A′ and C–C′, respectively. In (A–B′) donor cells 

were injected with sox32 mRNA only; in (C–D′) donor ECBs had been zygotically-injected 

with sox32 and dnIRS2 mRNAs. Cells derived from the ECB transplant are bounded by a 

dotted yellow line and the principal islet (pi) of the host is indicated by a red arrow. (E) 

Quantification of Insulin+ β cells in donor ECBs that were transplanted into β cell ablated 

hosts; −dnIRS2 (n = 11), +dnIRS2 (n = 10). Blockade of insulin signaling with dnIRS2 

increased the production of insulin-positive β cells. (F) Quantification of host-derived 

regenerated β cells in the principal islet (pi) after transplantation with no cells (sham control, 

n = 12), donor ECBs injected with sox32 mRNA alone (n = 11), or ECBs injected with 

sox32 plus dnIRS2 mRNAs (n = 11). (G) Model for the role of insulin signaling in 
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regulating β cell differentiation and reciprocal interactions between transplanted endoderm-

committed blastomeres and the host environment. Student's t-test was used in E and one-way 

ANOVA was used in F to determine significance. Abbreviation: pi, host larvae principal islet 

at 2 days post β cell ablation.
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Table 1

Primer sets used for synthesis of in situ hybridization probes.

insra 5′-GCTCG TGCGC GTGTT CATAT

5′-GCTAA TACGA CTCAC TATAG GTTTC CGTGG CCTGA GTTC

insrb 5′-GGCTG GACAC ATCTG TGGTT G

5′-GCTAA TACGA CTCAC TATAG GCGGT GGAGG ACAAT TATAT CGTAG

pdx1 5′-GGGAG ACTGC AGGTA GAGCA

5′-GCTAA TACGA CTCAC TATAG GGCCT TTTGC CAATC TGTTT GC
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Table 2

Primer sets for qPCR analysis.

insa 5′-TCTGC TTCGA GAACA GTGTG

5′-GGAGA GCATT AAGGC CTGTG

insra 5′-CGGCT CGCTG TGTTG TATTG

5′-TACTG TCCCT CCTCT CACGG

insrb 5′-TCGCC TACAT CTTGT GCCTC

5′-AGCTC AAGCC CCTGA AATCC

pdx1 5′-ACACG CACGC ATGGA AAGGA CA

5′-GCGGG CGCGA GATGT ATTTG TT

β-actin 5′-GGCAC GAGAG ATCTT CACTC CCC

5′-GGGGA AAACA GCACG AGGG GC
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Table 3

Morpholino Sequences.

Name Target Sequence Dose (ng)

insaMO insa (NM_131056.1) 5′-CCTCT ACTTG ACTTT CTTAC
CCAGA

4

insbMO insb (NM_001039064.1) 5′-AAGTT GGAGA CGTTG
CTCAC CCAGC

2

Sox32MO Sox32(NM_131851.1) 5′-GCATC CGGTC GAGAT
ACATG CTGTT

4
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