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Abstract

Fibroblast growth factor 23 (FGF23) gain of function mutations can lead to autosomal dominant 

hypophosphatemic rickets (ADHR) disease onset at birth, or delayed onset following puberty or 

pregnancy. We previously demonstrated that the combination of iron deficiency and a knock-in 

R176Q FGF23 mutation in mature mice induced FGF23 expression and hypophosphatemia that 

paralleled the late-onset ADHR phenotype. Because anemia in pregnancy and in premature infants 

is common, the goal of this study was to test whether iron deficiency alters phosphate handling in 

neonatal life. Wild-type (WT) and ADHR female breeder mice were provided control or iron-

deficient diets during pregnancy and nursing. Iron-deficient breeders were also made iron replete. 

Iron-deficient WT and ADHR pups were hypophosphatemic, with ADHR pups having 

significantly lower serum phosphate (p < 0.01) and widened growth plates. Both genotypes 

increased bone FGF23 mRNA (>50 fold; p < 0.01). WT and ADHR pups receiving low iron had 

elevated intact serum FGF23; ADHR mice were affected to a greater degree (p < 0.01). Iron-

deficient mice also showed increased Cyp24a1 and reduced Cyp27b1, and low serum 1,25-

dihydroxyvitamin D (1,25D). Iron repletion normalized most abnormalities. Because iron 
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deficiency can induce tissue hypoxia, oxygen deprivation was tested as a regulator of FGF23, and 

was shown to stimulate FGF23 mRNA in vitro and serum C-terminal FGF23 in normal rats in 

vivo. These studies demonstrate that FGF23 is modulated by iron status in young WT and ADHR 

mice and that hypoxia independently controls FGF23 expression in situations of normal iron. 

Therefore, disturbed iron and oxygen metabolism in neonatal life may have important effects on 

skeletal function and structure through FGF23 activity on phosphate regulation.
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Introduction

Fibroblast growth factor-23 (FGF23) is a hormone produced in bone that controls renal 

phosphate reabsorption. The metabolic bone disease autosomal dominant hypophosphatemic 

rickets (ADHR; OMIM# 193100) is characterized by low serum phosphate concentrations as 

a result of decreased renal phosphate reabsorption, and by rickets/osteomalacia.(1) ADHR is 

caused by missense mutations that replace the arginine (R) residues at positions 176 or 179 

with glutamine (Q) or tryptophan (W) (R176Q/W and R179Q/W)(2) within the FGF23 

subtilisin-like proprotein convertase (SPC) site (176RXXR179/S180).(2–5) These substitutions 

disrupt normal cleavage of the intact, bioactive form of the hormone. The ADHR phenotype 

parallels those of X-linked hypophosphatemic rickets (XLH; loss of function PHEX 
mutations), autosomal recessive hypophosphatemic rickets type 1 (ARHR1; loss of function 

DMP1 mutations(6,7)) and ADHR type 2 (loss of function mutations in ENPP1(8,9)) and the 

acquired disorder, tumor-induced osteomalacia (TIO),(10) all of which have in common an 

elevation of plasma FGF23.

ADHR patients display incomplete penetrance and variable age of onset.(1) There are two 

subgroups of patients with ADHR: (1) those who present during childhood with 

hypophosphatemia, rickets, and lower extremity deformity; and (2) those who are unaffected 

early in life but then present clinically during adolescence or adulthood.(1) The early-onset 

patients have similar biochemical and skeletal profiles to those with XLH. But in contrast to 

XLH, the late ADHR onset patients can have waxing and waning of the hypophosphatemia 

that correlates with serum FGF23 concentrations.(11) Also, some patients treated early in life 

for hypophosphatemia have been documented to later lose the phosphate wasting 

defect.(1,11) FGF23 can be measured in plasma by two ELISAs: an “intact” assay that 

recognizes the bioactive molecule, and a C-terminal assay that recognizes intact FGF23 as 

well as proteolytic fragments C-terminal to the SPC RXXR site. Importantly, delayed-onset 

ADHR can coincide with puberty or pregnancy, common physiological situations of iron 

deficiency. We previously demonstrated that the combination of iron deficiency in the 

context of an FGF23 R176Q ADHR knock-in mutation in mice results in increased bone 

FGF23 mRNA and intact protein, causing an ADHR-like disease phenotype.(12) Of note, in 

the same study, mature wild-type (WT) mice were resistant to the effects of iron deficiency 

because of their ability to proteolytically cleave and inactivate FGF23 in the face of 
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increased production, as judged by elevated FGF23 mRNA with increased C-terminal 

FGF23 concentrations, but normal intact hormone.

In vivo, FGF23 acts in the kidney via its co-receptor αKlotho to reduce renal phosphate 

reabsorption through downregulation of the proximal tubule apical membrane sodium-

phosphate cotransporter Npt2a, as well as suppression of the anabolic vitamin D 1α-

hydroxylase (Cyp27b1) and increasing expression of the catabolic vitamin D 24-hydroxylase 

(Cyp24a1).(13,14) The net effect of these actions is to reduce both serum phosphate and 1,25-

dihydroxyvitamin D (1,25D); parathyroid hormone (PTH) has the same effect on Npt2a, but 

converse effects on 1,25D metabolism. Normal iron and phosphate metabolism are critical 

for proper bone formation because iron overload and iron deficiency, as in heritable 

thalassemias, result in pathological changes in the skeleton.(15–18) Elevated C-terminal 

FGF23 has been associated with iron deficiency in cohorts of children, some with 

rickets.(19,20) However, whether there are functional and molecular consequences between 

iron and phosphate handling in normal neonates and in those with FGF23 ADHR mutations 

is unknown. Iron deficiency decreases oxygen delivery and causes tissue hypoxia; therefore, 

anemia and hypoxia induce similar regulatory responses, including stimulation of red cell 

production and the activation of survival genes such as erythropoietin (EPO) and vascular 

endothelial growth factor (VEGF), in a hypoxia-inducible factor transcription factor–

dependent manner.(21) Because iron deficiency often occurs during pregnancy,(22) a goal of 

the present study was to test whether FGF23 can be induced in the neonate using an iron 

deficiency model based upon lack of maternal–neonatal iron transfer. In addition, we tested 

whether hypoxia independent of iron also controls FGF23 production.

Subjects and Methods

Animal studies

Animal studies were approved by the Institutional Animal Care and Use Committee 

(IACUC) for Indiana University, and complied with the NIH guidelines for the use of 

animals. ADHR R176Q-FGF23 mice are described(12) and were derived from standard gene 

targeting through embryonic stem cell (ES cell) transfer.

Rodent diets

Experimental diets were from Research Diets, Inc. (New Brunswick, NJ, USA). The 

“control-iron” diet was the AIN-76A base diet with the S10001 mineral mix containing iron 

at the standard concentration of 45 mg Fe/kg (carbonyl iron). The iron-deficient diet was the 

AIN-76A base diet and S10001 mineral mix with the iron removed (“low-iron” diet; ~0.1 

parts per million [ppm] iron final). All diets contained customary 0.55% phosphate final, 

with low trace-element casein (Avicel PH101 cellulose). Iron repletion was carried out by 

first administering the low-iron diet at 14 days of pregnancy for 2 weeks, then providing the 

control-iron diet for 2 weeks. Diets and water were provided to the nursing mothers ad 
libitum throughout the experimental time frame.
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In vivo hypoxia model

As described,(23) adult age-matched male (n = 5) Sprague-Dawley rats (250–275 g; Charles 

River, Wilmington, MA, USA) were exposed to hypobaric hypoxia (atmospheric pressure 

[Patm] = 362 mmHg, equivalent to 10% fraction of inspired oxygen [FiO2] at sea level, or an 

altitude of 5877 m) in a custom-made exposure chamber for a 2-week duration. Animals 

were allowed ad libitum access to food and water for the duration of the experimentation. 

Pressure and oxygen concentration in the chamber were continuously monitored by 

adequately calibrated sensors. The chamber was opened daily for 30 minutes for change of 

bedding and water. Age-matched controls were housed at ambient barometric pressure (~760 

mmHg). All animals were maintained on a 12-hour:12-hour light:dark cycle and received 

care in compliance with the Guide for the Care and Use of Laboratory Animals. At the end 

of hypoxia exposure, rats were killed immediately upon removal from the chamber by 

isoflurane overdose and exsanguination. Blood was drawn by right ventricular puncture. 

Samples were centrifuged for procurement of plasma, which was then snap frozen in liquid 

nitrogen.

Serum biochemistries

Blood samples were collected from mice at the time of death by cardiac puncture, or by tail 

bleed according to approved protocols. Routine serum biochemistries including calcium 

(Ca), phosphate (Pi), alkaline phosphatase (AP), creatinine (Cr), and total serum iron were 

measured using an automated COBAS MIRA Plus Chemistry Analyzer (Roche Diagnostics, 

Indianapolis, IN, USA). Serum 1,25D was measured using an enzyme immunoassay (EIA) 

(Immunodiagnostic Systems Inc., Scottsdale, AZ, USA) according to the manufacturer’s 

instructions. Serum intact FGF23 concentrations were assessed using a commercial ELISA 

(Kainos Laboratories International, Tokyo, Japan). FGF23 was also measured using a 

rodent-specific C-terminal FGF23 ELISA that recognizes full-length FGF23 and peptides 3′ 
(C-terminal) to the SPC site, according to the manufacturer’s specifications (Immutopics 

International, San Clemente, CA, USA).

Histomorphometry

Distal femurs collected at the time of death were embedded in methyl methacrylate, and 

midsagittal (4-µm) sections of cancellous bone from the distal femur were cut using a 

microtome (2050 Supercut; Reichert-Jung, Depew, NY, USA). The sections were stained 

with McNeal/Tetrachrome stain according to established protocols, and were examined 

blinded to mouse diet and genotype. Histomorphometric measures of growth plate thickness 

were obtained at the central region of the image where the growth plate was perpendicular to 

the place of section using a semiautomatic analysis system (Bioquant OSTEO; Bioquant 

Image Analysis Co., Nashville, TN, USA) attached to a Nikon microscope.

RNA preparation and quantitative PCR

Kidney and bone were harvested and homogenized in 1 mL of TRIzol reagent (Invitrogen, 

Inc., Carlsbad, CA, USA) according to the manufacturer’s protocol using a TissueTearor 

rotor-stator (Biospec Products, Inc., Bartlesville, OK, USA). UMR-106 total cell RNA was 

collected with the RNeasy Kit (Qiagen, Inc., Gaithersburg, MD, USA) according to the 
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manufacturer’s directions. RNA samples were tested with primers specific for mouse 

vitamin D 24-hydroxylase (Cyp24a1), vitamin D 1-α-hydroxylase (Cyp27b1), FGF23, EPO, 

and transferrin receptor-1 (TfRc1) and for rat FGF23; rodent β-actin was used as an internal 

control. quantitative PCR (qPCR) primers and probes were either purchased as preoptimized 

reagents (Life Technologies, Rockville, MD, USA), or designed in-house; sequences are 

available upon request.

The TaqMan One-Step RT-PCR kit was used to perform qPCR. PCR conditions for all 

experiments were as follows: 30 minutes at 48°C, 10 minutes at 95°C, followed by 40 cycles 

of 15 seconds at 95°C and 1 minute at 60°C. The data was collected and analyzed by the 

7500 Real Time PCR system and software (Applied Biosystems, Foster City, CA, USA). 

The expression levels of mRNAs were calculated relative to WT mice receiving the control 

diet. All primer sets were tested for specific amplification of mRNA by parallel analyses of 

controls that included omitting reverse transcriptase (RT) or template, and resulted in no 

fluorescent signal detection. Each RNA sample was analyzed in at least triplicate, and each 

in vitro experiment was performed independently at least three times. The delta-delta 

comparative cycle threshold (2−ΔΔCt) method described by Livak and Schmittgen(24) was 

used to analyze the data.

Cell culture

UMR-106 cells (ATCC) were cultured in D-MEM/F-12 (Invitrogen, Thermo-Fisher 

Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; 

Hyclone), 1 mM sodium pyruvate, 25 mM L-glutamine, and 25 mM penicillin-streptomycin 

(Sigma-Aldrich, St. Louis, MO, USA) at 37°C and 5% CO2. Cells were cultured under 

normoxia or the same conditions but at 0.5 ATM (10% O2).

Immunoblots

UMR-106 cells were lysed with 100 µL 1× Lysis buffer (Cell Signaling Technologies, Inc., 

Danvers, MA, USA) with 1 µg/mL 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride 

(AEBSF) protease inhibitor (Sigma-Aldrich, Inc.). Cell lysate protein concentrations were 

determined with the Better Bradford Kit (Thermo-Fisher Scientific) according to the 

manufacturer’s instructions. Western blot analysis was performed with 30 µg UMR-106 

cellular lysates. The blots were incubated with primary antibody to hypoxia-inducible factor 

1-alpha (HIF1α) (NB100–449; Novus Biologicals, Littleton, CO, USA) at 1:1000, then 

incubated with secondary antibody at 1:3000 (anti-rabbit–horseradish peroxidase [HRP]; 

BioRad, Inc., Hercules, CA, USA). Blots were stripped using SDS-glycine and reprobed 

with 1:10,000 anti-β-actin-HRP (A3854; Sigma-Aldrich). Detection was performed using 

the ECL Prime Western Blotting Detection Reagents (Amersham-GE Healthcare, Pittsburgh, 

PA, USA) and XOMAT film (Eastman-Kodak Co., Rochester, NY, USA).

Statistical analysis

Significance between groups was assessed using ANOVA analysis with a Tukey honestly 

significant difference (HSD) post hoc test. Differences between low-iron and replete samples 

and RNA expression in UMR-106 cells were assessed with Student’s t test. Significance for 

all tests was set at p < 0.05 and data are presented as means ± SEM.
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Results

Iron deficiency and early-onset hypophosphatemia

Whether maternal iron deficiency during pregnancy (typically found in the third trimester) 

and nursing can alter the molecular mechanisms underlying control of FGF23 is not known. 

To address this question, female mouse breeders were provided diets with normal (“control-

iron”; 45 mg/kg iron), or “low-iron” (0% added iron) from day 14 of pregnancy through 

weaning (21 days after birth), and WT and heterozygous ADHR pups were examined. This 

dietary protocol resulted in iron deficiency as determined by elevated renal EPO (p < 0.01; 

Fig. 1A) and transferrin receptor type 1 (TfRc1; p < 0.01, Fig. 1B) mRNA expression in 

both the ADHR and WT pups receiving low iron.

The effects of maternal iron deficiency on serum biochemistries related to phosphate 

homeostasis were next tested. The ADHR and WT mice on the control diet had similar 

serum biochemistries. Iron-deficient WT pups had modest hypophosphatemia compared to 

the control diet pups (p < 0.01), whereas the ADHR mice had a more dramatic reduction in 

serum phosphate compared to both the control diet ADHR mice and to WT low-iron mice (p 
< 0.01 versus ADHR control diet and WT low-iron diet; Fig. 2A). Serum 1,25D was 

significantly reduced in both the iron-deficient WT and ADHR mice compared to mice 

receiving the control diet (p < 0.01; Fig. 2B). Serum calcium in the WT low-iron group and 

alkaline phosphatase in the ADHR control group were slightly elevated (p < 0.01, p < 0.05, 

respectively; data not shown), whereas creatinine levels remained unchanged between 

groups (data not shown).

Control of circulating FGF23

To test the regulation of circulating FGF23 following iron deficiency in the ADHR mice in 

vivo, two serum assays were employed: an intact FGF23 ELISA that recognizes whole-

molecule FGF23, as well as a C-terminal FGF23 ELISA that measures the intact protein and 

in addition the FGF23 proteolytic fragments C-terminal to the FGF23 176RXXR179/S180 

SPC site. In the WT pups with iron deficiency, intact FGF23 was elevated versus control-

diet pups (p < 0.01; Fig. 2C). Intact FGF23 was also increased in the ADHR iron-deficient 

mice versus ADHR control diet mice and WT low-iron diet mice (p < 0.01 versus ADHR 

control; p < 0.05 versus WT low-iron; Fig. 2C). The iron-deficient WT and ADHR pups had 

highly elevated serum C-terminal FGF23 concentrations and, similar to the intact FGF23, 

this was also significantly increased in ADHR low-iron mice versus the WT iron-deficient 

group (p < 0.01 versus ADHR control diet and WT low iron; Fig. 2D).

Analysis of kidney gene expression showed reduced renal Cyp27b1 and elevated Cyp24a1 
mRNAs in the iron-deficient WT and ADHR pups as compared to the pups receiving the 

control diet (Fig. 3A, B), with a significantly greater degree of changes present in the ADHR 

mice. To test the mechanisms underlying the increased circulating FGF23 protein, RNA was 

isolated from femur/tibia following low-iron or control diet, and FGF23 mRNA expression 

was tested by qPCR. With low-iron treatment, the WT and ADHR mice had similar 

increases in FGF23 mRNA (>50-fold) compared to pups receiving the control diet (p < 0.01 

for ADHR and WT low-iron versus control; Fig. 3C).
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Fixed sections of distal femur from pups receiving each diet were stained and assessed by 

histomorphometry. Analyses revealed widened growth plates due to expanded zone of 

calcification in the ADHR low-iron group (Fig. 4A) that was significantly different from the 

WT control, WT low-iron, and ADHR control diet groups (Fig. 4B; p < 0.01 to 0.05).

Effects of iron repletion

To test whether the increased FGF23 and hypophosphatemia induced by iron deficiency 

could be abolished during the neonatal period, breeders were placed on the low-iron diet on 

day 14 of pregnancy as usual, but after 2 weeks (1 week in utero and 1 week after birth), the 

mothers were switched to the control iron diet for the final 2 nursing weeks. This regimen 

resulted in serum phosphate at 4 weeks (2 weeks iron-replete) that was normalized versus 

ADHR mice that were continuously provided the low-iron diet (Table 1). Intact and C-

terminal FGF23 concentrations were similar to those of ADHR mice continuously receiving 

control iron diet (Table 1). The replete group was also normal for bone FGF23 and kidney 

Cyp24a1 mRNAs; however, Cyp27b1 mRNA remained suppressed (Table 1).

Hypoxia and FGF23 expression

Systemic iron deficiency and oxygen deficiency control some similar sets of compensatory 

genes, such as EPO and VEGF. We previously demonstrated that treatment with the iron 

chelator deferoxamine (DFO) resulted in elevated FGF23 under normoxia in UMR-106 

cells.(12) Thus we next tested the hypothesis that hypoxia could induce FGF23 expression 

independently from changes in iron. To study the effects of oxygen tension, UMR-106 cells 

were grown in 0.5 ATM (10% O2) or normoxia (21%) for 24 or 48 hours. With a decrease in 

oxygen tension but constant cell media iron concentrations, FGF23 mRNA was significantly 

elevated at 24 hours, and approached normal by 48 hours (Fig. 5A). In parallel, immunoblots 

from UMR-106 cell lysates showed that HIF1α protein was modestly elevated at 4 hours, 

consistent with a hypoxic response, then reduced by 24 and 48 hours (Fig. 5A; inset), which 

paralleled the FGF23 mRNA expression time course. To extend this to in vivo situations, 

Sprague-Dawley rats (n = 5/group) were housed in a hypobaric atmosphere for 2 weeks at 

362 mmHg (equivalent to 10% FiO2) or kept under normoxic conditions. As 

demonstrated,(23) when compared to normoxic control animals, hypoxia caused robust 

erythrocytosis (hematocrit: 62.5% ± 1.0% versus 38.2% ± 1.2%; p < 0.001), pulmonary 

hypertension (right ventricular systolic pressure: 57.3 ± 2.9 mmHg versus 31.1 ± 1.9 mmHg; 

p < 0.001), and right ventricular hypertrophy (right ventricular weight/weight of left 

ventricle plus septum [RV/LV + S]: 52.0% ± 1.5% versus 27.3% ± 1.0%; p < 0.001). 

Collectively, these findings confirm in vivo hypobaric hypoxia. Interestingly, parallel serum 

FGF23 measurements demonstrated that C-terminal FGF23 was significantly elevated (>6-

fold; Fig. 5B) in the hypoxic group, whereas intact FGF23 was not different between the 

hypoxic and normoxic group (Fig. 4B). Serum phosphate (normoxic: 6.9 ± 0.4 mg/dL; 

hypoxic: 7.5 ± 0.8 mg/dL) and total iron concentrations (normoxic: 277.2 ± 37.2 mg/dL; 

hypoxic: 281.3 ± 37.2 mg/dL) were not different between treatments. These results support 

the concept that hypoxia may control FGF23 independently of iron, and that the processing 

of FGF23 into C-terminal fragments occurs in low oxygen and in rodents made iron-

deficient through diet, in order to maintain normal serum phosphate concentrations.(12)
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Discussion

Herein, we found that iron deficiency anemia in young mice significantly increased FGF23 

production and resulted in hypophosphatemia and altered 1,25D metabolism. In this regard, 

provision of an iron-deficient diet to breeder mothers during the last week of pregnancy and 

while nursing, mimicking the third human trimester when iron deficiency is common and 

results in elevated tissue production of EPO and TFRc1,(25,26) reliable physiologic markers 

of iron deficiency. With this regimen, intact and C-terminal FGF23 were also elevated in 

both WT and ADHR mice. The FGF23 increases were significantly greater in the ADHR 

mice, and led to greater reductions in serum phosphate and 1,25D, suggesting that the 

increase in FGF23 in the ADHR mice was biologically active. Although the iron-deficiency–

dependent increases in FGF23 mRNA were similar in WT and ADHR mice, it is likely that 

the WT form of FGF23 was more amenable to SPC cleavage, consistent with previous in 

vitro results examining recombinant FGF23 protein.(3,4) These effects were partially 

mimicked by anoxia in rats and reversed by iron repletion in mice.

Importantly, unlike the situation in mature mice,(12) WT neonatal mice were unable to fully 

counteract the increase in FGF23 mRNA through proteolysis of the translated hormone, 

leading to elevated intact FGF23 and decreased serum phosphate and 1,25D levels above 

those in WT mice receiving the control diet. This FGF23 response to iron deficiency in WT 

healthy mice may point to an important role of iron in the manifestation of rickets in both 

neonatal and postnatal periods of life. In the premature infant and in the case of neonatal 

vitamin D deficiency, rickets is often attributable to the inability to supply sufficient 

phosphate via the diet, resulting in hypophosphatemic rickets.(27) Our data suggest that an 

accompanying iron deficiency or anoxic state is likely to aggravate the onset and severity of 

the rickets, and suggest that measures of iron status are likely to be useful in diagnosing, 

managing, and treating rickets in children.

The reason for the biological intersection of iron and phosphate homeostasis through 

FGF23, as well as the need and mechanisms for complete resistance to iron deficiency–

dependent increases in FGF23 in mature animals is not completely clear, and is likely 

complex. We demonstrated that providing iron to WT and ADHR mice that had been 

deprived of iron resulted in pups with abnormal FGF23 and phosphate handling. These 

findings support the concept that balance of iron and phosphate during pregnancy and 

nursing is critical during differentiation and growth of the skeleton. Indeed, the increase in 

WT FGF23 had marked biological effects on renal 1,25D metabolic enzymes, with increased 

Cyp24a1 and reduced Cyp27b1 mRNAs. Of note, although intact FGF23 was not different 

between the ADHR mice receiving the control diet and those receiving the iron replacement 

diet, the Cyp27b1 remained abnormal, indicating that there is a lag time between restoration 

of FGF23 and the return of normal phosphate homeostasis. Our work demonstrated that the 

stimulatory effects of iron deprivation are much stronger biological influences on FGF23 

production than the known in vivo suppressive effects of hypophosphatemia previously 

derived through diet(28,29) or in other genetic models such as the vitamin D receptor (VDR)-

null mouse.(30) The alterations in the control of FGF23 under conditions of iron deficiency 

could also speculatively have implications beyond rare heritable disorders. In pediatric 

patients with stage 3 chronic kidney disease–mineral and bone disorder (CKD-MBD), 
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approximately 65% are anemic, which rises to over 90% by stage 4/5(31); and importantly, 

iron deficiency is the most common mineral deficiency in children worldwide.(32) Whether 

FGF23 is processed differently in childhood than in adult CKD-MBD, and whether the 

crossover control of FGF23 and iron/hypoxia in the young has metabolic effects on bone 

growth and development remains to be determined.

Iron deficiency anemia results in reduced oxygen delivery to tissues and in hypoxic states, 

and overlapping compensatory mechanisms to reductions in iron are activated. The 

differential effects of hypoxia on circulating forms of FGF23 in mature normal rats (normal 

intact but elevated C-terminal FGF23) is similar to the effects on FGF23 processing caused 

by iron deficiency in mature WT mice.(12) In agreement with the in vivo studies, hypoxia 

increased FGF23 mRNA in UMR-106 cells, and FGF23 expression correlated with the 

cellular stabilization of HIF1α. We have also demonstrated that HIF activity could also be 

induced in parallel with FGF23 using the iron chelator DFO.(12) Previous studies using 

UMR-106 cells demonstrated that other osteoblast/osteocyte genes can be controlled by 

hypoxia, including SOST, which is significantly reduced in parallel with increased 

expression and nuclear localization of activated β-catenin.(33) In agreement, studies support 

that DMP1, MEPE, Connexin-43, and FGF23 may be controlled by hypoxia in MC3T3 cells 

and primary cultures of osteoblasts.(34) Potentially, the interconnected control of these genes 

functions as a portion of a tissue and cell maturation program that may be required to 

balance mineralization through systemic phosphate control (FGF23), local osteoblast 

function (SOST, Connexin-43), and matrix deposition (DMP1, MEPE). Further, it is most 

likely that the marked hypophosphatemia in the ADHR low-iron diet animals resulted in the 

expanded growth plate zone of calcification typical of rickets. Because HIF1α is known to 

control important regulators of vasculogenesis, parallel control of systemic FGF23 could 

potentially act to optimize blood phosphate, thus mineralizing bone as vascularization 

occurs. By extension, skeletal fracture repair initially occurs in a hypoxic environment as 

blood vessels are broken, and these coordinated changes in gene expression and cell 

differentiation could act to maximize the skeletal healing process. Indeed, FGF23 mRNA 

has been found to be highly expressed in cells along fracture callus.(35)

In summary, our findings demonstrate that FGF23 is elevated during iron deficiency through 

maternal-neonatal transfer. In the presence of an ADHR R176Q-FGF23 allele in mice, this 

biological situation leads to more severe hypophosphatemia compared to mice expressing 

the WT FGF23 alleles. Hypoxia with normal iron also increased FGF23 mRNA in vitro and 

had differential effects on FGF23 protein in vivo. Collectively, these results provide a link 

between phosphate and iron metabolism early in life and may reveal new roles for FGF23 in 

normal growth.
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Fig. 1. 
Response of EPO and TfRc1 to iron deficiency. (A) Kidney erythropoietin (EPO) mRNA 

was significantly elevated in ADHR and WT pups (n ≥ 9/group) from mothers receiving a 

low-iron diet versus pups from mothers receiving a control iron diet. (B) Kidney TfRc1 was 

also significantly increased in the low-iron diet mice (*p < 0.01 versus either genotype 

receiving control iron diet).
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Fig. 2. 
Biochemical variables. (A) Serum phosphate was reduced in both ADHR and WT mice (n ≥ 

19/group) receiving the iron-deficient diet (*p < 0.01 versus control diet; ‡p < 0.01 versus 

low-iron WT cohort). (B) Serum 1,25D was decreased in the mice (n = 6–9/group) receiving 

the low-iron diet (*p < 0.01 versus like genotype control iron diet; ‡p < 0.05 versus WT 

receiving low iron). (C) Intact and (D) C-terminal FGF23 were increased in ADHR and WT 

mice (n ≥ 20/group) receiving the low-iron diet when compared to like genotype receiving 

the control iron diet (*p < 0.05; **p < 0.01), and ADHR mice receiving low iron were 

significantly elevated compared to WT mice provided low iron (‡p < 0.01).
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Fig. 3. 
Renal and bone mRNA changes in iron-deficient pups. (A) Renal 1-α-hydroxylase 

(Cyp27b1) mRNA was reduced in both WT and ADHR mice receiving low iron; and (B) 

renal 24-hydroxylase (Cyp24a1) mRNA was elevated in ADHR neonates receiving low iron 

(*p < 0.05; **p < 0.01). (C) Bone FGF23 mRNA was significantly increased with low-iron 

diet regimen (*p < 0.01 versus same genotype control diet; ‡p < 0.05 versus low iron ADHR 

group; n ≥ 9/group).
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Fig. 4. 
Distal femur histomorphometry. (A) Femur distal metaphysis sections were stained with 

McNeal/Tetrachrome and assessed using histomorphometry. The ADHR low-iron diet mice 

(lower right panel) had significantly widened growth plates characterized by an expanded 

zone of calcification (shown by yellow bracket) compared to WT control diet (upper left), 

WT low-iron diet (upper right panel), and ADHR mice receiving the control iron diet (lower 

left). (B) Quantification of the growth plate defect demonstrated significant increases in 

plate width for the ADHR low-iron group (“ADHR low”) versus all other groups (n = 4–5/

group: **p < 0.01 versus WT low iron (“WT low”; *p < 0.05 versus WT and ADHR control 

(“ctl”) iron diet).
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Fig. 5. 
FGF23 stimulation by hypoxia in vitro and in vivo. (A) FGF23 mRNA was significantly 

elevated in UMR-106 cells cultured under hypoxic conditions for 24 to 48 hours. In parallel, 

immunoblots (chart inset) for HIF1α (upper panel) showed an increase at 4 hours, followed 

by reductions at 24 and 48 hours; the blot was stripped and β-actin was examined as the gel 

loading control (lower panel). (B) C-terminal, but not intact FGF23 was increased in rats (n 
= 5/group) housed under hypobaric hypoxia conditions for 2 weeks compared to rats housed 

under normoxia (*p < 0.05).
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