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Abstract

It is well recognized that the benefit of a medical intervention may not be distributed evenly in the 

target population due to patient heterogeneity and conclusions based on conventional randomized 

clinical trials may not apply to every person. Given the increasing cost of randomized trials and 

difficulties in recruiting patients, there is a strong need to develop analytical approaches to 

estimate treatment effect in sub-populations. In particular, due to limited sample size for sub-

populations and the need for multiple comparisons, standard analysis tends to yield wide 

confidence intervals of the treatment effect that are often non-informative. We propose an 

empirical Bayes approach to combine both information embedded in a target sub-population and 

information from other subjects to construct confidence intervals of the treatment effect. The 

method is appealing in its simplicity and tangibility in characterizing the uncertainty about the true 

treatment effect. Simulation studies and a real data analysis are presented.
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1. INTRODUCTION

The primary goal of typical randomized clinical trials is the assessment of the effect of a 

medical intervention as compared with an appropriate control or reference intervention. A 

well-accepted principle is the characterization of the clinical benefit of the intervention by 

the average treatment effect (ATE), which is the difference in the expectation of the outcome 

over the entire population under control and intervention. Nevertheless, it is well-known that 

patient heterogeneity may lead to heterogeneity in the treatment effect (e.g. the intervention 

has different impact on different people) (Davidoff, 2009; Kent and Hayward, 2007). 

Therefore, in many clinical trials, pre-specified, well-defined sub-populations are examined 

separately to study heterogeneity in treatment effect (Wang et al., 2007). There are two main 

limitations in this type of sub-group analysis. First, tests of treatment effects in sub-

populations tend to be under-powered due to smaller sample sizes and more stringent type I 
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error control if multiple comparisons are made. Second, the pre-specified sub-populations 

may not coincide with the ones with large or small ATEs, and thus the analysis is targeted on 

the wrong groups of patients. As drug development has become increasingly expensive with 

high failure rates, there is a strong motivation to explore sub-populations with large 

treatment effects in a post hoc manner. The identification of a sub-population for which the 

intervention is effective will benefit patients, and is of great interest to both the 

pharmaceutical industry and the regulatory agencies. Towards this goal, several statistical 

methods have been proposed, which are based on either optimization of the expected 

outcome over the space of regimens (Qian and Murphy, 2011; Zhao et al., 2012), clustering 

patients by a data-driven score followed by estimation of treatment effect of each cluster 

(Cai et al., 2011; Zhao et al., 2013), classification tree based methods that divide the entire 

population into clusters with different treatment effects (Foster, Taylor and Ruberg, 2011; 

Lipkovich et al., 2011), and full Bayesian approach (Berger, Wang and Shen, 2014). These 

approaches offer tools to search for sub-populations with distinct treatment effects.

In this article, we focus on the first issue raised in previous paragraph, that is, the decreased 

precision in estimating treatment effect in a pre-specified sub-population due to limited 

sample size and possible multiple comparison adjustment. Thus, we are not primarily 

concerned with the potentially strong bias induced by post hoc selection of sub-populations 

with large treatment effect. One solution to the precision loss is to borrow information from 

other subjects using regression models, which has been well recognized and adopted in 

practice. We propose an empirical Bayes (EB) approach to construct confidence intervals for 

the treatment effect in a sub-population for a binary outcome. The EB is a well-established 

method to estimate parameter of one unit by borrowing information from other units (Efron, 

1996, 2010a; Morris, 1983). Central to our approach is the conceptualization and estimation 

of a prior distribution for the treatment effect in the sub-population. The EB approach will 

treat the treatment effect estimate based on data from the given sub-population as the “direct 

evidence”, and the prior distribution estimated from entire data as the “indirect evidence” 

(Efron, 2010a). Thus, we borrow information from other people through construction and 

estimation of the prior. It represents a compromise between two “extreme” approaches. On 

one end of the spectrum, the inference is solely based on the data of the given sub-

population and data from other people are deemed “irrelevant”. On the other end, the 

treatment effect is assumed to be the same for all sub-populations and the entire data are 

used to infer the common treatment effect. The EB offers a natural way to combine both 

extremes (Efron, 1996). Closely related approaches are the full Bayesian approach in the 

setting of linear models (Dixon and Simon, 1991; Jones et al., 2011) and EB approach 

assuming a normal prior (Davis and Leffingwell, 1990; Louis, 1984). To our knowledge, this 

is the first attempt of applying EB approach without the need to assume a parametric family 

as the prior distribution in the setting of treatment effect estimation in sub-populations. The 

advantages of our method are three folds. First, the posterior distribution has an appealingly 

natural and intuitive interpretation as explained in Section 2. Second, by using the data to 

estimate the prior, we maintain objectivity in the analysis. Third, the procedure can be fully 

automated for any disease and intervention without the need to adapt the specification of the 

prior to various diseases and interventions. Fourth, the posterior distribution of the treatment 
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effect offers a convenient tool to estimate false discovery rate (FDR) when multiple sub-

populations are evaluated (Benjamini and Hochberg, 1995; Efron, 2010b).

In what follows, we will describe our method in Section 2, apply it to the MAGnesium In 

Coronaries (MAGIC) trial in Section 3, present a simulation study in Section 4 and conclude 

the article with a discussion in Section 5.

2. METHOD

2.1 Description of the Problem

We consider two-arm randomized clinical studies targeted on some patient population with a 

binary outcome. A group of subjects who meet certain criteria defined by baseline 

characteristics will be called a sub-population. For instance, the population can be all adults 

with type 2 diabetes mellitus, and an example sub-population is composed of those who are 

female, age between 40 and 50 years, and currently taking oral medications. We focus on 

using discrete baseline characteristics to define sub-populations, but the method can be 

easily extended to continuous covariates (see Section 5). Specifically, suppose there are k 
characteristics, cj, j = 1, 2,…, k, each with Lj levels (e.g. Lj = 2 if cj is binary). In theory, 

there are in total  “cells”, or smallest sub-populations that cannot be further divided 

using the k characteristics. In a realistic data set, many of these cells are empty, and the 

actual number of cells with at least one unit, L, is smaller. The L non-empty cells can yield S 
= 2L −2 non-empty sub-populations (not including the entire population). This number is 

rather large, which offers a great opportunity to conceptualize a prior distribution. For 

example, with eight binary variables, there are in theory 256 cells. Even if only 20% is non-

empty, there are still 251 − 2 ≈ 1015 sub-populations.

2.2 The Prior Distribution

We will use a binary vector Z = (Z1, Z2,…, ZL) to label each sub-population, where Zj=1 

means the jth cell is included in the sub-population and 0 otherwise (j=1,2,…, L). For each 

Z, there are three parameters that can be estimated: the proportion of the population that 

falls in the sub-population or the size of the sub-population (θ1(Z)), the event rate in the 

control arm (θ2 (Z)), and the event rate in the intervention arm (θ3 (Z)). Let θ(Z) = (θ1 (Z), 

θ2 (Z), θ3 (Z))T. At the conceptual level, the collection of the S θ(Z) values induce a 

distribution on the space of (0,1)3, which is a natural choice of the prior distribution. It can 

be viewed as infinite past “experience” (Efron, 2012), where “experience” in this case refers 

to the true value of θ for each of the S sub-populations. Such a distribution can also be 

viewed as induced by treating θ(Z) as a random vector, where each component Zj is 

independently and identically distributed as a Bernoulli variable with probability of success 

equal to p=0.5. In fact, we can set p to different values so that the prior puts more weight on 

those sub-populations with close to [Lp] cells ([.] is the rounding operation). For instance, if 

L=100 and the sub-population of interest has 30 cells, then it seems natural to use p=0.3 for 

the definition of the prior since sub-populations with 30 cells are more “relevant” to the 

given sub-population.
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To characterize the prior distribution, we introduce some notations. Let τj, αj, and βj be the 

true values of the size, the event rate in the control arm, and the event rate in the intervention 

arm for cell j (j=1,2,…,L). In the Appendix, we show that for large L, the prior distribution 

depends on λ = (μ,Σ), where

Specifically, due to the Lindeberg-Feller central limit theorem, the prior distribution can be 

approximated by

(1)

where N(x;a,b) is the probability density function of a normal vector with mean a and 

variance-covariance matrix b evaluated at x. One apparent feature of pλ (θ) is that for large 

θ1, the variance-covariance matrix of (θ2, θ3)T tends to be small. This is expected as the sizes 

of the sub-populations get larger, there is more overlap among different sub-populations and 

their event rates tend to be similar. Another observation is that (μ2, μ3)T is the event rate in 

the entire population for the control and intervention multiplied by p. Thus, roughly 

speaking, the center of the distribution of treatment effect (e.g. a contrast between θ2 and θ3) 

over sub-populations should be close to the treatment effect in the entire population.

2.3 The Empirical Bayes (EB) Estimation

Let n be the total sample size of the data and r be the probability that a subject is randomized 

to the intervention arm, both of which are considered fixed throughout this paper. For a 

given sub-population Z, the data can be summarized as d = (n0,n1, y0, y1), where y0 and n0 

are the count of events and the sample size for the control arm, and similarly y1 and n1 for 

the intervention arm. A natural estimator of θ = θ(Z) is

(2)

Throughout this article, we will refer to θ2̂, θ̂
3 and the odds ratio based on θ̂2 and θ̂

3 as the 

standard estimates.

The conditional distribution of d given θ can be written as
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(3)

where B (x;a,b) is the binomial probability mass function evaluated at x with a and b as the 

number of trials and the success probability. By the Bayes rule, the posterior distribution of θ 

is

(4)

If λ is known, then pλ (θ | d) can be used to derive the posterior distribution of (θ2, θ3) by 

integrating out θ1. The statistical evidence on the treatment effect for the corresponding sub-

population can be characterized by the posterior distribution of a contrast between θ2 and θ3 

(e.g. odds ratio, risk difference). A nice property of this method is the straightforward and 

intuitively appealing interpretation of the posterior distribution of the treatment effect. If the 

5th percentile of the posterior distribution of the odds ratio is 1, then it implies that among 

ALL sub-populations with the same d = (n0,n1, y0, y1), 95% of them (based on weights 

defined in the prior) will have odds ratios greater than 1. If odds ratio greater than 1 means 

treatment benefit, then it implies that the treatment is effective in 95% of the sub-populations 

with the same data as the sub-population of interest. As many of these sub-populations have 

overlap with the selected sub-population, the stochastic behavior of them has high 

“relevance”.

In practice, λ is unknown. A straight forward estimator λ̂ can be obtained by replacing τj, αj 

and βj with sample proportions τ̂
j, α̂

j and β̂
j in the definition of λ. That is, we can obtain τ̂

j as 

the sample proportion of the subjects that fall in cell j, and similarly obtain α̂
j and β̂

j as the 

sample event rates within cell j in the control and intervention arms. Then pλ̂(θ | d) can be 

used to make inference about the treatment effect. Since some of the cells are rather small, 

the estimators α̂
j and β̂

j themselves may not be precise. However, they also have small 

contributions to the variation of λ̂ due to small values of τ̂
j. On the other hand, larger cells 

with more precise estimators α̂
j and β̂

j will dominate the variation of λ̂. For cells with no 

control or intervention units, α̂
j or β̂

j can be set to 0.

2.4 Computation of the Posterior Distribution

Parameters of the posterior distribution pλ(θ | d) can be computed by standard sampling 

techniques. Let Ω̂ = diag(θ̂
1 (1−θ̂1) / n, θ̂

2 (1−θ̂2) / n0, θ̂
3 (1−θ̂3) / n1) and Δ = diag(1,1/μ1,1/

μ1), where the function “diag(a)” converts vector a into a diagonal matrix. As a binomial 

distribution can be approximated by a normal distribution,

(5)

We can also approximate pλ(θ) by a multivariate normal distribution:

(6)

Shen et al. Page 5

J Biopharm Stat. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Applying approximations of (5) and (6) to (4), we obtain the following importance function:

(7)

where U = (Δ−1Σ−1Δ−1 + Ω̂−1)−1 (Δ−1Σ−1μ + Ω̂−1θ̂), V = (Δ−1Σ−1Δ−1 + Ω̂−1)−1. Since it is 

easy to sample from , a large number of samples can be generated to estimate the 

posterior distribution of θ with proper weight adjustment. Specifically, let θ(1), θ(2),…, θ(m) 

be m samples from , and let  be the weight for θ(i) (i=1,2,…,m). Then 

the posterior mean of a function h(θ)(i.e. the odds ratio) can be estimated by . In 

addition, the empirical distribution of h(θ(i)) with probability  can be used to 

estimate percentiles of the posterior distribution of h(θ). As m goes to infinity, these 

estimators converge to the true parameters of pλ(θ | d). In practice, one can use the m 
samples to estimate the precision of the estimator in order to choose a proper m. In our 

analysis in Sections 3 and 4, we set m=100,000.

2.5 Estimation Error

In this particle, we are primarily interested in the posterior percentiles of the odds ratio 

between θ2 and θ3 for fixed d = (n0,n1, y0, y1), which can be used to construct empirical 

Bayes confidence intervals (Carlin and Gelfand, 1990; Rubin, 1984). By the normal-like 

approximation (1) and the subsequent posterior distribution (4), a percentile can be viewed 

as a function of λ, which will be denoted by F(λ). Let ψ be the true value of the parameter. 

Then

(8)

Thus there are two sources of error in estimating ψ. The first term on the right side of (8) 

represents the error due to the estimation of λ (sampling variation). If the sample size is Ne, 

then by the standard maximum likelihood theory λ̂ is -consistent estimator of λ and is 

asymptotically normal; F(λ̂) − F(λ) is also asymptotically normal by the Delta method with a 

convergence rate of , as the posterior percentile as a function of λ is sufficiently 

smooth. The second term on the right side of (8) represents the error due to approximating 

the true prior distribution of θ by (1). This term contributes to the bias in estimating ψ. As L 
gets large, we hope that this term tends to be small. For simulation studies and real data 

analysis in this article, we focus on correcting bias in the first term. In particular, we will use 

the method proposed by Efron (Efron, 1987) to correct bias in estimates of posterior 

percentiles that are used to construct the EB confidence limits. Details are provided in the 

Appendix.
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3. APPLICATION TO THE MAGIC DATA

The MAGIC trial (Magnesium in Coronaries (MAGIC) Trial Investigators, 2002) sought to 

assess the effectiveness of supplemental administration of intravenous magnesium in 

reducing 30-day all-cause mortality in patients with ST-elevation myocardial infarction 

(STEMI). The trial was double-blinded with a placebo group as the control arm. A total of 

6213 patients were randomized with 3113 and 3100 in the intervention and the control arms, 

respectively. Within 30 days, 475 (15.3%) and 472 (15.2%) in the intervention and control 

arms had died (p-value=0.96). Therefore, there was no statistical evidence to support the 

efficacy of administration of the intravenous magnesium in reducing mortality. Based on the 

results of MAGIC trial and another study, the 2004 American College of Cardiology/

American Heart Association guidelines on STEMI recommended that routine intravenous 

magnesium should not be given. Nevertheless, the results of other randomized control trials 

conducted before MAGIC had led to inconsistent conclusions, with some indicating efficacy 

and some not (Magnesium in Coronaries (MAGIC) Trial Investigators, 2002). One possible 

explanation is that the intervention may be helpful for some patients, though not so for 

others. Nevertheless, no evidence of efficacy was found in the 18 pre-specified sub-

populations defined by seven binary and one four-level categorical baseline covariates in the 

MAGIC study. The eight variables are described in Table 1.

To illustrate the EB method described in Section 2, we focus on three sub-populations. Sub-

population A is composed of those with previous myocardial infarction, chest pain at 

randomization and age ≥65 years without any restriction on the values of other variables in 

Table 1. Using the notation in Table 1, this sub-population is labelled as “V4=V6=V8=1”. 

Sub-population B includes those with previous myocardial infarction and age ≥65 years 

(V4=V8=1) and sub-population C includes those with chest pain at randomization (V6=1). 

The three sub-populations were chosen as they represent sub-populations with different 

sizes. Among the 6213 subjects enrolled in the study, 18 had missing values on at least one 

of the eight variables or the outcome. Thus, our analysis data set is composed of 6195 

subjects. The 6195 subjects form 144 cells, each of which has at least one subject. In our 

analysis, the parameter p for prior was set to be the number of cells included in the sub-

population of interest divided by the total number of cells.

Table 2 shows the estimates of the odds ratio of mortality (control over intervention) for the 

three sub-populations (e.g. odds ratio greater than 1 indicates treatment benefit). The sizes of 

sub-populations A, B and C are 8.6%, 19.0% and 44.0%. The standard point estimates are 

fairly similar, ranging from 1.01 to 1.13. Thus, there is little variation in treatment effect in 

subjects covered by the three sub-populations. To avoid heavy influence of extreme values, 

we use the posterior median as the point estimate for the empirical Bayes (EB) and bias-

corrected empirical Bayes (EB_BC) methods. It is not surprising that the both estimates 

shrink the standard estimates towards 1 since the odds ratio of mortality of the entire 6195 

subjects is essentially 1.00. The standard 95% CIs in Table 2 are frequentists confidence 

intervals, meaning the confidence intervals as a random quantity covers the true odds ratio 

95% of the time under a long run of repeated sampling, On the other hand, the EB 95% CIs 

essentially are Bayes credible regions, except that they entail frequentists errors in 

estimating the priors. The EB_CIs have an intuitively appealing interpretation. For example, 
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the EB 95% CI for sub-population A is 0.77–1.33, which means among all sub-populations 

with the same data as sub-population A, 95% of them (based on weights defined in the prior) 

will have a true odds ratio that falls in the region of (0.77, 1.33). The EB_BC 95% CIs try to 

correct potential bias in the EB CIs so that the confidence intervals on average cover 95% 

probability mass of the true posterior distribution of the odds ratios under a long run of 

repeated sampling. It can be seen the EB and EB_BC interval estimates are fairly close. 

Compared with the standard 95% CI, the EB and EB_BC intervals shrink both the lower and 

upper limits with a more pronounced effect on the upper limits. Thus, the empirical Bayes 

CIs trim both the high treatment benefit and high treatment harm ends (particularly the 

treatment benefit end), because the “experience” of other sub-populations suggests so.

4. SIMULATION STUDIES

We conducted a simulation study to investigate the properties of EB and EB_BC when the 

estimation process is repeated. In particular, we are interested in whether or not the 

empirical Bayes confidence intervals indeed cover 95% probability mass with respect to the 

true posterior distribution when averaged over repeated Monte Carlo samples. We consider 

the following simulation scheme. Cells with at least one control and one intervention subject 

from the 144 cells formed by the 6195 subjects of the MAGIC trial are retained. For the 

retained cells, we assume that the empirical cell size and event rates under control and 

intervention within each cell are the true population parameters. Thus, in this setting, there is 

essentially no treatment effect over the entire population (e.g. mortality rates are 15.2% and 

15.2% for the control and intervention, respectively). But in 42% of the cells the mortality 

rate under intervention is lower than control (treatment benefit) and there is treatment harm 

in the other 58% cells.

We generated 1000 Monte Carlo data sets, each of which is composed of 6195 subjects. For 

each Monte Carlo data set, we obtained the EB, EB_BC and standard estimates of sub-

populations A, B and C. In addition, for each Monte Carlo data set, we computed the true 

posterior distribution of the odds ratio for the three sub-populations. The EB and EB_BC 

CIs were then compared to the posterior distribution to calculate the coverage of posterior 

probability mass. The average of the coverage over the 1000 Monte Carlo data sets is called 

“mean of probability coverage”. Moreover, we also performed the same estimation tasks for 

a sub-population D (3 cells, 9.6% of the total population) with stronger treatment benefit 

based on the population parameters. In Table 3, we provide numerical summary of the 

simulation results. In terms of point estimate, it is not surprising that the EB and EB_BC 

pull the point estimate towards 1 due to shrinkage, leading downward bias. This is 

particularly apparent for sub-population D, where the relative shrinkage is close to 20%. 

However, the square root of the mean squared error (SRMSE) is always smaller than the 

standard point estimate, suggesting a benefit in trading bias for precision. The shrinkage of 

the EB and EB_BC CIs are also reflected by the shift of the 95% CI towards the left, 

particularly at the upper end, suggesting trimming of strong treatment benefit based on 

experience of other sub-populations. The EB_CIs, by the way they are constructed, do not 

necessarily cover the true value with 95% probability under repeated sampling. Thus, no 

coverage probability in the conventional sense is reported for EB. In addition, due to the 

estimation of the prior, the EB_CI based on a given Monte Carlo data does not necessarily 
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cover 95% of the true posterior probability mass. However, as shown in Table 3, the EB_CIs 

cover about 95% of the true posterior probability mass for sub-populations A, B and D on 

average (see “Mean of probability coverage of EB 95% CI”), which implies that the 

coverage probability with respect to the true posterior distribution has little bias for these 

sub-populations. The EB_CI has a slightly under coverage for sub-population C. This is 

because the posterior distribution of sub-population C is very sharp due to the relatively 

large size. Thus, a tiny bias in posterior percentile estimates will translate to relatively large 

bias in posterior probability coverage. For instance, the average (over the 1000 Monte Carlo 

data sets) of the 2.5 and 5 percentiles of the posterior distribution of odds ratio for sub-

population C is 0.932 and 0.948. Thus, a small bias of around 0.01 in estimating these 

percentiles (a little over 1% relative bias) will lead to coverage bias of a couple of 

percentages. EB_BC CI does not offer an obvious improvement over EB_CI, and even tends 

to have a bit more under coverage for sub-population C.

Overall, the EB method, as expected, shrinks the odds ratio estimate of a sub-population 

towards the mean of the odds ratios of all sub-populations. The shrinkage represents a 

different balance in bias-precision trade-off, leading to an improved SRMSE. The relative 

conservativeness of EB has the advantage of easy control of false positives when a number 

of sub-populations are being evaluated (Efron, 2010b). In addition, the proposed EB 

estimation procedure on average covers the nominal probability mass of the true posterior 

distribution.

5. DISCUSSION

We propose an empirical Bayes method to estimate the treatment effect in a sub-population 

for a binary outcome. The empirical Bayes offers a natural way to combine both the direct 

evidence coming from the data of the sub-population of interest and the indirect evidence 

coming from data of other sub-populations. Our method has three major advantages. First, 

the posterior distribution of the treatment effect has an appealingly natural and intuitive 

interpretation. Second, the prior is estimated using data to maintain objectivity. Third, when 

multiple sub-populations are evaluated at the same time, the posterior distribution offers a 

straight forward solution for false discovery rate (FDR) estimate (Efron, 2010b).

Although discrete baseline characteristics are considered in this article, the method can be 

generalized to continuous characteristics by applying appropriate thresholds to discretize 

them. In particular, as long as the resulting L non-empty cells cover the majority of the 

population, our approach can be applied. One can apply a sufficient number of thresholds to 

continuous variables such that the discretized variables still maintain adequate granularity 

for practical purpose. In fact, a large L has at least three theoretical advantages. First, the 

asymptotic approximation of equation (1) will work better. Second, we can study the 

heterogeneity in a finer resolution. Third, if we split cell j into two cells j′ and j″, it is clear 

that
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Therefore, as L gets large, Σ becomes small and provides more prior information. Certainly, 

as the empirical Bayes method needs to estimate the prior, its performance with different 

thresholds applied to continuous variables needs to be studied through simulations.

The problem discussed in this paper has some unique features that differentiate it from the 

setting where Tweedie’s formula can be applied (Efron, 2011). The key factor is that our 

problem has a natural definition of the “prior distribution” without the need to extrapolate 

beyond the observed units to hypothetically infinite units for the induction of the prior 

distribution. In this sense, it is conceptually easy and appealing. In addition, because of the 

overlapping structure of different sub-populations, estimation of the prior can be performed 

by directly estimating the parameters associated with the prior. Consequently, we can 

estimate essentially any parameters associated with the posterior distribution. In contrast, 

Efron’s work (Efron, 2011) is based on a general classic empirical Bayes setting. It requires 

the distribution of the data conditional on the true parameter to follow an exponential family 

so that the posterior mean and variance can be estimated by Tweedie’s formula combined 

with a model of the marginal distribution of the data. The advantage of Tweedie’s formula is 

that it does not require any information about the prior. The downside is that it is not clear 

how other posterior parameters such as percentiles can be estimated.

From the methodology perspective, the method described in this article is a proof-of-

concept. There are questions that are beyond the scope of this article, which need to be 

addressed in future studies. First, the accuracy of the estimates of the posterior parameters, 

particularly the tail percentiles, can be improved. As our simulation studies show, the current 

percentile estimate still suffers some level of bias when the posterior distribution is sharp. 

More accurate method to further eliminate bias will greatly enhance the practical utility of 

this approach. Second, more comprehensive numerical investigations are needed to better 

understand the performance of this approach under various conditions, such as the sample 

size, the number of non-empty cells, and the prior parameter λ. Fourth, if a selection process 

is implemented to select sub-population with strong treatment effect, would the EB method 

be able to correct potential bias as Efron showed (Efron, 2011)? Answers to these questions 

will help us better understand the value of the empirical Bayes method in estimating 

treatment effects in sub-populations.
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APPENDIX

The prior distribution of θ

The elements of Z i.i.d. Bernoulli variables with success probability p.

Let S(Z) = (S1(Z), S2(Z), S3(Z))T, where 

. Then θ1 (Z) = S1(Z), θ2 (Z) = 

S2(Z)/S1(Z), θ3(Z) = S3(Z)/S1(Z).

Suppose as L→∞, Max(τj) = O(L−1). Given any ε>0, for sufficient large L, 

, and similarly both τjαj Zj and τjβj Zj are bound by . Then 

 for all j. By Linderberg-Feller central limit theorem, as 

L→∞,

Therefore, S(Z) ⩪N(μ,Σ), where

Then (S2, S3)T | S1 ~ N (μ*(S1), Σ*), where 

. Let λ = (μ,Σ). It 

follows that the distribution of θ = θ(Z) can be written as
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The bootstrap procedure to correct bias in posterior percentile estimates

Let η = η(θ) be the odds ratio and φ(τj, αj, βj, j = 1, 2,…, L). Denote by C(d, λ̂, α) the α × 

100% percentile of the estimated posterior distribution of η. The idea is to find an α′ such 

that E(pλ(η≤ C(d, λ̂,α′) | d) = α, where the expectation is with respect to the true sampling 

distribution of the entire data given the true parameter φ and sub-population data d, p(.| φ, d) 

(Carlin and Gelfand, 1990; Rubin, 1984). In other words, the sample space of p(.| φ, d) 

includes all data sets that yield the same data d for the sub-population of interest. We can 

then correct C(d, λ̂, α) by C(d, λ̂, α′) so that the posterior percentile estimates yield the 

nominal percentile coverage on average. We cannot directly solve α′ as we do not know φ. A 

bootstrap method can be used to estimate α′ by solving

(9)

where  is the estimate from the ith bootstrap sample that was generated from p(.| φ̂, d) and 

Nb is the number of bootstrap samples.

To generate a bootstrap sample from p(.| φ̂, d), we need to condition on data d. Let S1 be the 

set of n0 + n1 subjects in the sub-population of interest and S2 be the set of nr subjects that 

do not belong to the sub-population of interest. We first draw nr subjects with replacement 

from S2 just like the standard bootstrap method. Then we draw n0 + n1 subjects from S1, 

while maintaining the total number of control, intervention, events under control and events 

under intervention at n0,n1, y0, and y1, respectively. This can be easily done using 

multinomial distributions. Let C be the list of cells in the sub-population of interest and 

 be the data for cell j∈C. Let

Then the number events under control in cells of C can be drawn from a multinomial 

distribution , where the size is y0 and probability vector is 

. Similarly, the number of non-events under control, the number events 

under intervention, and the number of non-events under intervention can be drawn from 

 and 

.
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Table 1

The eight baseline covariates used to define the 18 pre-specified sub-populations in the original MAGIC 

publication.

Variable Value

Stratum (V1) 1: candidates for reperfusion therapy, 2: otherwise

Time from myocardial infarction to bolus (hour) (V2) 1: ≤1, 2: 1–3, 3: 3–6, 4:>6

History of diabetes (V3) 0: no, 1: yes

Previous myocardial infarction (V4) 0: no, 1: yes

Received reperfusion (V5) 0: no, 1: yes

Chest pain at randomization (V6) 0: no, 1: yes

Type of reperfusion (V7) 0: No reperfusion attempt; 1: lytics, 2: Percutaneous transluminal coronary angioplasty 
(PTCA)

Age (years) (V8) 0: <65, 1: ≥65
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Table 2

Estimation of the odds ratio (control over treatment) of 3-day mortality for three sub-populations. EB_BC is 

based on 500 bootstrap samples. EB: empirical Bayes; EB_BC: empirical Bayes with bias correction

Sub-population A (V4=V6=V8=1) Sub-population B (V4=V8=1) Sub-population C (V6=1)

# of cells 26 48 78

Size 8.6% 19.0% 44.0%

Standard point estimate 1.13 1.10 1.01

Standard 95% CI 0.73–1.73 0.82–1.47 0.82–1.23

EB point estimate* 1.03 1.04 1.01

EB 95% CI 0.77–1.33 0.87–1.20 0.91–1.13

EB_BC point estimate 1.00 1.04 1.01

EB_BC 95% CI 0.77–1.23 0.87–1.20 0.92–1.14

*
Median of posterior distribution
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